
UC San Diego
Technical Reports

Title
An Ontology-Driven Context Engine for the Internet of Things

Permalink
https://escholarship.org/uc/item/2kn5t9zg

Authors
Venkatesh, Jagannathan
Chan, Christine
Rosing, Tajana Simunic

Publication Date
2015-02-02

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2kn5t9zg
https://escholarship.org
http://www.cdlib.org/

Abstract�The Internet of Things (IoT) refers to an

environment of ubiquitous sensing and actuation, where all

devices are connected to a distributed backend infrastructure.

The main benefit of the IoT is the ability to use myriad sensor

data, leveraged into high-level information about the entities

in the system for reasoning and actuation in context-aware

applications. Significant growth in sensor deployment has lead

to unregulated and diverse information being fed back to the

system at large. A formal specification, or ontology, for data

use provides regulation to the system. In addition, IoT

middleware is required for context-aware applications to

operate in an environment with constantly changing data,

sources, and context. In this paper, we present a context

engine for IoT applications founded on an ontology that

specifies and reasons on context information. We explore and

build upon related work on IoT needs and ontological

principles. Our infrastructure leverages context information

for learning and processing a changing environment. Finally,

we implement two applications: one to demonstrate machine

learning from heterogeneous, intermittent sources, and

another with an end-to-end implementation of user-driven

actuation using the IoT backend. In the former, we produce

an output stream of context information 60x more accurate

than either of the individual sensor streams alone. The latter

exemplifies the ease of development and extension, with only

20% infrastructure-related overhead.

Keywords�Context aware computing; Internet of Things;

Sensor ontology

I. INTRODUCTION

Sensor networks and ubiquitous sensing are evolving

into a new concept ✁ the Internet of Things (IoT) ✁ the

collection of sensing and actuation backed by the existing

and growing Internet infrastructure [1]. This creates a

unique scenario from prior sensing approaches: the pre-IoT

work in this area still envisioned a level of modularity and

control over the sensors in the systems [2]. However, the

practical reality is that the emerging implementation of the

IoT has multiple distinct systems communicating with their

own web-based backends, exposing distinct APIs for

interaction and data retrieval. These heterogeneous devices

are added, removed, or updated independently of each other

by different manufacturers with different goals and release

cycles, and the choices among them are entirely in the

hands of the user. This precludes the unifying vision of the

IoT from an academic perspective. The wearable fitness

tracker market is a current example: Fitbit, Garmin, Moves,

Microsoft, and Apple, the most prominent among several,

have developed trackers and independent backends. Dozens

of applications exist that independently scour the data

stores for different pieces of relevant data to aggregate

metrics for a ✂✄☎✆✝✄ ✞✟✠✡✄ ✠☛☞ ✌✆✟✞✆☎✄✄✍ ✎✏✑☎☛✄✒✟☛ ✟✓
applications to new devices and APIs is a manual process

requiring a redeployment of the user-facing application

itself [3]. If the data sources and types change, the backend

of the application might require reimplementation as well.

Existing sensing and context infrastructures [4], [5]

implement strong ontologies but lack support for such a

changing system, as applications need to constantly adapt

to the environment and the constituent devices.

To address this, we focus on an application framework

for these context-aware applications, which we call a

context engine. In order to balance the IoT needs with ease

of development on the application side, we leverage a

context-focused ontology in our implementation. The goal

of this work is a middleware framework that bridges the

gap between the data in the infrastructure and the

applications in the IoT. The context engine enables

translation of heterogeneous sensor data into high-level,

usable context, and allows applications to reasoning,

optimizing, and processing based on dynamically available

sensor data. We can achieve this while still enabling the

functionality and scaling of IoT applications.

We provide an overview of the related work in IoT and

sensor ontologies, and characteristics and requirements of

context-aware applications in Section II, identifying from

among them features that are appropriate to our goals. We

then design the context engine system in Section III,

leveraging specifications that help us meet a context

✒☛✓✆✠✄✑✆✂✔✑✂✆☎✝✄ ☛☎☎☞✄. We outline the base context engine

implementation in Section IV. Finally, in Section V, we

design two independent applications: one that implements

the system in an actual IoT infrastructure, and another that

establishes the ability of this ontology to handle machine-

learning and adaptation.

II. RELATED WORK

There is a large body of work on sensor ontologies,

context awareness, and the Internet of Things. Perera et al.

[1] provide a comprehensive overview of context-aware

✕✖ ✗✖✘✙✚✙✛✜-✢✣✤✥✦✖ ✧✙✖✘✦★✘ ✩✖✛✤✖✦ ✪✙✣ ✘✫✦

✬✖✘✦✣✖✦✘ ✙✪ ✭✫✤✖✛✮

Jagannathan Venkatesh, Christine Chan, and Tajana Simunic Rosing

University of California, San Diego

computing, covering fifty publications over the last decade.

They evaluate system behavior and application

development in regards to their applicability for the IoT,

using an IoT taxonomy based on the features and models

identified in related work. The authors identify four

interactions with context in an IoT infrastructure:

acquisition, modeling, reasoning, and distribution. It also

identifies several important design requirements for context

awareness in the IoT: hierarchical model, scalability,

context life cycle management, extensibility, flexibility for

multiple reasoning modes, resource sharing, optimization,

and automatic event detection. It uses these requirements to

illustrate the gaps that comprehensive IoT middleware

should fill and identify areas of difference from other

ubiquitous sensing approaches. When designing our

system, we make sure to consider all the features above.

A. Context Ontologies

Ontologies are formal data representations that

categorize the vast amount of unregulated and diverse data

from information sources in the IoT [6] . They help classify

the data provided to applications, but the organization of

the IoT still makes application deployment difficult.

There are many previous works [7], [8], [9] that outline

formal context models for domain-specific designs, but do

not intend to share data or actuation beyond their original

one-off applications. However, pervasive sensing provides

many of the ontologies that are now adapted to the Internet

of Things. One of the earliest is the resource description

framework (RDF) [6], which annotates all web objects with

semantic information, implemented in XML, a web-ready

format. The aggregation of these annotations forms a

directed graph that is already used in context-aware web

applications such as search engines. While this is adequate

for objects such as websites, as was its original goals, this

binary object-object connections are insufficient for the

Internet of Things, which requires a richer description of

relationships, as well as an easier way to query and

determine these relationships, make inferences, etc.

To address these limitations, the successor to RDF was

the Web Ontology Language (OWL), now a web standard,

which also transitioned from loosely defined and typed

systems suitable for Wireless Sensor Networks to a formal

ontology [10]. OWL has been designed as a hierarchical

system, with sub-domains of objects (e.g. appliances)

encapsulated by the domains they live within (houses).

Several systems have been designed using OWL: smart

spaces [10], meeting room organization [10], hierarchical

modeling of the physical environment [11]. OWL-S is an

implementation built on top of OWL for describing

semantic services [6], adopted by [12] with an emphasis on

scalability and testability of their services model.

However, OWL typically operates under a very strictly

defined hierarchy. Although this works well for static

applications that rely solely on a fixed set of data, IoT

applications may have to deal with changing sources and

sinks. Nodes should be removable and the system should

still be able to operate to the best of its capacity. In

addition, the amount of data for which each application

must be responsible can grow rapidly, as the amount of

infrastructure-related data (dependencies, relation

annotation, etc.) that each application needs to manage can

grow faster than the data itself.

Another extension of OWL handles this issue: the

Context Modeling Language (CML) [13]. The system is

based on the Object-Role Model, which is preferable for

the Internet of Things, as all context data is attributed to a

physical or virtual entity (the object) and provides a

particular form of information associated with it (role). The

ontology reverts to a flatter hierarchy than OWL � this

allows an application to deal with as little context as it

requires, rather than be responsible for the entire graph.

Furthermore, CML provides a direct web-oriented

communication language in XCML, a markup

implementation that is very important for an Internet-based

backend. We borrow much of our syntax from XCML. This

✁✂✄☎✆✝✞✟ ✠✡ ✄✡☛✄☞✄✌✍ ✎✄✂ ✏✠✁✁✆✡✌ ✑✡✠✏✞✟✒ ✄✎ ✓✄✡☛✞✔☛

☎✠✂✆✠✕☞✞✟ ☛✄ ☛✖✞✆✂ ✑☎✠☞✗✞✟✒. The context space includes all

possible context variable names, which may grow

according to any additional data types the ontology

describes. Finally, to aid the adaptability of context-aware

applications, CML introduces the concept of context

dimensions, which define the minimum subsets of context

spaces, in which an application can perform meaningful

computations and operations. By specifying dimensions in

the same markup as the data, CML opens the doors for the

specification itself to be changed to adapt to the data

sources available.

B. Context-aware Applications

Pervasive sensors gather raw data from the environment

and its objects, which must be parsed into higher-level

information. We refer to this high-level, filtered and

processed information as context. High-level context

provides a representation that is both lower in

computational overhead and more intuitive for application

developers to use in reaction to IoT sensor stimuli, such as

crafting cognitive assistance for medical patients [9], or

custom learning environments for online students [14].

These context-aware applications represent the major

advantage of the Internet of Things [1].

The smart home application in [7] presents a good

example of the diverse sources found in the IoT and used

by the constituent applications. The system uses a

combination of sensors, user-supplied information, and

higher-level data processed from mobile and computing

devices. However, it does not account for adding,

removing, or changing the format of context in the nodes of

the dependency tree.

Hong et al. [4] build context information based on a host

of labeled environmental and user sensor data (e.g.

biometrics, GPS location, interaction with phone, weather,

etc.) and context rules. Lee et al. [15] present a location

prediction model based on a dynamic Bayesian network,

where accuracy significantly exceeded static networks. The

location model enables their ultimate goal of supporting

ubiquitous computing decisions. With the growing

popularity of alternative education, e-learning systems can

personalize learning materials and recommendations based

on modeling student profiles and context [5]. There are

many more mobile applications that operate on context

awareness for localized user information [14], vehicular

safety [7], or battery saving [3].

While streaming data from human subjects is natural,

sliding windows of the continuous data must be smoothed

and preprocessed before inputting into an analytic or

modeling framework. Some works further apply machine

learning techniques to model user behavior and interaction

with their physical environment. K-means clustering is a

prevalent way to automatically relate low-level data into

high-level contexts [4]. Reinforcement learning is an

important learning method for context awareness in IoT

applications, as users are already innately involved in

sensing and actuation. It invites user interaction to reinforce

and guide the system towards better accuracy and intuitive

actuation. For example, Madhu et al. [9] schedule

reminders for a user who is cognitively or orthotically

impaired. They use temporal constraint reasoning to

describe a daily plan and reinforcement learning (function

approximation-based learning) to find optimal actions,

subject to adjustable human parameters.

Lee et al. [8] remove reliance on labeled data by

performing unsupervised learning over low-level sensor

event sequences to extract patterns that represent high-level

activities, even if the activities are discontinuous or varied

over time.

C. Context-Aware Middleware

In an IoT context, middleware is software that acts as a

bridge between low-level sensors and the backend, or

between the backend and user-facing applications. Other

works have explored context-aware middleware

frameworks. Petrera et al. [16] propose a sensor

configuration model for the IoT that can handle sensor

filtration and reasoning, implemented via asking the user a

series of questions. However, the reasoning seems to fall

short of an open platform for machine learning, instead

limiting reasoning to an annotated dependency graph.

Similarly, [17] overviews several middleware

implementations, identifying certain aspects of each:

ontology-based, flexible for reasoning, data filtration and

adaptation, but does not present a single solution

encompassing all aspects.

D. Takeaways

 The ontologies and applications in the related work

help clarify the requirements common to context-aware

applications in the Internet of Things:

1. Adaptability: The system allows reasoning under

multiple data subsets

2. Distributed Data Aggregation: Data comes from

various sources, must translated into a widely

understandable structure and format

3. Data Flexibility: Internal and external data

representations should be flexible enough to

handle complex sensor data � continuous vs.

discrete data, streaming and persistent data, and

the more complex implementation of high-level

context [1].

4. Reasoning: The context engine is to be developed

into context-aware applications, and the ontology

must reflect this. To maintain this, we allow an

extensible framework internally, while enforcing

only ontology-driven input/output.

However, an application-facing infrastructure that

enables these properties is missing. The various proposed

ontologies are only applied towards very specific

applications [10], [4], [9], [8] � there is no larger system

within which the applications exist, nor is there the ability

for other applications to use the resources made available to

the one, as should be in the real Internet of Things. The

closest entity is the middleware layer implemented in [8],

which provides a general framework, but only within the

✁✂✄☎✆✝ ✂✞ ✟✠✄☎✡☛ ✠☞☎✌✍✠✎✏ ☎✝✁ ☎✑☎✆✝✏ ✠☞✍✌✆✞✆✌ ☛✂ ☛✒✍

application that is designed.

More importantly, none of the related works account for

application adaptability. The emerging IoT

implementations require the ability to merge data from

different sources and backends into a common context

representation, and on the application side, to seamlessly

incorporate new data or formats without interrupting the

application. Regardless of whether adaptation is a product

of a changing environment or sources joining and leaving

the sensed surface, the framework around the applications

are made static. CML [13] was the only ontology to allow

application processing using different sets of available data,

but the implementation covered only the ontology and not

the applications.

Real IoT applications need to exist in an infrastructure

that fosters changing the data, sources, and internal

reasoning. The context engine developed in this paper fits

this gap in the current landscape. We present a framework

and methodology that developers inherit, allowing them to

describe their source data and end-user applications in

terms of their context space and dimensions. This enables

applications that are flexible with new sources and

dimensions, and whose behavior can be extended, even

during runtime.

III. SYSTEM DESIGN

We use the conclusions drawn from the previous section

to design our infrastructure. Our goal is to enable the

design of context-aware applications in the presence of

transient objects, each with ever-changing context. These

objects can be physical and/or virtual entities, and may

enter or leave the system freely. For example, a commercial

building application might want to monitor occupancy data

and energy usage in its public lobby � it would want to

achieve this without requiring every person to register

explicitly when they appear, but instead collect data as it

becomes available to the context engine. A complementary

context-�✁�✂✄ �☎☎✆✝✞�✟✝✠✡ ✠✡ ✟☛✄ ☞✌✄✂✌✍ ✌✝✎✄ ✁✠☞✆✎ ☎✂✠✏✝✎✄

location data relative to the building (either in the building

or out). We use an ontology-driven data representation that

allows sources to provide data at-will in a format that is

understandable to context-aware applications. In the

occupancy example, the building-relevant location data is

✠✡✆✑ ✒✄✡✄✂�✟✄✎ ✓✂✠✔ ✟☛✄ ☞✌✄✂✍✌ �☎☎ ✁☛✄✡ ✝✟ ✎✄✟✄✞✟✌ ✟☛✄

proximity to the building (via GPS, beacons, etc.) and only

✞✠✡✌☞✔✄✎ ✕✑ ✟☛✄ ✕☞✝✆✎✝✡✒✍✌ �☎☎ ✓✠✂ ✟☛e users who are

generating this data. We also specify the interface for

context translation, which allows the applications to

understand and modify their scope of responsibility as their

environment changes, and drive their output.

 The context engine is implemented as a base model. The

major functionalities - enforcing the ontology, determining

that an application can process the input data, and

providing output/actuation ✖ are implemented, and

individual applications inherit it. They are only required to

provide the application-specific reasoning that drives the

output. The ontology and the context engine base must be

designed hand in hand, as the design decisions made in one

affect the other. With that in mind, we first outline the

system architecture, then describe the ontology-driven data

translation layer, and dive into more detail on the most

important system component - the context engine.

A. System Architecture

Fig 1 depicts the overall design of our system: one or

more context engine instances (shown in orange) that

ultimately transform input data into output data to be

consumed by actuators or other applications. In the process,

the system translates relatively raw sensor data into

incremental stages of higher-level context variables

associated with the objects (the physical and virtual

entities) in the system. The exact use of this output data is

application-dependent - as the figure suggests, an object

could simply display contextually relevant data, or a

building could take the processed context data as control

signals to perform actuation.

As a high-level overview, each context engine instance

has a scope of objects it takes input from, and a (possibly

overlapping) scope of objects it affects with its output.

Each of these objects has context variables associated with

them. These variables make up the lowest-granularity

pieces of data in the system, and are ultimately the inputs

and outputs on which the engines operate. An ontology-

driven context translator performs the formal mapping of

data into the scope of objects and their constituent context

variables, defined in the next section.

The actual transformation of the input context to the

output context is application dependent. For example, an

activity detection context application may consist of a

preprocessing context engine instance that associates a

☎✄✂✌✠✡✍✌ ✗✟☛✄ ✠✕✘✄✞✟✍✌✙ changed GPS location (the

constituent context variables) and outputs an update to that

☎✄✂✌✠✡✍✌ abstracted location (e.g. home, work). A second

context engine instance will watch for changes to a

☎✄✂✌✠✡✍✌ abstracted location and use machine learning to

probabilistically reason on his/her activity, updating the

perceived activity (and possibly a confidence threshold)

associated with that person. Any and all of these

intermediate and final context variables, all associated to

the same person object, can be in turn used by other

context-aware applications (e.g. residential building

automation).

As in the above example, the output of each context

engine instance is context ✖ specifically, one or more

context variables associated with certain objects. While Fig

1 shows a tree-like set of dependent context engines, the

system of context engines can be connected as a graph,

with the output of one or more context engine instances

composing a subset of the input scope to another context

engine. Alternatively, it can be the context change that

directly drives actuation, or the interpreted and abstracted

context that can be used by other applications (the building

automation in the above example). Output can also be used

to update the input object itself, representing feedback, and

driving a refinement o✓ ✟☛✄ ✠✕✘✄✞✟✍✌ ✚✡✠✁✡ ✌✟�✟✄✛ In the

activity example, t☛✄ ☎✄✂✌✠✡✍✌ abstracted location and

his/her activity represent intermediate and final context

engine feedback to the original state.

Fig 1. System architecture overview showing major components in bold, with implementation-specific examples italicized

The next sections expand on the mechanisms that

compose the system: the ontology-driven context

translation and the context engine structure.

B. Ontology-driven Context Translation

 The ontology choice is important to the context

engine, as it provides the structure of communication

between the external sensors and the context-based

reasoning within. Moreover, it connects the new

middleware to the existing infrastructure, so it should both

accommodate current pervasive sensing implementations

and future technology. Additionally, as a dynamic

environment, the IoT requires both the context engine and

an ontology-driven interface to adapt to missing and

newfound data.

 Objects in the system may be physical or virtual

entities that are associated with at least one piece of context

data. As mentioned in Section II and [1], the Object-Role

Model associates context to objects, which describe their

relationships to the environment in different ways. We

describe these pieces of information by context variables.

Context Space (S): The context space S of any object in

the system is a set of context variables {n1, n2�✁✂m}, where

n is an element from all the possible context variables. In

essence, S represents all the variables that can be applicable

to an application. This meets the requirement of identifying

the context of an object and represents a persistent set of

applicable variables.

Context Dimension (D): the context dimension of an

application, D, is a subset of S that represents the minimum

set of context variables that the application can use to

process an iteration. As the sensor sources (and

subsequently, the context variables) available in an

environment change, different context dimensions can

become relevant or irrelevant. For example, more variables

could lead to better learning, while fewer variables could be

a less accurate but sufficient set for reasoning.

As illustrated in Fig 2, various sources of context data

are fed into the context engine, first passing through the

data translation layer at its interface. This ensures that all

context data from both low-level devices and pre-translated

data from a wider data plane comply with the unified data

representation. They form the context space available to the

application running on this context engine. The application

specifies a list of context variables it needs to do

processing, filtering its context dimension out of the

available context space.

Fig 2. Flow and transformation of low-level data to high-level context
output for a single context engine

 A powerful feature of this data-driven context engine

is the ability to compose various context variables

associated with the same object. For example, a healthcare

application may reason on collected posture information on

its users, so it lists user posture data in its context

dimension. That is, it will ignore a user in the system who

only reports GPS data to applications. However, if such a

user gains a wearable sensor and chooses to publish it

through their personal context dimension, this new posture

sensing data will appear in the context space. As the

healthcare application scans for available data, this new

user will appear in its scope, and it can start reading and

reasoning on their posture information.

Naturally, this raises concerns with data accessibility,

security and privacy. The context dimension is simply the

way that entities in our current system (objects or

applications) specify the data they are willing to share.

Related works in the field of operating systems for

distributed and ubiquitous computing have proposed more

mechanisms to handle each of these issues that may be

implemented alongside our data flow. In fact, one of our

case studies (Section V.B) was implemented on a research

data storage infrastructure [18] that would provide privacy

and security independent of our system.

By translating and operating on data according to the

translation model, we can fulfill the required properties of

context-aware applications listed in Section II:

1. Adaptability: Context engines can operate on

changing sets of data by updating their context

dimensions with new variables in the context

space.

2. Distributed Data Aggregation: The data

translation interface to the context engine ensures

compliance with the ontology, written in a web-

standardized format. A current example would be

today's standard format for web-based documents

- XML.

1. Data Flexibility: A combination of the

hierarchical object-role model and a strong data

format allows applications to accept and exchange

data whether it describes low-level sensor input or

high-level context.

3. Reasoning: The engine enforces compliance with

a unified data representation at the interface to the

external system. Internal processing logic is still

flexible and left up to the application developer.

C. Context Engine

The context engine is designed for the system in Section

IIIA and encompassing the ontology-driven data processing

outlined in Section III.B. An overview of the system is

outlined in Fig. 1, to meet the following requirements of

context-aware IoT applications:

1. Context Identification: each application must be

able to determine the context variables relevant to

itself.

2. Flexibility of Reasoning: when different sets of

context data are available, the application must be

able to perform different types of processing.

3. Extensibility: as system and environment

conditions change, the application should be able

to be changed with minimal interruption of

service.

Context identification reflects the property that is found

in other middleware implementations � the ability to

✁✂✄✂☎✆✝✞✂ ✟✞ ✟✠✠✡✝☛✟✄✝☞✞✌✍ ✞✂✂✁✍ � through explicit object

identification or monitoring [5], [11]. We aim to maintain

this property, but also add flexibility of reasoning and

extensibility, neither of which are similarly represented in

corresponding middleware. These two features enable more

powerful improvements to applications through the context

engine. For example, the ability to perform machine

learning-based classification of context variables and

automatically deriving context dimensions for applications

reflects flexibility of reasoning. Similarly, online learning

and modification of application behavior to incorporate

new input and output context dimensions reflects extension.

Context Identification: Invoking the data translation

✡✟✎✂☎✌✍ ✍✠✂☛✝✏✝☛✟✄✝☞✞ from the above section, each object

and application has one or more input context dimensions

associated with it. These are defined at application creation

ti✆✂✑ ✟✍ ✝✄ ✝✍ ✄✝✒✓✄✡✎ ☛☞✔✠✡✂✁ ✄☞ ✄✓✂ ✟✠✠✡✝☛✟✄✝☞✞✌✍ ✠☎☞☛✂✍✍✝✞✒✑

and specified as a list of objects and their relevant context

data. The context engine continuously queries the objects

for changes, and composes the constituent context variables

required for the application. When the data collected

matches any context dimension to completeness, the

application can process and reason on it. While some subset

☞✏ ✟✞ ✟✠✠✡✝☛✟✄✝☞✞✌✍ ☛☞✞✄✂✕✄ ✁✝✆✂✞✍✝☞✞ ✆✔st be specified at

creation time, our context engine implementation allows

this to be changed at runtime through the extensibility

property below. Other middleware implementations treat

this process as static � defined only at creation-time.

However, as IoT applications are operating in a dynamic

environment, it is only natural that their context can also be

changed.

Flexibility of Reasoning: Flexibility of reasoning is

defined by the data translation layer as a mapping of

different input dimensions to the same output dimension.

Practically speaking, it allows the application to respond to

different types of input, making it adaptable. For example,

a location-tracking application may use GPS coordinates by

default, but defer to higher-accuracy indoor localization

data when available (i.e. inside a building). By definition,

the ontology-driven translation enables this, as the

application can literally specify multiple input context

dimensions, each of which specifies a different path to take

to achieve the output. This enables a well-designed

application to take advantage of new or additional context

that may emerge about the objects in its input dimension.

Extensibility: We define extensibility as the ability to

increase the input and output context dimensions with new

objects and context variables. Unlike adaptability, this is an

online, or post-creation, property. Practically speaking, this

means that new objects and their constituent variables can

be incorporated into the application. This also implies a

fundamental change in the functionality of the application,

since it must now incorporate and process based on entirely

new data. One example is the building occupancy detection

application that now has to comprehend and process a new

means of a user reporting occupancy (e.g. presence on the

local WiFi network). Our infrastructure provides multiple

methods to achieve this goal:

1. New context engine instances: The simplest approach

is to extend the code of the existing context engine,

updating its dimension and functionality to handle the

new data. This has the upside of simplicity, as the

system simply replaces an existing engine with a new

version. However, it requires an interruption of service

while the original application is supplanted. Fig 3

below reflects this, as the new context engine uses a

superset of the original input and output dimensions.

Fig 3. Replacing the original context engine with a new implementation to
extend functionality. (A1 U A2) and (B1 U B2) reflect a superset of the

original input and output dimensions, respectively.

2. Parallel context engine instance: A modification of (1)

is a new context engine instance that that translates a

different input context dimension into the redefined

✟✠✠✡✝☛✟✄✝☞✞✌✍ ☞✔✄✠✔✄ ✁✝✆✂✞✍✝☞✞ fulfills the extensibility

requirement Fig 4(a). The benefit compared to 1) is a

simpler secondary implementation, as it only deals

with the new case while the original context engine

handles the main functionality. It also maintains the

processing and functionality of the original application

uninterrupted. A subset of this case is an extension of

the original processing in a completely independent

function. This is highlighted in Fig 4(b), where the new

context dimension exists in parallel to the original, and

updates its output dimension independently.

Fig 4. Online changes to an existing context engine instance, where (a)

reflects dependent processing changes, and (b) reflects independent

changes.

3. Pre- & post-processing: A subset of the extensibility

definition is when only the input dimension or the

output dimension needs to change. While both the

above solutions handle this (simply set A2 or B2 = 0).

However, in the practical case where this change

reflects pre- or post-processing (e.g. new context

variables can be refined into a more accurate

representation of the original context variables), we

can simply add an upstream (preprocessing) and/or

downstream (postprocessing) context engine instance.

Fig 5 below reflects this case. The additional context

engines demonstrate a refinement of the original input

(a) and the original output (b) via feedback from the

additional data.

Fig 5. Online preprocessing (a) and postprocessing (b) of a context engine.

The extensibility cases above highlight an issue of online

modification of functionality: data consistency and

coherency, as multiple context engines can write to the

same locations. While the issue itself falls out of scope of

this paper, it is a well-understood problem in distributed

computing. Several solutions, including locks and tokens

can handle consistency independently of our middleware

layer, and these are mechanisms that should be

implemented in other parts of the IoT infrastructure [17].

The following section describes two distinct

implementations of the context engine, highlighting both a

machine learning application and an adaptable end-to-end

system demonstrating sensing, preprocessing, and actuation

with an IoT backend.

IV. SYSTEM IMPLEMENTATION

The context engine consists of an ontology-driven data

translation layer and a base context engine implementation.

The former is a source-agnostic interface that ensures

incoming data representation fits the ontology and parses it

into an acceptable data format � in our case, XCML. The

latter is the simplest complete context engine for a generic

application. All application-specific context engine

implementations inherit from and, if appropriate, extend

this base implementation.

A. Data Representation

We employ an extended implementation of XCML as

our ontology-driven data representation. XCML is a

markup-based (XML) implementation of the Context

Modeling Language. It has built-in support for context

space and context dimensions. However, it assumes context

data is always represented with a flat hierarchy of simple

data structures. Meanwhile, context-related information

often consists of nested data types or tuples - GPS

coordinates, for example, should come in pairs of values

for latitude and longitude respectively; the GPS data type

itself could also conceivably be nested within a larger data

structure, next to fields that contain data from other

localization schemes. Thus, complex data structures are

required to have a 1:1 translation of internal and external

data representations. As recommended in [1] [6], we use a

JSON model to support the internal representation, and we

extended the XCML paradigm to provide the 1:1

translation:

1. Lists: Lists are identified in the context dimension

by adding the attribute ✁✂✄☎✆✝✞✟✠✁✝. This signals

the parser to treat the encapsulated data structure as

a repeated type within the parent, not as a top-level

entity. In the context data, the corresponding tag will

simply be followed by a list of the data in the

appropriately specified type.

2. Dictionaries: similarly, dictionaries are specified in

the dimension with the attribute ✁✂✄☎✆✝✡✟☛✁✝.

Unlike lists, however, the encapsulated type

information is treated as a set of key-value pairs.

The addition of lists and dictionaries strengthens the

XCML language, and we further extend it to handle nested

combinations of all the constituent types, and a unique

translation to the internal representation and vice versa.

B. Data Translation

The translator enforces a data format required by the

ontology, as well as the context required by each object and

application. Our revised XCML format provides both the

☞✌✍☞✎☞✏✑✒✓ ✓✔✕✖✗✘✗✖✙tion and the actual data format.

The application developer specifies XCML data in

locations accessible to the context engine. This XCML data

identifies objects and their supported context variables, and

application context dimensions. Fig 6 (top) depicts an

example of the web browser object and the associated

context variables associated with it in the dimension. The

translation of this dimension into the actual data is

accomplished by scanning all objects that match the

particular context dimension name (e.g. Browser), and

capturing objects that contain all the dimensions required

for this application. In the example, the context-state tag

holds one browser that was found in the discovery process,

with the version and agent data populated. Changes or

updates to these objects will be pulled by all context engine

instances that monitor these objects. The case studies in the

next section illustrate more specific examples of this data is

stored, retrieved and used. While this is a relatively simple

example, ✙✌ ✙✔✔✎✗✖✙✍✗☞✌✒✓ ✖☞✌✍✕✚✍ ✛✗✜✕✌✓✗☞✌✓ ✢✗✎✎ ✣✕ ✓✍☞✤✕✛

in such an XML file, containing the myriad of context

dimensions that determine a complete set of input data

required by the application. Recursive parsing translates

both an XCML file (external representation) into a

corresponding JSON structure (internal representation) and

vice versa.

Fig 6. Sample XCML (external) and JSON (internal) parsed context

Fig 6 above shows the same data translated into the

internal and external representations. The top of the figure

shows the XCML representation: the context dimension

outlines the requirements for each complete piece of

context. From an initial file that had much more raw data,

the parser was able to isolate and filter one unique piece of

context (xcml:context-data). The bottom of the

figure represents the internal representation: a direct JSON

translation of the context data.

C. Context Engine Base

The different context engine instances that make up an

application (see Fig 1) serve different purposes: data

translation and context filtering, the actual application

reasoning and processing, and actuation. However, they all

share and extend the same base context engine

implementation.

Every application has associated XCML data

representing its context dimension(s). The translator from

the previous section scans the file into the JSON internal

representation, and the context engine searches its known

data space for objects that match each dimension element.

The data space can be any representation accessible to the

application: in the case studies in Section V, we read data

from both a file and a key-value store implemented on an

IoT data plane [18]. The actual processing is application

dependent, and is left as an abstract function

(runApplication) � a sandbox for application-specific

reasoning. When an application inherits the base

implementation, it is required to populate its processing

logic in this function. ✁✂ ✄☎✆✝ ✞✂ ✟✠✡ ✞☛☛✄☞✌✞✟☞☎✆✍✂ ✌☎✆✟✡✎✟

dimensions are defined, the base framework will scan the

specified data space for objects that are specified by the

dimension. When any subset of the collected data matches

a context dimension completely, the runApplication

method is triggered and the application can perform its

processing.

The context engine base and the data translation layer are

implemented in Python. We leverage the

XML.ElementTree libraries to read and write the XCML

representation.

In the next section, we investigate two such applications,

which take data from different sources and locations (from

file and from an IoT backend), perform different types of

reasoning, and produce different actuation.

V. CASE STUDIES

In this section, we describe two different examples that

illustrate our context engine concept � a step counting

application that uses machine learning over a Bayesian

network, and a lamp actuation application that is

implemented on an end-to-end IoT infrastructure and

demonstrates seamless application extensibility and ease of

implementation.

A. Step counter:

Fitness trackers currently dominate the wearables market

[19], with many interface options available to the user,

including smartphone and desktop applications, and

development APIs opened to development enthusiasts. In

fact, users often wear devices that report partially

redundant information, even if they were designed to

collect disparate data at a low level. This example collects

user activity from two independent devices - a Fitbit Flex

step counter [20] and an Android smartphone running the

mobile application Moves [21]. While both data streams

report a user's step count, they arrive at that conclusion in

different ways and with different reliabilities. We have a

simple goal of obtaining an accurate daily step count for a

single user based on these two data streams, by learning

when and where to trust one data stream over the other.

1) Input Data

 Fitbit reports minute-by-minute step counts for a user,

based on accelerometer readings. The data traces are

simple. Each piece of context data only contains a start and

end time for the interval (currently fixed at 1 minute) and

the number of steps counted. While the device actually

reports more, such as a user's sleep mode and inferred

Fig 7. Relevant variables filtered from the context space into an
application's context dimensions

activity levels, our application does not need those pieces

of data and thus leaves it out of the context dimension.

Fig 8. Context dimension for simple input from Fitbit

Moves traces include higher-level activity readings such

as semantic location names, type of motion, and a step

count if the user is walking. These readings are inferred

from a variety of low-level sensors and crowd-sourced data

(smartphone accelerometer, GPS, social location check-in

service, etc). The traces are divided into "segments", where

the user is either sedentary, moving from one point to

another, or moving around within one location. Each

segment is bookended by a start and end time, but it may

also exercise different combinations of context keys, some

of which are organized into nested structures, as shown in

Table 1. When the user is at a location for an extended

period of time, it records the GPS coordinates, and may

include a semantic locality name depending on availability.

The semantic location name may be estimated from

Foursquare (a web-based social location service) [21], or

manually entered by the user - this naming source is also

recorded and can imply a measure of confidence in the

location. If the user is in transit, Moves records

instantaneous positions in a list of timestamped GPS

coordinates, called "trackpoints".

Fig 9. Truncated context dimension for input from Moves, showing a list
(trackPointList) of complex keys (trackPoint) containing simple keys

(timestamp, etc)

The user manually collects the verification data for an

actual step count. The start and end timestamps are required

to align collected data with Fitbit and Moves data, and the

unique context variable here is "user input". When the

boolean "user input" is True, it implies highest confidence

in the user-supplied data.

Fig 10. Context dimension for manual step counts collected directly from
a user

2) Context Engine Implementation

From observation, we have a sense of systematic errors

from Moves - for example, the GPS tracking has high

latency when waking from sleep and misinterprets

�✁✂✄�✄☎✆ ✝✞✁☎ ✟✠✡✆✠☛☞☎✌ ✝✞✍ ✆✁ ✆✎✡✠✏☞☎✌✑ ✒☎✆✄✎�☞✆✆✄☎✆✓✔, it

derives the step count from the distance traveled divided by

a universal average stride length (thus undercounting steps

for a shorter person). Both devices are susceptible to losing

battery, losing data due to connection or cloud service

failures, or simply being misplaced by an absent-minded

user. Fitbit has a tendency to misinterpret miscellaneous

movement (typing, doing dishes, etc.) as steps, while

missing less easily discernible steps (carrying groceries,

hands in pocket). By taking both devices into the context-

aware application, and leveraging the fact that Fitbit and

Moves give slightly overlapping but different information,

we have the opportunity to weigh their data given

contextual reliability and fall back to one if the other goes

offline.

We classify segments of a user's day coarsely based on

data from Moves. When the user is in one place, the phone

✎✄✠✁✎✕✖ ✕✡✆✡ ✡✖ ✡ ✟✓✁✠✡✆☞✁☎✍ ✡☎✕ ✡✖✖✁✠☞✡✆✄✖ ✡ ✓☞✖✆ ✁✗

activities with it. However, when the user is in transit, the

✖✔✖✆✄� ✎✄✠✁✎✕✖ ✡ ✖☞☎✌✓✄ �✁✂✄�✄☎✆ ✟✡✠✆☞✂☞✆✔✍ ✘✆✎✡☎✖☞✆✙

✚✡✓✏☞☎✌✙ ✠✔✠✓☞☎✌✙ ✄✆✠✑✛ ✚☞✆☛ ✡ ✖✄✎☞✄✖ ✁✗ ✟✆✎✡✠✏✞✁☞☎✆✖✍

tracking the movement. The two context dimensions in

Table 1, both extracted from the same context space,

reflects this. The two context dimensions allow the

application to parse and reason across two different scopes

of data.

The Bayesian network in Fig 11 describes the

relationships between observable data from Fitbit and

Moves, each node representing some variable summarizing

the user's activity. Using the specification from Fitbit's API,

we classify the step counts per minute into low, medium or

high activity levels. The context engine trains the network

on each incoming data segment and constructs the

associated conditional probability table based on whether

Fitbit or Moves is more accurate for each segment (relative

to the ground truth). The dependencies of the nodes are

determined by the classification of activity levels (low,

medium, high), and the perceived Moves activity (on

location, walking, or using transportation). Each instance

where Fitbit (or Moves) agrees with the ground data

(within margins of the activity level thresholds) increases

the weight of the edge leading from that node to the "Fitbit

is accurate" node (or "Moves is accurate" node).

Fig 11. Bayesian Network to learn accurate step count from Fitbit and

Moves data.

In Fig 11, the edges connecting dependencies were

manually assigned, and only their weights were learned.

Without a priori knowledge of the relationship between

Fitbit and Moves, the Bayesian network would start as a

fully connected graph, and the learning algorithm would

eventually prune the edges which do not in fact connect

dependent nodes.

3) StepCountEngine results

We compare the accuracy of these three data streams -

Fitbit, Moves, and estimation learned on Fitbit and Moves.

The edge weights of the Bayesian network are trained on

two days' worth of data. Since each day is naturally divided

into a different total number of segments depending on how

often the user changes activities or locations, this ranges

between 37-45 segments. After the learning phase, the

cross product of all these variables gives a confidence for

each data stream that selects the most trusted source for

each segment. The final daily total of step counts is

compared to the "ground truth" for that day's total, and the

"accuracy" represents how closely the estimated step count

falls relative to the actual number of steps taken. We define

accuracy as the probability of designating the output as

"correct", under a Gaussian distribution. The mean is

selected as the "ground truth" data and the standard

deviation set such that the +/-15% range has a 90%

accuracy. This margin is given because small discrepancies

in the absolute number of steps counted across a day

(which ranges in the thousands on average) should be

reasonably expected.

Fig 12 shows the performance of our learning algorithm

on a small training set, for three representative days. In

Sample 1, even though both Fitbit and Moves are grossly

inaccurate in counting total steps for the day, the other

contextual data they provide about a user's location and

activity type can help greatly in learning which one to trust

for a particular segment in the day. Thus, for each segment,

as long as one of them reports accurate data, and the

learning algorithms picks the correct one, the final count

can still be very accurate.

In Sample 2, the Fitbit stream is highly accurate, while

Moves is not. While the node weights of the Bayesian

network represent confidence in a data stream, they do not

guarantee accuracy � by correctly choosing to trust Fitbit in

most segments and Moves in a minority of segments, the

final step count is still highly accurate. On the other hand,

the penalty of trusting in the wrong stream can negatively

impact the learned result, as shown in Sample 3. Such an

"anomalous" day may include long periods of time spent

underground where GPS localization is ineffective, or

where the user is engaged in vigorous and repetitive

activity while standing relatively still, such as organizing

equipment in a lab environment.

Fig 12. Accuracy of Fitbit, Moves, and Learned step count for 3 days

By learning when to trust and when to discard particular

data streams based on the context of that data collection,

we can produce an output stream with accuracy much

higher than either of the individual sensor streams alone. In

this case study, we see an average 60x accuracy

improvement over using a single stream of data when

learning over just 2 days.

B. Automated Lamp Actuation:

Smart buildings are a quintessential Internet of Things

application, and simple hard-wired, occupancy-based

lighting automation is already ubiquitous. However,

developing technology like the web-connected Philips

Hue✁ lamp [22] exemplify the IoT aspect of smart

buildings: an actuator (color-changing lamp) whose state

can be read and modified through the Philips API. While

users can access the interface manually, implementing a

context-aware application based on their color preferences

and proximity to the lamp is the IoT implementation of the

application. For this implementation, we design a context-

aware application ✂✄☎✂ ✆✝✞✞ ✟✄☎✠✡☛ ✂✄☛ ✞☎☞✌ ✂✍ ☎ ✎✏☛✑✒✏

preferred color when they are sitting in the room where the

lamp is installed. When multiple people are sitting, the

lamp reaches an intermediate color between all the

✍✟✟✎✌☎✠✂✏✒ ✌✑☛✓☛✑☛✠✟☛✏✔

1) Input Data

This application requires data about whether or not a

user is seated in the room, and their color preferences. The

✝✠✓✍✑☞☎✂✝✍✠ ☎✕✍✎✂ ☎ ✎✏☛✑✒✏ ✍✑✝☛✠✂☎✂✝✍✠ ✖✏☛☎✂☛✗✘✏✂☎✠✗✝✠✡✙ ✝✏

determined by a wearable activity sensor. The XCML

context dimension for the user is shown in Fig 13 below. A

preprocessing context engine instance filters all the

applicable data for a person, returning only the relevant

information: the id of the person, whether or not he/she is

seated, when the person changed state, and his/her color

preference.

Fig 13. Context dimension for each person in the application.

Similarly, the application requires the status of each

chair in the room: the id of the chair, whether or not it is

occupied, and the time at which the chair was occupied.

The relevant XCML context dimension for each chair in

the room is shown in Fig 14.

Fig 14. Context dimension for each seat in the application.

2) Context Engine Implementation

The context engine implementation, SeatApp, operates

on the people and the seats in the room at any given time.

Thus, the context dimension for the application itself is as

shown in Fig 15 below:

Fig 15. Context dimension for the automated lamp (SeatApp) application

The specification identifies that the application operates

on a list of seats and people that are deemed to be currently

in the room at a given time. The id for each seat/person is

the key on the data store to look up for each source. The

critical part of the application is that the list of seats and

people can change at any time.

3) IoT and Hardware Infrastructure

The wearable orientation sensors and the pressure

sensors for the chairs are developed and deployed by UT

Dallas [23], and the output is preprocessed into the XCML-

appropriate format using impulse matching of positive

signals [24].

As a true end-to-end context-aware IoT application, the

SeatApp was implemented on an IoT infrastructure. The

Global Data Plane (GDP) provides a flexible web-based

data store, implementing key-value data access through a

HTTPS REST protocol [18]. The GDP readily accepts the

XCML context information from the previous sections,

allowing the application to read, write, and modify the

system information.

4) Application Processing

The application runs on a continuous loop. At each

iteration it is driven by the seats and people found on the

data associated with the above dimension. At any time, a

person or seat can be manually entered into or removed

from the known system by making corresponding changes

to the context dimension. These changes will be seamlessly

incorporated into the next iteration.

The application logic maps seated users to occupied

chairs by matching their timestamps. The color preferences

for each seated user are averaged together using the Hue

color palette [25] to provide an amenable median color for

all present users.

The output specification for the lamp simply identifies a

lamp id, the color to set the lamp to, and the timestamp

recording the change (Fig 16). While this output is

generated by the context engine and consumed by the lamp,

it is easily conceivable to use this information as context

for determining building occupancy by other applications:

HVAC and security logic can make use of the knowledge

of which buildings are occupied and by whom for further

automation of the building. Because the output conforms to

the XCML ontology, the dimension information and data

can be directly used by other context engine

implementations.

Fig 16. Hue Lamp output specification in an XCML context dimension

5) Uninterrupted Application Extension: GPS data

While the automated lamp example is a good example of

the context engine in use for an IoT application, other

ontologies and middleware can accomplish the same end

result. What separates the context engine is the ability to

seamlessly extend the functionality for new data types

and/or sources without unnecessary re-implementation of

the application or even interruption of service. With that in

mind, we extend the above example: if we add GPS

information to the seats and people, we can remove the

manual updating of the list of seats and users in the room.

However, since the functionality of the application remains

the same, we can simply implement a new context engine

to update the SeatApp data that it consumes (Fig 15).

Fig 17. GPS location context dimension, keyed to the id of the object.

The new context engine implementation,

�✁✂✄☎✆✆✝✆✞✂✄✁✟ ✠✁✡☛✁✠ ✂✠ ☞✌✁ ☞✍ ✄✎✁ ✏✑✆✠✄✡✁✂✒✓ ✁✌✔✕✌✁✠

on the left of Fig 1. It verifies a list of all users and seats

that have location tracking, and verifies if their GPS

location is in the bounding box of the room. Using the same

object IDs from Fig 13 and Fig 14, SeatAppUpdate

searches the data associated with that user for GPS

information stored in the XCML data mapped to his/her ID

(Fig 17). ✖✄ ✆✁✡✍☞✡✒✠ ✂ ✠✕✒✆✗✁ ✘☞✑✌✞✕✌✔ ☞✍ ✄✎✁ ✑✠✁✡✙✠

✗☞✚✂✄✕☞✌ ✚☞✒✆✂✡✁✞ ✄☞ ✄✎✁ ✡☞☞✒✙✠ ✗☞✚✂✄✕☞✌✟ ✂✌✞ ✒☞✞✕✍✕✁✠ ✄✎✁

SeatApp XCML data to add/remove the user as

appropriate. By the simple addition of a single upstream

context engine instance, the application now automates user

registration. Note that users can still manually register

themselves or seats as in the original program, but the

automation runs in parallel, updating the input data as

appropriate. As soon as SeatAppUpdate is executed,

SeatApp picks up and handles the automation at its next

iteration without needing to be interrupted.

Note an additional Fminor but extremely crucial detail:

the ontology defines the format of the GPS location (Fig

17), but does not specify the source of the information. A

�✁✂✄☎✁ ✆✝✞ ✟✁ ✠✡�✁ ☛☞☞✌✍✂✎ ✠✌ ✏✌✑✂ ✒✄✌✑ ☛✓✔ ☛✕✕ropriate

source (e.g. smartphone, wearable GPS, beacons, etc.) as

long as it can be translatable to latitude and longitude. This

gives the new implementation enormous flexibility. A user

(and a chair) can allow his location information to be

available to the system through any means available. In the

✕✄☛✏✠✟✏☛☞ ✟✑✕☞✂✑✂✓✠☛✠✟✌✓✖ ✠✡✂ �✁✂✄☎✁ ✆✝✞ ☞✌✏☛✠✟✌✓ ✟✁

✄✂✠✄✟✂✗✂✎ ✒✄✌✑ ✠✡✂ ✁✑☛✄✠✕✡✌✓✂✖ ✍✡✂✄✂☛✁ ☛ ✏✡☛✟✄☎✁ ✆✝✞ ✟✁

derived whenever it was placed in close proximity to a

beacon.

6) Results

As a full end-to-end implementation of a user-driven

smart lighting application, SeatApp represents more than

just a working example: it covers all the requirements of

the context engine as specified in Section 3, which none of

the related work managed to accomplish. It performs

context identification in the presence of heterogeneous

sources pushing data to independent backends. It provides

adaptability by implementing different context dimensions

for manual and automated detection of locality. Finally, and

unlike any of the previous works, it provides extensibility in

a seamless manner: extension of the original application to

new context (GPS) was accomplished without interrupting

the application itself. This is crucial to the practical reality

of the IoT, as it demonstrates the ability to incorporate new

and replacement technology in an incremental and low-

overhead manner.

An additional metric for gauging low-overhead is the

lines of code required to implement an application. With

the exception of the base context engine code and the

implementation of the logic, the engine-specific application

code was only 119 lines, or under 29% of the total context

implementation. The infrastructural addition of the GPS

was a mere 30 lines of code, bringing the total context

overhead to just over 20%. That is, once the application's

base implementation is established, incremental changes to

the infrastructural overhead are minimal even as the

complexity of the application logic grows, significantly

reducing the ultimate overhead of the context engine.

VI. CONCLUSION

The Internet of Things represents the next iteration of

ubiquitous computing, incorporating heterogeneous sensing

and actuation in a web-based backend. However, the onset

of significant commercial development of IoT devices

communicating with divergent backends and in constantly-

changing formats severely complicates the main goal of the

IoT: context-aware computing. Upon reviewing the related

IoT work, we found a key component of the new IoT

middleware missing: the ability to unify and operate on

ever-changing sources and context in a low-overhead

manner. To resolve this issue, we developed the ontology-

driven context engine. Leveraging and expanding the

XCML context ontology, we unified data translation,

filtering, and preprocessing into a format readily readable

and expandable by context engine implementations. We

developed a methodology to implement context-aware

applications: upstream context engine instances for flexible

context preprocessing and extension, and downstream

instances for application logic and actuation. Using a base

context engine, we implemented two different applications:

one that demonstrates the ability to learn and follow

different paths of reasoning based on available data, the

StepCountEngine demonstrates up to 3x improvement in

context accuracy. The second application is an end-to-end

context aware implementation on IoT infrastructure using

heterogeneous sources, and demonstrates the ability to

extend the application with new sources without

interrupting the original application, all the while

attributing only 20% of the total application code to

incorporating the new infrastructure.

REFERENCES

[1] C. Perera, A. Zaslavsky, P. Christen and D. Georgakopoulos,
"Context Aware Computing for the Internet of Things: A Survey,"

IEEE Communications, Surveys, & Tutorials, pp. 414-454, 2013.

[2] M. Friedewald and O. Raabe, "Ubiquitous computing: an overview of

technology impacts," Telematics and Informatics, vol. 28, pp. 55-65,

2011.

[3] J. Hammer and T. Yan, "Poster: A virtual Sensing Framework for
Mobile Phones," in Proceedings of MobiSys, 2014.

[4] J.-H. Hong, S.-I. Yang and S.-B. Cho, "Conamsn: A context-aware
messenger using dynamic bayesian networks with wearable sensors,"

Expert Systems with Applications, vol. 37, no. 6, p. 4680✘4686, 2010.

[5] S. K. Madhu, V. C. Raj and R. M. Suresh, "An Ontology-based
Framework for Context-Aware Adaptive E-Learning System," in

International Conference on Computer Communication and

Informatics (ICCI), 2013.

[6] S. Staab and R. Studer, Handbook of Ontologies, Springer Science

and Busines, 2010.

[7] Lee and K. e. al., "AMC: Verifying User Interface Properties for

Fig 18. Breakdown of codebase by lines of code. Minimal changes are

required to the application-specific infrastructure code (AppInfra) to

handle the addition of GPS data. Arbitrary application code (AppCode)
expands while the base implementation (Base) remains the same

Vehicular Applications," in Proceedings of MobiSys, 2013.

[8] P. Rashidi, D. Cook, L. Holder and M. Schmitter-Edgecombe,

"Discovering activities to recognize and track in a smart
environment," IEEE Transactions on Knowledge and Data

Engineering, vol. 23, no. 4, pp. 527-539, 2011.

[9] M. Rudary, S. Singh and M. E. Pollack, "Adaptive cognitive
orthotics: combining reinforcement learning and constraint-based

temporal reasoning," in Proceedings of the 21st International

conference on Machine Learning, 2004.

[10] H. Chen, T. Finin and A. Joshi, "An Ontology for Context-Aware

Pervasive Environments," The Knowledge Engineering Review, vol.

18, no. 3, pp. 197-207, 2004.

[11] T. Gu, X. Wang, H. Pung and D. Zhang, "An Ontology-based

Context Model in Intelligent Environments," in Proceedings of

communication networks and distributed systems modeling and
simulation conference, 2004.

[12] W. e. a. Wang, "A comprehensive ontology for knowledge

representation in the internet of things," in 11th International
Conference on Trust, Security and Privacy in Computing and

Communications, 2012.

[13] M. Nebeling, M. Grossniklaus, S. Leone and M. Norrie, "XCML:
providing context-aware language extensions for the specification of

multi-device web applications," World Wide Web (WWW), vol. 15,

no. 4, pp. 447-481, 2012.

[14] Google, "Google Now," Google, 2014. [Online]. Available:

http://www.google.com/landing/now/. [Accessed 10 November

2014].

[15] S. Lee and K. C. Lee, "Context-prediction performance by a dynamic

bayesian network: Emphasis on location prediction in ubiquitous

decision support environment," Expert Systems with Applications,
vol. 39, no. 5, p. 4908�4914, 2012.

[16] C. Perera, A. Zaslavsky, M. Compton, P. Christen and D.

Georgakopoulos, "Context Aware Sensor Configuration Model for
Internet of Things," in 12th International Semantic Web Conference,

Sydney, 2013.

[17] S. Bandyopadhyay, M. Sengupta, S. Maiti and D. Subhajit, "A
Survey of Middleware for Internet of Things," Recent Trends in

Wireless and Mobile Networks, vol. 162, pp. 288-296, 2011.

[18] J. Kubiatowicz and E. Allman, "Global Data Plane | SWARM," UC

Berkeley, 2014. [Online]. Available:

https://swarmlab.eecs.berkeley.edu/projects/4814/global-data-plane.
[Accessed 30 October 2014].

[19] Juniper Research, "Smart Health & Fitness Wearables: Device

Strategies, Trends & Forecasts 2014-2019," Juniper Research, 2014.

[20] Fitbit, "Fitbit Development," Fitbit, 2014. [Online]. Available:

http://dev.fitbit.com/. [Accessed 30 10 2014].

[21] ProtoGeo Oy, "Moves For Developers," ProtoGeo Oy, 2014.
[Online]. Available: https://dev.moves-app.com/. [Accessed 30 10

2014].

[22] Philips Inc., "Meet hue," Philips Inc., 2014. [Online]. Available:
http://www2.meethue.com. [Accessed 20 October 2014].

[23] Y. Prathivadi, J. Wu, T. Bennett and R. Jafari, "Robust Activity

Recognition using Wearable IMU Sensors," IEEE Sensors, 2014.

[24] N. Kale, J. Lee, R. Lotfian and R. Jafari, "Impact of Sensor

Misplacement on Dynamic Time Warping Based Human Activity

Recognition Using Wearable Computers," in Proceedings of ACM
International Conference on Wireless Health, San Diego, 2012.

[25] Philips Inc., "Core Concepts: Philips Hue API," Philips Inc., 2014.

[Online]. Available:
http://www.developers.meethue.com/documentation/core-concepts.

[Accessed 30 October 2014].

[26] S. Pantsar-Syvaniemi, K. Simula and E. Ovaska, "Context-awareness
in smart spaces," in IEEE Symposium on Computers and

Communications, 2010.

