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Abstract
The diffuse reflectance spectrum of human skin in the visible region (400–
800 nm) contains information on the concentrations of chromophores such
as melanin and haemoglobin. This information may be extracted by fitting
the reflectance spectrum with an optical diffusion based analytical expression
applied to a layered skin model. With the use of the analytical expression, it
is assumed that light transport is dominated by scattering. For port wine stain
(PWS) and highly pigmented human skin, however, this assumption may not
be valid resulting in a potentially large error in visual reflectance spectroscopy
(VRS). Monte Carlo based techniques can overcome this problem but are
currently too computationally intensive to be combined with previously used
fitting procedures. The fitting procedure presented herein is based on a library
search which enables the use of accurate reflectance spectra based on forward
Monte Carlo simulations or diffusion theory. This allows for accurate VRS
to characterize chromophore concentrations in PWS and highly pigmented
human skin. The method is demonstrated using both simulated and measured
reflectance spectra. An additional advantage of the method is that the fitting
procedure is very fast.

1. Introduction

Visual reflectance spectroscopy (VRS) of human skin involves measurement of diffuse
reflectance in the 400–800 nm wavelength region. The measured spectrum is compared with
a modelled reflectance spectrum based on a layered skin model and optical diffusion theory.
Fitting parameters in the model are usually important skin chromophores such as epidermal
melanin and haemoglobin (Dawson et al 1980, Feather et al 1989, Zonios et al 2001, Matcher
2002). VRS is appealing as a diagnostic method for skin characterization because it is quick,
non-invasive and relatively inexpensive.
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To extract values for skin chromophores, a curve is fit to the measured spectrum by
adapting the values of model skin parameters. A number of procedures have been employed
for VRS of human skin, such as manual fitting (e.g., Svaasand et al (1995), Viator et al (2004),
Zonios et al (2001)), a Nelder–Mead direct search simplex method (Douven and Lucassen
2000) and a genetic algorithm (Zhang et al 2004) to optimize the fit. Each of these procedures
uses a forward calculation of the model reflectance spectrum based on an analytical solution
of the optical diffusion equations. This approach enables very quick calculation of a spectrum
(<1 s) but it is implicitly assumed that the diffusion approximation (i.e. light transport is
dominated by scattering rather than absorption) is valid. However, for patients with port wine
stain (PWS) and highly pigmented skin, this approximation tends not to be valid, therefore
limiting the accuracy of VRS in these clinical situations.

In order to apply VRS for PWS and highly pigmented skin, one may use Monte Carlo
simulations (Verkruysse et al 1999) to calculate diffuse reflectance spectra of skin models.
However, these simulations are currently computationally too intensive and repeated forward
calculations of reflectance spectra using one of the fitting procedures mentioned above may
take several days and thus be impractical for clinical use.

Herein, we introduce and demonstrate the use of a novel procedure for VRS which largely
avoids repeated forward calculations. Instead, we make use of a digital library which stores a
large number of reflectance spectra and their corresponding skin parameters. The procedure
then consists of a simple comparison of the measured spectrum with the library spectra.
Thereafter, the library spectrum that fits best is used. This is a somewhat unconventional
fitting method and, to our knowledge, has not been applied previously to VRS. The overall
goal of this project is to assess feasibility of a library based procedure for VRS which would
enable fitting with Monte Carlo based reflectance spectra. Herein, the library is not built with
spectra from Monte Carlo simulations but with spectra from a diffusion theory based analytical
expression. However, it will be demonstrated that a library based fitting procedure is not only
feasible but fast and rigorous in identifying skin parameters from diffuse reflectance spectra as
well. Results will be shown for simulated and measured (normal and PWS skin) reflectance
spectra.

2. Methods

2.1. Skin reflectance model

To model reflectance of human skin, three components can be distinguished: (1) skin geometry,
(2) optical properties of the structures in the skin model, and (3) method to calculate a
corresponding reflectance spectrum.

First, we chose a simple two-layered model for skin geometry. The first and second
layers represent the epidermis and dermis, respectively, and each layer is treated as optically
homogeneous. This simplification allows for an analytical solution of the diffusion equations
for light and, subsequent calculation of reflectance (Svaasand et al 1995, Farrell et al 1992,
Douven and Lucassen 2000).

Second, the optical properties (absorption coefficient µa, scattering coefficient µs and
scattering anisotropy factor (g)) are treated as constants which then represent weighted averages
of skin constituents in each layer. Several expressions for the composite optical properties of
human skin layers have been published (Svaasand et al 1995, Meglinski and Matcher 2002,
Douven and Lucassen 2000, Verkruysse et al 1993). In essence, they are all very similar in
that they proportionally average the optical properties of the epidermis and melanin in the
first layer, and those of dermal blood for all underlying layers. The spectral behaviour of
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chromophores such as melanin (in the epidermis) and oxy- and deoxy-haemoglobin (in the
dermis) is usually expressed by convenient analytical or empirical expressions (Svaasand et al
1995, Douven and Lucassen 2000). Examples for the average absorption by melanin in the
epidermis µM

a , and epidermal and dermal scattering µs, are given in equations (1) and (2),
respectively. Throughout this paper, wavelength (λ) is given in nm:

µM
a (λ) = µa,m,694

(
694

λ

)4

(1)

µs(λ) = µs,577

(
577

λ

)
. (2)

Values for µa,m,694, which is µM
a (λ = 694 nm), range from 0.2–2.5 mm−1 for light and dark

skin, respectively (Norvang et al 1997). Values for µs,577, which is µs (λ = 577 nm), range
from 15–60 mm−1.

Equations (1) and (2) were taken from Douven and Lucassen (2000) who derived them
from the earlier work of Svaasand et al (1995). For this paper, we adopt all the expressions for
composite optical properties from Douven and Lucassen with one exception. Those authors
considered the µa of skin without chromophores (µa,T) to be a free parameter during the fitting
procedure although it was constrained to be the same for all visible wavelengths. Similarly,
Svaasand et al (1995) used a constant value of 0.025 mm−1 for all visible wavelengths. We
chose to adopt a wavelength-dependent expression (µaT (λ)) proposed by Saidi (1992), which
was used by Meglinski and Matcher (2002) to calculate composite skin optical properties:

µa,T (λ) = µCλ−3.255. (3)

Saidi’s original expression used a value of 7.84 × 107 for µC. We will allow µC to vary
by ±10% which is reasonable given the large range (approximately one order of magnitude
from 400–800 nm) covered by equation (3) and the values used by Svaasand et al (1995)
and Douven and Lucassen (2000). Other model parameters involved in the calculation of
composite optical skin properties are blood oxygenation and average blood vessel diameter
(Svaasand et al 1995, Verkruysse et al 1997).

For the purpose of this paper, which is to demonstrate the use of a library based fitting
procedure, the selection of optical properties is not critical. Since the expressions of composite
optical properties are exactly the same as those presented by Douven and Lucassen (except
for µaT, indicated above), we refer the interested reader to their paper.

A number of analytical expressions for skin reflectance have been published by various
authors (Farrell et al 1992, Keijzer 1993, Svaasand et al 1995, Sinichkin et al 2002). For the
present paper, we chose to use the Keijzer model for diffuse irradiance which is described
in detail by Douven and Lucassen (2000). In this model, the deepest layer (the dermis in
our case) is assumed to be infinitely thick, implicitly assuming subcutaneous tissue (fat and
muscle) to be of negligible impact to the reflectance spectrum. This is a fair assumption for
most visible wavelengths. It is important to realize that each of the analytical expressions is
accurate only when the diffusion approximation is satisfied (Star 1995):

µa/(µs(1 − g)) � 1. (4)

Yoon et al (1989) determined that errors in diffusion approximation theory are relatively large
for g > 0.6, which is the case for human skin. However, even for those wavelengths where
the diffusion approximation is clearly violated, we ignore this violation in this study and use
the analytical model. This violation may affect the accuracy of predicted tissue parameter
values to some extent; however, it is not critical for testing the feasibility of the library based
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Table 1. Skin parameters, range and sampling increments used to build the library.

Sampling Number of
Parameter Range increment samples

µa,m,694 (mm−1) 0.2–2 0.2 20
µs,der,577 (mm−1) 15–60 5 10
R2 (mm) 0.050–0.090 20 3
B1 (%) 0.1–0.3 0.001 3
B2 (%) 1–36 1 (B2 < 12) 18

4 (B2 > 12)
µs,epi,577 (mm−1) 15–60 15 4
d1 (mm) 0.06–0.12 0.02 4
Oxygenation (%) 50–100 10 6
µC 7 × 107–9 × 107 1 × 107 3

fitting method, the purpose of this study. Eventually, we intend to replace the library based on
diffusion theory with that based on transport theory.

2.2. Building the library

The requirement for using a library based fitting method is to be able to calculate and store
spectra for a large number of skin parameter combinations. Fitting a measured spectrum
consists of a simple comparison with library spectra and selecting the best match. The size
of the library is only limited by the size of the storage medium (e.g., a PC hard drive). We
chose to start modestly and build a relatively small library of simulated spectra for a simple
two-layered skin model (epidermis and dermis) while varying a total of nine skin parameters
presented in table 1. The range of values for each parameter is collected from several sources
in the literature (Svaasand et al 1995, Garden et al 1986, Saidi 1992, Meglinsky and Matcher
2002). With the sampling ranges and increments listed in table 1, the total number of library
spectra is approximately nine million.

2.3. The fitting procedure

The spectrum that we are attempting to fit is defined as the input reflectance spectrum Rinp(λ),
whether it be measured or simulated.

The library based method comprises two separate steps: a global and local search. The
first step is a simple comparison of Rinp(λ) with entries in the library of simulated spectra. The
best matching library spectrum and its corresponding values for skin parameters are selected
for further optimization. In the second step, we make use of interpolation and a simple linear
optimization algorithm to further adapt the parameter values (from the library search) so that
the modelled spectrum Rmodel(λ) closely matches Rinp(λ).

As a measure of the fit quality we consider the shape of the spectral residue (Rmodel(λ) −
Rinp (λ)) as well as its Euclidean norm (equation (5)). We will refer to the latter as the average
residue �,

� =
√√√√ 1

N

800 nm∑
λ=450 nm

[Rmodel(λ) − Rinp(λ)]2 (5)

where N is the total number of discrete wavelengths. In our calculations we select �λ = 5 nm
resulting in N = (800–450 nm)/�λ = 71 discrete wavelengths. Small or large values for �
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Figure 1. The wavelength ranges used to categorize the library spectra are shown in (A) along
with a simulated input spectrum Rinp(λ) and three selected spectra (i), (ii) and (iii) from the library.
The average residue values for all the spectra found in the library for Rinp (λ) are plotted versus
their corresponding values for the dermal blood volume fraction B2 in (B). The circles indicate
residues for the spectra shown in (A). Spectral residues for these spectra are shown in (C).

Table 2. Wavelength ranges used to categorize the library spectra in files with similar spectra.

Category ‘b’ ‘y’ ‘r’ ‘a’

Wavelength range (nm) 450–550 550–575 650–800 450–800
Number of categories 100 100 100 100
per search key

indicate a good or poor match, respectively. Following other authors (Svaasand et al 1995,
Douven and Lucassen 2000), we omit wavelengths 400–450 nm in our evaluation of �. This
omission is not critical for testing the feasibility of our library based fitting method. In this
paper, we will plot spectra from 400–800 nm for illustration purposes only.

2.4. Global optimization

In the global library search for Rmodel (λ) that matches Rinp (λ), we seek those spectra that have
a small value of � for Rinp (λ). Searching all nine million library spectra and evaluating � for
each would take an impractically long time. However, an essential characteristic of the library
is that its components can be sorted by search keys, which enable a fast, targeted search. We
chose to use four search keys to sort and categorize all spectra into smaller groups of similar
spectra. Each search key is defined by a wavelength region (see table 2) over which the average
reflectance value of a spectrum is evaluated. Figure 1(A) illustrates the wavelength regions
‘b’, ‘y’, ‘r’ and ‘a’ along with a simulated Rinp(λ) with added Gaussian noise of amplitude
0.001. The skin parameter values for this example of Rinp (λ) are presented in table 3.
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Table 3. Skin parameters for the simulated Rinp (λ) used to demonstrate the library based fitting
method.

Parameter Layer 1 Layer 2

µa,m,694 (mm−1) 0.7 –
µs,577 (mm−1) 45 25
R (mm) 0.004 0.070
B (%) 0.3 5.0
Thickness (mm) 0.06 Infinite
Oxygenation (%) 80 80
µC 7.84 × 107 7.84 × 107

For a reflectance spectrum, the average values in the search key wavelength regions
uniquely define a filename. For example, search key values for Rinp (λ) were calculated
as 0.18, 0.21, 0.42 and 0.28 for ‘b’, ‘y’, ‘r’ and ‘a’, respectively, defining the filename
‘b18y21r42a28’. This filename immediately links Rinp(λ) to all library spectra with the same
average reflectance values in the search key wavelength regions.

Typically, a library file contains several hundred or thousand spectra. For Rinp (λ) we
found 2446 spectra ‘b18y21r42a28’. For each of these spectra we calculated � and plotted
those values as a function of the corresponding value for dermal blood volume fraction of the
second skin layer (B2) in figure 1(B). Ideally, one would be able to guess the value of B2 for
Rinp (λ) from this figure because the spectra that match Rinp (λ) significantly better than others
would have significantly smaller values for �. However, we observe that no spectrum clearly
stands out with a significant smaller residue than other spectra and that low values for � are
found for B2 values as low as 2% and as high as 12%.

As an illustration of the goodness of the fit between Rinp (λ) and Rmodel (λ) we selected
three spectra that correspond to a very low (2%) or very high value (12%) for B2, and one
arbitrary spectrum that corresponds to a relatively large average residue value. These three
cases (i), (ii) and (iii) are plotted in figure 1(A) along with Rinp (λ) and indicated by the circles
in figure 1(B). Figures 1(A) and (B) show that with just the library search we cannot obtain a
good prediction for the value of B2 for Rinp (λ). However, the spectral residues (figure 1(C))
illustrate that the library spectra deviate from Rinp (λ) by larger values than just the noise level
of Rinp (λ) which suggests that further optimization of the skin parameters may be achieved.

2.5. Local optimization

In the following, we use Rlib (λ, P ) to refer to a library spectrum where P represents the set of
parameters Pi (epidermal thickness, epidermal melanin concentration, dermal blood volume
fraction, etc). The group of spectra found in a library file for Rinp (λ) will be referred to as
{Rlib(λ, P )}.

Each spectrum in {Rlib(λ, P )} looks similar to Rinp (λ). However, since they were grouped
together because of similar average values, a considerable difference in specific wavelength
regions for some spectra may still exist (see spectrum (iii) in figures 1(A) and (C)). Since the
current library is relatively small, it would be a coincidence if it contained one spectrum that
perfectly matched Rinp (λ). If one spectrum R0 (λ, P 0) is selected out of the group {Rlib (λ, P )},
a better fitting spectrum can be found by slightly modifying the skin parameters P 0.

For optimization of the parameters P0, we first calculate the partial differential spectra for
the chosen library spectrum R0(λ, P0). For each parameter Pi in the set P0, we define a partial
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Figure 2. (A) Examples of differential spectra for eight skin parameters. (B) The spectral residue
(noisy curve) is fitted with a linear combination of differential spectra (smooth curve) by optimizing
scaling values ki.

differential spectrum according to equation (6):

∂R(λ)

∂Pi,0
= R(λ, Pi,0 + �Pi,0) − R(λ, Pi,0)

�Pi,0
. (6)

We use the analytical model to calculate R0 (λ, Pi) and R0 (λ, Pi + �Pi) for very small
values of �Pi to obtain a good estimate of the sensitivity of R(λ) for a change in each parameter.
We chose the spectrum indicated by (ii) in figure 1(A) to serve as R0 (λ, P 0) in the following
discussion of local optimization. Differential spectra for eight skin parameters are shown in
figure 2(A).

The next step is to consider the spectral residue for Rinp (λ) and library spectrum R0 (λ, P 0)
as shown in figure 1(C) (indicated by (ii)). The concept of the optimization here is to minimize
the difference between a newly calculated model spectrum R1(λ, P 1) and Rinp (λ) by finding
an optimal linear combination of differential spectra ∂R(λ)

∂Pi,0
. Mathematically, we aim to find an

optimal set of scaling values ki, such that equation (7) is minimized:

[∑
i

ki

∂R(λ)

∂Pi,0

]
− [R0(λ, P0) − Rinp(λ)]. (7)
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Table 4. Skin parameters from the library before (Pi,0) and after optimization (Pi,1) using the
scaling values ki. Since the differential spectra are calculated with �Pi,0 equal to 1% of the value
of Pi,0, a value of −51.5 for ki means that the corrected value Pi, 1 is 51.5% lower than the original
value of Pi, 0. Range limits for the skin parameters are also listed.

Parameter Pi,0 ki Pi,1 Constraint range

d1 (mm) 0.12 0 0.12 0.06–0.12
B2 (%) 12 0 12 12–12
R2 (mm) 0.07 23.3 0.09 0.004–0.15
µa,m,694 (mm−1) 0.4 −37.0 0.25 0.2–2
µs,epi,577 (mm−1) 30 −51. 14.5 45–65
µs,der,577 (mm−1) 45 −12.1 39.5 15–50
Oxygenation (%) 80 −17.6 66 50–100
µC 8 × 107 5.5 8.4 × 107 7.06 × 107–8.5 × 107

Once the optimal values for ki (table 4) have been found, corrected skin parameters Pi,1

are calculated according to equation (8),

Pi,1 = Pi,0 + ki�Pi,0. (8)

For this study, we used a standard algorithm in Matlab R© to optimize ki, but in principle
any optimization algorithm (e.g. simplex, genetic algorithm) could be used.

In figure 2(B), the spectral residue of figure 1(C) is shown along with the linear
combination of partial differential spectra for scaling values ki obtained by minimizing
equation (7). The spectral residue can be approximated nicely with the differential spectra of
figure 2(A).

Constraints on the skin parameter values (see table 4) are implemented by restricting
corresponding k values during the optimization. The spectrum R1(λ, P1) for the new set of
parameters P1 fits Rinp (λ) better than R0 (λ, P0); the average residue value � is reduced from
0.0053 to 0.0035. This procedure can be repeated several times until the best fitting spectrum
(smallest �) is determined. With our current small library, we found that up to ten repeated
local optimization steps were needed. With a more extensive library this number can likely be
reduced.

The above procedure of local optimization was done for a spectrum with a constant
B2 value of 12% (the k-value for B2 was not allowed to vary). We performed similar
local optimizations for library spectra with B2 values of 2, 3, . . . , 11%. These spectra are
represented by the squares in figure 3(A) and are the same as the spectra in figure 1(B) with
the lowest average residues. Each of these spectra is used as R0(λ, P 0) in further optimizing
skin parameters by attempting to minimize the residue value �. For each value of B2, it was
possible to find a better match with Rinp (λ) by letting the multi-linear optimization algorithm
alter the seven skin parameters. The optimized spectra for each value of B2 are represented
by the diamonds connected by the curve in figure 3(A). The curve now clearly shows a ‘dip’
for a B2 value of 5% which matches the B2 value of Rinp (λ) (see table 3). Because the
optical absorption and scattering spectra of skin are relatively smooth, we do not expect that
the optimization method can fit the high-frequency features of the Gaussian noise. Therefore,
the minimum residue value of approximately 0.001 corresponds to the level of noise that was
added to the simulated spectrum.

The curve in figure 3(A) also shows that the residues for all values of B2 have been
reduced significantly by the local optimization indicating that even very low or high B2 values
can produce a reasonably nice fit to Rinp (λ) when other skin parameters are adapted. To
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Figure 3. (A) Best fitting library spectra for each value of B2 are represented by the squares. After
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fit Rinp (λ) reasonably well.

illustrate this, we chose extreme B2 values of 2 and 12% (indicated by circles in figure 3(A)
and show the corresponding spectra in figure 3(B).

2.6. VRS measurements

VRS measurements were performed with a commercial spectroscopy device (Ocean Optics
Inc., Orlando, FL). Light from a halogen source (LS-1) is guided into an integrating sphere
(model ISP-REF 38.1 mm diameter) to illuminate diffusely the skin through a 10 mm diameter
aperture. The diffuse reflectance is collected through the same aperture. A switch on the
integrating sphere was set to exclude the contribution of specular reflectance to the measured
signal. Light from the integrating sphere is then guided to a spectrophotometer (model SD-
2000) via an optical fibre. Before each measurement the spectroscopy device was calibrated
using 2 and 99% reflectance standards (Labsphere, North Sutton, NH). In order for the
spectroscopic device to thermally stablize, the halogen source was switched on at least 30 min
before a measurement was taken. We always took care to place the integrated sphere on the
skin gently and with minimal pressure, thus avoiding possible occlusion of microvasculature.

We will present measurements from two PWS patients whom we will refer to as patients
I and II. Patient I is Caucasian and patient II is Asian. The PWS of patient I was located on
the right cheek and was light pink in appearance. The PWS of patient II was on the upper left
side of the face and was dark red in appearance. Measurements on PWS and adjacent normal
skin were taken for each patient. Each measurement was repeated at least three times.

3. Results

3.1. Reflectance measurements on normal and PWS skin

Figure 4(A) shows two examples of measurements (noisy curves) from normal skin for patients
I and II plus the corresponding model curves that were found to be the best fits using our method.
The general reflectance for patient II (Asian) is expected to be lower than that for patient I
(Caucasian) because of the higher skin pigmentation in the former. The best fits correspond to
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Figure 4. Measured spectra on normal skin of two PWS patients plus their corresponding best fits
using our library based fitting method are shown in (A). The dermal blood volume fractions at the
best fits are 5% and 12% for patients I and II, respectively, are shown in (B). Each curve in (B)
represents the fitting results for one reflectance measurement. Only one reflectance spectrum for
each patient is shown in (A).

Table 5. Skin parameters corresponding to the best fits of measured reflectance spectra of normal
and PWS skin for patients I and II. During the optimization, range limits for each parameter were
as listed in the column to the right.

Patient I Patient II

Parameter Normal skin PWS Normal skin PWS Constraint range

d1 (mm) 0.06 0.06 0.06 0.06 0.06–0.12
B1 (%) 0.3 0.3 0.3 0.2 0.1–0.3
B2 (%) 5 24 12 18
R1 (mm) 0.004 0.004 0.004 0.004 0.004–0.15
R2 (mm) 0.050 0.019 0.050 0.008
µa,m,694 (mm−1) 0.20 0.33 0.40 0.78 0.2–2.0
µC (mm−1) 8.0 × 107 7.06 × 107 9.0 × 107 7.06 × 107 7.05–8.50 × 107

µs,epi,577 (mm−1) 30 45 15 45 45–65
µa,der,577 (mm−1) 40 50 40 50 15–50
Oxygenation (%) 99 94 90 90 50–100

dermal blood volume fractions B2 of 5 and 12% for patients I and II respectively. These values
were obtained from the minima in the residue/B2 curves shown in figure 4(B). Each curve
represents the fitting results for one measured spectrum. The fact that the curves are similar
reflects that the reflectance measurements of normal skin were well reproducible. Please
note that only one measured reflectance spectrum for each patient is shown in figure 4(A).
Other skin parameter values that were found as the best fit are presented in table 5. The
epidermal melanin content for patient II (Asian) is indeed found to be higher than that for
patient I (Caucasian) as expected.

Figures 5(A) and (B) show similar results for the PWS sites of patients I and II. From
figures 5(A) and (B) one can see that the fits are not as good as those for normal skin. The
minimum residue values found are 0.0088 and 0.0066 for patients I and II, respectively. The
reflectance spectra for PWS on both patients were not well reproducible which explains that
the curves in figure 5(B) are not as similar to one another as the curves in figure 4(B). Based
on the curves in figure 5(B), dermal blood volume fractions are estimated to be 20% or higher
and approximately 20% for patients I and II, respectively.
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Figure 5. Same as figure 4, now for PWS skin. The dermal blood volume fractions at the
best fits are 20% or higher and 18% for patients I and II, respectively, as can be found from the
residue plotted versus B2 in (B). Each curve in (B) represents the fitting results for one reflectance
measurement. For each patient, we show only the best fitting reflectance spectrum in (A).

4. Discussion

4.1. Reflectance measurements

Even though we think that the library found the best fits possible, we acknowledge that many
of the corresponding skin parameter values are unrealistic. The blood volume fractions, for
both normal and PWS skin, appear to be too high. Similarly, the oxygenation values, at 90% or
higher, appear too high. For the PWS of patient II we find an epidermal melanin concentration
almost twice as high as the adjacent normal skin. Since PWS is classified as a vascular and not
a pigmented lesion, it is not likely that the pigmentation of the PWS skin is indeed higher than
for normal skin on the same patient. An alternative fitting procedure which was developed in
our laboratory is based on a genetic algorithm and has found similar unrealistic values for the
same measured spectra (Zhang et al 2004). We propose several explanations for the unrealistic
values predicted by the fitting method.

First, the spectral behaviour of some of the skin constituents may not necessarily be
accurate. For example, a range of slightly different curves, tabulated values or approximations
for the absorption of oxy- and deoxy-haemoglobin (e.g. van Kampen and Zijlstra (1965),
Takatani and Graham (1987), Wray et al (1988), Douven and Lucassen (2000)) are available.
Similarly, the value of µa,T is not well known and, consequently, the value used in different
studies varies greatly. The power with which melanin absorption decreases with wavelength
varies from −3.3 (Meglinski and Matcher 2002) to −4 in the literature (Svaasand et al 1995).
Preliminary analysis shows that these inaccuracies or uncertainties have a significant effect on
the modelled spectra and, therefore on the corresponding skin parameters.

Second, the high dermal blood volume fractions clearly invalidate the use of the diffusion
approximation. The approximation error is strongly wavelength dependent, and, consequently
so is the error in reflectance level prediction (see Douven and Lucassen (2000)). As a result,
the shape of the spectra is somewhat distorted and the skin parameters that follow from a fit
are distorted as well.

Third, the numerical aperture used in the study is limited to 10 mm, resulting in loss of a
portion of the diffuse reflected light. The error introduced by this effect is greater when the
scatterer path lengths in skin are large which is predominantly in the red part of the spectrum
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Figure 6. Constraining the values for scattering and oxygenation during the linear optimization
of the skin parameters decreases the possible range for B2. When dermal scattering is limited to
relatively low values, a relatively low optimal value for B2 is found and vice versa.

(e.g., Takiwaki et al (2002)). Similar to the violation of the diffusion approximation, this error
affects the values for parameters that result from a fit. Monte Carlo simulations or improved
analytical models of spectral reflectance may be required to account for the limited numerical
aperture as well as the discussed violations of the diffusion approximation.

Finally, it is likely that the objective in the optimization procedure (which is to minimize
the residue) is not optimal for an accurate prediction of some of the skin parameters. In
our definition of the residue (equation (5)) the difference between modelled and measured
reflectance has equal weight at all considered wavelengths. If certain wavelength regions were
to be given more weight in the calculation of the residue, the accuracy of predicted chromophore
concentrations might improve. In fact, initial studies (Feather et al 1989, Dawson et al 1980)
suggest that using only a few well-chosen wavelengths rather than the entire spectrum would
improve the predictive value of VRS. The method presented here can be easily adapted to
give certain wavelengths or wavelength regions a larger weight in the minimization by simply
modifying equation (5). This work is ongoing.

4.2. Limiting the range of solutions by constraining parameter values

The results in figure 3(A) illustrate that combined global and local optimization can reproduce
the original dermal blood volume fraction (B2 = 5%) of the simulated spectrum. However,
it also shows that optimization at B2 values significantly different from 5% can still produce
relatively small residues. This is because considerable freedom exists for other skin parameters
to compensate for changes in the reflectance caused by a discrepancy in the B2 value. For
example, in the local optimization for the results in figure 3, oxygenation levels were allowed to
vary between 60–100%. Dermal scattering µs,d 577 nm was allowed to vary from 15–50 mm−1.
Figure 3 suggests that a near perfect fit with an average residue value of 0.0025 would find a
range for B2 values between 4 and 10%. In practice, it is very difficult to find fits of such high
quality.

Intuitively, it seems plausible that when information about the range of skin parameters is
available (e.g., from literature or additional measurements with other diagnostic methods), one
could narrow the range of possible solutions. This can be demonstrated with the spectrum and
corresponding library search data of figure 3. In the second optimization step, the oxygenation
is allowed to vary between realistic values of 75 and 85%. To limit dermal scattering, we
choose two ranges, µs,d 577 nm = 25–30 mm−1 or 35–40 mm−1. Figure 6 shows that limiting
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the ranges of the above two parameters indeed results in curves with a more distinct ‘dip’
and thus a smaller range for B2 values at a certain residue value. This range represents the
measurement error or accuracy range of using VRS to ‘measure’ B2. Often, the accuracy of
values, determined with VRS is not reported in the existing literature. This may be because
previously used fitting procedures aim at finding a single solution rather than exploring the
entire solution space. The presented library method automatically generates information on
the range, and thus estimated accuracy of the determined parameter values.

When attempting to improve the accuracy of the value for B2 by limiting the range of
other parameters, care should be taken because an incorrect restriction of dermal scattering
results in a ‘dip’ for B2 = 8%, an overestimation of the dermal blood fraction.

5. Conclusions

Our method is capable of quickly and correctly finding skin parameters for a simulated
spectrum. However, it did not do well at finding realistic values for all of the skin parameters
on measured spectra. We have outlined possible explanations for the latter.

We conclude that VRS for PWS diagnostics presents challenges of different natures.
Violation of the conditions for the diffusion approximation is the easiest challenge to overcome.
An improved diffusion model or a Monte Carlo based library would address that problem. An
immediate advantage of the fitting procedure, described here, however, is that it is objective
and much faster than existing methods. Speed is important for real-time VRS diagnostics or
hyper-spectral imaging in which many spectra are measured simultaneously.

Two other challenges in VRS are uncertainty in the spectral behaviour of optical properties
and the ill-posedness of the inverse problem. Both are somewhat related to each other because
an uncertainty in skin parameters increases the ill-posedness of the problem. More freedom to
vary a skin parameter allows for more ways to compensate for discrepancies in the spectrum
induced by skin parameters. This results in a larger range of values for each parameter that
satisfactorily fits the spectrum, i.e., the ill-posedness of the problem is increased. We would
like to emphasize that the ill-posedness of VRS has not been discussed elaborately in the
literature and curves such as in figures 3 and 6 have not been shown before. This may be
due to the fact that when a single reasonable fit is obtained (e.g. through manual fitting) it
is not obvious that there may be many alternative solutions as well. Existing methods do
not systematically investigate the solution space but work towards one particular solution.
Therefore they do not indicate the robustness of a skin parameter value found from a fit. With
our method, the systematic investigation of robustness is much easier and an impression of the
robustness, or measurement error for a parameter value, is automatically obtained.

In future studies, we intend to enhance the diagnostic capability of VRS by using more
accurate spectral properties of the skin constituents. We will further investigate the ill-
posedness for parameters other than B2, and explore ways to reduce it by limiting the range
of values for some of the parameters.
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