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JOURNAL OF FUNCTIONAL ANALYSIS 30, 162-l 78 ( 1978) 

The Norm of the LP-Fourier Transform III 

Compact Extensions 

BERNARD Russo * 

Department of Mathematics, University of California, Irvine, California 92717 

Communicated by the Editors 

Received January 13, 1977 

A theorem of HausdorB Young type is proved for integral operators in the 
setting of gage spaces. This theorem is used to show that the norm of the 
LB-Fourier transform on unimodular groups is stable under compact extension. 

1. INTRODUCTION 

The problem under consideration in this series has only recently been solved 
in the case of any locally compact Abelian group G by Beckner [2]. In the setting 
of Abelian groups, the problem is to compute the smallest constant A, = A,(G) 
for which 

(1.1) 

Here 1 < p < 2, ‘, + ‘,, = 1 and Sf is the Fourier transform off if f is inte- 
grable. The fact that A, exists and is not greater than one is known as the 
Hausdorff Young theorem. 

Beckner’s solution consisted in computing the smallest constant A, in (1.1) 
in the case of the real line G = [w. This completed (by different methods) 
previous work of Babenko [l] who showed that A,(R) = [PI/“/( p’)1/p’]1j2 
if p belongs to the infinite sequence 4/3, 6/5, 8/7,.... Babenko’s method required 
that p’ be an even integer. Beckner was able to obtain this formula for all 
p E (1,2). From this followed easily the computation for W and any Abelian 
group by the well-known structure theorem and [lo: Section 43). 

The Hat&o& Young theorem was extended to non-Abelian groups by 
Kunze [13]. Namely, for locally compact unimodular groups, an analog of (1 .l) 
with A, = 1 exists in which the function Ff is replaced by an operator Lf 
and the norm l/L,II,* is defined with respect to a gage space (in the sense of 
I. E. Segal) canonicaliy constructed from the group. 
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For compact groups (Abelian or not) it is easy to see by taking f = 1 that 
A, = 1 is the best constant in (1.1). For noncompact, non-Abelian unimodular 
groups, the computation of the best constant in the aforementioned analog of 
(1.1) was not considered prior to [I93 which forms part I of this series. In that 
paper I showed that results of Hewitt, Ross, and Hirschman on maximal func- 
tions [lo: Section 431 extended verbatim to unimodular groups. I also considered 
direct and semidirect products and computed the best constant for the class 
of central topological groups and for the Euclidean groups, i.e., the groups of 
rigid motions of Euclidean space. In part IT [20], I studied this problem for the 
class of connected, simply connected, real nilpotent Lie groups. Estimates 
were obtained for most of the known examples of such groups. Some but not 
all of the estimates in these two papers, and another [21] made use of the author’s 
Hausdorff Young theorem for integral operators. This theorem has been extended 
to the case of operator valued kernels [8], and it is this extension which is the 
starting point for the present paper, the contents of which will now be described. 

In Section 2 I discuss the analog of the main result of [8] in which the gage 

space (x, g(JQ, t r is replaced by more general ones. As it turns out, the ) 
result of [8] and its proof extend word for word to the more general setting. 
(See Prop. 2.1.) However, for the applications considered in the present paper, 
the hypothesis of this extended theorem is not satisfied. Therefore, it is necessary 
to abandon interpolation theory and to adopt a pedestrian approach which uses 
the result of [8] together with direct integral decompositions of gage spaces. 
The price paid for this is that the resulting inequality (Theorem I) is proved 
for only certain values of the indices, i.e., p = 4/3, 615, 8/7 ,.... 

Section 3 contains the result (Theorem 2) that the norm of the D-Fourier 
transform is stable under compact extension (for p’ an even integer). Precisely, 
if N is unimodular and of type I and if G is a separable compact extension of N, 
then the smallest constant in the Hausdorff Young theorem for G is dominated 
by the one for N. In Section 4 I discuss the implications of Theorem 2 for general 
linear groups and for Moore groups. 

Sections 3 and 4 depend heavily on [12]. A ccordingly, the blanket assumption 
is made that all groups considered in this paper are separable (= second 
countable). Also, d, denotes the modular function of G, G denotes the unitary 
dual of G, pc denotes the Plancherel measure on G if G is of type I and uni- 
modular, and X(G) denotes the collection of continuous complex valued func- 
tions on G with compact support. 

If X is a complex Hilbert space, a(X) denotes the Banach space of bounded 
linear operators on X with the usual operator norm. In Section 2 the concepts 
of gage space and of direct integral decomposition are used. References for these 
are [16, 221 and [5: chapter II], respectively. The Lebesgue spaces associated 
with a gage space r will be denoted by LP(r), 1 < p < co. If r is a (discrete) 
gage space of the form (X, B(X), tr), the Lebesgue spaces will be denoted by 
CPW), 1 <P < al. 
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2. INTEGRAL OPERATORS AND GAGE SPACES 

With X a measure space and &’ a complex Hilbert space, let % denote the 
Hilbert space L2(X, &‘). With R a B(%)-valued measurable function on X x X, 
let Tk denote the integral operator with kernel K (if it exists): 

TkfW = s, kc? Y)f(Y) dY7 fEX, a.e.xEX. (2.1) 

If the quantities Mr = ess.iup jx 11 k(x, y)IIscx~ dx and Ma = ess.~p sx x 
(1 k(x, y)l19(&j dy are both finite, then it can easily be shown, using Schwarz’s 
inequality (several times), that Tk E g’(s) and that 

II Trc Ilam < ~~&W2. (2.2) 

Given X and 2, consider semifinite von Neumann algebras .& on .@ and 
2l on Z, with faithful normal semifinite traces T and u, respectively. Then 
I’= (..@,&!,T) and (1 =(.X,2& ) u are regular gage spaces in the sense of 
Segal [22, 161. They are related only by the fact that .%? = L2(X; 2). 

For p, q, r E [l, CO], denote the norm in the Banach space P’J(X x X)(Lr(r)), 
for convenience, by /j . //I,Q),Q . Recall that if 9” is a Banach lattice of real-valued 
measurable functions on a measure space, and B is a Banach space, then Z(B) 
is the Banach space of B-valued measurable functions f such that I/f (*)lls E X, 
with the norm j/f I/I(~) = 11 11 f (.)lis 11% (cf. [4]). Also L+Q(X x x) denotes a 
mixed norm space in the sense of [3]. Therefore, for example, if p and q are 

finite, II k l17.31,q = I& {Ji II 4x, YXW dxplp dy]l/g. Now if k has its values 
in J& (= La(r)) and Tk. belongs to ‘$I (= Lffi(n)) i.e., for each x and y k(x, y) 
is a bounded measurable operator with respect to r and T, is a bounded 
measurable operator with respect to (1, (2.2) may be restated as 

Ii Tk /IPW ,< (!I k Ilm,~,m II k* llm,l,mY’z (2.3) 

where k*(x, y) = k( y, x)*. A possible Hausdorff Young inequality for integral 
operators in this setting would be the assertion for 1 < p < 2 and 1 /p + 1 /p’ = 1 
that 

II Tk IIP,(A < (II k llv,.m, II k* ll/.m,‘Y2- (2.4) 

The meaning of (2.4) since k is only D’(r) valued and therefore the k(x, y) 
are not necessarily everywhere defined, is that the map k -+ Tk defined by (2.1) 
if the integral in (2.1) makes sense and converges, extends to a mapping of the 
set of k for which the right side of (2.4) is finite and that Tk EL?(~) and (2.4) 
holds for such k. In particular Tk must be a (not necessarily bounded) measurable 
operator with respect to (1. 

The standard procedure for proving an inequality such as (2.4) is to establish 
its validity at the endpoints p = 1 and p = 2 and then to use interpolation 
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methods to obtain it for 1 < p < 2. This has been done for the special case 
in which & = a(.#), ‘$I = a(x) an d 7 and 0 are the ordinary traces [8]. The 
particular case of this in which .8 is one dimensional was treated in [19] and 
[21] and was instrumental for determining the best constant in the HausdorfI 
Young theorem for some classes of unimodular groups. As remarked above and 
shown below this procedure cannot be used in this paper. 

The reason for considering, in the present paper, gage spaces more 
general than (JEV, &(A?), t r is that the gage space that arises in the study ) 
of the Hausdorff Young theorem on unimodular groups is never of this form, 
and not always decomposable as a direct integral of gage spaces of this 
form. 

The discussion which follows will set the stage for Theorem 1 and Section 3. 
We are given two gage spaces I’ = (2, A, T) and A = (X, 91, u) which are 
related only by the fact that x = L*(X; Z) for some measure space X. For 
each p E (I, 2) let Z-p denote the Banach lattice of measurable functions 
(LP.P’(X x qv(pP’(x x Jq-)*y considered in [S Section 31. Recall that 
if % is a Banach lattice of measurable functions on X x X then %* = {K: k* E %} 
with norm 11 k i/q. = I! K* II9 . Recall also that if %,, and %, are two Banach 
lattices of measurable functions on some measure space, then %iel%:, for 
0 < t < I, denotes the Banach lattice consisting of a!! measurable functions f 
satisfying an inequality of the form If [ < hgi-‘g,’ for some positive number 
h and non-negative elements gi E %i with llgi I\~~-I,i=o,l . The norm of f in 
%i-t%l* is the infinimum of all A in the inequality. (See [4: 13.51 or [8: Section 21). 
In the following proposition, CC’, denotes *T,,(LP’(T)) for 1 < p < 2. 

PROPOSITION 2.1. 1. II K j18, < (1; K /;D,,P,D, /I k* !lp,,D,P,)1/2. 

2. I, , g2 form an interpolation pair in the sense of [4] and the intermediate 
spaces satisfy [E;, , g21a = 8, if s = 2/p’, 1 < p <: 2. 

3. I f  k E 8, , then Tk , defined by (2.1) belongs to 3?(Y) and j! Tk /!a(~) < 
II k II8I . (Note that Tk is not necessarily measurable with respect to A and that in 

view of (I) this is an improvement over (2.2), cf. (2.3)) 

4. Suppose that Tk is a measurable operator for e-very k E &I and suppose 
also that the map k -+ Tk defined initially by (2.1) extended to a linear map of 
norm <I of cY2 into L*(A). Then k -+ Tk would extend to a bounded linear map 
of tlOtm <I of 8, into Lp’(A) for every p E (1,2). 

Proof. (1) follows from the definition of the norm in the space&,.’ (2) and (3) 

’ The very same argument proves the following: let $‘!I,, , gI be Banach lattices on some 
measure space and let B be any Banach space. For 0 < t < 1 let @‘t = Q:-‘%VI1. Then 
il k liwp G II k ll&o~B, II k ll&,cBj . 
B = Lp’(I’), t = 2’ . 

In this proposition W,, = LP*p’(X x X), CV, = Y/:, 
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are proved in [8: Section 31 for a special case but the same proof works here. 
(4) follows from (2) and (3) and the general theory of interpolation [4] since 
[L”(A), L’(A)ly = Lql) f or s = 2/p’. Here the assumption that Tk be a 
measurable operator is crucial since 9(X), L*(A) do not in general form an 
interpolation pair so that [a(X), Lz(A)]8 is meaningless. 

To place Theorem 1 (to follow) in a proper perspective it is appropriate to 
consider an important example which is central to this paper and which will 
be discussed further in Section 3. Let G be a locally compact separable uni- 
modular group and suppose N is a closed normal unimodular subgroup of 
G such that G/N = K is compact. Let 

r = r&r = (L*(N), Z(N), rnN) and A = r, = (L*(G), Y(G), mc) 

be the canonical gage spaces of N and G respectively [13, 231 (see Section 3). 
If p E .X(G) then the operator L, of convolution on the left by 9) on L2(G) 
is bounded and measurable with respect to r, and can be shown to be unitarily 
equivalent to an integral operator Tk on L2(K; L2(N)) whose kernel 12, is 
Y(N) valued. Therefore // Tk, llL,,r,,w< 11 k, j/g, . For i = 1, 2 let 9i be 
the closure of (k, ; p E X(G)} in 6,. By the Plancherel theorem for G, 
Ij Tk /lL2,nc) = 11 k, llse , but it is not true in general that gi = b, .2 In any case 
9i is” a closed subspace of d, and according to the interpolation theory discussed 
above the best that can be said is that the map k, -+ TI, will carry [a1 , g21s 
into LP’(I’,) (s = 2/p’). Now generally [.& ,9& is z linear subspace of 
[e?, , S21s = b, but does not necessarily have the same norm. Therefore it 
cannot be asserted that I/ Tk l(Lp,tr~) , < )I k, 118, which is the inequality desired. 
Furthermore even though the map k, -+ T, extends to a map k -+ Tk of d, 
into @(L*(G)), as pointed out above theremis no guarantee that Tk will be 
measurable with respect to r, for every k E d, . (In this paragraph and the next 
we have identified T, with L, .) 

To resolve this dile&ma it is only necessary to make the (reasonable) assump- 
tion that N be a group of type I. For then, since N is assumed to be unimodular 
and separable we can quote [6: 18.8.11 to obtain direct integral decompositions 

s 

0 
m  N== 7.a dA, where 

r? 
TJT @ I) = tr(T). 

(2.5) 

f If G = f& N = H, then QI = 8, implies that an arbitrary integral operator is normal. 



NORM OF LP-FOURIER TRANSFORM 111 167 

Then for p E X(G), and k, h E K, as noted above K,(R, h) E p(N) so by (2.6) 

km@, 4 = I,” (k,,,(k h) 04 dh with k,,,(k, h) E @HA). (2.8) 

Since L2(K) is a separable Hilbert space, 

X = LZ(K; L2(N)) = L2(K) @L2(N) = L2(K) @ j; (sA @ sA) dA 

= s @ XA dh where 
19 

X, = L2(K; &” @ sA). (2.9) 

Using (2.8) and (2.9) and [5: chapter II] we shall obtain 

Tk, = I @ (Tkol,A @ 1) a. 
iv 

(2.10) 

Then using the Plancherel theorem for G, the compactness of K and the well- 
known fact 

we shall obtain 

This example will be continued in Section 3. Thus far, this example justifies 
the hypotheses in the following Lemma and Theorem. 

LEMMA 2.2. Let X be a measure space with L2(X) separable and let 
r = (X’, A, T) and A = (X, ‘3, u) be gage spaces such that x = L2(X; #). 
Suppose that r = JR8 r,, d, is a direct integral of gage spaces r, = (YA , AA , T,,) 
where MA is a factor of type I for a.e. X E Q. Suppose that k -+ Tk extends to an 
isometry of g2 onto L2(.4). For each k E &I , let k, be defined by k(x, y) = 
sz k,(x, y) dh with k,(x, y) E .&, . Then Tk = SE TkA dh, for k E &I and 

11 Tk &A) = s, 11 T/c,+ lI~~.zy dk 
XA = LB(X; H*) for k E E1 n CC?‘, and n = 1, 2, 3 ,... . (2.13) 
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Proof. Since L2(X) is separable [S: Prop. 11, p. 1521 tells us that 
X = L2(X; .%) -L2(X) 0% = L2(X) @ (j: HA dh) e J: (L2(X) 0 ZA) dh N 
st L2(X; Z’J dh via the map defined densely by 

for fi ,..., fn eL2(X) and (Ye ,..., 01, E Z with aj = Jz aj(h) dh, 1 < j < IZ. 
It follows that 

St-= 
I 

@ & dh, xA = L2(X; sA) and for F E .% 
R 

F= 
s 

‘FAdA where FA E .z$ is defined by 
R 

F(x) = 1” F,(x) dh for x E X. 
61 

Now let ((Y& C &? be a fundamental sequence of measurable vector fields 
[5: Def. 1, p. 1411 for &’ = jz HA dA. Letting (fi , fi ,...) be an orthonormal 
base for L2(X) we know [5: Proof of Prop. 10, p. 1521 that the sequence 
{fi @ ai}zi=l C Z? defined by fi @ 013 = Jz fi @ aj(A) dh is a fundamental 
sequence of measurable vector fields for .z%? = sz %, dA. Let K E &r ; to prove 
that Tk = Jz TkA dA it must be shown that X -+ TkA is a measurable field of 
operators and that Tp = s” T,,F,, dA forF = $@ Fh dh E 37 [5: Def. 2, p. 1601. 
Now by [5: Prop. 1, p. 1571 h -+ TkA is a measurable field if and only if 

h + (T$fi 0 G9, [fk 0 ~WX, is a measurable function of X for all 
i, j, k, 1. This function equals JJfi( y) fk(x)(KA(x, y)aj(A), ~lr(h))x~ dx dy which 
is measurable as a function of h since h -+ K,(x, y) is a measurable field of 
operators and ( 01 t r is a fundamental sequence of measurable vector fields i)z 
([5: Prop. 1, p. 1571 again). Now if F = s@F, dAE Z, then (TJJ)(x) = 

.fs% Y> F( Y) dr = J-x .I’$ k,b, Y) FA( Y) dh & = j: J-x h(x, Y> Fd Y) dr dh = 
so (TkAFA)(x) dh so that T$ = 1: TkAFA dA as required. 

Now suppose K E &I n rZ2 . Then 
sx sx II 4%Y%r, 

II Tk llE2w) = II k IIi2 = II k ll&2 = 
dx dr = j-x j-x J-Q II UT ~Il+r-~, dh dx dr = J-n (J-x .k 

II Mx, YII:,~H,, h dy) a~ = J-s, II GA lI;,~-~j dh. This completes the proof for 
n = 1. 

With our K E Q, n 8s let h be defined by Th = (T,)* Tk . Since Tk EL-(A) (5 
V(A) we have T,, eLm(A) n Lz(A) and thus h E g2 and 11 Th IILqn) = /I h II&Z . 
Now it is well known and easy to verify that 

h(x, y) = jx k@, xl* W, Y> dz (2.14) 
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But K has its values in J% and JY is weakly closed so that h(x, y) E ./? and there- 

fore h(x, Y) = $f Mx, Y) dh, with h,(x, y) E J& . Although it is not known if 
h E e?i , we can still repeat the argument in the first part of the proof to conclude 
that Th = sf ThA dh. Moreover using Fubini’s theorem again with (2.14) 
tells us that ThA = (TkA)* Kk, . Therefore, using the argument for n = 1 
with h we get 

II Tk lliu = II Ta lib = II h It& = II h lli.~.~ = ss II h(x> ~)ll%w~ dx dy 
x x 

= ISS XXQ II Mx, ~)llzc,c~~, dh dx dr 

= s, (s, Jc, II h(x, ~)ll&q dx dy) dh 

= 1 52 II ThA II&C-,( dh = 1 II TQ ll&-A) dh as rewired. R 

The proof for n = 3,4,... is similar. 

THEOREM 1. Let X be a measure space with L2(X) separable and let 
I’ = (2, A?, T) and A = (A?, 8, u) be gage spaces such that s = L2(X; &‘). 
Suppose that the gage space r is decomposable into a direct integral of gage spaces 

J-‘, = 6% ,4,4(x E 4, w h ere An is a factor of type I for a.e. A. Suppose 
that k + Tk extends to an isomety of ~5’~ onto La(A). Then for any k E &I n r2f2 
and p E (4/3, 615, 8/7,...} we have 

Proof. 
Jz 

For our k E Er n g2 let kA be defined as in Lemma 2.2 by k(x, y) = 
k,(x, y) dh with kA(x, y) E A, . If p E {4/3,6/5,8/7 ,... > then p’ E (4,6, 8 ,... } 

so by Lemma 2.2 

II T,c II&I, = j, II Tzsn Il&cxA, a- 

But by [8: Cor. 21 for all p E (1,2) and all h, 

II TrcA Ilc,,cx~ G (II h ll~zw~ II A,* ll~~,mY’2~ 

Therefore for p E (413, 615, 8/7,...} 

< (s II k,t ll,“:.w, R 
dA)1’2(j.n I/ k: II,“:.,,,, dh)1’2. 
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Now 

9’19 
z.z j- (j- II k(x, rX~,cr, d”) dy = II II 4-9 *)llrp*cr, II;:,* = II k I$.,.,, 

and similarly 

so that 

II TIC 11~~~~~~ < (II k II$,9.,, II k* ll$.D.,,)“2 = required. 

Remurk 2.2. The point of Theorem 1 is that it cannot be assumed that 
Tk EL.~(A) for all k E eY1 since this is not satisfied in our applications. By not 
making this assumption the conclusion is weakened from II Tk IILp,cn) < II k 118, 
(see Prop. 1.1-4) in two ways. First, the right side of this inequality is replaced 

by (II k l/~~,w~ II k* II,,.,,,,) l/* which is larger than /I k Ilg, , and this inequality 
is proved only for k E 6, n 8, . This does not affect any of the applications 
which follow in this paper in any way. Second, the resulting inequality is proved 
for the sequence p = 413, 6/S, B/7,... instead of for all p E (1,2). It remains 
a challenging problem in interpolation theory to prove the inequalities obtained 
in this paper for all p E (1,2). 

3. COMPACT EXTENSIONS 

In this section it will be shown that the D-Fourier transform (1 < p < 2) 
is stable under compact extension (if p’ is an even integer). 

Let G be a locally compact separable (= second countable) group with closed 
subgroup N. (It is not assumed yet that N is normal or that G or N is uni- 
modular.) Let dg and dn denote right Haar measures on G and N respectively. 
Let K = G/N be the homogeneous space of right cosets and give K a quasi- 
invariant measure dk. 

If y is a continuous unitary representation of N on a Hilbert space sY , 
let n = ind$ y be the representation of G induced by y. By use of a Bore1 
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cross section s: K + G, w can be shown to be unitarily equivalent to a represen- 
tation +? which acts on the Hilbert space Ls(K, X”,) (see [12: Section 31). More- 
over, if v E X(G), then f(p)) = SC (p( x 7i x ) ( ) d x is an integral operator Tk (I) 
with kernel k, given by 

k,(k h) = &(W’) n(4W1’2 s, d4W1 44) r(n) nMW”2 dn 
(3.1) 

for k, h E K and 

k E K. (3.2) 

Here q is the continuous function on G to (0, “) which arises in the definition 
of the quasi-invariant measure dk. For notation’s sake let 

so that 

k& 4 = 4(44-1) qWP2 Y(.Ld (3.4) 

Note that if y is the right regular representation of N, then 77 is the right 
regular representation of G and thus 7F(p)), for p E X(G) is unitarily equivalent 
to an integral operator on L2(K;L”(N)) -L2(G). 

If H is any locally compact unimodular group (not necessarily separable) 
let sP(H), for 1 <p < 2 denote the P-Fourier transform on H, i.e., 
&(H):L,(H) --+LP’(r,) is the map f + R, = convolution by f on the right 
inP(H). Here I’, is the dual gage space of H and 1 /p + 1 /p’ = 1. The HausdorfI 
Young theorem for His the assertion 11 R, /lLP,(rH) < 11 f IILpcH) , i.e., jJ S9(H)ll < 1. 
Note that the “right” gage space is being used here instead of the “left” one 
described in [13] and in Section 2. This is done to conform with our notation 
for induced representations and is valid since H is unimodular. Recall that 
R, = v(f) where rr is the right regular representation of H. 

THEOREM 2. Let G be a locally compact separable unimodular group and let N 

be a closed normal subgroup of G which is unimodular and of type I. Suppose that 
the quotient group GIN is compact. Then for I < p < 2 and p’ an even integer, 

II &(G)ll G II %WN (3.5) 

Proof. Let r, = (L2(N), W(N), mN) and r’, = (L*(G), W(G), mc) be the 
dual gage spaces of N and G, respectively, and let K = G/N be equipped with 
normalized Haar measure. Let ‘p E Z(G). Then as noted above, the operator 
R, is unitarily equivalent to an integral operator Tk9 acing on LZ(K; Le(N)) 
with kernel k, : K x K -+ W(N) given by k,(k, h) = Y(fo.& for k, h E K, 
where y is the right regular representation of N, f,,p,n(n) = p(s(k)-l ns(h)) 
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for n E N and S: K --+ G is a Bore1 cross section. By the Plancherel formula 
for G, for all g, ELM, 

11 4 hi-,) = I/ YJ b(G) . (3.6) 

On the other hand, for v E X(G), 

= IlfW,k,h \I&) dk dh (Plancherel formula for N) 

zz 

fSI 
K K N I &W =@))I2 dn dk dh 

= jK jG I dSWIN 4 dk = jK II v  llh~) dk = II q %G) . 

This and (3.6) show that 

II & Il~vrG) = II k, llam for q~ ELM. 

Now it is well known (see [13]) that R, is measurable so that 

II % Ilrwg G II k, lbl for CJI E X(G). 

(3.7) 

(3.8) 

Therefore by (3.7), (3.8) [6: 18.8.11 and Theorem 1 we have 

II R, IIL~‘o-~) d (II k, ll~~.m~ II A,* Ils~.e,rA1’2 

for 1 < p < 2, p’ an even integer, and q~ E X(G). Now 

II k, ll8~.9.d = (j, ( jK II k,(k WA,, dk) p”p dkYy’ 

for all p, 1 < p < 2, and 

II kz@, 4ll~~*(r,, = II ~Cfm.~.dll~~~~q.,~ < II ~p(Yll IIfm.~h IILW 

for all p, 1 < p < 2. Therefore for 1 < p < 2 and p’ even, 

w9 

= II flp(WII II 9~ IIL~(G) , and similarly 

II k: lls,m, < 11 Fp(N)II 11 ? iIL'(G, * 
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Using these last two inequalities in (3.9) yields for 1 < p < 2 and p’ even, 

II R, /IP’(~~) < II =fTWll II T Ilm) for v E x(G). 

This proves (3.5). 

4. EXAMPLES 

In this section Theorem 2 is used to obtain estimates for the norm of the 
P-Fourier transform on general linear groups and on Moore groups. 

LEMMA 4.1. Let G be a localb compact group which is unimodular and of 
type I and let K be a compact normal subgroup of G. Then for 1 < p < 2, 

II &(W)ll < II 5WIl. (4.1) 

Proof. Let j: G -+ G/K be the canonical homomorphism with adjoint 
j: (G/K)̂  + G given by j(p)(x) = p( j(x)), for x E G and p E (G/K)“. Let 
H = G/K and let & = j(H) C e. By [14: Lemma 5.21 e, is an open closed 
subset of G and pc I & = pH . For 9 E X(H) and r E&, let + = n oj and 
$=p,ojsothat ~7 E e and I$ E L1(G) (by [IO: (28.54)(v)]). By [IO: (28.54)(v)] 
again, +?J) = JH dh) 44 dh = s G,K &K) +K) d&K) = J-o +7(x) ii(x) dx = 
+(+). Thus 

< G II p(+)ll”,: 444 = II R, IIf: - s (4.2) 

On the other hand, 

II + II; = j-- I @W’ dx = s,,, I dWI” 4W = II v II:: (4.3) 

(again using [lo: (28.54)(v))]). Using (4.2) and (4.3) we have 

/I R, IIp* < II hIIt/ < II ~JG)l/ II B Ile = II ~p(G)ll II TJ l/p 

and (4.1) follows. 

EXAMPI.E (cf. [12: p. 4731). Let F be a locally compact, nondiscrete field 
with char(F) = 0. Set G, = {g E GL(n, F): detg E F*“). Then (as pointed 
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out in [ 121) G, is a closed normal subgroup of finite index in GL(n, F). Therefore 
by Theorem 2 for p’ even, 

II %(GL(n, F))lI < II %(Gn)ll. (4.4) 

But (as also pointed out in [12]) the map ((gij), a) + (qii) is a continuous open 
homomorphism of SL(n,F) x F* onto G, with finite kernel K. Thus by 
Lemma4.1 for allpE(l,2) 

II %(Gz)ll < II %(Wn,F) x F*)ll (4.5) 

Combining (4.4), (4.5) and [19: Th eorem 21 we obtain for p’ an even integer 
that 

II %(GW, F)lI < II %(SL(n, F))ll I! %(F*)ll (4.6) 

Remark 4.2. Since F* is Abelian // &(F*)i/ is known for all p E (1, 2). 
It is reasonable to expect that for a semisimple Lie group G with Iwasawa 
decomposition G = KAN that 11 pD(G)ll < /( FP(AN)jl where 11 4t,(AN)lj is 
defined as in [21: Section 41 but so far this has not been proved. However it is 
an unpublished result of the author and Klein [11] that 11 sD(AN)II < 11 &(lJ!# 

if p’ is an even integer and AN is the “ax + b” group. This can be compared 
with the estimate I/ &(AN)II < I/ sJIw)I(, valid for all p E (1,2) [21: Prop. 191. 

A locally compact group G is called a Moore group if each of its continuous 
irreducible unitary representations is finite dimensional. Moore groups have 
been characterized in terms of semidirect products [18] and in terms of projective 
limits [15]. Recall that G = proj. lim(G,) means there is a family (HJ of normal 
subgroups of G directed by inclusion such that G, = G/H, and fia H, = 1, 
and such that a cofinal set of the H, are compact. 

LEMMA 4.3. Let G = proj. lim(G,) and suppose G has no compact open 

subgroup. Then each member of some cojinal subset of (GJ bus no compact open 
subgroup. 

Proof, If this was false there would be an index /3 such that for all 01 > p, 
G, = G/H,, H, is a normal subgroup of G, and C, is an open subgroup of G 
containing H, such that C,/H= is compact. By the definition of projective limit 
there is an index y > /3 such that H,, is compact. The compactness of H, and 
of C,/H,, imply the compactness of C,, ([lo: (5.25)]), contrary to our assumption. 

LEMMA 4.4. Let G = proj. lim(G,) and suppose G is z&modular and of 
type I. Let p E (1,2), p E s(G) and E > 0. Then there is un index /3 such that for 
all OL > j3 

II R, Ilp, < II %(:)/I II P Ilo + E. 
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Proof. Since G is given as a projective limit we can use [14: Theorem 5.41 
without the assumption that G be almost connected. With the notation of the 
preceding Lemmas and of [14: Theorem 5.41 we have G = Ub Ga, G, = G/I& 
so that 

s II 4?Jll;~ dPG(4 < Es for a>fl (4.7) 
G-C, 

and therefore 

11 R, 11;’ < f + s, 11 +)llp,: dpG(7T), for OL > /I (4.8) 
a 

NOW for any index OL, K, carries its normalized Haar measure and the Haar 
measure on G, is chosen so that the integration formula 

I F(x) dx = j- / F(xk) dk d% holds. 
G % Ku 

If TT E G satisfies v I K, = 1 let ii E Go be defined by +(Z) = V(X) if 
~=xK,EG,. Also let q(f) = SK, cp(xIz) dk for z = xK, E G, . Then 

4~) = j-c v(x) 44 dx = s,. 11, dxk) 4x4 dk dz 

=I G, c+?(f) ii(%) dx = 7j(+). 

Now 

= I G Id4l”d~ = ll~ll;. 

Using (4.9) and (4.10) in (4.8) yields (for a > /?) 

(4.9) 

(4.10) 

G E + !I s”,CG,Jl”’ II v II;: 
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i.e., 

The lemma follows. 

THEOREM 3. Let G be a Moore group and let p E (1,2). 

(a) If G has a compact open subgroup, then /I PD(G)ll = 1. 

(b) I f  G is separable and has no compact open subgroups then for p’ even, 

II TAG)ll G II =%Wl. 

Proof. (a) is valid for any unimodular group [19: Theorem 11. To prove 
(b) consider first the case that G is a Lie group. Then by 115: Theorem 21 
G contains an open subgroup A of finite index in G which is a central topological 
group. Setting H = nzEG XAX-l, then H is an open subgroup of A hence central 
[9: Theorem 2.11 and H is normal and of finite index in G. By Theorem 2, 

II &WI1 d II %Wll for P’ even. Since G has no compact open subgroups, 
neither does H and therefore by [19: Corollary to Theorem 21 I] S9(H)JI = 
// &(rW)]l” for some positive integer n (and all p E (1,2)). In the general case, 
by [15: Theorem 31 G = proj. lim(G,) where G, is a Moore group and a Lie 
group. By Lemma 4.3 each member of some cofinal subset of (G,) has no com- 
pact open subgroup so by the first part of the proof, I] sD(G,)ll < II F,(lR)llna 
for a cofinal set of 01, where nar is a positive integer. By Lemma 4.4, given E > 0 
and v E X(G) there is an index /3 such that 

Thus 

II R, II/ G II %(G,)Il II F IIn + E for all 01 > p. 

and 

IlKlID, ~ll~U’WlldI, +E forevery~>O 

for every q~ E X(G). 

Remark 4.5. In [18: Theorem‘21 every Moore group is shown to satisfy 
the following structure theorem: G = W x B, semidirect product with UP 
normal and B a Moore group with compact component of the identity containing 
a normal subgroup H of finite index such that W x H is a direct product. 

It follows that l/P x H is a normal subgroup of finite index in G. Thus if G 
is separable, Theorem 2 and [19: Theorem 21 imply 

II &(G)ll < II %(Rn x WI = II~WI” II ?W)II 

(for p’ even). This gives another proof of Theorem 3 if n > 0. 
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Remark 4.6. The following result, which is similar in spirit to the results 
of this section has been obtained recently by Fournier [7]. Let p E (1,2); then 
there is a constant b, E (0, 1) such that for any locally compact unimodular 
group G which does not have a compact open subgroup one has 11 SD(G)11 < b, . 
This result, though universal, is quite crude. For example, if p = 4/3 then 
.999999 < b, < 1. 
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