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Abstract�The Internet of Things (IoT) refers to an 

environment of ubiquitous sensing and actuation, where all 

devices are connected to a distributed backend infrastructure. 

The main benefit of the IoT is the ability to use myriad sensor 

data, leveraged into high-level information about the entities 

in the system for reasoning and actuation in context-aware 

applications. Significant growth in sensor deployment has lead 

to unregulated and diverse information being fed back to the 

system at large. A formal specification, or ontology, for data 

use provides regulation to the system. In addition, IoT 

middleware is required for context-aware applications to 

operate in an environment with constantly changing data, 

sources, and context. In this paper, we present a context 

engine for IoT applications founded on an ontology that 

specifies and reasons on context information. We explore and 

build upon related work on IoT needs and ontological 

principles. Our infrastructure leverages context information 

for learning and processing a changing environment. Finally, 

we implement two applications: one to demonstrate machine 

learning from heterogeneous, intermittent sources, and 

another with an end-to-end implementation of user-driven 

actuation using the IoT backend. In the former, we produce 

an output stream of context information 60x more accurate 

than either of the individual sensor streams alone. The latter 

exemplifies the ease of development and extension, with only 

20% infrastructure-related overhead. 

 
Keywords�Context aware computing; Internet of Things; 

Sensor ontology 

I. INTRODUCTION 

Sensor networks and ubiquitous sensing are evolving 

into a new concept ✁ the Internet of Things (IoT) ✁ the 

collection of sensing and actuation backed by the existing 

and growing Internet infrastructure [1]. This creates a 

unique scenario from prior sensing approaches: the pre-IoT 

work in this area still envisioned a level of modularity and 

control over the sensors in the systems [2]. However, the 

practical reality is that the emerging implementation of the 

IoT has multiple distinct systems communicating with their 

own web-based backends, exposing distinct APIs for 

interaction and data retrieval. These heterogeneous devices 

are added, removed, or updated independently of each other 

by different manufacturers with different goals and release 

cycles, and the choices among them are entirely in the 

hands of the user. This precludes the unifying vision of the 

IoT from an academic perspective. The wearable fitness 

tracker market is a current example: Fitbit, Garmin, Moves, 

Microsoft, and Apple, the most prominent among several, 

have developed trackers and independent backends. Dozens 

of applications exist that independently scour the data 

stores for different pieces of relevant data to aggregate 

metrics for a ✂✄☎✆✝✄ ✞✟✠✡✄ ✠☛☞ ✌✆✟✞✆☎✄✄✍ ✎✏✑☎☛✄✒✟☛ ✟✓
applications to new devices and APIs is a manual process 

requiring a redeployment of the user-facing application 

itself [3]. If the data sources and types change, the backend 

of the application might require reimplementation as well. 

Existing sensing and context infrastructures [4], [5] 

implement strong ontologies but lack support for such a 

changing system, as applications need to constantly adapt 

to the environment and the constituent devices. 

To address this, we focus on an application framework 

for these context-aware applications, which we call a 

context engine. In order to balance the IoT needs with ease 

of development on the application side, we leverage a 

context-focused ontology in our implementation. The goal 

of this work is a middleware framework that bridges the 

gap between the data in the infrastructure and the 

applications in the IoT. The context engine enables 

translation of heterogeneous sensor data into high-level, 

usable context, and allows applications to reasoning, 

optimizing, and processing based on dynamically available 

sensor data. We can achieve this while still enabling the 

functionality and scaling of IoT applications.  

We provide an overview of the related work in IoT and 

sensor ontologies, and characteristics and requirements of 

context-aware applications in Section II, identifying from 

among them features that are appropriate to our goals. We 

then design the context engine system in Section III, 

leveraging specifications that help us meet a context 

✒☛✓✆✠✄✑✆✂✔✑✂✆☎✝✄ ☛☎☎☞✄. We outline the base context engine 

implementation in Section IV. Finally, in Section V, we 

design two independent applications: one that implements 

the system in an actual IoT infrastructure, and another that 

establishes the ability of this ontology to handle machine-

learning and adaptation. 

II. RELATED WORK 

There is a large body of work on sensor ontologies, 

context awareness, and the Internet of Things. Perera et al. 

[1] provide a comprehensive overview of context-aware 

✕✖ ✗✖✘✙✚✙✛✜-✢✣✤✥✦✖ ✧✙✖✘✦★✘ ✩✖✛✤✖✦ ✪✙✣ ✘✫✦
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computing, covering fifty publications over the last decade. 

They evaluate system behavior and application 

development in regards to their applicability for the IoT, 

using an IoT taxonomy based on the features and models 

identified in related work. The authors identify four 

interactions with context in an IoT infrastructure: 

acquisition, modeling, reasoning, and distribution. It also 

identifies several important design requirements for context 

awareness in the IoT: hierarchical model, scalability, 

context life cycle management, extensibility, flexibility for 

multiple reasoning modes, resource sharing, optimization, 

and automatic event detection. It uses these requirements to 

illustrate the gaps that comprehensive IoT middleware 

should fill and identify areas of difference from other 

ubiquitous sensing approaches. When designing our 

system, we make sure to consider all the features above. 

A. Context Ontologies 

Ontologies are formal data representations that 

categorize the vast amount of unregulated and diverse data 

from information sources in the IoT [6] . They help classify 

the data provided to applications, but the organization of 

the IoT still makes application deployment difficult. 

There are many previous works [7], [8], [9] that outline 

formal context models for domain-specific designs, but do 

not intend to share data or actuation beyond their original 

one-off applications. However, pervasive sensing provides 

many of the ontologies that are now adapted to the Internet 

of Things. One of the earliest is the resource description 

framework (RDF) [6], which annotates all web objects with 

semantic information, implemented in XML, a web-ready 

format. The aggregation of these annotations forms a 

directed graph that is already used in context-aware web 

applications such as search engines. While this is adequate 

for objects such as websites, as was its original goals, this 

binary object-object connections are insufficient for the 

Internet of Things, which requires a richer description of 

relationships, as well as an easier way to query and 

determine these relationships, make inferences, etc. 

To address these limitations, the successor to RDF was 

the Web Ontology Language (OWL), now a web standard, 

which also transitioned from loosely defined and typed 

systems suitable for Wireless Sensor Networks to a formal 

ontology [10]. OWL has been designed as a hierarchical 

system, with sub-domains of objects (e.g. appliances) 

encapsulated by the domains they live within (houses). 

Several systems have been designed using OWL: smart 

spaces [10], meeting room organization [10], hierarchical 

modeling of the physical environment [11]. OWL-S is an 

implementation built on top of OWL for describing 

semantic services [6], adopted by [12] with an emphasis on 

scalability and testability of their services model. 

However, OWL typically operates under a very strictly 

defined hierarchy. Although this works well for static 

applications that rely solely on a fixed set of data, IoT 

applications may have to deal with changing sources and 

sinks. Nodes should be removable and the system should 

still be able to operate to the best of its capacity. In 

addition, the amount of data for which each application 

must be responsible can grow rapidly, as the amount of 

infrastructure-related data (dependencies, relation 

annotation, etc.) that each application needs to manage can 

grow faster than the data itself.  

Another extension of OWL handles this issue: the 

Context Modeling Language (CML) [13]. The system is 

based on the Object-Role Model, which is preferable for 

the Internet of Things, as all context data is attributed to a 

physical or virtual entity (the object) and provides a 

particular form of information associated with it (role). The 

ontology reverts to a flatter hierarchy than OWL � this 

allows an application to deal with as little context as it 

requires, rather than be responsible for the entire graph. 

Furthermore, CML provides a direct web-oriented 

communication language in XCML, a markup 

implementation that is very important for an Internet-based 

backend. We borrow much of our syntax from XCML. This 

✁✂✄☎✆✝✞✟ ✠✡ ✄✡☛✄☞✄✌✍ ✎✄✂ ✏✠✁✁✆✡✌ ✑✡✠✏✞✟✒ ✄✎ ✓✄✡☛✞✔☛

☎✠✂✆✠✕☞✞✟ ☛✄ ☛✖✞✆✂ ✑☎✠☞✗✞✟✒. The context space includes all 

possible context variable names, which may grow 

according to any additional data types the ontology 

describes. Finally, to aid the adaptability of context-aware 

applications, CML introduces the concept of context 

dimensions, which define the minimum subsets of context 

spaces, in which an application can perform meaningful 

computations and operations. By specifying dimensions in 

the same markup as the data, CML opens the doors for the 

specification itself to be changed to adapt to the data 

sources available. 

B. Context-aware Applications 

Pervasive sensors gather raw data from the environment 

and its objects, which must be parsed into higher-level 

information. We refer to this high-level, filtered and 

processed information as context. High-level context 

provides a representation that is both lower in 

computational overhead and more intuitive for application 

developers to use in reaction to IoT sensor stimuli, such as 

crafting cognitive assistance for medical patients [9], or 

custom learning environments for online students [14]. 

These context-aware applications represent the major 

advantage of the Internet of Things [1].  

The smart home application in [7] presents a good 

example of the diverse sources found in the IoT and used 

by the constituent applications. The system uses a 

combination of sensors, user-supplied information, and 

higher-level data processed from mobile and computing 

devices. However, it does not account for adding, 

removing, or changing the format of context in the nodes of 

the dependency tree. 

Hong et al. [4] build context information based on a host 

of labeled environmental and user sensor data (e.g. 

biometrics, GPS location, interaction with phone, weather, 

etc.) and context rules. Lee et al. [15] present a location 

prediction model based on a dynamic Bayesian network, 

where accuracy significantly exceeded static networks. The 

location model enables their ultimate goal of supporting 



 

 

ubiquitous computing decisions. With the growing 

popularity of alternative education, e-learning systems can 

personalize learning materials and recommendations based 

on modeling student profiles and context [5]. There are 

many more mobile applications that operate on context 

awareness for localized user information [14], vehicular 

safety [7], or battery saving [3].   

While streaming data from human subjects is natural, 

sliding windows of the continuous data must be smoothed 

and preprocessed before inputting into an analytic or 

modeling framework. Some works further apply machine 

learning techniques to model user behavior and interaction 

with their physical environment. K-means clustering is a 

prevalent way to automatically relate low-level data into 

high-level contexts [4]. Reinforcement learning is an 

important learning method for context awareness in IoT 

applications, as users are already innately involved in 

sensing and actuation. It invites user interaction to reinforce 

and guide the system towards better accuracy and intuitive 

actuation. For example, Madhu et al. [9] schedule 

reminders for a user who is cognitively or orthotically 

impaired. They use temporal constraint reasoning to 

describe a daily plan and reinforcement learning (function 

approximation-based learning) to find optimal actions, 

subject to adjustable human parameters.  

Lee et al. [8] remove reliance on labeled data by 

performing unsupervised learning over low-level sensor 

event sequences to extract patterns that represent high-level 

activities, even if the activities are discontinuous or varied 

over time.  

C. Context-Aware Middleware 

In an IoT context, middleware is software that acts as a 

bridge between low-level sensors and the backend, or 

between the backend and user-facing applications. Other 

works have explored context-aware middleware 

frameworks. Petrera et al. [16] propose a sensor 

configuration model for the IoT that can handle sensor 

filtration and reasoning, implemented via asking the user a 

series of questions. However, the reasoning seems to fall 

short of an open platform for machine learning, instead 

limiting reasoning to an annotated dependency graph. 

Similarly, [17] overviews several middleware 

implementations, identifying certain aspects of each: 

ontology-based, flexible for reasoning, data filtration and 

adaptation, but does not present a single solution 

encompassing all aspects. 

D. Takeaways 

 The ontologies and applications in the related work 

help clarify the requirements common to context-aware 

applications in the Internet of Things:  

1. Adaptability: The system allows reasoning under 

multiple data subsets  

2. Distributed Data Aggregation: Data comes from 

various sources, must translated into a widely 

understandable structure and format 

3. Data Flexibility: Internal and external data 

representations should be flexible enough to 

handle complex sensor data � continuous vs. 

discrete data, streaming and persistent data, and 

the more complex implementation of high-level 

context [1]. 

4. Reasoning: The context engine is to be developed 

into context-aware applications, and the ontology 

must reflect this. To maintain this, we allow an 

extensible framework internally, while enforcing 

only ontology-driven input/output. 

 

However, an application-facing infrastructure that 

enables these properties is missing. The various proposed 

ontologies are only applied towards very specific 

applications [10], [4], [9], [8] � there is no larger system 

within which the applications exist, nor is there the ability 

for other applications to use the resources made available to 

the one, as should be in the real Internet of Things. The 

closest entity is the middleware layer implemented in [8], 

which provides a general framework, but only within the 

✁✂✄☎✆✝ ✂✞ ✟✠✄☎✡☛ ✠☞☎✌✍✠✎✏ ☎✝✁ ☎✑☎✆✝✏ ✠☞✍✌✆✞✆✌ ☛✂ ☛✒✍

application that is designed. 

More importantly, none of the related works account for 

application adaptability. The emerging IoT 

implementations require the ability to merge data from 

different sources and backends into a common context 

representation, and on the application side, to seamlessly 

incorporate new data or formats without interrupting the 

application. Regardless of whether adaptation is a product 

of a changing environment or sources joining and leaving 

the sensed surface, the framework around the applications 

are made static. CML [13] was the only ontology to allow 

application processing using different sets of available data, 

but the implementation covered only the ontology and not 

the applications. 

Real IoT applications need to exist in an infrastructure 

that fosters changing the data, sources, and internal 

reasoning. The context engine developed in this paper fits 

this gap in the current landscape. We present a framework 

and methodology that developers inherit, allowing them to 

describe their source data and end-user applications in 

terms of their context space and dimensions. This enables 

applications that are flexible with new sources and 

dimensions, and whose behavior can be extended, even 

during runtime. 

III. SYSTEM DESIGN 

We use the conclusions drawn from the previous section 

to design our infrastructure. Our goal is to enable the 

design of context-aware applications in the presence of 

transient objects, each with ever-changing context. These 

objects can be physical and/or virtual entities, and may 

enter or leave the system freely. For example, a commercial 

building application might want to monitor occupancy data 

and energy usage in its public lobby � it would want to 

achieve this without requiring every person to register 



 

 

explicitly when they appear, but instead collect data as it 

becomes available to the context engine. A complementary 

context-�✁�✂✄ �☎☎✆✝✞�✟✝✠✡ ✠✡ ✟☛✄ ☞✌✄✂✌✍ ✌✝✎✄ ✁✠☞✆✎ ☎✂✠✏✝✎✄

location data relative to the building (either in the building 

or out). We use an ontology-driven data representation that 

allows sources to provide data at-will in a format that is 

understandable to context-aware applications. In the 

occupancy example, the building-relevant location data is 

✠✡✆✑ ✒✄✡✄✂�✟✄✎ ✓✂✠✔ ✟☛✄ ☞✌✄✂✍✌ �☎☎ ✁☛✄✡ ✝✟ ✎✄✟✄✞✟✌ ✟☛✄

proximity to the building (via GPS, beacons, etc.) and only 

✞✠✡✌☞✔✄✎ ✕✑ ✟☛✄ ✕☞✝✆✎✝✡✒✍✌ �☎☎ ✓✠✂ ✟☛e users who are 

generating this data. We also specify the interface for 

context translation, which allows the applications to 

understand and modify their scope of responsibility as their 

environment changes, and drive their output.  

 The context engine is implemented as a base model. The 

major functionalities - enforcing the ontology, determining 

that an application can process the input data, and 

providing output/actuation ✖ are implemented, and 

individual applications inherit it. They are only required to 

provide the application-specific reasoning that drives the 

output. The ontology and the context engine base must be 

designed hand in hand, as the design decisions made in one 

affect the other. With that in mind, we first outline the 

system architecture, then describe the ontology-driven data 

translation layer, and dive into more detail on the most 

important system component - the context engine. 

A. System Architecture 

Fig 1 depicts the overall design of our system: one or 

more context engine instances (shown in orange) that 

ultimately transform input data into output data to be 

consumed by actuators or other applications. In the process, 

the system translates relatively raw sensor data into 

incremental stages of higher-level context variables 

associated with the objects (the physical and virtual 

entities) in the system. The exact use of this output data is 

application-dependent - as the figure suggests, an object 

could simply display contextually relevant data, or a 

building could take the processed context data as control 

signals to perform actuation. 

As a high-level overview, each context engine instance 

has a scope of objects it takes input from, and a (possibly 

overlapping) scope of objects it affects with its output. 

Each of these objects has context variables associated with 

them. These variables make up the lowest-granularity 

pieces of data in the system, and are ultimately the inputs 

and outputs on which the engines operate. An ontology-

driven context translator performs the formal mapping of 

data into the scope of objects and their constituent context 

variables, defined in the next section. 

The actual transformation of the input context to the 

output context is application dependent. For example, an 

activity detection context application may consist of a 

preprocessing context engine instance that associates a 

☎✄✂✌✠✡✍✌ ✗✟☛✄ ✠✕✘✄✞✟✍✌✙ changed GPS location (the 

constituent context variables) and outputs an update to that 

☎✄✂✌✠✡✍✌ abstracted location (e.g. home, work). A second 

context engine instance will watch for changes to a 

☎✄✂✌✠✡✍✌ abstracted location and use machine learning to 

probabilistically reason on his/her activity, updating the 

perceived activity (and possibly a confidence threshold) 

associated with that person. Any and all of these 

intermediate and final context variables, all associated to 

the same person object, can be in turn used by other 

context-aware applications (e.g. residential building 

automation). 

As in the above example, the output of each context 

engine instance is context ✖ specifically, one or more 

context variables associated with certain objects. While Fig 

1 shows a tree-like set of dependent context engines, the 

system of context engines can be connected as a graph, 

with the output of one or more context engine instances 

composing a subset of the input scope to another context 

engine. Alternatively, it can be the context change that 

directly drives actuation, or the interpreted and abstracted 

context that can be used by other applications (the building 

automation in the above example). Output can also be used 

to update the input object itself, representing feedback, and 

driving a refinement o✓ ✟☛✄ ✠✕✘✄✞✟✍✌ ✚✡✠✁✡ ✌✟�✟✄✛ In the 

activity example, t☛✄ ☎✄✂✌✠✡✍✌ abstracted location and 

his/her activity represent intermediate and final context 

engine feedback to the original state. 

Fig 1. System architecture overview showing major components in bold, with implementation-specific examples italicized 



 

 

The next sections expand on the mechanisms that 

compose the system: the ontology-driven context 

translation and the context engine structure. 

B. Ontology-driven Context Translation 

 The ontology choice is important to the context 

engine, as it provides the structure of communication 

between the external sensors and the context-based 

reasoning within. Moreover, it connects the new 

middleware to the existing infrastructure, so it should both 

accommodate current pervasive sensing implementations 

and future technology. Additionally, as a dynamic 

environment, the IoT requires both the context engine and 

an ontology-driven interface to adapt to missing and 

newfound data. 

 Objects in the system may be physical or virtual 

entities that are associated with at least one piece of context 

data. As mentioned in Section II and [1], the Object-Role 

Model associates context to objects, which describe their 

relationships to the environment in different ways. We 

describe these pieces of information by context variables.  

Context Space (S): The context space S of any object in 

the system is a set of context variables {n1, n2�✁✂m}, where 

n is an element from all the possible context variables. In 

essence, S represents all the variables that can be applicable 

to an application. This meets the requirement of identifying 

the context of an object and represents a persistent set of 

applicable variables. 

Context Dimension (D): the context dimension of an 

application, D, is a subset of S that represents the minimum 

set of context variables that the application can use to 

process an iteration. As the sensor sources (and 

subsequently, the context variables) available in an 

environment change, different context dimensions can 

become relevant or irrelevant. For example, more variables 

could lead to better learning, while fewer variables could be 

a less accurate but sufficient set for reasoning.  

As illustrated in Fig 2, various sources of context data 

are fed into the context engine, first passing through the 

data translation layer at its interface. This ensures that all 

context data from both low-level devices and pre-translated 

data from a wider data plane comply with the unified data 

representation. They form the context space available to the 

application running on this context engine. The application 

specifies a list of context variables it needs to do 

processing, filtering its context dimension out of the 

available context space.  

 
Fig 2. Flow and transformation of low-level data to high-level context 
output for a single context engine 

 A powerful feature of this data-driven context engine 

is the ability to compose various context variables 

associated with the same object. For example, a healthcare 

application may reason on collected posture information on 

its users, so it lists user posture data in its context 

dimension. That is, it will ignore a user in the system who 

only reports GPS data to applications. However, if such a 

user gains a wearable sensor and chooses to publish it 

through their personal context dimension, this new posture 

sensing data will appear in the context space. As the 

healthcare application scans for available data, this new 

user will appear in its scope, and it can start reading and 

reasoning on their posture information. 

Naturally, this raises concerns with data accessibility, 

security and privacy. The context dimension is simply the 

way that entities in our current system (objects or 

applications) specify the data they are willing to share. 

Related works in the field of operating systems for 

distributed and ubiquitous computing have proposed more 

mechanisms to handle each of these issues that may be 

implemented alongside our data flow. In fact, one of our 

case studies (Section V.B) was implemented on a research 

data storage infrastructure [18] that would provide privacy 

and security independent of our system. 

By translating and operating on data according to the 

translation model, we can fulfill the required properties of 

context-aware applications listed in Section II:  

1. Adaptability: Context engines can operate on 

changing sets of data by updating their context 

dimensions with new variables in the context 

space.  

2. Distributed Data Aggregation: The data 

translation interface to the context engine ensures 

compliance with the ontology, written in a web-

standardized format. A current example would be 

today's standard format for web-based documents 

- XML.  

1. Data Flexibility: A combination of the 

hierarchical object-role model and a strong data 

format allows applications to accept and exchange 

data whether it describes low-level sensor input or 

high-level context. 

3. Reasoning: The engine enforces compliance with 

a unified data representation at the interface to the 

external system. Internal processing logic is still 

flexible and left up to the application developer. 

C. Context Engine 

The context engine is designed for the system in Section 

IIIA and encompassing the ontology-driven data processing 

outlined in Section III.B. An overview of the system is 

outlined in Fig. 1, to meet the following requirements of 

context-aware IoT applications: 

1. Context Identification: each application must be 

able to determine the context variables relevant to 

itself. 

2. Flexibility of Reasoning: when different sets of 

context data are available, the application must be 



 

 

able to perform different types of processing. 

3. Extensibility: as system and environment 

conditions change, the application should be able 

to be changed with minimal interruption of 

service. 

Context identification reflects the property that is found 

in other middleware implementations � the ability to 

✁✂✄✂☎✆✝✞✂ ✟✞ ✟✠✠✡✝☛✟✄✝☞✞✌✍ ✞✂✂✁✍ � through explicit object 

identification or monitoring [5], [11]. We aim to maintain 

this property, but also add flexibility of reasoning and 

extensibility, neither of which are similarly represented in 

corresponding middleware. These two features enable more 

powerful improvements to applications through the context 

engine. For example, the ability to perform machine 

learning-based classification of context variables and 

automatically deriving context dimensions for applications 

reflects flexibility of reasoning. Similarly, online learning 

and modification of application behavior to incorporate 

new input and output context dimensions reflects extension. 

 

Context Identification: Invoking the data translation 

✡✟✎✂☎✌✍ ✍✠✂☛✝✏✝☛✟✄✝☞✞ from the above section, each object 

and application has one or more input context dimensions 

associated with it. These are defined at application creation 

ti✆✂✑ ✟✍ ✝✄ ✝✍ ✄✝✒✓✄✡✎ ☛☞✔✠✡✂✁ ✄☞ ✄✓✂ ✟✠✠✡✝☛✟✄✝☞✞✌✍ ✠☎☞☛✂✍✍✝✞✒✑

and specified as a list of objects and their relevant context 

data. The context engine continuously queries the objects 

for changes, and composes the constituent context variables 

required for the application. When the data collected 

matches any context dimension to completeness, the 

application can process and reason on it. While some subset 

☞✏ ✟✞ ✟✠✠✡✝☛✟✄✝☞✞✌✍ ☛☞✞✄✂✕✄ ✁✝✆✂✞✍✝☞✞ ✆✔st be specified at 

creation time, our context engine implementation allows 

this to be changed at runtime through the extensibility 

property below. Other middleware implementations treat 

this process as static � defined only at creation-time. 

However, as IoT applications are operating in a dynamic 

environment, it is only natural that their context can also be 

changed. 

Flexibility of Reasoning: Flexibility of reasoning is 

defined by the data translation layer as a mapping of 

different input dimensions to the same output dimension. 

Practically speaking, it allows the application to respond to 

different types of input, making it adaptable. For example, 

a location-tracking application may use GPS coordinates by 

default, but defer to higher-accuracy indoor localization 

data when available (i.e. inside a building). By definition, 

the ontology-driven translation enables this, as the 

application can literally specify multiple input context 

dimensions, each of which specifies a different path to take 

to achieve the output. This enables a well-designed 

application to take advantage of new or additional context 

that may emerge about the objects in its input dimension. 

Extensibility: We define extensibility as the ability to 

increase the input and output context dimensions with new 

objects and context variables. Unlike adaptability, this is an 

online, or post-creation, property. Practically speaking, this 

means that new objects and their constituent variables can 

be incorporated into the application. This also implies a 

fundamental change in the functionality of the application, 

since it must now incorporate and process based on entirely 

new data. One example is the building occupancy detection 

application that now has to comprehend and process a new 

means of a user reporting occupancy (e.g. presence on the 

local WiFi network). Our infrastructure provides multiple 

methods to achieve this goal: 

1. New context engine instances: The simplest approach 

is to extend the code of the existing context engine, 

updating its dimension and functionality to handle the 

new data. This has the upside of simplicity, as the 

system simply replaces an existing engine with a new 

version. However, it requires an interruption of service 

while the original application is supplanted. Fig 3 

below reflects this, as the new context engine uses a 

superset of the original input and output dimensions. 

 
Fig 3. Replacing the original context engine with a new implementation to 
extend functionality. (A1 U A2) and (B1 U B2) reflect a superset of the 

original input and output dimensions, respectively. 

 

2. Parallel context engine instance: A modification of (1) 

is a new context engine instance that that translates a 

different input context dimension into the redefined 

✟✠✠✡✝☛✟✄✝☞✞✌✍ ☞✔✄✠✔✄ ✁✝✆✂✞✍✝☞✞ fulfills the extensibility 

requirement Fig 4(a). The benefit compared to 1) is a 

simpler secondary implementation, as it only deals 

with the new case while the original context engine 

handles the main functionality. It also maintains the 

processing and functionality of the original application 

uninterrupted. A subset of this case is an extension of 

the original processing in a completely independent 

function. This is highlighted in Fig 4(b), where the new 

context dimension exists in parallel to the original, and 

updates its output dimension independently. 

 
Fig 4. Online changes to an existing context engine instance, where (a) 

reflects dependent processing changes, and (b) reflects independent 

changes. 

3. Pre- & post-processing: A subset of the extensibility 

definition is when only the input dimension or the 



 

 

output dimension needs to change. While both the 

above solutions handle this (simply set A2 or B2 = 0). 

However, in the practical case where this change 

reflects pre- or post-processing (e.g. new context 

variables can be refined into a more accurate 

representation of the original context variables), we 

can simply add an upstream (preprocessing) and/or 

downstream (postprocessing) context engine instance. 

Fig 5 below reflects this case. The additional context 

engines demonstrate a refinement of the original input 

(a) and the original output (b) via feedback from the 

additional data.  

 
Fig 5. Online preprocessing (a) and postprocessing (b) of a context engine. 

The extensibility cases above highlight an issue of online 

modification of functionality: data consistency and 

coherency, as multiple context engines can write to the 

same locations. While the issue itself falls out of scope of 

this paper, it is a well-understood problem in distributed 

computing. Several solutions, including locks and tokens 

can handle consistency independently of our middleware 

layer, and these are mechanisms that should be 

implemented in other parts of the IoT infrastructure [17]. 

The following section describes two distinct 

implementations of the context engine, highlighting both a 

machine learning application and an adaptable end-to-end 

system demonstrating sensing, preprocessing, and actuation 

with an IoT backend. 

IV. SYSTEM IMPLEMENTATION 

The context engine consists of an ontology-driven data 

translation layer and a base context engine implementation. 

The former is a source-agnostic interface that ensures 

incoming data representation fits the ontology and parses it 

into an acceptable data format � in our case, XCML. The 

latter is the simplest complete context engine for a generic 

application. All application-specific context engine 

implementations inherit from and, if appropriate, extend 

this base implementation. 

A. Data Representation 

We employ an extended implementation of XCML as 

our ontology-driven data representation. XCML is a 

markup-based (XML) implementation of the Context 

Modeling Language. It has built-in support for context 

space and context dimensions. However, it assumes context 

data is always represented with a flat hierarchy of simple 

data structures. Meanwhile, context-related information 

often consists of nested data types or tuples - GPS 

coordinates, for example, should come in pairs of values 

for latitude and longitude respectively; the GPS data type 

itself could also conceivably be nested within a larger data 

structure, next to fields that contain data from other 

localization schemes. Thus, complex data structures are 

required to have a 1:1 translation of internal and external 

data representations. As recommended in [1] [6], we use a 

JSON model to support the internal representation, and we 

extended the XCML paradigm to provide the 1:1 

translation: 

1. Lists: Lists are identified in the context dimension 

by adding the attribute ✁✂✄☎✆✝✞✟✠✁✝. This signals 

the parser to treat the encapsulated data structure as 

a repeated type within the parent, not as a top-level 

entity. In the context data, the corresponding tag will 

simply be followed by a list of the data in the 

appropriately specified type. 

2. Dictionaries: similarly, dictionaries are specified in 

the dimension with the attribute ✁✂✄☎✆✝✡✟☛✁✝. 

Unlike lists, however, the encapsulated type 

information is treated as a set of key-value pairs. 

The addition of lists and dictionaries strengthens the 

XCML language, and we further extend it to handle nested 

combinations of all the constituent types, and a unique 

translation to the internal representation and vice versa. 

B. Data Translation 

The translator enforces a data format required by the 

ontology, as well as the context required by each object and 

application. Our revised XCML format provides both the 

☞✌✍☞✎☞✏✑✒✓ ✓✔✕✖✗✘✗✖✙tion and the actual data format. 

The application developer specifies XCML data in 

locations accessible to the context engine. This XCML data 

identifies objects and their supported context variables, and 

application context dimensions. Fig 6 (top) depicts an 

example of the web browser object and the associated 

context variables associated with it in the dimension. The 

translation of this dimension into the actual data is 

accomplished by scanning all objects that match the 

particular context dimension name (e.g. Browser), and 

capturing objects that contain all the dimensions required 

for this application. In the example, the context-state tag 

holds one browser that was found in the discovery process, 

with the version and agent data populated. Changes or 

updates to these objects will be pulled by all context engine 

instances that monitor these objects. The case studies in the 

next section illustrate more specific examples of this data is 

stored, retrieved and used. While this is a relatively simple 

example, ✙✌ ✙✔✔✎✗✖✙✍✗☞✌✒✓ ✖☞✌✍✕✚✍ ✛✗✜✕✌✓✗☞✌✓ ✢✗✎✎ ✣✕ ✓✍☞✤✕✛

in such an XML file, containing the myriad of context 

dimensions that determine a complete set of input data 

required by the application. Recursive parsing translates 

both an XCML file (external representation) into a 



 

 

corresponding JSON structure (internal representation) and 

vice versa. 

 
Fig 6. Sample XCML (external) and JSON (internal) parsed context 

Fig 6 above shows the same data translated into the 

internal and external representations. The top of the figure 

shows the XCML representation: the context dimension 

outlines the requirements for each complete piece of 

context. From an initial file that had much more raw data, 

the parser was able to isolate and filter one unique piece of 

context (xcml:context-data). The bottom of the 

figure represents the internal representation: a direct JSON 

translation of the context data. 

C. Context Engine Base 

The different context engine instances that make up an 

application (see Fig 1) serve different purposes: data 

translation and context filtering, the actual application 

reasoning and processing, and actuation. However, they all 

share and extend the same base context engine 

implementation. 

Every application has associated XCML data 

representing its context dimension(s). The translator from 

the previous section scans the file into the JSON internal 

representation, and the context engine searches its known 

data space for objects that match each dimension element. 

The data space can be any representation accessible to the 

application: in the case studies in Section V, we read data 

from both a file and a key-value store implemented on an 

IoT data plane [18]. The actual processing is application 

dependent, and is left as an abstract function 

(runApplication) � a sandbox for application-specific 

reasoning. When an application inherits the base 

implementation, it is required to populate its processing 

logic in this function. ✁✂ ✄☎✆✝ ✞✂ ✟✠✡ ✞☛☛✄☞✌✞✟☞☎✆✍✂ ✌☎✆✟✡✎✟

dimensions are defined, the base framework will scan the 

specified data space for objects that are specified by the 

dimension. When any subset of the collected data matches 

a context dimension completely, the runApplication 

method is triggered and the application can perform its 

processing. 

The context engine base and the data translation layer are 

implemented in Python. We leverage the 

XML.ElementTree libraries to read and write the XCML 

representation.  

In the next section, we investigate two such applications, 

which take data from different sources and locations (from 

file and from an IoT backend), perform different types of 

reasoning, and produce different actuation. 

V. CASE STUDIES 

In this section, we describe two different examples that 

illustrate our context engine concept � a step counting 

application that uses machine learning over a Bayesian 

network, and a lamp actuation application that is 

implemented on an end-to-end IoT infrastructure and 

demonstrates seamless application extensibility and ease of 

implementation.  

A. Step counter: 

Fitness trackers currently dominate the wearables market 

[19], with many interface options available to the user, 

including smartphone and desktop applications, and 

development APIs opened to development enthusiasts. In 

fact, users often wear devices that report partially 

redundant information, even if they were designed to 

collect disparate data at a low level. This example collects 

user activity from two independent devices - a Fitbit Flex 

step counter [20] and an Android smartphone running the 

mobile application Moves [21]. While both data streams 

report a user's step count, they arrive at that conclusion in 

different ways and with different reliabilities. We have a 

simple goal of obtaining an accurate daily step count for a 

single user based on these two data streams, by learning 

when and where to trust one data stream over the other. 

1) Input Data 

 

 Fitbit reports minute-by-minute step counts for a user, 

based on accelerometer readings. The data traces are 

simple. Each piece of context data only contains a start and 

end time for the interval (currently fixed at 1 minute) and 

the number of steps counted. While the device actually 

reports more, such as a user's sleep mode and inferred 

Fig 7. Relevant variables filtered from the context space into an 
application's context dimensions 



 

 

activity levels, our application does not need those pieces 

of data and thus leaves it out of the context dimension.  

 

 
Fig 8. Context dimension for simple input from Fitbit 

Moves traces include higher-level activity readings such 

as semantic location names, type of motion, and a step 

count if the user is walking. These readings are inferred 

from a variety of low-level sensors and crowd-sourced data 

(smartphone accelerometer, GPS, social location check-in 

service, etc). The traces are divided into "segments", where 

the user is either sedentary, moving from one point to 

another, or moving around within one location. Each 

segment is bookended by a start and end time, but it may 

also exercise different combinations of context keys, some 

of which are organized into nested structures, as shown in 

Table 1. When the user is at a location for an extended 

period of time, it records the GPS coordinates, and may 

include a semantic locality name depending on availability. 

The semantic location name may be estimated from 

Foursquare (a web-based social location service) [21], or 

manually entered by the user - this naming source is also 

recorded and can imply a measure of confidence in the 

location. If the user is in transit, Moves records 

instantaneous positions in a list of timestamped GPS 

coordinates, called "trackpoints". 

 

 
Fig 9. Truncated context dimension for input from Moves, showing a list 
(trackPointList) of complex keys (trackPoint) containing simple keys 

(timestamp, etc)  

The user manually collects the verification data for an 

actual step count. The start and end timestamps are required 

to align collected data with Fitbit and Moves data, and the 

unique context variable here is "user input". When the 

boolean "user input" is True, it implies highest confidence 

in the user-supplied data. 

 
Fig 10. Context dimension for manual step counts collected directly from 
a user 

2) Context Engine Implementation 

From observation, we have a sense of systematic errors 

from Moves - for example, the GPS tracking has high 

latency when waking from sleep and misinterprets 

�✁✂✄�✄☎✆ ✝✞✁☎ ✟✠✡✆✠☛☞☎✌ ✝✞✍ ✆✁ ✆✎✡✠✏☞☎✌✑ ✒☎✆✄✎�☞✆✆✄☎✆✓✔, it 

derives the step count from the distance traveled divided by 

a universal average stride length (thus undercounting steps 

for a shorter person). Both devices are susceptible to losing 

battery, losing data due to connection or cloud service 

failures, or simply being misplaced by an absent-minded 

user.  Fitbit has a tendency to misinterpret miscellaneous 

movement (typing, doing dishes, etc.) as steps, while 

missing less easily discernible steps (carrying groceries, 

hands in pocket). By taking both devices into the context-

aware application, and leveraging the fact that Fitbit and 

Moves give slightly overlapping but different information, 

we have the opportunity to weigh their data given 

contextual reliability and fall back to one if the other goes 

offline.  

We classify segments of a user's day coarsely based on 

data from Moves. When the user is in one place, the phone 

✎✄✠✁✎✕✖ ✕✡✆✡ ✡✖ ✡ ✟✓✁✠✡✆☞✁☎✍ ✡☎✕ ✡✖✖✁✠☞✡✆✄✖ ✡ ✓☞✖✆ ✁✗

activities with it. However, when the user is in transit, the 

✖✔✖✆✄� ✎✄✠✁✎✕✖ ✡ ✖☞☎✌✓✄ �✁✂✄�✄☎✆ ✟✡✠✆☞✂☞✆✔✍ ✘✆✎✡☎✖☞✆✙

✚✡✓✏☞☎✌✙ ✠✔✠✓☞☎✌✙ ✄✆✠✑✛ ✚☞✆☛ ✡ ✖✄✎☞✄✖ ✁✗ ✟✆✎✡✠✏✞✁☞☎✆✖✍

tracking the movement. The two context dimensions in 

Table 1, both extracted from the same context space, 

reflects this. The two context dimensions allow the 

application to parse and reason across two different scopes 

of data. 

The Bayesian network in Fig 11 describes the 

relationships between observable data from Fitbit and 

Moves, each node representing some variable summarizing 

the user's activity. Using the specification from Fitbit's API, 

we classify the step counts per minute into low, medium or 

high activity levels. The context engine trains the network 

on each incoming data segment and constructs the 

associated conditional probability table based on whether 

Fitbit or Moves is more accurate for each segment (relative 

to the ground truth). The dependencies of the nodes are 

determined by the classification of activity levels (low, 

medium, high), and the perceived Moves activity (on 

location, walking, or using transportation). Each instance 

where Fitbit (or Moves) agrees with the ground data 

(within margins of the activity level thresholds) increases 

the weight of the edge leading from that node to the "Fitbit 

is accurate" node (or "Moves is accurate" node).   

 
Fig 11. Bayesian Network to learn accurate step count from Fitbit and 

Moves data. 



 

 

In Fig 11, the edges connecting dependencies were 

manually assigned, and only their weights were learned. 

Without a priori knowledge of the relationship between 

Fitbit and Moves, the Bayesian network would start as a 

fully connected graph, and the learning algorithm would 

eventually prune the edges which do not in fact connect 

dependent nodes. 

3) StepCountEngine results 

We compare the accuracy of these three data streams - 

Fitbit, Moves, and estimation learned on Fitbit and Moves. 

The edge weights of the Bayesian network are trained on 

two days' worth of data. Since each day is naturally divided 

into a different total number of segments depending on how 

often the user changes activities or locations, this ranges 

between 37-45 segments.  After the learning phase, the 

cross product of all these variables gives a confidence for 

each data stream that selects the most trusted source for 

each segment. The final daily total of step counts is 

compared to the "ground truth" for that day's total, and the 

"accuracy" represents how closely the estimated step count 

falls relative to the actual number of steps taken. We define 

accuracy as the probability of designating the output as 

"correct", under a Gaussian distribution. The mean is 

selected as the "ground truth" data and the standard 

deviation set such that the +/-15% range has a 90% 

accuracy. This margin is given because small discrepancies 

in the absolute number of steps counted across a day 

(which ranges in the thousands on average) should be 

reasonably expected.  

Fig 12 shows the performance of our learning algorithm 

on a small training set, for three representative days. In 

Sample 1, even though both Fitbit and Moves are grossly 

inaccurate in counting total steps for the day, the other 

contextual data they provide about a user's location and 

activity type can help greatly in learning which one to trust 

for a particular segment in the day. Thus, for each segment, 

as long as one of them reports accurate data, and the 

learning algorithms picks the correct one, the final count 

can still be very accurate.  

In Sample 2, the Fitbit stream is highly accurate, while 

Moves is not. While the node weights of the Bayesian 

network represent confidence in a data stream, they do not 

guarantee accuracy � by correctly choosing to trust Fitbit in 

most segments and Moves in a minority of segments, the 

final step count is still highly accurate. On the other hand, 

the penalty of trusting in the wrong stream can negatively 

impact the learned result, as shown in Sample 3.  Such an 

"anomalous" day may include long periods of time spent 

underground where GPS localization is ineffective, or 

where the user is engaged in vigorous and repetitive 

activity while standing relatively still, such as organizing 

equipment in a lab environment. 

  

 
Fig 12. Accuracy of Fitbit, Moves, and Learned step count for 3 days 

By learning when to trust and when to discard particular 

data streams based on the context of that data collection, 

we can produce an output stream with accuracy much 

higher than either of the individual sensor streams alone. In 

this case study, we see an average 60x accuracy 

improvement over using a single stream of data when 

learning over just 2 days.  

B. Automated Lamp Actuation: 

Smart buildings are a quintessential Internet of Things 

application, and simple hard-wired, occupancy-based 

lighting automation is already ubiquitous. However, 

developing technology like the web-connected Philips 

Hue✁ lamp [22] exemplify the IoT aspect of smart 

buildings: an actuator (color-changing lamp) whose state 

can be read and modified through the Philips API. While 

users can access the interface manually, implementing a 

context-aware application based on their color preferences 

and proximity to the lamp is the IoT implementation of the 

application. For this implementation, we design a context-

aware application ✂✄☎✂ ✆✝✞✞ ✟✄☎✠✡☛ ✂✄☛ ✞☎☞✌ ✂✍ ☎ ✎✏☛✑✒✏

preferred color when they are sitting in the room where the 

lamp is installed. When multiple people are sitting, the 

lamp reaches an intermediate color between all the 

✍✟✟✎✌☎✠✂✏✒ ✌✑☛✓☛✑☛✠✟☛✏✔ 

1) Input Data 

This application requires data about whether or not a 

user is seated in the room, and their color preferences. The 

✝✠✓✍✑☞☎✂✝✍✠ ☎✕✍✎✂ ☎ ✎✏☛✑✒✏ ✍✑✝☛✠✂☎✂✝✍✠ ✖✏☛☎✂☛✗✘✏✂☎✠✗✝✠✡✙ ✝✏

determined by a wearable activity sensor. The XCML 

context dimension for the user is shown in Fig 13 below. A 

preprocessing context engine instance filters all the 

applicable data for a person, returning only the relevant 

information: the id of the person, whether or not he/she is 

seated, when the person changed state, and his/her color 

preference. 

  
Fig 13. Context dimension for each person in the application. 



 

 

Similarly, the application requires the status of each 

chair in the room: the id of the chair, whether or not it is 

occupied, and the time at which the chair was occupied. 

The relevant XCML context dimension for each chair in 

the room is shown in Fig 14. 

 

 
Fig 14. Context dimension for each seat in the application. 

2) Context Engine Implementation 

The context engine implementation, SeatApp, operates 

on the people and the seats in the room at any given time. 

Thus, the context dimension for the application itself is as 

shown in Fig 15 below: 

 

 
Fig 15. Context dimension for the automated lamp (SeatApp) application 

 

The specification identifies that the application operates 

on a list of seats and people that are deemed to be currently 

in the room at a given time. The id for each seat/person is 

the key on the data store to look up for each source. The 

critical part of the application is that the list of seats and 

people can change at any time. 

3) IoT and Hardware Infrastructure 

The wearable orientation sensors and the pressure 

sensors for the chairs are developed and deployed by UT 

Dallas [23], and the output is preprocessed into the XCML-

appropriate format using impulse matching of positive 

signals [24]. 

As a true end-to-end context-aware IoT application, the 

SeatApp was implemented on an IoT infrastructure. The 

Global Data Plane (GDP) provides a flexible web-based 

data store, implementing key-value data access through a 

HTTPS REST protocol [18]. The GDP readily accepts the 

XCML context information from the previous sections, 

allowing the application to read, write, and modify the 

system information. 

4) Application Processing 

The application runs on a continuous loop. At each 

iteration it is driven by the seats and people found on the 

data associated with the above dimension. At any time, a 

person or seat can be manually entered into or removed 

from the known system by making corresponding changes 

to the context dimension. These changes will be seamlessly 

incorporated into the next iteration. 

The application logic maps seated users to occupied 

chairs by matching their timestamps. The color preferences 

for each seated user are averaged together using the Hue 

color palette [25] to provide an amenable median color for 

all present users. 

The output specification for the lamp simply identifies a 

lamp id, the color to set the lamp to, and the timestamp 

recording the change (Fig 16). While this output is 

generated by the context engine and consumed by the lamp, 

it is easily conceivable to use this information as context 

for determining building occupancy by other applications: 

HVAC and security logic can make use of the knowledge 

of which buildings are occupied and by whom for further 

automation of the building. Because the output conforms to 

the XCML ontology, the dimension information and data 

can be directly used by other context engine 

implementations. 

 

 
Fig 16. Hue Lamp output specification in an XCML context dimension 

5) Uninterrupted Application Extension: GPS data 

While the automated lamp example is a good example of 

the context engine in use for an IoT application, other 

ontologies and middleware can accomplish the same end 

result. What separates the context engine is the ability to 

seamlessly extend the functionality for new data types 

and/or sources without unnecessary re-implementation of 

the application or even interruption of service. With that in 

mind, we extend the above example: if we add GPS 

information to the seats and people, we can remove the 

manual updating of the list of seats and users in the room. 

However, since the functionality of the application remains 

the same, we can simply implement a new context engine 

to update the SeatApp data that it consumes (Fig 15). 

 

 
Fig 17. GPS location context dimension, keyed to the id of the object. 

 

The new context engine implementation, 

�✁✂✄☎✆✆✝✆✞✂✄✁✟ ✠✁✡☛✁✠ ✂✠ ☞✌✁ ☞✍ ✄✎✁ ✏✑✆✠✄✡✁✂✒✓ ✁✌✔✕✌✁✠

on the left of Fig 1. It verifies a list of all users and seats 

that have location tracking, and verifies if their GPS 

location is in the bounding box of the room. Using the same 

object IDs from Fig 13 and Fig 14, SeatAppUpdate 

searches the data associated with that user for GPS 

information stored in the XCML data mapped to his/her ID 

(Fig 17). ✖✄ ✆✁✡✍☞✡✒✠ ✂ ✠✕✒✆✗✁ ✘☞✑✌✞✕✌✔ ☞✍ ✄✎✁ ✑✠✁✡✙✠

✗☞✚✂✄✕☞✌ ✚☞✒✆✂✡✁✞ ✄☞ ✄✎✁ ✡☞☞✒✙✠ ✗☞✚✂✄✕☞✌✟ ✂✌✞ ✒☞✞✕✍✕✁✠ ✄✎✁

SeatApp XCML data to add/remove the user as 

appropriate. By the simple addition of a single upstream 

context engine instance, the application now automates user 

registration. Note that users can still manually register 



 

 

themselves or seats as in the original program, but the 

automation runs in parallel, updating the input data as 

appropriate. As soon as SeatAppUpdate is executed, 

SeatApp picks up and handles the automation at its next 

iteration without needing to be interrupted. 

Note an additional Fminor but extremely crucial detail: 

the ontology defines the format of the GPS location (Fig 

17), but does not specify the source of the information. A 

�✁✂✄☎✁ ✆✝✞ ✟✁ ✠✡�✁ ☛☞☞✌✍✂✎ ✠✌ ✏✌✑✂ ✒✄✌✑ ☛✓✔ ☛✕✕ropriate 

source (e.g. smartphone, wearable GPS, beacons, etc.) as 

long as it can be translatable to latitude and longitude. This 

gives the new implementation enormous flexibility. A user 

(and a chair) can allow his location information to be 

available to the system through any means available. In the 

✕✄☛✏✠✟✏☛☞ ✟✑✕☞✂✑✂✓✠☛✠✟✌✓✖ ✠✡✂ �✁✂✄☎✁ ✆✝✞ ☞✌✏☛✠✟✌✓ ✟✁

✄✂✠✄✟✂✗✂✎ ✒✄✌✑ ✠✡✂ ✁✑☛✄✠✕✡✌✓✂✖ ✍✡✂✄✂☛✁ ☛ ✏✡☛✟✄☎✁ ✆✝✞ ✟✁

derived whenever it was placed in close proximity to a 

beacon. 

6) Results 

As a full end-to-end implementation of a user-driven 

smart lighting application, SeatApp represents more than 

just a working example: it covers all the requirements of 

the context engine as specified in Section 3, which none of 

the related work managed to accomplish. It performs 

context identification in the presence of heterogeneous 

sources pushing data to independent backends. It provides 

adaptability by implementing different context dimensions 

for manual and automated detection of locality. Finally, and 

unlike any of the previous works, it provides extensibility in 

a seamless manner: extension of the original application to 

new context (GPS) was accomplished without interrupting 

the application itself. This is crucial to the practical reality 

of the IoT, as it demonstrates the ability to incorporate new 

and replacement technology in an incremental and low-

overhead manner. 

An additional metric for gauging low-overhead is the 

lines of code required to implement an application. With 

the exception of the base context engine code and the 

implementation of the logic, the engine-specific application 

code was only 119 lines, or under 29% of the total context 

implementation. The infrastructural addition of the GPS 

was a mere 30 lines of code, bringing the total context 

overhead to just over 20%. That is, once the application's 

base implementation is established, incremental changes to 

the infrastructural overhead are minimal even as the 

complexity of the application logic grows, significantly 

reducing the ultimate overhead of the context engine. 

 

VI. CONCLUSION 

The Internet of Things represents the next iteration of 

ubiquitous computing, incorporating heterogeneous sensing 

and actuation in a web-based backend. However, the onset 

of significant commercial development of IoT devices 

communicating with divergent backends and in constantly-

changing formats severely complicates the main goal of the 

IoT: context-aware computing. Upon reviewing the related 

IoT work, we found a key component of the new IoT 

middleware missing: the ability to unify and operate on 

ever-changing sources and context in a low-overhead 

manner. To resolve this issue, we developed the ontology-

driven context engine. Leveraging and expanding the 

XCML context ontology, we unified data translation, 

filtering, and preprocessing into a format readily readable 

and expandable by context engine implementations. We 

developed a methodology to implement context-aware 

applications: upstream context engine instances for flexible 

context preprocessing and extension, and downstream 

instances for application logic and actuation. Using a base 

context engine, we implemented two different applications: 

one that demonstrates the ability to learn and follow 

different paths of reasoning based on available data, the 

StepCountEngine demonstrates up to 3x improvement in 

context accuracy. The second application is an end-to-end 

context aware implementation on IoT infrastructure using 

heterogeneous sources, and demonstrates the ability to 

extend the application with new sources without 

interrupting the original application, all the while 

attributing only 20% of the total application code to 

incorporating the new infrastructure. 
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