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Abstract

Empowering Large Language Models with Efficient and Automated Systems

by

Zhuohan Li

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

Large Language Models (LLMs) have shown remarkable capabilities in a variety of tasks,
including chatting, programming, and searching. However, the high costs of LLMs are pre-
venting these models from being deployed for the vast majority of applications. In this
dissertation, we focus on building efficient and automated systems to reduce costs and de-
mocratize access to large language models.

We first introduce systems to optimize computational efficiency and reduce the engineer-
ing overhead for distributed LLM training. We develop TeraPipe, which proposes a new
dimension to perform pipeline parallel training for LLMs, and also Alpa, the world’s first
compiler capable of automatically distributing arbitrary neural networks with all existing
parallelization methods.

While training is typically a one-time cost, deploying and serving an LLM requires running
LLM inference continuously, which is the top blocker for the real-world deployment of LLMs.
We improve the serving scalability with AlpaServe through model parallelism, and increase
the memory utilization and the LLM inference throughput with a new attention algorithm,
PagedAttention, and an end-to-end serving system, vLLM.

Overall, these systems provide comprehensive solutions that significantly improve both train-
ing and inference efficiency for large language models. Together, these systems lower the high
costs associated with large language models, democratizing their deployment across various
real-world applications.
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Chapter 1

Introduction

Large language models (LLMs) have brought remarkable advancements to the comput-
ing industry. Applications like conversational chatbots like ChatGPT [101] and programming
assistants like GitHub Copilot [46] have been heavily involved in people’s daily lives.

However, a high barrier exists between the LLMs and the vast majority of researchers and
practitioners, brought by the engineering challenges with the enormous model sizes and the
substantial compute requirements. LLMs are often large neural networks with hundreds
of billions of parameters. For example, the GPT-3 model [18] has 175 billion parameters,
meaning that it takes more than 350 GB memory if stored in half floating point precision.
The most advanced GPUs on the market still only have 40-80 GB of memory, which is
significantly less than the memory required for the LLMs. To execute these LLMs efficiently,
distributed execution of these models, sometimes to a scale of thousands of GPUs, becomes
a necessity. However, distributed execution requires careful partitioning and scheduling of
the model execution. This additional complexity greatly raises the bar of deploying these
models in real-world applications.

In this dissertation, we design algorithms and build systems to improve computational ef-
ficiency and reduce the engineering overhead when training and deploying LLMs. In the
following sections, we will introduce the contributions of this dissertation in LLM training
and LLM inference, respectively. In the end, we will discuss the real-world impact of the
systems introduced in this thesis.

1.1 Towards Fully-Automated Parallelization for
LLM Training

Popular deep learning frameworks such as TensorFlow [1], PyTorch [104], and JAX [17] have
greatly simplified the process of training models on a single GPU. However, the complexity
will increase considerably with distributed training, i.e., training a model across multiple
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GPUs. Especially when a model exceeds the memory capacity of a single GPU, model
parallelism, the technique that partitions a single model across multiple GPUs, introduces
further overheads and makes achieving optimal performance even more challenging.

We start on this problem by designing new algorithms to improve distributed train-
ing efficiency. One significant inefficiency comes from the computation overhead of under-
utilized GPUs due to the dependency within the parallel algorithm. To reduce computation
overhead, we focus on pipeline parallelism, where a model is partitioned into multiple pipeline
stages. In this case, the inefficiency comes from the so-called pipeline bubbles, which is caused
by not having enough data slices to fulfill all the pipeline stages. In TeraPipe (chapter 2),
we discover a new dimension to perform pipeline parallelism for LLMs: we show that one can
fine-grainedly pipeline different tokens within a single sequence with high GPU utilization,
leading to a 5x speedup when training GPT-3 scale models.

Although algorithmic innovations like TeraPipe improve the efficiency of different model
parallel algorithms, there is no universally optimal algorithm for every scenario. Picking the
optimal algorithm tightly depends on the LLM’s architecture and the computing cluster’s
configuration. This is challenging even for system experts, let alone other LLM researchers
and engineers.

To this end, we develop Alpa (chapter 3), the world’s first compiler capable of auto-
matically distributing arbitrary neural networks with all existing parallelization
methods, including data, tensor, and pipeline parallelism. Alpa organizes these existing
parallelization methods into a hierarchical space, corresponding to the hierarchical struc-
ture of the compute cluster, allowing it to derive efficient parallel execution plans at each
parallelism level automatically. As a result, with no modification to the model code, Alpa
can transform any neural network into a distributed version with a near-optimal model-
parallel strategy. This not only simplifies the engineering effort for model parallelism, but
also brings new capacities—Alpa can generate parallelization plans that match or outper-
form hand-tuned model-parallel training systems and generalize to new models that cannot
be parallelized by existing systems.

1.2 Scalable and High-Throughput LLM Inference
and Serving

While training has been a major focus in deep learning, a model actually spends most of its
time on inference instead of training: A model is typically trained once but can be used for
inference over a long period to serve numerous requests. This has motivated me to extend my
research towards addressing practical challenges in LLM inference and serving, optimizing
the scalability and speed.
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Scalable serving with model parallelism. Scaling an inference system to serve multiple
models on a distributed cluster faces unique challenges. A major one is the bursty requests:
a model might experience a surge of requests within a certain timeframe while others receive
none. Existing systems often implement complex request scheduling and swapping policies
to handle these bursts.

In AlpaServe (chapter 4), we leverage model parallelism, the technique originally designed
for partitioning models larger than a single GPU, to increase cluster utilization. With
model parallelism, the models can be partitioned into smaller parts, and each GPU can hold
multiple model parts. In this case, a burst to one model can be jointly handled by multiple
GPUs, which effectively statistically multiplexes the GPUs across the models. AlpaServe
navigates the tradeoff space among different parallelization and placement strategies with
an automated search algorithm. It can serve 6x burstier traffic compared to previous systems
and is the first work to show that model parallelism can also benefit small models
that can fit into a single GPU.

High-throughput inference with paged memory. LLM’s structure has inherently lim-
ited its inference to one token at a time, which makes parallel processors like GPU underuti-
lized. To improve the inference throughput, more requests need to be processed in a batch.
However, the batch size is bottlenecked by memory. Specifically, to generate a new token,
LLMs require the cached states of all previous tokens, known as the KV cache. The KV
cache is large and dynamic: a single request’s KV cache can take GBs of memory, and its
exact size depends on input requests’ diverse sequence lengths. As a result, efficiently man-
aging the KV cache presents a significant challenge: the static allocation scheme in existing
systems causes up to 80% of memory to be wasted.

To address this issue, we developed PagedAttention (chapter 5), an attention algorithm
inspired by virtual memory and paging in operating systems. PagedAttention allows storing
the KV cache in non-contiguous memory blocks. Thus, the KV cache can be allocated on-
demand and also shared across requests. PagedAttention reduces the memory waste from
above 80% to under 4% and eventually improves the throughput by up to 4x, reaching state-
of-the-art. Based on PagedAttention, we build vLLM, an end-to-end LLM inference and
serving engine. Compared to previous state-of-the-art, vLLM achieved up to 4x higher
throughput.

1.3 Real-World Impact and Future Work
The systems we build in this dissertation go beyond research artifacts and are ready for real-
world deployment. The open-source projects built on top of the techniques introduced in this
dissertation have gained considerable attention and are actively used across the industry:
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• Alpa has been productionized by Google and has been integrated into the popular
deep learning framework JAX and its compiler XLA.

• vLLM has become the most popular open-source LLM serving system in the world,
with 23K+ GitHub stars and 460+ contributors worldwide. It has become the default
LLM server on Microsoft Azure and has been used and deployed in companies including
Anyscale, Apple, AWS, Baidu, ByteDance, Databricks, Google Cloud, IBM, Meta,
Microsoft, Scale, Spotify, Uber, and more. Thanks to its industrial impact, vLLM was
selected as the first cohort of a16z open-source AI Grants.

The wide user community of these projects not only validates the ideas, but also opens
up exciting, continuous pathways of first-hand research challenges, presenting numerous
opportunities for exploration in the future. In chapter 6, we conclude this dissertation by
summarizing the contributions and discussing future directions for research to realize a future
where the most advanced LLMs are accessible to everyone in the world.

https://blog.research.google/2022/05/alpa-automated-model-parallel-deep.html
https://github.com/tensorflow/tensorflow/tree/master/third_party/xla/xla/hlo/experimental/auto_sharding
https://techcommunity.microsoft.com/t5/ai-machine-learning-blog/welcoming-mistral-phi-jais-code-llama-nvidia-nemotron-and-more/ba-p/3982699
https://a16z.com/supporting-the-open-source-ai-community/
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Chapter 2

TeraPipe: Token-Level Pipeline
Parallelism for Training Large
Language Models

Model parallelism has become a necessity for training modern large-scale deep language
models. We start the dissertation by designing new algorithms to improve the efficiency of
model parallel training for large language models.

In this chapter, we identify a new and orthogonal dimension from existing model parallel
approaches: it is possible to perform pipeline parallelism within a single training sequence
for Transformer-based language models thanks to its autoregressive property. This enables
a more fine-grained pipeline compared with previous work. With this key idea, we design
TeraPipe [83], a high-performance token-level pipeline parallel algorithm for synchronous
model-parallel training of Transformer-based language models. We develop a novel dynamic
programming-based algorithm to calculate the optimal pipelining execution scheme given a
specific model and cluster configuration. We show that TeraPipe can speed up the training
by 5.0x for the largest GPT-3 model with 175 billion parameters on an AWS cluster with 48
p3.16xlarge instances compared with state-of-the-art model-parallel methods.

2.1 Introduction
Transformer-based language models (LMs) have revolutionized the area of natural lan-
guage processing (NLP) by achieving state-of-the-art results for many NLP tasks, including
text classification, question answering, and text generation [18, 109]. The accuracy of a
Transformer-based LM grows substantially with its model size, attributing to the fact that
they can be unsupervisedly trained on almost unlimited text data. Today, a large LM, such
as GPT-3 [18], can have more than 175B parameters, which amounts to 350 GB, assuming
16-bit floating-point numbers. This significantly exceeds the memory capacity of existing
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Figure 2.1: Different approaches of model parallel training of Transformer-based LMs. (a)
shows a standard multi-layer Transformer LM. In each layer, each position only takes only its
previous positions as input. (b) shows operation partitioning [125]. An allreduce operation
is required to synchronize the results of each layer. (c) shows microbatch-based pipeline
parallelism [57], which allows different microbatches (red and green bars) to be executed on
different layers of the DNN in parallel. (d) show TeraPipe (our work), which pipelines along
the token dimension.
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hardware accelerators, such as GPUs and TPUs, which makes model-parallel training a
necessity, i.e., partitioning the model on multiple devices during the training process.

Because of the demands for efficient LM training, many researchers and industry practitioners
have proposed different ways for model parallel training. One approach is to partition the
weight matrices and dispatch smaller matrix operations to parallel devices [Figure 2.1b;
125, 122]. Another approach is to split a batch of training data into many microbatches
and then evenly pipeline the layer computations across different microbatches and devices
[Figure 2.1c; 57]. Unfortunately, these approaches either introduce excessive communication
overheads between compute devices, or lead to reduced efficiency due to pipeline “bubbles”
(i.e. device idle time, see Section 2.2 and 2.3.2 for details).

Our key observation in this chapter is that Transformer-based language models have a key
property: the computation of a given input token only depends on previous tokens, but not
on future tokens. This lack of dependency on future tokens provides new opportunities for
pipeline parallel training.1 In particular, it allows us to create a fine-grained pipeline within
a single training sequence for Transformer-based LMs, by parallelizing the computation of
the current token on the current layer with the computation of the previous token on the
next layer of the model. For example, in Figure 2.1d, we can pipeline the execution across
all 5 devices within a single input sequence. Similar to other synchronous model parallel
training methods, e.g., Gpipe [57], Megatron-LM [125], we do not change the underlying
optimization algorithm, so the resulting model has exactly the same accuracy.

However, leveraging the token dimension for efficient model parallel training raises several
challenges. First, if the partitioning along the token dimension is too fine-grained, it leads
to under-utilization on devices that require large blocks of data for efficient processing (e.g.,
GPU). Second, since each token position in the sequence depends on all previous tokens,
different positions in a transformer layer exhibit uneven computation loads. This means that
uniformly partitioning along the token dimension might cause uneven load across devices,
and degenerate the training efficiency.

To this end, we design and implement TeraPipe, a high-performance synchronous model
parallel training approach for large-scale Transformer-based language models, which exploits
the token dimension to pipeline the computation across devices. TeraPipe uses a small
number of simple workloads to derive a performance model and then uses a novel dynamic
programming algorithm to compute the optimal partitioning of the token dimension for
the pipeline. TeraPipe is orthogonal to previous model-parallel training methods, so it can
be used together with these methods to further improve the training performance. Our
evaluation shows that for the largest GPT-3 model with 175 billion parameters, TeraPipe
achieves a 5.0x speedup improvement over the state-of-the-art synchronous model-parallel
training methods on an AWS cluster consisting of 48 p3.16xlarge instances.

1In this chapter, we focus on unidirectional autoregressive language models (e.g., GPT [109, 18]) but not
bidirectional models like masked language models (e.g., BERT [34]).
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Our chapter makes the following contributions:

• We propose a new dimension, token dimension, for pipeline-parallel training of
Transformer-based LMs.

• We develop a dynamic programming algorithm to compute a partition along the token
dimension to maximize pipeline parallelism.

• We implement TeraPipe and show that we can increase the synchronous training
throughput of the largest GPT-3 model (with 175 billion parameters) by 5.0x over
the previous state-of-the-art model-parallel methods.

2.2 Related Work
Data parallelism scales ML training by partitioning training data onto distributed devices
[169, 72, 49, 110]. Each device holds a model replica, works on an independent data partition,
and synchronizes the updates via allreduce [72] or a parameter server [78]. Data parallelism
alone is not enough to train large-scale DNNs due to two main reasons: (1) every device
has to have enough memory to store the model and the gradients generated during the
training process; (2) communication can be a performance bottleneck to synchronize model
parameters.

Model parallelism allows for training models larger than the memory capacity of a single
device, by partitioning the model (e.g., layers) into disjoint parts and executing each on a
dedicated device. Existing model parallel training approaches can be roughly categorized as:
operation partitioning and pipeline parallelism.

Operation partitioning. One way to split the model is to partition and parallelize com-
putational operations across multiple devices. For example, the computation of matrix
multiplications (matmul) XAB can be spitted across multiple devices by partitioning A and
B along its rows and columns, respectively.

XAB = X ·
[
A1 A2

]
·
[
B1
B2

]
= XA1B1 + XA2B2.

This means we can have one device calculate XA1B1 and another device calculate XA2B2
in parallel. After that, cross-device communication is needed to compute the sum of these
two parts.

Many existing works [63, 66, 143, 122] study how to optimize the partitioning schemes for
different operations to maximize throughput and minimize communication overheads, among
which, Megatron-LM [Figure 2.1b; 125] designs partitioning schemes specifically for large-
scale Transformers. However, due to the excessive communication required to collect partial
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results after each layer, it is not efficient when the bandwidth between devices is limited
[125]. Flexflow [63] proposes a framework to find the optimal operation partitioning, but it
cannot model the new dimension proposed in our work.

Pipeline parallelism partitions a DNN into layers and put different layers onto different
devices [Figure 2.1c; 107]. Each device computes the input on a given layer and sends the
result to the next device. Pipeline parallelism significantly reduces communication between
devices, because only devices holding neighboring layers need to communicate and they only
need to communicate the activations on a particular layer.

Previous pipeline parallel training methods are based on microbatch pipelining, e.g.,
GPipe [57]. This means the computation for a given microbatch in a minibatch on a layer
can run in parallel with the next microbatch in the same minibatch on the previous layer.
However, microbatch-based pipeline parallelism still cannot achieve high efficiency due to
its pipeline bubbles. This is because the start of the forward propagation on a minibatch
requires the backward propagation of the previous minibatch to complete (Figure 2.2a).
This problem becomes more severe when model sizes increase (see Section 2.3.2). [53] pro-
pose using an asynchronous training algorithm to mitigate the effect of pipeline bubbles in
microbach-based pipeline parallel training, but asynchronous training introduces uncertainty
in model accuracy and is thus not widely adopted for training DNNs.

Wavefront parallelism is a variant of pipeline parallelism, broadly applied in shared-
memory multiprocessors [128, 86]. In deep learning, it has been used to accelerate the
computation of multi-layer RNNs on a single GPU [3], where different input positions of
different layers can execute in parallel in a wavefront fashion to maximize the utilization of
the GPU. However, wavefront parallelism cannot accelerate the execution of Transformers
because there is no dependency between different input positions within a single Transformer
layer to begin with. In addition, wavefront parallelism uses fine-grained per-word pipelining
due to the temporal data dependency in RNNs, while too fine-grained pipelining in TeraPipe
would lead to inferior pipeline efficiency (see Section 2.3.2 and 2.3.3).

2.3 Method
In this section, we briefly introduce language modeling and Transformers. Based on their
structures, we identify new opportunities for performing pipelining along the input sequence
(which we will notate as the token dimension in the rest of the chapter). With that, we
derive the optimal slicing scheme over the token dimension to maximize pipeline efficiency
using a dynamic programming algorithm. Finally, we show how to combine our new method
with existing parallel training techniques.
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Figure 2.2: Execution timeline for different pipelining methods. Grey blocks indicate GPUs idle
time (a.k.a. pipeline bubbles). (a) Microbatch-based pipeline parallelism (e.g. GPipe). Each
color corresponds to a microbatch. (b) Microbatch-based pipeline parallelism with longer sequence
(hence smaller minibatch size due to fixed GPU memory). Pipeline bubbles significantly increase.
(c) TeraPipe. Pipeline bubbles are substantially reduced because of the improved pipelining gran-
ularity.

2.3.1 Language Modeling and Transformers
The task of language modeling is usually framed as unsupervised distribution estimation
of a text corpus X , where each example x ∼ X is a variable length sequence of tokens
(x1, x2, . . . , xL). Since language has a natural sequential ordering, it is common to factor-
ize the joint probability over the tokens as the product of conditional probabilities [a.k.a.
autoregressive decomposition; 13]:

P (x) =
L∏

t=1
P (xt|x1, . . . , xt−1). (2.1)

Transformer [138] is the state-of-the-art architecture for modeling these conditional prob-
abilities. As visualized in Figure 2.1a, a Transformer-based LM F takes the sequence
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(⟨sos⟩ , x1, . . . , xL−1) as input, where ⟨sos⟩ represents the start of a sentence, and outputs
a probability distributions pt at each position t that models the conditional probability
P (xt|x1, . . . , xt−1) as in Eq. 2.1. In practice, F is stacked with many Transformer layers
F = fN ◦ fN−1 ◦ · · · ◦ f1 [138, 109]: f1 takes the embedding of the original sequence as input,
while fi (i > 1) takes the output of fi−1 as input. The main components of a Transformer
layer f contain a self-attention layer and a position-wise feed-forward network layer :

SelfAtt(ht; h1, . . . , ht−1) =
t∑

s=1
αts · (WV hs),

where αts = softmax
(

(WQht)⊤(WKhs)√
H

)
; (2.2)

FFN(ht) = W2σ(W1ht + b1) + b2. (2.3)

h1, . . . , hL ∈ RH are hidden states correspond to each position of the input sequence, W and
b are learnable parameters, and σ is the nonlinear activation function. An important note
here: for each ht, Eq. 2.2 takes only the hidden states before position t as inputs and Eq. 2.3
only takes ht as input.

The operation and data dependency in Transformers make it more amenable to paralleliza-
tion on GPUs/TPUs compared to RNNs [138]. Therefore, Transformers have been scaled to
enormous datasets and achieved state-of-the-art performance on a wide range of NLP tasks
[138, 34, 109, 152, 18, 84]. Recently, people show that the accuracy of LMs can consistently
improve with increasing model sizes [109, 152]. While the growing model size greatly exceeds
the memory capacity of a single GPU [18], model parallelism becomes a necessity for training
large-scale LMs [125].

2.3.2 Pipeline Parallelism Within a Sequence
In this subsection, we expose the limitations of existing pipelining parallelism approaches,
and develop the proposed new pipelining method for Transformer-based LMs.

Typically, to perform pipeline parallelism, a Transformer model F is partitioned into multiple
cells c1, . . . , cK . Each cell ck consists of a set of consecutive Transformer layers fj◦· · ·◦fi+1◦fi

so that F = cK ◦ · · · ◦ c2 ◦ c1. Each ck is placed and executed on the k-th device (e.g. GPU).
The output of cell ck is sent to cell ck+1 during forward propagation, and the backward
states computed on cell ck+1 is sent to cell ck during backward propagation. Since each
layer f exhibits the same structure, the entire LM can be uniformly partitioned: each cell
possesses the same number of layers hence the same amount of computation workload, to
reach optimal pipeline efficiency (see Figure 2.2).

However, previous pipelining methods [57, 53] do not perform well on large Transformer-
based LMs due to the growing model size. Consider a minibatch of size B. The input to a
Transformer layer f is a 3-dimensional tensor (h(1), h(2), . . . , h(B)) of size (B, L, H), where L
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is the sequence length and H is the hidden state size. To improve accuracy, large LMs are
often configured to have a large L to capture longer-term dependency in language sequences
[133, 156]. To fit the model into a GPU, the minibatch size B has to decrease accordingly.
The pipeline bubbles become larger (Figure 2.2b) because fewer input sequences can be
processed in parallel.

In this chapter, we make a key observation: for Transformer-based LMs, with appropriate
scheduling, the token dimension L can be pipelined for parallel training; and this pipelining
dimension is complementary to other model parallelism approaches. Precisely, for an input
hidden state sequence (h1, h2, . . . , hL), the computation of a self-attention layer SelfAtt(ht)
only depends on the hidden states of previous positions (h1, . . . , ht−1), and the computation
of a feed-forward layer FFN(ht) only depends on ht itself. These offer a new opportunity for
pipelining: the computation of layer fi at step t can commence once the hidden states of
previous steps (< t) at fi−1 are ready, which, also, can be parallelized with the computation of
latter steps at fi−1, illustrated in Figure 2.1d. This property enables us to perform pipeline
parallelism within a single input sequence. Specifically, we can split an input sequence
x1, . . . , xL into s1, . . . , sM , where each subsequence si consists of tokens (xl, xl+1, . . . , xr). The
computation of c1, . . . , cK over s1, . . . , sM can be pipelined, for example: when ck computes
over si, ck+1 can process si−1 and ck−1 can process si+1 in parallel.

Considering that nowadays LMs operate on sequences with thousands of tokens [109, 18]
(e.g. 2048 for GPT-3), the token dimension opens substantial space to improve the pipelining
efficiency. However, applying it in practice is still challenging, especially on GPUs, for the
following reasons.

First, finer-grained pipelining (i.e. picking a small |si|) is prone to underutilizing the com-
putational power of GPUs, and thus lowering the training throughput. As shown on the
top part of Figure 2.3, for a single layer of the GPT3-1B model (see Table 2.1 for specs),
the forward propagation time for an input sequence with a single token is the same as an
input sequence with 256 tokens. In this case, the GPU is not being fully utilized for input
sequence lengths less than 256. This means a large subsequence length is needed to achieve
high throughput for a single layer (see the bottom part of Figure 2.3). On the other hand,
although GPUs have better training throughput per layer for longer sequences due to the
SIMD architecture and better locality, longer input slices lead to fewer pipeline stages within
a sequence, which will increase the pipeline bubble, and thus reduce the pipeline efficiency
and hurt the overall training speed.

Second, splitting inputs into multiple same-size chunks for pipelining, as normally done in
existing work [57, 53], is not the ideal way for pipelining on the token dimension. For the
self-attention layer, the computation of SelfAtt(h1) only requires the hidden state h1 from its
previous layer, while the computation of SelfAtt(hL) takes all h1, . . . , hL as inputs, as shown
in Figure 2.1a. Therefore, the computation load on a later token position in a sequence is
heavier than that of previous tokens. Since the total latency of a pipeline is determined
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Figure 2.3: Forward propagation time and throughput for a single layer of GPT3-1B model
with a single input sequence with different number of input tokens on a single NVIDIA V100
GPU, averaged by 30 independent runs. Top: Time per forward propagation. Bottom:
Throughput measured by number of tokens per millisecond.

by its slowest stage (Figure 2.4), an optimal slicing scheme should have a long slice in the
beginning and a shorter slice in the end. We next develop methods to select the optimal
slicing scheme over the token dimension.

2.3.3 Selecting Optimal Slicing Scheme
We propose a dynamic programming (DP) algorithm to partition the input sequence to
achieve the optimal pipeline efficiency. Specifically, given a partitioned Transformer-based
LM F = cK ◦· · ·◦c1 and a training input sequence of length L, the goal of the algorithm is to
find the slicing scheme l1, . . . , lM to minimize the total forward and backward propagation
latency, where li = |si| is the length each sub-sequence slice si (l1 + · · ·+ lM = L).

Let’s first consider the latency of forward propagation. As shown in Section 2.3.2, all cells
ck have exact same amount of computation.

The forward propagation time ti for the slice si on the cell ck is determined by the length of
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Figure 2.4: Execution timeline for inputs for uniform sequence split with non-uniform run-
ning time (top) and non-uniform sequence split with uniform running time (bottom). The
total latency of a pipeline is determined by its slowest stage, and thus splits with non-uniform
running time result in larger pipeline bubbles and inferior pipeline efficiency.

the ith slice (li), the lengths of all the previous subsequences (l1, . . . , li−1), and the cluster
specifications (e.g., GPU, bandwidth and latency of the underlying computer networks). We
use tfwd to denote the sum of the computation latency plus data transmission latency for a
given li and the previous subsequences l1, . . . , li−1. We have:

ti = tfwd

li,
i−1∑
j=1

lj

 . (2.4)

Note the second term ∑i−1
j=1 lj is the total length of previous subsequences s1, . . . , si−1 to

compute SelfAtt(st). As visualized in Figure 2.4, The optimal overall pipeline forward prop-
agation latency is:

T ∗ = min
l1,...,lM

{
M∑

i=1
ti + (K − 1) · max

1≤j≤M
{tj}

}
. (2.5)

The overall latency consists of two terms: The first term here is the total forward propagation
time on a device (i.e. on a cell ck); The second term is the overhead brought by the pipeline
execution, which is determined by the slowest component in the whole pipeline multiplied
by the number of pipeline stages K minus 1. For example, on the top of Figure 2.4, the total
execution time will be T = (t1 + . . . + t4) + 3t4.

Our goal is to find the optimal slicing scheme l1, . . . , lM that achieves the optimal latency
T ∗. We choose to first enumerate the second term tmax = max1≤j≤M{tj} and minimize the
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Algorithm 1 Selecting optimal slicing scheme given tmax .
Input: Forward propagation time function tfwd and maximum per-slice time tmax .
Output: Minimal total forward propagation time S∗(L; tmax) and the corresponding slic-
ing scheme l1, . . . , lM .
// Dynamic programming for the total forward propagation time.
S∗(0; tmax)← 0
for i from 1 to L do

S∗(i; tmax)← min1≤k≤i{S∗(i− k; tmax) + tfwd(k, i− k) | tfwd(k, i− k) ≤ tmax}.
qi ← arg min1≤k≤i{ri−k + tfwd(k, i− k) | tfwd(k, i− k) ≤ tmax}.

end for
// Derive the optimal slicing scheme.
i← L, l← {}
while i > 0 do

l.prepend(qi)
i← i− qi

end while

first term for each different tmax . In other words, we reformulate T ∗ as:

T ∗ = min
tmax
{S∗(L; tmax) + (K − 1) · tmax} , (2.6)

S∗(L; tmax) = min
l1+···+lM =L

{
M∑

i=1
ti | ti ≤ tmax

}
. (2.7)

Note that S∗(·; tmax) has the following optimal substructure:

S∗(i; tmax) = min
1≤k≤i

{S∗(i− k; tmax) + tfwd(k, i− k)

| tfwd(k, i− k) ≤ tmax}. (2.8)

Therefore, we can get the slicing scheme l1, . . . , lM that achieves the total total forward
propagation time S∗(L; tmax) with Algorithm 1. By enumerating all different tmax , we can
get the optimal slicing scheme that reaches the optimal overall pipeline latency T ∗.

Complexity. With our DP algorithm, we can compute the best partition in O(L2) time
for a fixed tmax . Note that in total there are at most O(L2) different choices (tfwd(i, j) for
i, j = 1, . . . , L) of tmax . We therefore can derive the optimal slicing scheme in O(L4) time.

Optimization. To further accelerate the above DP algorithm, we enumerate different tmax
from small to large; when K ·tmax is greater than the current best T , we stop the enumeration
since larger tmax cannot provide a better slicing scheme. In addition, during enumeration
of tmax , we only evaluate with tmax larger than the last tmax by at least ε. In this case, the
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Table 2.1: Model settings and parallel training setups used in the evaluation. N : Number
of Transformer layers. H: Hidden state size. #Params: Number of total parameters. L:
Input sequence length. #GPUs: Total number of GPUs. B: Batch size. #Data: Number of
data parallel shards. #Pipe: Number of pipeline stages. #Op: Number of GPUs used for
operational partitioning by each Transformer layer.

Model N H #Params L #GPUs B #Data #Pipe #Op
(1)

GPT3-1B 24 2048 1B 2048 192
128 8 24 1

(2) 72 2 12 8
(3) 72 1 24 8
(4) GPT3-13B 40 5120 13B 2048 320 32 2 20 8
(5) 32 1 40 8
(6)

GPT3-44B 96 6144 44B 2048 384
8 4 96 1

(7) 8 2 24 8
(8) 8 1 48 8
(9) GPT3-175B 96 12288 175B 2048 384 2 1 96 4

(10) 2 1 48 8

gap between the solution found by the DP algorithm and the global optima is at most K · ε.
We choose ε = 0.1 ms in our evaluation and observe that the solution given by Algorithm 1
and the real optimal solution (ε = 0) are always the same in all our evaluated settings.
With these two optimizations, the dynamic programming can finish within a minute in our
evaluations.

Estimating tfwd. To avoid the cost of evaluating tfwd(i, j) for all O(L2) combinations of
i, j on real clusters, we use a simple performance model to estimate tfwd . Specifically, we split
tfwd(i, j) into two terms:

tfwd(i, j) = tfwd(i, 0) + tctx(i, j), (2.9)
where tfwd(i, 0) is the forward propagation time without any extra context input and tctx(i, j)
is the latency overhead brought by the extra context input. We measure the first term with
all L choices of i and we fit a simple linear model tctx(i, j) = a0 + a1i + a2j + a3ij for the
second term with a subset of all (i, j) combinations. In our experiments, the linear model
can achieve a < 2% relative prediction error compared to the actual overhead.

The development above can be applied to backward propagation time tbwd , since the back-
ward propagation computation in transformers is symmetric with its forward counterpart.
One step further, we can replace all the tfwd above with tfwd + tbwd to derive the optimal
slicing scheme that minimizes the total training time.
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Figure 2.5: Training iteration latency for all configurations with and without TeraPipe.
Details for each configuration are listed in Table 2.1.

2.3.4 Combining with Other Parallel Training methods
The new dimension to perform pipeline parallelism proposed by TeraPipe is orthogonal to
all previous model parallel techniques, hence can be naturally combined with them. We
explain next how TeraPipe can be combined with other parallelization methods and show,
when combined, it significantly boosts parallelization performance in Section 2.5.

Combine with microbatch-based pipeline parallelism. To combine with microbatch-
based pipeline parallelism [57], we slice the batch dimension and the token di-
mension jointly to form the pipeline. Specifically, consider a training input batch
(x(1), x(2), . . . , x(B)), where each x(i) is an input sequence (x(i)

1 , . . . , x
(i)
L ) of length L,

we partition the input batch into (s(1), s(2), . . . , s(D)), such that each s
(d)
i includes

(x(a)
l , x

(a)
l+1, . . . , x(a)

r ), (x(a+1)
l , x

(a+1)
l+1 , . . . , x(a+1)

r ), . . . , (x(b)
l , x

(b)
l+1, . . . , x(b)

r ), which is the sub-
sequence from position l to r of input data a to b. During training, all slices
s

(1)
1 , . . . , s

(1)
M , s

(2)
1 , . . . , s

(2)
M , . . . , s

(D)
1 , . . . , s

(D)
M can execute on cells c1, . . . , cK in a pipelined fash-

ion. To jointly optimize the sequence slicing and batch splitting, the DP algorithm in Sec-
tion 2.3.3 can be extended to include the batch dimension: we can first run the whole DP
algorithm in Section 2.3.3 for all different batch sizes b from 1 to B. For each b, we derive
the optimal Tb and the corresponding slicing scheme sb. With all Tb and sb, we only need to
determine the size of each slice in the batch dimension b1, . . . , bD such that b1 + · · ·+ bD = B
and Tb1 + · · ·+ TbD

is minimized. This reduces to a 1D knapsack problem and can be solved
using off-the-shelf solvers.

Combine with operation partitioning. TeraPipe is orthogonal from operation par-
titioning in the sense that: operation partitioning is intra-operation parallelism that par-
allelizes the execution of a single operation, whereas TeraPipe pipelines the execution of
different operations. To combine with operation partitioning, we distribute each pipeline
parallel cell cK to a set of target devices and then perform operation partitioning across
target devices.
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Combine with data parallelism. Similarly, because data parallelism maintains multiple
identical copies of the model, we can perform model parallelism for each data parallel model
replica and synchronize the gradient updates between the replicas after each forward and
backward propagation.

Combine with memory optimization. Same as previous pipeline parallel methods [57],
TeraPipe stores the activations of a whole mini-batch in our implementation. TeraPipe can
also be combined with various memory optimization techniques, e.g., gradient accumulation
[37], rematerialization [23, 62], or memory swapping [114]. See supplementary material for
more discussions on combining TeraPipe with gradient accumulation.

2.4 Implementation
We implement TeraPipe with PyTorch [104] and NCCL [95]. We use Megatron-LM [125] as
the library for operation partitioning and implement microbatch-based pipeline parallelism
and data parallelism by ourselves. The core of TeraPipe is implemented using 1714 lines
of Python. We include the code in the supplementary material and the code will be open-
sourced.

2.5 Evaluation
TeraPipe is a synchronous model parallel training method that performs exactly the same
underlying optimization algorithm as training the model on a single device. The optimization
performance of TeraPipe (i.e. training loss versus training iterations) is hence the same
compared to training on a single device. Therefore, in this chapter, we focus on the per-
iteration latency (i.e. wall-clock time used per training iteration) as our evaluation metric.

We evaluate TeraPipe following the setup in [18]. Specifically, we test 3 settings in [18]:
GPT3-1B, GPT3-13B, and GPT3-175B, which have 1 billion, 13 billion, and 175 billion
parameters in total, respectively. Note that GPT3-175B is the largest setting in [18]. In
addition, we also test on a GPT3-44B model with half the hidden state size H of the GPT3-
175B model, which includes 44 billion parameters in total.

For each model, we select multiple data parallelism, operation partitioning, and pipeline
parallelism setup combinations. The configuration details are shown in Table 2.1. For all
configurations, we set the input sequence length L = 2048 following [18]. We evaluate
the configurations on an AWS cluster with p3.16xlarge nodes (each with 8 NVIDIA V100
GPUs). For each model, we select a cluster size based on its model size and number of layers
so that each pipeline stage (each cell ck) has the same number of layers. Since operation
partitioning requires higher inter-connection speed compared to pipeline parallelism, we
perform operation partitioning only inside a node, where all GPUs have high-speed inter-
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Figure 2.6: Training iteration latency of TeraPipe with uniform slicing scheme with different
number of slices and the optimal slicing scheme find by the dynamic programming algorithm.

connection thanks to NVLink. For each configuration, we select the maximal batch size that
can fit the memory of the GPUs.

We compare the per-iteration latency achieved by previous model parallel methods without
TeraPipe and the latency achieved by TeraPipe for each configuration. Specifically, for the
setup without TeraPipe, we measure the training latency with GPipe [57] as the pipeline
parallel training method. For TeraPipe, we perform a joint dynamic programming on both
batch and token dimension as shown in Section 2.3.4 and measure the training latency with
the optimal slicing scheme found by the dynamic programming algorithm. All the latency
results in the chapter are averaged over 10 runs. The detailed numbers of the latency
results and the solution find by the dynamic programming algorithm can be found in the
supplementary material.

2.5.1 Main Results
We show the latency results for all configurations in Figure 2.5. TeraPipe accelerates the
training for all models: For GPT3-1B, TeraPipe accelerates training for setting (1) by 1.21x.
For setting (2) and (3), because of the large batch size, the optimal slicing scheme found
by our dynamic programming algorithm only slices the batch dimension and thus TeraPipe
does not provide speedup. For GPT3-13B, TeraPipe speeds up the training by 1.40x for
both setting (4) and (5). For GPT3-44B, TeraPipe accelerates the training by 1.88x, 1.56x,
and 2.40x for setting (6), (7), and (8), respectively. For GPT3-175B, TeraPipe accelerates
the training by 6.75x and 5.02x for setting (9) and (10), respectively.

TeraPipe provides higher speedup for larger models: Larger models have a larger hidden
state size H, and a larger portion of GPU memory is devoted to storing the model weights
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and hidden states. Therefore, the batch size B has to be decreased to fit the model into
the GPU memory, as shown in the setup in Table 2.1. Smaller batch size B limits the
previous microbatch-based pipeline parallel methods’ ability to saturate the pipeline bubbles,
while the token dimension used by TeraPipe still provides abundant opportunity to improve
pipeline efficiency. In addition, larger models have more pipeline stages compared to smaller
models, because larger models have more layers and each layer takes more memory than the
smaller models. More pipeline stages require more input slices to saturate the pipeline.

2.5.2 Dynamic Programming
In this subsection, we provide an ablation study on the effectiveness of the dynamic pro-
gramming algorithm proposed in Section 2.3.3. We compare the training latency with the
slicing scheme found by the dynamic programming algorithm, to a simple heuristic that
slices the input sequence uniformly. Specifically, we evaluate GPT3-44B with setting (8)
and GPT3-175B with setting (9). For the uniform slicing baseline, we slice the whole input
on the batch dimension and range the number of slices on the token dimension from 1 to
16 and 1 to 128 for two settings, respectively, and evaluate the iteration latency for each
uniform slicing scheme.

The result is shown in Figure 2.6. As in Section 2.3.2, too fine-grained pipeline (e.g.
#slices=128 in Figure 2.6b) performs badly because of the underutilization of the GPUs.
Also, too coarse-grained pipeline (e.g. #slices=4 in Figure 2.6b) has large pipeline bubbles,
which leads to high iteration latency. In addition, because of the non-uniform running time
brought by the Transformer structure, the slicing scheme derived by the dynamic program-
ming program achieves better performance compared to the best uniform sliced pipeline: the
optimal solutions found by dynamic programming are 1.12x and 1.04x faster compared to
the best uniform slicing scheme for GPT3-44B and GPT3-175B model, respectively.

2.5.3 Longer Sequence Length
A growing set of works start to focus on increasing the input sequence length of the Trans-
formers [133, 156, 71]. Long sequence length enables Transformers to reason about long-term
dependencies and thus extends its applicability to more complex applications such as mod-
eling documents. However, longer sequences increases the memory usage of a single input
sequence, and decreases the maximum batch size allowed, which limits the pipeline efficiency
of previous microbatch-based pipeline parallelism methods.

In this subsection, we vary the sequence length from 2048 to 8192 for the GPT3-13B model
(setting (5)) and evaluate the training iteration latency. Because of the growth in memory
usage, the batch sizes for sequence length 4096, 6144, 8196 are reduced to 8, 4, 2, respectively.
We show the results in Figure 2.7. TeraPipe achieves 2.76x, 4.97x, 7.83x speedup for sequence
length 4096, 6144, and 8196, respectively. As the sequence length grows, the gap between
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Figure 2.7: Training iteration latency of TeraPipe with different input sequence length for
the GPT3-13B model.

the performance with and without TeraPipe significantly increases, as expected. Meanwhile,
longer sequence length provides more space on the token dimension and thus TeraPipe
can perform even better – TeraPipe enables efficient training of future-emerging LMs with
growing sequence lengths.

2.6 Conclusion
We present TeraPipe, a high-performance token-level pipeline parallel algorithm for training
large-scale Transformer-based language model. We develop a novel dynamic programming-
based algorithm to calculate the optimal pipelining execution scheme, given a specific LM
and a cluster configuration. TeraPipe is orthogonal to other model parallel training methods
and can be complemented by them. Our evaluations show that TeraPipe accelerates the
synchronous training of the largest GPT-3 models with 175 billion parameters by 5.0x on
an AWS cluster with 48 p3.16xlarge instances compared to previous methods.

2.7 Appendix: Detailed Experiment Results
Here, we include the detailed numbers (mean and standard deviation of the latency) and the
slicing schemes found by the DP algorithms for all experiments in Section 2.5. Specifically,
we list the details of Figure 2.5, 2.6, and 2.7 in Table 2.2, 2.3, and 2.4.
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Table 2.2: Detailed numbers and slicing schemes in main experiments (Figure 2.5 in the
main chapter).

Model Setting Algorithm Slicing Scheme Latency (s) TFlops (per GPU)

GPT3-1B

2.5, (1) w/o TeraPipe [(1, [2048])] * 16 1.517± 0.107 0.8841
w/ TeraPipe [(1, [776, 640 ,632])] * 16 1.254± 0.160 1.0695

2.5, (2) w/o TeraPipe [(1, [2048])] * 36 1.018± 0.065 2.9643
w/ TeraPipe [(1, [2048])] * 36 1.018± 0.065 2.9643

2.5, (3) w/o TeraPipe [(1, [2048])] * 72 0.913± 0.027 6.6105
w/ TeraPipe [(1, [2048])] * 72 0.913± 0.027 6.6105

GPT3-13B
2.5, (4) w/o TeraPipe [(1, [2048])] * 16 2.637± 0.055 3.0305

w/ TeraPipe [(1, [1024, 1024])] * 16 1.891± 0.084 4.2261

2.5, (5) w/o TeraPipe [(1, [2048])] * 32 1.863± 0.007 8.5792
w/ TeraPipe [(1, [704, 688, 656])] * 32 1.328± 0.037 12.0354

GPT3-44B

2.5, (6) w/o TeraPipe [(1, [2048])] * 2 13.319± 0.067 0.2148
w/ TeraPipe [(1, [64] * 26 + [56] * 6 + [48])] * 2 7.103± 0.243 0.4028

2.5, (7) w/o TeraPipe [(1, [2048])] * 4 4.311± 0.032 1.3274
w/ TeraPipe [(1, [368, 384, 384, 368, 256, 288])] * 4 2.771± 0.112 2.0652

2.5, (8) w/o TeraPipe [(1, [2048])] * 8 2.662± 0.001 4.2995
w/ TeraPipe [(1, [384, 384, 368, 320, 296, 296])] * 8 1.111± 0.002 10.3018

GPT3-175B
2.5, (9) w/o TeraPipe [(1, [2048])] * 2 9.990± 0.005 1.1300

w/ TeraPipe [(1, [120] * 4 + [112] * 6 + [104] * 8 + [64])] * 2 1.481± 0.002 7.6225

2.5, (10) w/o TeraPipe [(1, [2048])] * 2 5.822± 0.003 1.9390
w/ TeraPipe [(1, [128] * 16)] * 2 1.160± 0.001 9.7318

Table 2.3: Detailed numbers and slicing schemes in ablation studies on the effectiveness of
the dynamic programming algorithm (Figure 2.6 in the main chapter).

Model Setting Algorithm Slicing Scheme Latency (s) TFlops (per GPU)

GPT3-44B 2.6, (a)

#Slices=1 [(1, [2048])] * 8 2.662± 0.001 4.2995
#Slices=4 [(1, [512] * 4)] * 8 1.241± 0.003 9.2226
#Slices=8 [(1, [256] * 8)] * 8 1.255± 0.004 9.1197
#Slices=16 [(1, [128] * 16)] * 8 1.241± 0.003 9.2226

DP [(1, [384, 384, 368, 320, 296, 296])] * 8 1.111± 0.002 10.3018

GPT3-175B 2.6, (b)

#Slices=1 [(1, [2048])] * 2 9.990± 0.005 1.1300
#Slices=4 [(1, [512] * 4)] * 2 2.902± 0.003 3.8900
#Slices=8 [(1, [256] * 8)] * 2 1.892± 0.002 5.9667
#Slices=16 [(1, [128] * 16)] * 2 1.547± 0.01 7.2973
#Slices=32 [(1, [64] * 32)] * 2 1.593± 0.002 7.0866
#Slices=64 [(1, [32] * 64)] * 2 2.227± 0.002 5.0691
#Slices=128 [(1, [16] * 128)] * 2 3.252± 0.004 3.4714

DP [(1, [120] * 4 + [112] * 6 + [104] * 8 + [64])] * 2 1.481± 0.002 7.6225
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Table 2.4: Detailed numbers and slicing schemes in experiments with longer sequence lengths
(Figure 2.7 in the main chapter).

Model Input Sequence Length Algorithm Slicing Scheme Latency (s) TFlops (per GPU)

GPT3-13B

2048 w/o TeraPipe [(1, [2048])] * 32 1.863± 0.007 8.5792
w/ TeraPipe [(1, [704, 688, 656])] * 32 1.328± 0.037 12.0354

4096 w/o TeraPipe [(1, [4096])] * 8 2.526± 0.001 1.5819
w/ TeraPipe [(1, [552, 536, 528, 512, 504, 496, 488, 480])] * 8 0.913± 0.085 4.3765

6144 w/o TeraPipe [(1, [6144])] * 4 3.754± 0.006 0.5322
w/ TeraPipe [(1, [584, 568] + [512] * 6 + [496, 488, 472, 464])] * 4 0.756± 0.008 2.6427

8192 w/o TeraPipe [(1, [8192])] * 2 4.978± 0.004 0.2007
w/ TeraPipe [(1, [512] * 6 + [480] * 2 + [416] * 10)] * 2 0.636± 0.001 1.5707
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Chapter 3

Alpa: Automating Inter- and
Intra-Operator Parallelism for
Distributed Deep Learning

Although algorithmic innovations like TeraPipe (chapter 2) improve the efficiency of model
parallel algorithms, there is no universally optimal algorithm for every scenario. Picking the
optimal algorithm tightly depends on the model’s architecture and the computing cluster’s
configuration. This is challenging even for system experts, let alone other machine learning
researchers and engineers.

Alpa [165] is the world’s first system that can automate model-parallel training of large deep
learning (DL) models with execution plans that unify data, operator, and pipeline paral-
lelism. Existing model-parallel training systems either require users to manually create a
parallelization plan or automatically generate one from a limited space of model parallelism
configurations. They do not suffice to scale out complex DL models on distributed compute
devices. Alpa distributes the training of large DL models by viewing parallelisms as two
hierarchical levels: inter-operator and intra-operator parallelisms. Based on it, Alpa con-
structs a new hierarchical space for massive model-parallel execution plans. Alpa designs
a number of compilation passes to automatically derive efficient parallel execution plans at
each parallelism level. Alpa implements an efficient runtime to orchestrate the two-level
parallel execution on distributed compute devices. Our evaluation shows Alpa generates
parallelization plans that match or outperform hand-tuned model-parallel training systems
even on models they are designed for. Unlike specialized systems, Alpa also generalizes to
models with heterogeneous architectures and models without manually-designed plans.
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3.1 Introduction
Several of the recent advances [57, 18, 125] in deep learning (DL) have been a direct result
of significant increases in model size. For example, scaling language models, such as GPT-
3, to hundreds of billions of parameters [18] and training on much larger datasets enabled
fundamentally new capabilities.

However, training these extremely large models on distributed clusters currently requires
a significant amount of engineering effort that is specific to both the model definition and
the cluster environment. For example, training a large transformer-based language model
requires heavy tuning and careful selection of multiple parallelism dimensions [93]. Training
the large Mixture-of-Expert (MoE) transformers model [76, 36] on TPU clusters requires
manually tuning the partitioning axis for each layer, whereas training the same model on
an AWS GPU cluster calls for new pipeline schemes that can depend on the choices of
partitioning (§3.8.1).

More generally, efficient large-scale model training requires tuning a complex combination of
data, operator, and pipeline parallelization approaches at the granularity of the individual
tensor operators. Correctly tuning the parallelization strategy has been shown [83, 75] to
deliver an order of magnitude improvements in training performance, but depends on strong
machine learning (ML) and system expertise.

Automating the parallelization of large-scale models would significantly accelerate ML re-
search and production by enabling model developers to quickly explore new model designs
without regard for the underlying system challenges. Unfortunately, it requires navigating
a complex space of plans that grows exponentially with the dimensions of parallelism and
the size of the model and cluster. For example, when all parallelism techniques are enabled,
figuring out the execution plan involves answering a web of interdependent questions, such
as how many data-parallel replicas to create, which axis to partition each operator along,
how to split the model into pipeline stages, and how to map devices to the resulting parallel
executables. The interplay of different parallelization methods and their strong dependence
on model and cluster setups form a combinatorial space of plans to optimize. Recent ef-
forts [91, 38, 143] to automatically parallelize model training are constrained to the space of
a single model-parallelism approach, or rely on strong assumptions on the model and cluster
specifications (§3.2.1).

Our key observation is that we can organize different parallelization techniques into a hier-
archical space and map these parallelization techniques to the hierarchical structure of the
compute cluster. Different parallelization techniques have different bandwidth requirements
for communication, while a typical compute cluster has a corresponding structure: closely
located devices can communicate with high bandwidth while distant devices have limited
communication bandwidth.
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With this observation in mind, in this chapter, we take a different view from conventional
data and model parallelisms, and re-categorize ML parallelization approaches as intra-
operator and inter-operator parallelisms. Intra-operator parallelism partitions ML oper-
ators along one or more tensor axes (batch or non-batch) and dispatches the partitions
to distributed devices (Fig. 3.1c); inter-operator parallelism, on the other hand, slices the
model into disjoint stages and pipelines the execution of stages on different sets of devices
(Fig. 3.1d). They take place at two different granularities of the model computation, differ-
entiated by whether to partition operators.

Given that, a parallel execution plan can be expressed hierarchically by specifying the plan in
each parallelism category, leading to a number of advantages. First, intra- and inter-operator
parallelisms feature distinct characteristics: intra-operator parallelism has better device uti-
lization, but results in communicating at every split and merge of partitioned operators, per
training iteration; whereas inter-operator parallelism only communicates between adjacent
stages, which can be light if sliced properly, but incurs device idle time due to scheduling con-
straints. We can harness the asymmetric nature of communication bandwidth in a compute
cluster, and map intra-operator parallelism to devices connected with high communication
bandwidth, while orchestrating the inter-operator parallelism between distant devices with
relatively lower bandwidth in between. Second, this hierarchical design allows us to solve
each level near-optimally as an individual tractable sub-problem. While the joint execution
plan is not guaranteed globally optimal, they demonstrate strong performance empirically
for training various large models.

Guided by this new problem formulation, we design and implement Alpa, the first compiler
that automatically generates parallel execution plans covering all data, operator, and pipeline
parallelisms. Given the model description and a cluster configuration, Alpa achieves this by
partitioning the cluster into a number of device meshes, each of which contains devices with
preferably high-bandwidth connections, and partitioning the computation graph of the model
into stages. It assigns stages to device meshes, and automatically orchestrates intra-operator
parallelisms on a device mesh and inter-operator parallelisms between device meshes.

In summary, we make the following contributions:

• We construct a two-level parallel execution plan space (Fig. 3.1e) where plans are
specified hierarchically using inter- and intra-operator parallelisms.

• We design tractable optimization algorithms to derive near-optimal execution plans at
each level.

• We implement Alpa, a compiler system for distributed DL on GPU clusters. Alpa
features: (1) a set of compilation passes that generate execution plans using the hier-
archical optimization algorithms, (2) a new runtime architecture that orchestrates the
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Figure 3.1: Generation of parallelization plans for a computational graph shown in (a). Dif-
ferent colors represent different devices, dashed boxes represent pipeline stages. (b) creates
the plan manually. (c) and (d) automatically generate plans using only one of intra- and
inter-operator parallelisms. (e) shows our approach that creates a hierarchical space to com-
bine intra- and inter-operator parallelisms.

inter-op parallelism between device meshes, and (3) a number of system optimizations
that improve compilation and address cross-mesh communication.

• We evaluate Alpa on training large models with billions of parameters. We compare
Alpa with state-of-the-art distributed training systems on an Amazon EC2 cluster of
8 p3.16xlarge instances with 64 GPUs. On GPT [18] models, Alpa can match the
specialized system Megatron-LM [125, 93]. On GShard MoE models [76], compared
to a hand-tuned system Deepspeed[113], Alpa achieves a 3.5× speedup on 2 nodes
and a 9.7× speedup on 4 nodes. Unlike specialized systems, Alpa also generalizes
to models without manual strategies and achieves an 80% linear scaling efficiency on
Wide-ResNet [155] with 4 nodes. This means developers can get efficient model-parallel
execution of large DL models out-of-the-box using Alpa.
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Figure 3.2: Common parallelization techniques for training a 2-layer Multi-layer Perceptron
(MLP). Only the forward pass is shown. “x” is the input data. “w1” and “w2” are two
weight matrices.

3.2 Background: Distributed Deep Learning
DL computation is commonly represented by popular ML frameworks [1, 104, 17] as a
dataflow graph. Edges in the graph represent multi-dimensional tensors; nodes are com-
putational operators, such as matrix multiplication (matmul), that transform input tensors
into output tensors. Training a DL model for one iteration consists of computing a loss by
forwarding a batch of data through the graph, deriving the updates via a reverse backward
pass, and applying the updates to the parameters via weight update operations. In prac-
tice, model developers define the dataflow graph. An execution engine then optimizes and
executes it on a compute device.

When either the model or data is large that a single device cannot complete the training in
a reasonable amount of time, we resort to ML parallelization approaches that parallelize the
computation on distributed devices.

3.2.1 Conventional View of ML Parallelism
Existing ML parallelization approaches are typically categorized as data, operator, and
pipeline parallelisms.

Data parallelism. In data parallelism, the training data is partitioned across distributed
workers, but the model is replicated. Each worker computes the parameter updates on its
independent data split, and synchronizes the updates with other workers before the weight
update, so that all workers observe consistent model parameters throughout training.

Operator parallelism. When the model is too large to fit in one device, operator par-
allelism is an effective model parallelism option. Operator parallelism refers to approaches
that partition the computation of a specific operator (abbreviated as op in the following
text), such as matmul shown in Fig. 3.2b, along non-batch axes, and compute each part of
the operator in parallel across multiple devices.
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Because input tensors are jointly partitioned, when a device computes its op partition, the
required portions of input tensors may not reside in its local memory. Communication is
thus required to fetch the input data from other devices. When the tensors are partitioned
evenly, i.e., SPMD[151], all devices will follow the same collective communication patterns
such as all-reduce, all-gather, and all-to-all.

Pipeline parallelism. Instead of partitioning ops, pipeline parallelism places different
groups of ops from the model graph, referred as stages, on different workers; meanwhile,
it splits the training batch as a number of microbatches, and pipelines the forward and
backward passes across microbatches on distributed workers, as Fig. 3.2d shows. Unlike
operator parallelism, pipeline parallelism transfers intermediate activations at the forward
and backward passes between different workers using point-to-point communication.

Manual combination of parallelisms. Recent development shows the approaches men-
tioned above need to be combined to scale out today’s large DL models[93, 151]. The
state-of-the-art training systems, such as Megatron-LM [125, 93], manually design a spe-
cialized execution plan that combines these parallelisms for transformer language models,
which is also known as 3D Parallelism. By assuming the model has the same transformer
layer repeated, it assigns an equal number of layers to each pipeline stage and applies a
hand-designed operator and data parallelism configuration uniformly for all layers. Despite
the requirement of strong expertise, the manual plan cannot generalize to different models
or different cluster setups (§3.8.1).

Automatic combination of parallelisms. The configurations of each individual paral-
lelism, their interdependence, and their dependence on model and cluster setups form an
intractable space, which prevents the trivial realization of automatically combining these
parallelisms. For examples, when coupled with operator parallelism, each time adding a
data-parallel replica would require allocating a new set of devices (instead of one single de-
vice) as the worker, and figuring out the optimal operator parallelism configurations within
those devices. When including pipeline parallelism, the optimal pipelining scheme depends
on the data and operator parallelism choices of each pipeline stage and how devices are
allocated for each stage. With this conventional view, prior explorations [65, 143, 38, 157]
of auto-parallelization are limited to combining data parallelism with at most one model
parallelism approach, which misses substantial performance opportunities. We next develop
our view of ML parallelisms.

3.2.2 Intra- and Inter-Operator Parallelisms
Different from the conventional view, in this chapter, we re-catalog existing parallelization
approaches into two orthogonal categories: intra-operator and inter-operator parallelisms.



CHAPTER 3. ALPA: AUTOMATING INTER- AND INTRA-OPERATOR
PARALLELISM FOR DISTRIBUTED DEEP LEARNING 30

They are distinguished by if they involve partitioning operators along any tensor axis. We
next use the examples in Fig. 3.2 to introduce the two types of parallelisms.

Intra-operator parallelism. An operator works on multi-dimensional tensors. We can
partition the tensor along some dimensions, assign the resulting partitioned computations to
multiple devices, and let them execute different portions of the operator at the same time.
We define all parallelization approaches using this workflow as intra-operator parallelism.

Fig. 3.2a-c illustrates the application of several typical instantiations of intra-op parallelism
on an MLP. Data parallelism [73], by definition, belongs to intra-op parallelism – the input
tensors and matmuls are partitioned along the batch dimension, and weight tensors are repli-
cated. Alternatively, when the weights are very large, partitioning the weights (Fig. 3.2b)
leads to the aforementioned operator parallelism adopted in Megatron-LM. Besides opera-
tors in the forward or backward passes, one can also partition the operators from the weight
update phase, yielding the weight update sharding or equivalently the ZeRO [111, 150] tech-
nique, commonly comprehended as an optimization of data parallelism.

Due to the partitioning, collective communication is required at the split and merge of
the operator. Hence, a key characteristic of intra-operator parallelism is that it results in
substantial communication among distributed devices.

Inter-operator parallelism. We define inter-operator parallelism as the orthogonal class
of approaches that do not perform operator partitioning, but instead, assign different oper-
ators of the graph to execute on distributed devices.

Fig. 3.2d illustrates the batch-splitting pipeline parallelism as a case of inter-operator
parallelism.1 The pipeline execution can follow different schedules, such as Gpipe [57],
PipeDream [91], and synchronous 1F1B [92, 38]. We adopt the synchronous 1F1B schedule
throughout this chapter as it respects synchronous consistency, and has the same pipeline
latency but lower peak memory usage compared to Gpipe.

In inter-operator parallelism, devices communicate only between pipeline stages, typically
using point-to-point communication between device pairs. The required communication
volume can be much less than the collective communication in intra-operator parallelism.
Regardless of the schedule used, due to the data dependency between stages, inter-operator
parallelism results in some devices being idle during the forward and backward computation.

By this categorization, the two parallelisms take place at different granularities of the DL
computation and have distinct communication requirements, which happen to match the
structure of today’s compute clusters. We will leverage these properties to design hierarchical

1Device placement [89] is another case of inter-op parallelism, which partitions the model graph and
executes them on different devices but does not saturate pipelines using multiple microbatches. Hence
pipeline parallelism is often seen as a better alternative to it because of less device idle time.
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Figure 3.3: Compiler passes and runtime architecture. A sharded stage is a stage annotated
with the sharding specs generated by intra-op pass.

algorithms and compilation passes to auto-generate execution plans. Several concurrent work
[83, 92, 4, 132] have proposed similar categorization, but Alpa is the first end-to-end system
that uses this categorization to automatically generate parallel plans from the full space.

3.3 Overview
Alpa is a compiler that generates model-parallel execution plans by hierarchically optimizing
the plan at two different levels: intra-op and inter-op parallelism. At the intra-op level,
Alpa minimizes the cost of executing a stage (i.e., subgraph) of the computational graph,
with respect to its intra-operator parallelism plan, on a given device mesh, which is a set
of devices that may have high bandwidth between each other (e.g., GPUs within a single
server). Different meshes might have different numbers of computing devices according to the
workload assigned. At the inter-op level, Alpa minimizes the inter-op parallelization latency,
with respect to how to slice the model and device cluster into stages and device meshes and
how to map them as stage-mesh pairs. The inter-op optimization depends on knowing the
execution cost of each stage-mesh pair reported by the intra-op optimizer. Through this
hierarchical optimization process, Alpa generates the execution plan consisting of intra-op
and inter-op plans which are locally near-optimal at their respective level of the hierarchy.

To achieve this, Alpa implements three novel compilation passes as Fig. 3.3 shows. Given a
model description, in the form of a Jax [17] intermediate representation (IR), and a cluster
configuration, the inter-op compilation pass slices the IR into a number of stages, and slices
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# Put @parallelize decorator on top of the Jax functions
@parallelize
def train_step(state, batch):

def loss_func(params):
out = state.forward(params, batch["x"])
return jax.numpy.mean((out - batch["y"]) ** 2)

grads = grad(loss_func)(state.params)
new_state = state.apply_gradient(grads)
return new_state

# A typical training loop
state = create_train_state()
for batch in data_loader:

state = train_step(state, batch)

Figure 3.4: An example to demonstrate Alpa’s API for Jax. The developers uses a Python
decorator @parallelize to annotate functions that need to be parallelized. The rest of the
program is kept intact.

the device cluster into a number of device meshes. The inter-op pass uses a Dynamic Pro-
gramming (DP) algorithm to assign stages to meshes and invokes the intra-op compilation
pass on each stage-mesh pair, to query the execution cost of this assignment. Once invoked,
the intra-op pass optimizes the intra-op parallel execution plan of the stage running on its
assigned mesh, by minimizing its execution cost using an Integer Linear Programming (ILP)
formulation, and reports the cost back to the inter-op pass. By repeatedly querying the
intra-op pass for each allocation of a stage-mesh pair, the inter-op pass uses the DP to min-
imize the inter-op parallel execution latency and obtains the best slicing scheme of stages
and meshes.

Given the output hierarchical plan and a designated pipeline-parallel schedule, each stage is
first compiled as a parallel executable on its located mesh. A runtime orchestration pass is
invoked to fulfill the communication requirement between two adjacent stages that require
communication between the two meshes they locate on. The runtime orchestration pass then
generates static instructions specific to each mesh according to the pipeline-parallel schedule
and invokes the execution on all meshes.

API. Alpa has a simple API shown in Fig. 3.4. Alpa requires developers to annotate func-
tions to be parallelized, such as the train_step(), using a Python decorator @parallelize.
Upon the first call to train_step(), Alpa traces the whole function to get the model IR,
invokes the compilation, and converts the function to a parallel version.

Since the inter-op pass depends on the intra-op pass, in the following text, we first describe
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Table 3.1: Sharding specs of a 2-dimentional tensor on a 2× 2 device mesh. A is a (N, M)
tensor. The device mesh is [[Device 0, Device 1], [Device 2, Device 3]]. Each device stores a
partition of A. The first column is the name of the sharding spec. The latter columns use
Numpy syntax to describe the partitions stored on each device.

Spec Device 0 Device 1 Device 2 Device 3

RR A[0 : N, 0 : M ] A[0 : N, 0 : M ] A[0 : N, 0 : M ] A[0 : N, 0 : M ]
S0S1 A[0 : N

2 , 0 : M
2 ] A[0 : N

2 , M
2 : M ] A[ N

2 : N, 0 : M
2 ] A[ N

2 : N, M
2 : M ]

S1S0 A[0 : N
2 , 0 : M

2 ] A[ N
2 : N, 0 : M

2 ] A[0 : N
2 , M

2 : M ] A[ N
2 : N, M

2 : M ]
S0R A[0 : N

2 , 0 : M ] A[0 : N
2 , 0 : M ] A[ N

2 : N, 0 : M ] A[ N
2 : N, 0 : M ]

S1R A[0 : N
2 , 0 : M ] A[ N

2 : N, 0 : M ] A[0 : N
2 , 0 : M ] A[ N

2 : N, 0 : M ]
RS0 A[0 : N, 0 : M

2 ] A[0 : N, 0 : M
2 ] A[0 : N, M

2 : M ] A[0 : N, M
2 : M ]

RS1 A[0 : N, 0 : M
2 ] A[0 : N, M

2 : M ] A[0 : N, 0 : M
2 ] A[0 : N, M

2 : M ]
S01R A[0 : N

4 , 0 : M ] A[ N
4 : N

2 , 0 : M ] A[ N
2 : 3N

4 , 0 : M ] A[ 3N
4 : N, 0 : M ]

RS01 A[0 : N, 0 : M
4 ] A[0 : N, M

4 : M
2 ] A[0 : N, M

2 : 3M
4 ] A[0 : N, 3M

4 : M ]

the intra-op pass, followed by the inter-op pass, and finally the runtime orchestration pass.

3.4 Intra-Operator Parallelism
Alpa optimizes the intra-operator parallelism plan within a device mesh. Alpa adopts the
SPMD-style intra-op parallelism [76, 151] which partitions operators evenly across devices
and executes the same instructions on all devices, as per the fact that devices within a single
mesh have equivalent compute capability. This SPMD style significantly reduces the space
of intra-op parallelism plans; meanwhile, it conveniently expresses and unifies many impor-
tant approaches such as data parallelism, ZeRO, Megatron-LM’s operator parallelism, and
their combinations, which are not fully covered by existing automatic operators parallelism
systems, such as Tofu [143] and FlexFlow [65]. Unlike systems that perform randomized
search [65] or assume linear graphs [143], Alpa formalizes the problem as an integer linear
programming (ILP) and shows it can be solved efficiently for computational graphs with
tens of thousands of operators. Next, we describe the space of intra-op parallelism and our
solution.

3.4.1 The Space of Intra-Operator Parallelism
Given an operator in the computational graph, there are multiple possible parallel algo-
rithms to run it on a device mesh. For example, a matrix multiplication Cij = ∑

k AikBkj

corresponds to a three-level for-loop. To parallelize it, we can parallelize the loop i, loop j,
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Table 3.2: Several cases of resharding. all-gather(x, i) means an all-gather of x bytes along
the i-th mesh axis. M is the size of the tensor. (n0, n1) is the mesh shape.

# Src Spec Dst Spec Communication Cost

1 RR S0S1 0
2 S0R RR all-gather(M, 0)
3 S0S1 S0R all-gather( M

n0
, 1)

4 S0R RS0 all-to-all( M
n0

, 0)
5 S0S1 S01R all-to-all( M

n0·n1
, 1)

loop k, or combinations of them across devices, which would have different computation and
communication costs, require different layouts for the input tensors, and result in output
tensors with different layouts. If an input tensor does not satisfy the layout requirement, a
layout conversion is required, which introduces extra communication costs. The goal of the
intra-op pass is to pick one parallel algorithm for every operator to minimize the execution
time of the entire graph. Next, we formally define the device mesh and the layout of a tensor
and discuss the cost of layout conversion.

Device mesh. A device mesh is a 2-dimensional logical view of a set of physical devices.
Each device in the mesh has the same compute capability. Devices can communicate along
the first mesh dimension and the second mesh dimension with different bandwidths. We
assume different groups of devices along the same mesh dimension have the same communi-
cation performance. For a set of physical devices, there can be multiple logical views. For
example, given 2 nodes and 8 GPUs per node (i.e., 16 devices in total), we can view them
as a 2× 8, 1× 16, 4× 4, 8× 2, or 16× 1 device mesh. The mapping between physical devices
and the logical device mesh view is optimized by the inter-op pass (§3.5). In the rest of this
section, we consider one fixed device mesh view.

Sharding Spec. We use sharding spec to define the layout of a tensor. For an N -
dimensional tensor, its sharding spec is defined as X0X1 · · ·Xn−1, where Xi ∈ {S, R}. If
Xi = S, it means the i-th axis of the tensor is partitioned. Otherwise, the i-th axis is
replicated. For example, for a 2-dimensional tensor (i.e., a matrix), SR means it is row-
partitioned, RS means it is column-partitioned, SS means it is both row- and column-
partitioned. RR means it is replicated without any partitioning. After we define which
tensor axes are partitioned, we then have to map the partitioned tensor axes to mesh axes.
We only consider 2-dimensional device meshes, so a partitioned tensor axis can be mapped
to either the first or the second axis of the device mesh, or both. We added a superscript to
S to denote the device assignment. For example, S0 means the partitions are along the 0-th
axis of the mesh, S01 means the partitions take place along both mesh axes. S0R means the
tensor is row-partitioned into two parts – The first part is replicated on device 0 and device
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Table 3.3: Several parallel algorithms for a batched matmul Cb,i,j = ∑
k Ab,i,kBb,k,j. The

notation all-reduce(x, i) means an all-reduce of x bytes along the i-th mesh axis. M is the
size of the output tensor. (n0, n1) is the mesh shape.

# Parallel Output Input Communication
Mapping Spec Specs Cost

1 i→ 0, j → 1 RS0S1 RS0R, RRS1 0
2 i→ 0, k → 1 RS0R RS0S1, RS1R all-reduce( M

n0
, 1)

3 j → 0, k → 1 RRS0 RRS1, RS1S0 all-reduce( M
n0

, 1)
4 b→ 0, i→ 1 S0S1R S0S1R, S0RR 0
5 b→ 0, k → 1 S0RR S0RS1, S0S1R all-reduce( M

n0
, 1)

6 i→ {0, 1} RS01R RS01R, RRR 0
7 k → {0, 1} RRR RRS01, RS01R all-reduce(M, {0, 1})

1, and the second part is replicated on device 2 and device 3. Table 3.1 shows all possible
sharding specs of a 2-dimensional tensor on a 2× 2 mesh with 4 devices.

Resharding. When an input tensor of an operator does not satisfy the sharding spec of
the chosen parallel algorithm for the operator, a layout conversion, namely resharding, is
required, which might require cross-device communication. Table 3.2 lists several cases of
resharding. For instance, to convert a fully replicated tensor to any other sharding specs
(case #1), we can slice the tensor locally without communication; to swap the partitioned
axis (case #4), we perform an all-to-all.

Parallel algorithms of an operator. With the definitions above, consider parallelizing
a batched matmul Cb,i,j = ∑

k Ab,i,kBb,k,j on a 2D mesh – Table 3.3 lists several intra-op
parallel algorithms for a batched matmul. Algorithm#1 maps loop i to the 0-th mesh axis
and loop j to the 1-th mesh axis, resulting in the output tensor C with a sharding spec
RS0S1. As the LHS operand Ab,i,k and RHS operand Bb,k,j both have only one parallelized
index, their sharding specs are written as RS0R and RRS1, respectively. In this algorithm,
each device has all its required input tiles (i.e., a partition of the tensor) stored locally to
compute its output tile, so there is no communication cost. In Algorithm #2 in Table 3.3,
when the reduction loop k is parallelized, all-reduce communication is needed to aggregate
the partial sum. Similarly, we can derive the sharding specs and communication costs of
other parallel algorithms for a batched matmul.

For other primitive operators such as convolution and reduction, we can get a list of possible
parallel algorithms following a similar analysis of their math expressions. In the intra-op pass,
the model graph is represented in XLA’s HLO format[134], which summarizes common DL
operators into less than 80 primitive operators, so we can manually enumerate the possible
parallel algorithms for every primitive operator.



CHAPTER 3. ALPA: AUTOMATING INTER- AND INTRA-OPERATOR
PARALLELISM FOR DISTRIBUTED DEEP LEARNING 36

3.4.2 ILP Formulation
The total execution cost of a computational graph G = (V, E) is the sum of the compute
and communication costs on all nodes v ∈ V and the resharding costs on all edges e ∈ E.
We formulate the cost minimization as an ILP and solve it optimally with an off-the-shelf
solver [42].

For node v, the number of possible parallel algorithms is kv. It then has a communication
cost vector cv of length kv, or cv ∈ Rkv , where cvi is the communication cost of the i-th
algorithm. Similarly, node v has a compute cost vector dv ∈ Rkv . For each node v, we define
an one-hot decision vector sv ∈ {0, 1}kv to represent the algorithm it uses. svi = 1 means we
pick the i-th algorithm for node v. For the resharding cost between node v and node u, we
define a resharding cost matrix Rvu ∈ Rkv×ku , where Rvuij is the resharding cost from the
output of i-th strategy of node v to the input of j-th strategy of node u. The objective of
the problem is

min
s

∑
v∈V

s⊺v(cv + dv) +
∑

(v,u)∈E

s⊺vRvusu, (3.1)

where the first term is the compute and communication cost of node v, and the second is
the resharding cost of the edge (v, u). In this formulation, s is the variable, and the rest
are constant values. The term s⊺vRvusu in Eq. 3.1 is quadratic, and cannot be fed into
an ILP solver. We linearize [43] the quadratic term by introducing a new decision vector
evu ∈ {0, 1}kv ·ku which represents the resharding decision between node v and u.

Although we can use profiling to get the accurate costs for cv, dv, and Rvu, we use the
following methods to estimate them for simplicity. For communication costs cv and Rvu,
we compute the numbers of communicated bytes and divide them by the mesh dimension
bandwidth to get the costs. For compute costs dv, we set all of them as zero following
the same motivation in [143]. This is reasonable because: (1) For heavy operators such as
matmul, we do not allow replicated computation. All parallel algorithms always evenly divide
the work to all devices, so all parallel algorithms of one operator have the same arithmetic
complexity; (2) For lightweight operators such as element-wise operators, we allow replicated
computation of them, but their computation costs are negligible.

To simplify the graph, we merge computationally-trivial operators, such as element-wise
operators, transpose, and reduction, into one of their operands and propagate the sharding
spec from the operand. This greatly reduces the number of nodes in the graph, thus the ILP
problem size. We do a breath-first-search and compute the depth of each node. The node is
merged to the deepest operand.

Once the parallel plan is decided by ILP, we also apply a set of post-ILP communication
optimizations, such as replacing all-reduce with reduce-scatter and all-gather, whenever ap-
plicable, because the latter reduces the number of replicated tensors and corresponding
computations, while keeping the communication volume the same. This achieves the effect
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of weight update sharding [150] or ZeRO optimizer [111].

3.5 Inter-Operator Parallelism
In this section, we develop methods to slice the model and device cluster into stage-mesh
pairs. Our optimization goal is to minimize the end-to-end pipeline execution latency for the
entire computational graph. Previous works [83, 38] have considered simplified problems,
such as assuming the device for each stage is pre-assigned, and all stages have fixed data or
operator parallelism plan. Alpa rids these assumptions by jointly considering device mesh
assignment and the existence of varying intra-op parallelism plans on each stage.

3.5.1 The Space for Inter-Operator Parallelism
Assume the computational graph contains a sequence of operators following the topology
order of the graph2, notated as o1, . . . , oK , where the inputs of an operator ok are from
operators o1, . . . , ok−1. We slice the operators into S stages s1, . . . , sS, where each stage si

consists of operators (oli , . . . , ori
), and we assign each stage si to a submesh of size ni ×mi,

sliced from a computer cluster that contains devices, notated as the cluster mesh with shape
N ×M . Let ti = tintra(si, Mesh(ni, mi)) be the latency of executing stage si on a submesh of
ni×mi, minimized by the ILP and reported back by the intra-op pass (§3.4). As visualized
in Fig. 3.5, assuming we have B different input microbatches for the pipeline, the total
minimum latency3 for the entire computation graph is written as:

T ∗ = min
s1,...,sS ;

(n1,m1),...,(nS ,mS)

{
S∑

i=1
ti + (B − 1) · max

1≤j≤S
{tj}

}
. (3.2)

The overall latency contains two terms: the first term is the total latency of all stages,
interpreted as the latency of the first microbatch going through the pipeline; the second
term is the pipelined execution time for the rest of B − 1 microbatches, which is bounded
by the slowest stage (stage 3 in Fig. 3.5).

We aim to solve Eq. 3.2 with two additional constraints: (1) For an operator in the forward
pass of the graph, we want to colocate it with its corresponded backward operator on the
same submesh. Since backward propagation usually uses the similar set of tensors during
forward propagation, this effectively reduces the amount of communication to fetch the
required tensors generated at the forward pass to the backward pass. We use the sum of
forward and backward latency for tintra, so Eq. 3.2 reflects the total latency, including both

2We simply use the order of how users define each operator, reflected in the model IR, with the input
operator as the origin. This allows us to leverage the inherent locality present in the user’s program – closely
related nodes in the graph will be more likely to be partitioned into the same stage.

3This formulation holds for GPipe and synchronous 1F1B schedules. Other pipeline schedules may
require a different formulation.
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Figure 3.5: Illustration of the total latency of a pipeline, which is determined by two parts:
the total latency of all stages (t1+t2+t3+t4) and the latency of the slowest stage ((B−1)·t3).

forward and backward propagation. (2) We need the sliced submeshes (n1, m1), . . . , (nS, mS)
to fully cover the N ×M cluster mesh – we do not waste any compute device resources. We
next elaborate on our DP formulation.

3.5.2 DP Formulation
To ensure all submeshes (n1, m1), . . . , (nS, mS) fully cover the N × M cluster mesh,
we reduce the available submesh shapes into two options: (1) one-dimensional sub-
meshes of sizes (1, 1), (1, 2), (1, 4) . . . (1, 2m) and (2) two-dimensional submeshes of size
(2, M), (3, M), . . . , (N, M) that fully use the second dimension of the cluster mesh (i.e., on
a GPU cluster, this means using all compute devices in each physical machine). We include
a theorem in Appendix 3.11 that proves these submesh shapes can always fully cover the
cluster mesh. To assign physical devices in the cluster to the resulting submeshes find by
the DP algorithm, we enumerate by assigning devices to larger submeshes first and then to
smaller ones. When there are multiple pipeline stages with the same submesh shape, we
tend to put neighboring pipeline stages closer on the device mesh to reduce communication
latency.

The simplification on submesh shapes works well for most available cloud deep learning
setups: On AWS [5], the GPU instances have 1, 2, 4, or 8 GPUs; on GCP [48], the TPU
instances have 8, 32, 128, 256 or 512 TPUs. The set of submesh shapes (n, m) excluded
by the assumption is with n > 1 and m < M , which we observe lead to inferior results,
since an alternative submesh with shape (n′, M) where n′ ·M = n ·m has more devices that
can communicate with high bandwidth. With this reduction, we only need to ensure that∑S

i=1 ni ·mi = N ·M .

To find T ∗ in Eq. 3.2, we develop a DP algorithm. The DP first enumerates the second term
tmax = max1≤j≤S tj and minimizes the first term ttotal(tmax) = ∑

1≤i≤S ti for each different
tmax . Specifically, we use the function F (s, k, d; tmax) to represent the minimal total latency
when slicing operators ok to oK into s stages and putting them onto d devices so that the
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latency of each stage is less than tmax . We start with F (0, K + 1, 0; tmax) = 0, and derive the
optimal substructure of F as

F (s, k, d; tmax) (3.3)

= min
k≤i≤K

ns·ms≤d


tintra((ok, . . . , oi), Mesh(ns, ms), s)
+ F (s− 1, i + 1, d− ns ·ms; tmax)
| tintra((ok, . . . , oi), Mesh(ns, ms), s) ≤ tmax

 ,

and derive the optimal total latency as

T ∗(tmax) = min
s
{F (s, 0, N ·M ; tmax)}+ (B − 1) · tmax . (3.4)

The value of tintra((ok, . . . , oi), Mesh(ns, ms), s) is determined by the intra-op pass. It is the
lowest latency of executing the subgraph (ok, . . . , oi) on mesh Mesh(ns, ms) with s subsequent
stages. Note that Mesh(ns, ms) is a set of physical devices – hence, we enumerate all the
potential choices of logical device mesh shapes (nl, ml) satisfying nl ·ml = ns ·ms. For each
choice, we query the intra-op pass with subgraph (ok, . . . , oi), logical mesh (nl, ml), and other
intra-op options as inputs and get an intra-op plan. We then compile the subgraph with this
plan and all other low-level compiler optimizations (e.g., fusion, memory planning) to get an
executable for precise profiling. The executable is profiled in order to get the stage latency
(tl) and the memory required on each device to run the stage (memstage) and to store the
intermediate activations (memact). We check whether the required memory fits the device
memory (memdevice) according to the chosen pipeline execution schedule. For example, for
1F1B schedule [38, 92], we check

memstage + s ·memact ≤ memdevice. (3.5)

We pick the logical mesh shape that minimizes tl and fits into the device memory. If none
of them fits, we set tintra =∞.

Our algorithm builds on top of that in TeraPipe [83]. However, TeraPipe assumes all pipeline
stages are the same, and the goal is to find the optimal way to batch input tokens into micro-
batches of different sizes. Instead, Alpa aims to group the operators of a computational graph
into different pipeline stages, while assuming the input micro-batches are of the same size.
In addition, Alpa optimizes the mesh shape in the DP algorithm for each pipeline stage in
inter-op parallelism.

Complexity. Our DP algorithm computes the slicing in O(K3NM(N +log(M))) time for
a fixed tmax . tmax has at most O(K2(N + log(M))) choices: tintra((oi, . . . , oj), Mesh(ns, ms))
for i, j = 1, . . . , K and all the submesh choices. The complexity of this DP algorithm is thus
O(K5NM(N + log(M))2).

This complexity is not feasible for a large computational graph of more than ten thousand
operators. To speed up this DP, we introduce a few practical optimizations.
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Algorithm 2 Inter-op pass summary.
1: Input: Model graph G and cluster C with shape (N, M).
2: Output: The minimal pipeline execution latency T ∗.
3: // Preprocess graph.
4: (o1, . . . , oK)← Flatten(G)
5: (l1, . . . , lL)← OperatorClustering(o1, . . . , oK)
6: // Run the intra-op pass to get costs of different stage-mesh pairs.
7: submesh_shapes ← {(1, 1), (1, 2), (1, 4), . . . , (1, M)} ∪ {(2, M), (3, M), . . . , (N, M)}
8: for 1 ≤ i ≤ j ≤ L do
9: stage ← (li, . . . , lj)

10: for (n, m) ∈ submesh_shapes do
11: for s from 1 to L do
12: t_intra(stage, Mesh(n, m), s)←∞
13: end for
14: for (nl, ml), opt ∈ LogicalMeshShapeAndIntraOp Options(n, m) do
15: plan ← IntraOpPass(stage, Mesh(nl, ml), opt)
16: tl, memstage, memact ← Profile(plan)
17: for s satisfies Eq. 3.5 do
18: if tl < t_intra(stage, Mesh(n, m), s) then
19: t_intra(stage, Mesh(n, m), s)← tl

20: end if
21: end for
22: end for
23: end for
24: end for
25: // Run the inter-op dynamic programming
26: T ∗ ←∞
27: for tmax ∈ SortedAndFilter(t_intra, ε) do
28: if B · tmax ≥ T ∗ then
29: break
30: end if
31: F (0, L + 1, 0; tmax)← 0
32: for s from 1 to L do
33: for l from L down to 1 do
34: for d from 1 to N ·M do
35: Compute F (s, l, d; tmax) according to Eq. 3.3
36: end for
37: end for
38: end for
39: T ∗(tmax)← mins{F (s, 0, N ·M ; tmax)}+ (B − 1) · tmax
40: if T ∗(tmax) < T ∗ then
41: T ∗ ← T ∗(tmax)
42: end if
43: end for
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Performance optimization #1: early pruning. We use one optimization that is simi-
lar to that in TeraPipe [83]. We enumerate tmax from small to large. When B · tmax is larger
than the current best T ∗, we immediately stop the enumeration. This is because larger tmax
can no longer provide a better solution. Also, during enumeration of tmax , we only evaluate a
choice of tmax if it is sufficiently larger than the last tmax (by at least ϵ). This allows the gap
between the solution found by the DP algorithm and the global optima to be at most B · ϵ.
We empirically choose ϵ = 10−6 s, and we find that the solution output by our algorithm is
the same as the real optimal solution (ϵ = 0) for all our evaluated settings.

Performance optimization #2: operator clustering. Many operators in a compu-
tational graph are not computationally intensive (e.g., ReLU), and the exact placement of
these operators has little impact on the total execution time. We develop another DP al-
gorithm [6] to cluster neighboring operators to reduce the total size of the graph Eq. 3.2
works on. We cluster the operators (o1, . . . , oK) into a series of layers4 (l1, . . . , lL), where
L ≪ K. The goal of the algorithm is to merge two types of operators: (1) those that do
not call for much computation but lengthen the computational graph and (2) neighboring
operators that may cause substantial communication if put on different device meshes. We
define function G(k, r) as the minimum of maximal amount of data received by a single layer
when clustering operators (o1, . . . , ok) into r layers. Note that G has the following optimal
substructure:

G(k, r) (3.6)

= min
1≤i≤k


max{G(i− 1, r − 1), C(i, k)}∣∣∣∣∣ FLOP(oi, . . . , ok) ≤ (1 + δ)FLOP total

L

 ,

where C(i, k) denotes the total size of inputs of (oi, . . . , ok) received from (o1, . . . , oi−1) and
FLOP total = FLOP(o1, . . . , oK) is the total FLOP of the whole computational graph. We
make sure that each clustered layer’s FLOP is within 1 + δ times of the average FLOP per
layer while minimizing the communication. For the solutions with the same communication
cost, we choose the one with the most uniform structure by also minimizing the variance
of per-layer FLOP. With our DP algorithm, we can compute the best layer clustering in
O(K2L) time. Note that L here is a hyperparameter to the algorithm. In practice, we
choose a small L based on the number of devices and the number of heavy operators in the
graph. We find different choices of L do not affect the final performance significantly.

Alg. 2 summarizes the workflow of the inter-op pass and illustrates its interactions with the
intra-op pass in §3.4.

4Note that the clustering does not exactly reproduce the layers with original machine learning semantics
in the model definition.
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Figure 3.6: Cross-mesh resharding. Red arrows denote send/recv on slow connections. Green
arrows denote all-gather on fast connections. (a) The scatter-gather optimization for equal
mesh shapes in Megatron-LM. (b) The naive send/recv for unequal mesh shapes. (c) The
generalized local all-gather optimization for unequal mesh shapes.

3.6 Parallelism Orchestration
After stages, device meshes, and their assignments are decided, at the intra-op level, Alpa
compiles each stage against its assigned device mesh, respecting the intra-op parallelism
plan output by the ILP solver. The compilation depends on XLA [134] and GSPMD [151],
and generates parallel executables for each stage-mesh pair. When needed, the compilation
automatically inserts collective communication primitives (see §3.4) to address the within-
mesh communication caused by intra-op parallelism.

At the inter-op level, Alpa implements an additional parallelism orchestration pass to address
the cross-mesh communication between stages, and generate static instructions for inter-op
parallel execution.

Cross-mesh resharding. Existing manual systems, such as Megatron-LM [113, 125], con-
strain all pipeline stages to have the same degrees of data and tensor model parallelism, so
the communication between pipeline stages is trivially realized by P2P send/recv between
corresponded devices of two equivalent device meshes (Fig. 3.6a). In Alpa, the device meshes
holding two adjacent stages might have different mesh shapes, and the tensor to communicate
between two stages might have different sharding specs (Fig. 3.6b and Fig. 3.6c). We call
this communication pattern as cross-mesh resharding, which is a many-to-many multicast
problem.

Given the sharding specs of the tensor on the sender and receiver mesh, Alpa generates a
communication plan to address cross-mesh sharding in two iterations. In the first iteration,
Alpa calculates the correspondences between tensor partitions (a.k.a. tiles) on the source and
destination mesh. Based on that, it generates P2P send/recv primitives between the source
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devices and destination devices to fulfill the communication. It then takes a second iteration
to identify opportunities where the destination tensor has a replication in its sharding spec.
In this case, the tensor only needs to be transferred once between two meshes, then exchanged
via all-gather across the devices on the destination mesh using its higher bandwidth (Fig. 3.6)
– it rewrites send/recv generated at the first iteration into all-gather to avoid repeated
communication.

We call this approach as local all-gather cross-mesh resharding. Since the communication
between stages is normally small by our design, our experiments show that it performs
satisfactorily well (§3.8.5). We defer the development of the optimal cross-mesh resharding
plan to future work.

Generating pipeline execution instructions. As the final step, Alpa generates static
execution instructions to launch the training on clusters. Since each stage has different sets
of operators and may locate on meshes with different shapes, in contrast to many SPMD
pipeline-parallel training systems [151, 93], Alpa adopts an MPMD-style runtime to orches-
trate the inter-op parallel execution – Alpa generates distinct static execution instructions
for each device mesh.

Alpa develops a set of instructions for inter-op parallel execution, including instructions for
allocating and deallocating memory for tensors in a stage, communicating tensors between
stages following the cross-mesh resharding plan, synchronization, and computation, etc.
According to a user-selected pipeline schedule, Alpa uses a driver process to generate the
instructions in advance and dispatches the whole instruction lists to each worker before
execution, avoiding driver-worker coordination overheads during runtime.

3.7 Limitations and Discussion
In this section, we discuss advantages of our view of parallelisms and several limitations of
our algorithms.

Compared to existing work that manually combines data, operator, and pipeline parallelism,
such as 3D parallelism [113] and PTD-P [93], Alpa’s hierarchical view of inter- and intra-
op parallelisms significantly advances them with three major flexibility: (1) pipeline stages
can contain an uneven number of operators or layers; (2) pipeline stages in Alpa might
be mapped to device meshes with different shapes; (3) within each stage, the data and
operator parallelism configuration is customized non-uniformly on an operator-by-operator
basis. Together, they allow Alpa to unify all existing model parallelism approaches and
generalize to model architectures and cluster setups with more heterogeneity.

Despite these advantages, Alpa’s optimization algorithms currently have a few limitations:
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Figure 3.7: End-to-end evaluation results. “×” denotes out-of-memory. Black boxes repre-
sent linear scaling.

• Alpa does not model the communication cost between different stages because the
cross-stage communication cost is by nature small. In fact, modeling the cost in either
the DP or ILP is possible, but would require enumerating exponentially more intra-op
passes and DP states.

• The inter-op pass currently has a hyperparameter: the number of micro-batches B,
which is not optimized by our current formulation but can be searched by enumeration.

• The inter-op pass models pipeline parallelism with a static linear schedule, without
considering more dynamic schedules that, for example, parallelize different branches in
a computational graph on different devices.

• Alpa does not optimize for the best scheme of overlapping computation and communi-
cation; Alpa can only handle static computational graphs with all tensor shapes known
at compilation time.

Nevertheless, our results on weak scaling (§3.8) suggest that Alpa is able to generate near-
optimal execution plans for many notable models.

3.8 Evaluation
Alpa is implemented using about 16K LoC in Python and 6K LoC in C++. Alpa uses Jax
as the frontend and XLA as the backend. The compiler passes are implemented on Jax’s
and XLA’s intermediate representation (i.e., Jaxpr and HLO). For the distributed runtime,
we use Ray [90] actor to implement the device mesh worker, XLA runtime for executing
computation, and NCCL [95] for communication.

We evaluate Alpa on training large-scale models with billions of parameters, including GPT-
3 [18], GShard Mixture-of-Experts (MoE) [76], and Wide-ResNet [155]. The testbed is a
typical cluster consisting of 8 nodes and 64 GPUs. Each node is an Amazon EC2 p3.16xlarge
instance with 8 NVIDIA V100 16 GB GPUs, 64 vCPUs, and 488 GB memory. The 8 GPUs
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Table 3.4: Models used in the end-to-end evaluation. LM = language model. IC = image
classification.

Model Task Batch size #params (billion) Precision

GPT-3 [18] LM 1024 0.35, 1.3, 2.6, 6.7, 15, 39 FP16
GShard MoE [76] LM 1024 0.38, 1.3, 2.4, 10, 27, 70 FP16
Wide-ResNet [155] IC 1536 0.25, 1.0, 2.0, 4.0, 6.7, 13 FP32

in a node are connected via NVLink. The 8 nodes are launched within one placement group
with 25Gbps cross-node bandwidth.

We compare Alpa against two state-of-the-art distributed systems for training large-scale
models on GPUs. We then isolate different compilation passes and perform ablation studies
of our optimization algorithms. We also include a case study of the execution plans found
by Alpa.

3.8.1 End-to-End Performance
Models and training workloads. We target three types of models listed in Table 3.4,
covering models with both homogeneous and heterogeneous architectures. GPT-3 is a ho-
mogeneous transformer-based LM by stacking many transformer layers whose model paral-
lelization plan has been extensively studied [125, 93]. GShard MoE is a mixed dense and
sparse LM, where mixture-of-experts layers are used to replace the MLP at the end of a
transformer, every two layers. Wide-ResNet is a variant of ResNet with larger channel sizes.
It is vastly different from the transformer models and there are no existing manually designed
strategies.

To study the ability to train large models, we follow common ML practice to scale the model
size along with the number of GPUs, with the parameter range reported in Table 3.4. More
precisely, for GPT-3, we increase the hidden size and the number of layers together with the
number of GPUs following [93], whereas for MoE we mainly increase the number of experts
suggested by [76, 151]. For Wide-ResNet, we increase the channel size and width factor
in convolution layers. For each model, we adopt the suggested global batch size per ML
practice [93, 18, 76, 155] to keep the same statistical behavior. We then tune the best micro-
batch size for each model and system configuration that maximizes the system performance.
The gradients are accumulated across microbatches. The detailed model specifications are
provided in Appendix 3.12.

Baselines. For each model, we compare Alpa against a strong baseline. We use Megatron-
LM v2 [93] as the baseline system for GPT-3. Megatron-LM is the state-of-the-art system
for training homogeneous transformer-based LMs on GPUs. It combines data parallelism,
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pipeline parallelism, and manually-designed operator parallelism (denoted as TMP later).
The combination of these techniques is controlled by three integer parameters that specify the
parallelism degrees assigned to each technique. We grid-search the three parameters following
the guidance of their paper and report the results of the best configuration. Megatron-LM
is specialized for GPT-like models, so it does not support other models in Table 3.4.

We use DeepSpeed [113] as the baseline for MoE. DeepSpeed provides a state-of-the-art
implementation for training MoE on GPUs. It combines handcrafted operator parallelism
for MoE layers and ZeRO-based [111] data parallelism. The combination of these techniques
is controlled by several integer parameters that specify the parallelism degree assigned to
each technique. We also grid-search them and report the best results. The performance of
DeepSpeed on GPT-3 is similar to or worse than Megatron-LM, so we skip it on GPT-3.
Note that original GShard-MoE [76] implementation is only available on TPUs, thus we do
not include its results, though their strategies [76] are covered by Alpa’s strategy space.

For large Wide-ResNet, there is no specialized system or manually designed plan for it. We
use Alpa to build a baseline “PP-DP” whose space only consists of data parallelism and
pipeline parallelism, which mimics the parallelism space of PipeDream [91] and Dapple [38].

For all models, we also include the results of using Alpa with only one of intra- and inter-
operator parallelism, which mimics the performance of some other auto-parallel systems.
The open-source Flexflow [65] does not support the models we evaluate, as it lacks sup-
port for many necessary operators (e.g., layer normalization [7], mixed-precision operators).
Tofu [143] only supports single node execution and is not open-sourced. Due to both theoret-
ical and practical limitations, we do not include their results and we do not expect Flexflow
or Tofu to outperform the state-of-the-art manual baselines in our evaluation.

Evaluation metrics. Alpa does not modify the semantics of the synchronous gradient
descent algorithm, thus does not affect the model convergence. Therefore, we measure train-
ing throughput in our evaluation. We evaluate weak scaling of the system when increasing
the model size along with the number of GPUs. Following [93], we use the aggregated peta
floating-point operations per second (PFLOPS) of the whole cluster as the metric5. We
measure it by running a few batches with dummy data after proper warmup. All our results
(including those in later sections) have a standard deviation within 0.5%, so we skip the
error bars in our figures.

GPT-3 results. The parallelization plan for GPT-3 has been extensively studied [18, 93,
83]. We observe in Fig. 3.7a that this manual plan with the best grid-searched parameters en-
ables Megatron-LM to achieve super-linear weak scaling on GPT-3. Nevertheless, compared
to Megatron-LM, Alpa automatically generates execution plans and even achieves slightly

5As the models are different for different numbers of GPUs, we cannot measure scaling on the system
throughput such as tokens per second or images per second.
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Figure 3.8: Intra-operator parallelism ablation study. “×” denotes out-of-memory. Black
boxes represent linear scaling.

better scaling on several settings. If compared to methods that only use intra-operator par-
allelism, our results are consistent with recent studies – “Intra-op only” performs poorly on
>16 GPUs because even the best plan has to communicate tensors heavily on cross-node
connections, making communication a bottleneck. Surprisingly, “Inter-op only” performs
well and maintains linear scaling on up to 64 GPUs.

We investigate the grid-searched parameters of the manual plan on Megatron-LM, and com-
pare it to the plan generated by Alpa. It reveals two major findings. First, in Megatron-LM,
the best manual plan has TMP as 1, except in rare settings, such as fitting the 39B model
on 64 GPUs, where pipeline parallelism alone is unable to fit the model (stage) in GPU
memory; meanwhile, data parallelism is maximized whenever memory allows. In practice,
gradient accumulation (GA) is turned on to achieve a desired global batch size (e.g., 1024
in our setting). GA amortizes the communication of data parallelism and reduces the bub-
bles of pipeline parallelism, but the communication of TMP grows linearly with GA steps,
which puts TMP disadvantaged. Second, Alpa-generated plan closely resembles the best-
performed ones in Megatron-LM, featuring (1) evenly-sized stages, (2) partitioning along
the batch dimension in stages when memory is not stressed, but along non-batch dimensions
when memory is stressed. One key difference between our plan and the manual plan is
that Alpa also partitions the weight update operations when data parallelism exists, which
contributes to the slight performance improvement over Megatron-LM. This attributes to
the fact that Alpa, as a generic compiler system, can compose a wide range of parallelism
approaches, while Megatron-LM, for now, misses weight update sharding support.

MoE results. DeepSpeed adopts a manual operator parallelism plan for MoE models,
developed by GShard [76], called expert parallelism, which uses a simple rule: it partitions
the expert axis for the operators in MoE layers, but switches back to data parallelism for
non-expert layers. This expert parallelism is then combined with ZeRO data parallelism
and TMP. All of these techniques belong to intra-operator parallelism. Unfortunately, Deep-
Speed’s specialized implementation does not include any inter-operator parallelism approach,
which is required for scaling across multiple nodes with low inter-node bandwidth. Therefore,
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Deepspeed only maintains a good performance within a node (≤ 8 GPUs) on this cluster.
“Intra-op only” fails to scale across multiple nodes due to the same reason. “Inter-op only”
runs out of memory on 32 GPUs and 64 GPUs because it is not easy to equally slice the
model when the number of GPUs is larger than the number of layers of the model. The
imbalanced slicing makes some memory-intensive stages run out of memory.

By contrast, Alpa automatically discovers the best execution plans that combine intra- and
inter-operator parallelism. For intra-operator parallelism, Alpa finds a strategy similar to
expert parallelism and combines it with ZeRO data parallelism, thanks to its ILP-based
intra-op pass. Alpa then constructs stages and uses inter-operator parallelism to favor small
communication volume on slow connections. Alpa maintains linear scaling on 16 GPUs and
scales well to 64 GPUs. Compared to DeepSpeed, Alpa achieves 3.5× speedup on 2 nodes
and a 9.7× speedup on 4 nodes.

Wide-ResNet results. Unlike the previous two models that stack the same layer, Wide-
ResNet has a more heterogeneous architecture. As the data batch is forwarded through
layers, the size of the activation tensor shrinks while the size of the weight tensor inflates.
This leads to an imbalanced distribution of memory usage and compute intensity across
layers. For this kind of model, it is difficult, if not impossible, to manually design a plan.
However, Alpa still achieves a scalable performance on 32 GPUs with 80% scaling. The
baselines “PP-DP” and “Inter-op only” run out of memory when training large models,
because they cannot partition weights to reduce the memory usage, and it is difficult to
construct memory-balanced stages for them. “Intra-only” requires a lot of communication
on slow connections, so it cannot scale across multiple nodes. A case study on the generated
plan for Wide-ResNet is in §3.8.6.

3.8.2 Intra-Op Parallelism Ablation Study
We study the effectiveness of our intra-operator parallelism optimization algorithm. We
compare our ILP-based solution against alternatives such as ZeRO optimizer and rule-based
partitioning strategies.

Experimental setup. We run a weak scaling benchmark in terms of model size similar to
§3.8.1, but disable pipeline parallelism and gradient accumulation to control variables. The
benchmark is done on one AWS p3.16xlarge instance with 8 GPUs. In order to simulate an
execution environment of large-scale training in one node, we use larger hidden sizes, smaller
batch sizes, and smaller numbers of layers, compared to the model configurations in §3.8.1.

Baselines. We compare automatic solutions for intra-operator parallelism. “Data” is
vanilla data parallelism. “ZeRO-2” [111] is a memory-efficient version of data parallelism
which partitions gradients and optimizer states. “ZeRO-3” [111] additionally partitions pa-
rameters on top of “ZeRO-2”. “Heuristic” uses a rule combined with the sharding propagation
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Figure 3.9: Inter-operator parallelism ablation study.

in GSPMD. It marks the largest dimension of every input tensor as partitioned and runs
sharding propagation to get the sharding specs for all nodes in the graph. “ILP” is our
solution based on the ILP solver.

Results. As shown in Fig. 3.8, “Data” runs out of memory quickly and cannot train large
models. “ZeRO-2” and “ZeRO-3” resolve the memory problem of data parallelism, but they
do not optimize for communication as they always communicate the gradients. When the
gradients are much larger than activations, their performance degenerates. “Heuristic” solves
the memory issue by partitioning all tensors, but can be slowed down by larger communica-
tion. “Auto-sharding” performs best in all cases and maintains a near-linear scaling, because
it figures out the correct partition plan that always minimizes the communication overhead.

3.8.3 Inter-Op Parallelism Ablation Study
We study the effectiveness of our inter-operator parallelism optimization algorithm. We use
“DP” to denote our algorithm.

Experimental setup. We report the performance of three variants of our DP algorithm
on GPT and Wide-ResNet. The benchmark settings are the same as the settings in §3.8.1.

Baselines. We compare our DP algorithm with two rule-based algorithms. “Equal opera-
tor” disables our DP-based operator clustering but assigns the same number of operators to
each cluster. “Equal layer” restricts our DP algorithm to use the same number of layers for
all stages.
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Figure 3.10: Alpa’s compilation time on all GPT models. The model size and #GPUs are
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Results. Fig. 3.9 shows the result. “DP” always outperforms “Equal operator”. This is
because “Equal operator” merges operator that should be put onto different device meshes.
Alpa’s algorithm can cluster operators based on the communication cost and computation
balance. Whether “DP” can outperform “Equal layer” depends on the model architecture.
On homogeneous models like GPT, the solution of our DP algorithm uses the same number
of layers for all stages, so “Equal layer” performs the same as “DP”. On Wide-ResNet, the
optimal solution can assign different layers to different stages, so “Equal layer” is worse than
the full flexible DP algorithm. For Wide-ResNet on 32 GPUs, our algorithm outperforms
“Equal operator” and “Equal layer” by 2.6× and 1.6×, respectively.

3.8.4 Compilation Time
Fig. 3.10 shows Alpa’s compilation time for all the GPT settings in §3.8.1. The compilation
time is a single run of the full Alg. 2 with a provided number of microbatches B. According
to the result, Alpa scales to large models or large clusters well, because compilation time
grows linearly with the size of the model and the number of GPUs in the cluster. Table 3.5
reports the compilation time breakdown for the largest GPT model in our evaluation (39B,
64 GPUs). Most of the time is spent on enumerating stage-mesh pairs and profiling them.
For the compilation part, we accelerate it by compiling different stages in parallel with
distributed workers. For profiling, we accelerate it using a simple cost model built at the
XLA instruction level, which estimates the cost of matrix multiplication and communication
primitives with a piece-wise linear model. With these optimizations, the compilation and
search for a model take at most several hours, which is acceptable as it is much shorter than
the actual training time, which can take several weeks.

3.8.5 Cross-Mesh Resharding
We evaluate our generalized local all-gather optimization for cross-mesh resharding between
meshes with different shapes on Wide-ResNet, as shown in Fig. 3.11. “signal send/recv”
is a synthetic case where we only send 1 signal byte between stages, which can be seen as
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Table 3.5: Compilation time breakdown of GPT-39B.

Steps Ours w/o optimization

Compilation 1582.66 s > 16hr
Profiling 804.48 s > 24hr

Stage Construction DP 1.65 s N/A
Other 4.47 s N/A
Total 2393.26 s > 40hr
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Figure 3.11: Cross-mesh resharding on Wide-ResNet.
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Figure 3.12: Visualization of the parallel strategy of Wide-ResNet on 16 GPUs. Different
colors represent the devices a tensor is distributed on. Grey blocks indicate a tensor is
replicated across the devices. The input data and resulting activation of each convolution
and dense layer can be partitioned along the batch axis and the hidden axis. The weights
can be partitioned along the input and output channel axis.

the upper bound of the performance. “w/o local all-gather” disables our local all-gather
optimization and uses only send/recv. “w/ local all-gather” enables our local all-gather
optimization to move more communication from slow connections to fast local connections,
which brings 2.0× speedup on 32 GPUs.
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3.8.6 Case Study: Wide-ResNet
We visualize the parallelization strategies Alpa finds for Wide-ResNet on 16 GPUs in
Fig. 3.12. We also include the visualization of results on 4 and 8 GPUs in Appendix 3.13.
On 4 GPUs, Alpa uses only intra-operator parallelism. The intra-operator solution parti-
tions along the batch axis for the first dozens of layers and then switches to partitioning the
channel axis for the last few layers. On 16 GPUs, Alpa slices the model into 3 stages and
assigns 4, 4, 8 GPUs to stage 1, 2, 3, respectively. Data parallelism is preferred in the first
two stages because the activation tensors are larger than weight tensors. In the third stage,
the ILP solver finds a non-trivial way of partitioning the convolution operators. The result
shows that it can be opaque to manually create such a strategy for a heterogeneous model
like Wide-ResNet, even for domain experts.

3.9 Related Work
Systems for data-parallel training. Horovod [119] and PyTorchDDP [79] are two com-
monly adopted data-parallel training systems that synchronize gradients using all-reduce.
BytePS [106, 67] unifies all-reduce and parameter servers and utilizes heterogeneous re-
sources in data center clusters. AutoDist [157] uses learning-based approaches to compose a
data-parallel training strategy. ZeRO [111, 150] improves the memory usage of data paral-
lelism by reducing replicated tensors. MiCS [161] minimizes the communication scale on top
of ZeRO for better scalability on the public cloud. In Alpa, data parallelism [69] reduces to
a special case of intra-operator parallelism – partitioned along the batch axis.

Systems for model-parallel training. The two major classes of model parallelisms have
been discussed in §3.2. Mesh-TensorFlow [122], GSPMD [151, 76] and OneFlow [154] pro-
vide annotation APIs for users to manually specify the intra-op parallel plan. ColocRL [89]
puts disjoint model partitions on different devices without pipelining, thereby the concur-
rency happens only when there exist parallel branches in the model. In contrast, Gpipe [57]
splits the input data into micro-batches and forms pipeline parallelisms. PipeDream [91, 92]
improves GPipe by using asynchronous training algorithms, reducing memory usage, and
integrating it with data parallelism. However, PipeDream is asynchronous while Alpa is a
synchronous training system. TeraPipe [83] discovers a new pipeline parallelism dimension
for transformer-based LMs. Google’s Pathway system [10] is a concurrent work of Alpa.
Pathway advocates a single controller runtime architecture combining "single program mul-
tiple data" (SPMD) and "multiple program multiple data" (MPMD) model. This is similar
to Alpa’s runtime part, where SPMD is used for intra-op parallelisms and MPMD is used
for inter-op parallelism.

Automatic search for model-parallel plans. Another line of work focuses on the au-
tomatic discovery of model-parallel training plans. Tofu [143] develops a dynamic program-
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ming algorithm to generate the optimal intra-op strategy for linear graphs on a single node.
FlexFlow [65] proposes a “SOAP” formulation and develops an MCMC-based randomized
search algorithm. However, it only supports device placement without pipeline parallelism.
Its search algorithm cannot scale to large graphs or clusters and does not have optimality
guarantees. TensorOpt [19] develops a dynamic programming algorithm to automatically
search for intra-op strategies that consider both memory and computation cost. Varuna [4]
targets low-bandwidth clusters and focuses on automating pipeline and data parallelism.
Piper [132] also finds a parallel strategy with both inter- and intra-op parallelism, but it re-
lies on manually designed intra-op parallelism strategies and analyzes on a uniform network
topology and asynchronous pipeline parallel schedules.

Techniques for training large-scale models. In addition to parallelization, there are
other complementary techniques for training large-scale models, such as memory optimiza-
tion [23, 62, 20, 56, 70, 114], communication compression [8, 139], and low-precision train-
ing[88]. Alpa can incorporate many of these techniques. For example, Alpa uses rematerial-
ization to reduce memory usage and uses mixed-precision training to accelerate computation.

Compilers for deep learning. Compiler techniques have been introduced to optimize
the execution of DL models [136, 134, 22, 164, 64, 85, 140]. Most of them focus on opti-
mizing the computation for a single device. In contrast, Alpa is a compiler that supports a
comprehensive space of execution plans for distributed training.

Distributed tensor computation in other domains. Besides deep learning, libraries
and compilers for distributed tensor computation have been developed for linear algebra [15]
and stencil computations [32]. Unlike Alpa, they do not consider necessary parallelization
techniques for DL.

3.10 Conclusion
We present Alpa, a new architecture for automated model-parallel distributed training, built
on top of a new view of machine learning parallelization approaches: intra- and inter-operator
parallelisms. Alpa constructs a hierarchical space and uses a set of compilation passes to
derive efficient parallel execution plans at each parallelism level. Alpa orchestrates the par-
allel execution on distributed compute devices on two different granularities. Coming up
with an efficient parallelization plan for distributed model-parallel deep learning is histori-
cally a labor-intensive task, and we believe Alpa will democratize distributed model-parallel
learning and accelerate the adoption of emerging large deep learning models.
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3.11 Appendix: Proof of Submesh Shape Covering
We prove the following theorem which shows we can always find a solution that fully covers
the cluster mesh (N, M) with our selected submesh shapes in §5.2: (1) one-dimensional
submeshes of shape (1, 1), (1, 2), (1, 4) . . . (1, 2m) where 2m = M and (2) two-dimensional
submeshes of shape (2, M), (3, M), . . . , (N, M) .

Jibberish 1. For a list of submesh shapes (n1, m1), . . . (nS, mS), if ∑i ni ·mi = N ·M and
each (ni, mi) satisfies either (1) ni = 1 and mi = 2pi is a power of 2 or (2) mi = M, then
we can always cover the full (N, M) mesh where M = 2m with these submesh shapes.

Proof. We start with putting the second type submesh into the full mesh. In this case,
because mi = M, these submeshes can cover the full second dimension of the full mesh.
After putting all the second kind of submeshes into the mesh, we reduce the problem to fit
a cluster mesh of shape (N, M) with submeshes with shape (1, 2p1), . . . , (1, 2pS ) where all
pi ∈ {0, 1, . . . , m− 1}. Note that now we have

2p1 + · · ·+ 2pS = N · 2m. (3.7)

We start an induction on m. When m = 1, we have all pi = 0 and thus all the submeshes
are of shape (1, 1), which means that all the submeshes can definitely cover the full mesh.
Assume the above hold for all m = 1, 2, . . . , k − 1. When m = k, note that in this case the
number of submeshes with pi = 0 should be an even number, because otherwise the left hand
side of Eq. 3.7 will be an odd number while the right hand side is always an even number.
Then we can split all submeshes with shape pi = 0 into pairs, and we co-locate each pair to
form a (1, 2) mesh. After this transformation, we have all pi > 0, so we can subtract all pi

and m by 1 and reduce to m = k − 1 case. Therefore, the theorem holds by induction.

3.12 Appendix: Model Specifications
For GPT-3 models, we use sequence length = 1024 and vocabulary size = 51200 for all
models. Other parameters of the models are listed in Table. 3.6. The last column is the
number of GPUs used to train the corresponding model.

For GShard MoE models, we use sequence length = 1024 and vocabulary size = 32000 for
all models. Other parameters of the models are listed in Table. 3.7. The last column is the
number of GPUs used to train the corresponding model.

For Wide-ResNet models, we use input image size = (224, 224, 3) and #class = 1024 for
all models. Other parameters of the models are listed in Table. 3.8. The last column is the
number of GPUs used to train the corresponding model.
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Table 3.6: GPT-3 Model Specification

#params Hidden size #layers #heads #gpus
350M 1024 24 16 1
1.3B 2048 24 32 4
2.6B 2560 32 32 8
6.7B 4096 32 32 16
15B 5120 48 32 32
39B 8192 48 64 64

Table 3.7: GShard MoE Model Specification

#params Hidden size #layers #heads #experts #gpus
380M 768 8 16 8 1
1.3B 768 16 16 16 4
2.4B 1024 16 16 16 8
10B 1536 16 16 32 16
27B 2048 16 32 48 32
70B 2048 32 32 64 64

Table 3.8: Wide-ResNet Model Specification

#params #layers Base channel Width factor #gpus
250M 50 160 2 1

1B 50 320 2 4
2B 50 448 2 8
4B 50 640 2 16

6.8B 50 320 16 32
13B 101 320 16 64
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Stage 1: 4 GPUs

Inputs/activations Weights Partitioned on batch/input axis Partitioned on hidden/output axis Replicated

(a) Parallel strategy of Wide-ResNet on 4 GPUs.

Stage 1: 4 GPUs

Stage 2: 4 GPUs

(b) Parallel strategy of Wide-ResNet on 8 GPUs.

Figure 3.13: Visualization of the parallel strategy of Wide-ResNet on 4 and 8 GPUs. Different
colors represent the devices a tensor is distributed on. Grey blocks indicate a tensor is
replicated across all devices. The input data and resulting activation of each convolution or
dense layer can be partitioned along the batch axis and the hidden axis. The weights can
be partitioned along the input and output channel axis.

3.13 Appendix: Extra Case Study
We visualize the parallelization strategies Alpa finds for Wide-ResNet on 4 and 8 GPUs in
Fig. 3.13.
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Chapter 4

AlpaServe: Statistical Multiplexing
with Model Parallelism for Deep
Learning Serving

Model parallelism is conventionally viewed as a method to scale a single large deep learning
training model beyond the memory limits of a single device, as illustrated in chapters 2 and 3.
Additionally, while training has been a major focus in deep learning, a model actually spends
most of its time on inference instead of training: A model is typically trained once but can
be used for inference over a long period to serve numerous requests.

In this chapter, we demonstrate that model parallelism can be additionally used for the
statistical multiplexing of multiple devices when serving multiple models, even when a single
model can fit into a single device. Our work reveals a fundamental trade-off between the
overhead introduced by model parallelism and the opportunity to exploit statistical mul-
tiplexing to reduce serving latency in the presence of bursty workloads. We explore the
new trade-off space and present a novel serving system, AlpaServe, that determines an ef-
ficient strategy for placing and parallelizing collections of large deep learning models across
a distributed cluster. Evaluation results on production workloads show that AlpaServe can
process requests at up to 10× higher rates or 6× more burstiness while staying within latency
constraints for more than 99% of requests.

4.1 Introduction
Advances in self-supervised learning have enabled exponential scaling in model sizes. For
example, large pretrained models like BERT [34] and GPT-3 [18] have unlocked a plethora of
new machine learning (ML) applications from Copilot [46] to copy.ai [26] and ChatGPT [101].

Serving these very large models is challenging because of their high computational and mem-
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(a) No colocation

GPU 1 Model A

GPU 2 Model B

R1 R2 R3 R4

R5 R6

Burst 1:
4 requests of model AModel placement Burst 2:

2 requests of model B

(b) Colocation with model parallelism

GPU 1 A.0

GPU 2 A.1

R1 R3R2 R4

Burst 1:
4 requests of model AModel placement Burst 2:

2 requests of model B

B.0

B.1 R1 R3R2 R4

R5 R6

R5 R6

Figure 4.1: Two placement strategies for serving two models on two GPUs. In each subfigure,
the left part shows the model placements and the right part shows the timeline for handling
bursty requests. At the time of "Burst 1", 4 requests of model A come at the same time.
Colocation with model parallelism can reduce the average completion time of bursty requests.

ory requirements. For example, GPT-3 requires 325 GB of memory to store its parameters
as well as a requisite amount of computation to run inference. To serve this model, one
would need at least 5 of Nvidia’s newest Hopper 80 GB GPUs just to hold the weights and
potentially many more to run in real-time. Worse yet, the explosive growth of model sizes
continues unabated [25, 41]. Techniques like model compression and pruning are not suf-
ficient in face of the exponential growth in model sizes and often come at the expense of
reduced model quality [35].

Provisioning sufficient resources to serve these models can be arduous as request rates are
bursty. For example, using common workload traces, we observe frequent spikes in demand
of up to 50× the average [160]. Meeting the service level objective (SLO) of latency usually
means provisioning for these peak loads, which can be very expensive; additional devices
allocated for this purpose would remain underutilized most of the time. Making matters
worse, it is increasingly common to serve multiple models and multiple variations of the
same large model in situations like A/B testing or serving fine-tuned models for specific
domains (§4.2).

This chapter studies how to efficiently serve multiple large models concurrently. Specifically,
we explore the underappreciated benefits of model parallelism in online model serving, even
for smaller models that can fit on a single device. Model parallelism refers to partitioning
and executing a model on distributed devices (§4.2.1). The benefits of model parallelism
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have been well studied [165, 57, 76, 94] in the throughput-oriented training setting. However,
its effects for model serving under latency-sensitive settings remains largely untapped.

We observe that there are fundamental transition points in the model serving design space
that challenge prior assumptions about serving, even for models that fit on a single de-
vice. For example, consider the scenario with two models and two GPUs, each of which
has sufficient memory to hold one complete model. As shown in Fig. 4.1(a), the natural
approach assumed by almost all existing serving systems [97, 28, 98] is to allocate one ded-
icated GPU for one model. This approach appears rational because partitioning the model
across GPUs would incur communication overheads that would likely increase the prediction
latency. However, we find that inducing additional model parallelism (to the point where
per-example execution time actually increases) enables a wider range of placement strategies,
e.g., model co-location, which can improve the statistical multiplexing of the system under
bursty workloads. In Fig. 4.1(a), assuming the execution time of a model is y, the average
end-to-end latency of request 1 through 4 is (1y + 2y + 3y + 4y)/4 = 2.5y. In Fig. 4.1(b), as-
suming a 10% model-parallel overhead, the average latency of request 1 through 4 is reduced
to (1.1y + 1.6y + 2.1y + 2.6y)/4 = 1.85y. Co-location with model parallelism can utilize
more devices to handle bursty requests and reduces the average completion time, despite its
overheads (§4.3.1). Even if we batch the requests, the case still holds (§4.6.5).

Unfortunately, the decision of how to optimally split and place a collection of models is
complex. Although leveraging model parallelism as above has its benefits, it still adds over-
heads that may negate those benefits for less bursty workloads. For example, we find that a
particularly influential axis on the efficacy of model parallelism is per-GPU memory capacity
(§4.3.2), although other factors (e.g., the arrival pattern, SLO) can also have a significant
effect. Further, besides the inter-op model parallelism presented in fig. 4.1, another kind
of model parallelism, intra-op parallelism, presents its own distinct tradeoffs (§4.3.3). Ulti-
mately, different styles of parallelism and their tradeoffs create a complex, multi-dimensional,
and multi-objective design space that existing systems largely ignore and/or fail to navigate.
However, not leveraging model parallelism in the serving setting is typically not an option for
large models, and not addressing this trade-off space directly results in significant increases
in cost and serving latency.

To that end, we present AlpaServe, a system that automatically and efficiently explores
the tradeoffs among different parallelization and placement strategies for model serving.
AlpaServe takes a cluster resource specification, a set of models, and a periodic workload
profile; it then partitions and places the models and schedules the requests to optimize
SLO attainment (i.e., the percentage of requests served within SLO). To assist the design
of AlpaServe, we first introduce a taxonomy and quantify the tradeoffs between different
parallelization strategies in model serving (§4.3). We then present key algorithms to navigate
the tradeoff space (§4.4). We design an iterative simulator-guided model placement algorithm
to optimize the colocation of models and a group partition algorithm to search for the best
way to partition the cluster into disjoint model-parallel groups. In addition, we extend the
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existing auto-parallelization algorithms for training to make them more suitable for inference.

We evaluate AlpaServe with production workloads on a 64-GPU cluster (§4.6). Evaluation
results show that, when optimizing one metric at a time, AlpaServe can choose to increase
the request processing rate by 10×, achieve 2.5× lower latency deadlines, or tolerate 6×
burstier traffic compared to previous state-of-the-art serving systems.

In summary, we make the following contributions:

• A detailed analysis of the tradeoff space of different model parallel strategies for efficient
model serving.

• Novel model placement algorithms to incorporate model parallelism in a serving system.

• A comprehensive evaluation of AlpaServe with both synthetic and production work-
loads.

4.2 Background
Over the past few years, increasingly capable models have been developed for everything from
recommendations to text generation. As a result, serving predictions from these models has
become an essential workload in modern cloud systems. The structure of these workloads
often follows a simple request-response paradigm. Developers upload a pre-trained model
and its weights ahead of time; at runtime, clients (either users or other applications) submit
requests for that model to a serving system, which will queue the requests, dispatch them
to available GPUs/TPUs, and return the results.

The requirements of these model-serving systems can be stringent. To satisfy user demand,
systems often must adhere to aggressive SLO on latency. At the same time, serving systems
that must run continuously need to minimize their operational costs associated with expen-
sive accelerators. Minimizing serving costs can be challenging because dynamically scaling
compute resources would be too slow on the critical path of each prediction request: it can
take multiple seconds just to swap a large model into accelerator memory [111]. Further-
more, there is significant and unpredictable burstiness in the arrival process of user requests.
To meet tight SLO, contemporary serving systems are forced to over-provision compute
resources, resulting in low cluster utilization [146].

Another pattern that emerges in serving large models is the use of multiple instances of the
same or similar model architectures. This is commonly seen in the practice of pretraining
on large unlabeled data and fine-tuning for various downstream tasks [34], which can sig-
nificantly boost accuracy but results in multiple instances of the same model architecture.
For example, Hugging Face serves more than 9,000 versions of fine-tuned BERT [58]. They
either share a portion of the parameters or do not share any parameters at all for better
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Figure 4.2: Latency CDF and cluster utilization in the 2-model example.

accuracy. Prior works have [166, 123] exploited the property of shared parameters, but
we do not consider the shared parameters in this chapter because AlpaServe targets general
settings and full-weight tuning is still a major use case.

4.2.1 Model Parallelism in Model Serving
Distributed parallel model execution is necessary when attempting to satisfy the serving
performance requirements or support large models that do not fit in the memory of a single
device. At a high level, distributed execution of deep learning models can be classified into
two categories: intra-operator parallelism and inter-operator parallelism [165].

Intra-operator parallelism. DL models are composed of a series of operators over multi-
dimensional tensors, e.g., matrix multiplication over input and weight tensors. Intra-operator
parallelism is when a single operator is partitioned across multiple devices, with each device
executing a portion of the computation in parallel [151, 122, 126]. Depending on the specific
partitioning strategy and its relationship to prior and subsequent operators in the model,
partitioning can require communication among participating GPUs to split the input and
then merge the output.

The benefit of intra-operator parallelism for single-request execution is twofold. First, it can
expand the total amount of computation available to the target model, reducing its end-to-
end latency. In a similar fashion, it can expand the total memory available to the model
for storing its inputs, weights, and intermediate values. The cost is the aforementioned
communication overhead.

Inter-operator parallelism. The other type of parallelism available to DL models is
inter-operator parallelism, which assigns different operators of the model’s execution graph
to execute on distributed devices in a pipeline fashion (a.k.a. pipeline parallelism) [57, 91,
83]. Here, devices communicate only between pipeline stages, typically using point-to-point
communication between device pairs.

Unlike intra-operator parallelism, pipeline parallelism does not reduce the execution time of
a single request. In fact, it typically increases the execution time due to modest amounts
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of communication latency between pipeline stages, although the total amount of transferred
data is often lower than it is in intra-operator parallelism. Instead, the primary use of
inter-operator parallelism in traditional serving systems is to allow the model to exceed the
memory limitation of a single GPU.

4.3 Motivation and Tradeoff Analysis
As mentioned, both types of model parallelism reduce per-device memory usage by parti-
tioning a model on multiple devices. A key motivation for this work is that we can use this
property to fit more models on one device, enabling better statistical multiplexing of the
devices when handling bursty requests. We explore this idea through a series of empirical
examinations and theoretical analysis, starting with an illustrative example (§4.3.1), fol-
lowed by an empirical analysis of when model parallelism is beneficial (§4.3.2), the overhead
of model parallelism (§4.3.3), and a queueing theory-based analysis (§4.3.4). All the exper-
iments in this section are performed on an AWS EC2 p3.16xlarge instance with 8 NVIDIA
16GB V100 GPUs.

4.3.1 Case Study: A Two-model Example
We start with an illustrative experiment to show how model parallelism can benefit the
serving of multiple models. We use two GPUs to serve two Transformer models with 6.7
billion parameters each (13.4 GB to store its FP16 weights). Because each GPU has 16 GB
of memory, it can fit one and only one model. A single request takes around 0.4 s to process
on one GPU.

We compare the following model placements, corresponding to the strategies in fig. 4.1.
The first is simple placement, where we place one model on each GPU due to the memory
constraint. The second is model-parallel placement, where we use inter-op parallelism to
partition each model to a 2-stage pipeline and let each GPU execute half of each model.

We evaluate the two placements when the requests to each model follow an independent
Poisson process with an arrival rate of 1.5 request/s. section 4.2 shows the cumulative dis-
tribution function (CDF) and average of request latency (which includes the GPU execution
time and queuing delay). Model-parallel placement reduces the average latency of the simple
placement from 0.70s to 0.55s, a 1.3× speedup. The speedup comes from the better burst
tolerance: when a burst arrives that exceeds the capability of a single GPU, simple place-
ment must begin queuing requests. However, as long as the other model does not receive
many requests, the model parallel placement can use both GPUs to serve the requests for
the popular model via statistical multiplexing of the GPUs.

This effect becomes more pronounced with higher burstiness, which we can demonstrate
using a Gamma request arrival process with the same average request rate as above but a
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Figure 4.3: Replication and model parallel placement illustration with different memory
budgets, where the memory budgets are set to be multiples of a single model’s size.

higher coefficient of variance (CV) of 3. As shown in section 4.2, the speedup on mean latency
is now increased to 1.9×. section 4.2 shows a representative trace of the corresponding total
cluster utilization over time. Note that for each request burst, model-parallel placement can
use the whole cluster and only take half of the time to process, while simple placement can
only use half of the cluster.

In addition, we also evaluate the case where one model receives more requests than another.
In section 4.2, we use Poisson arrival but let 20% of the requests ask for model 1 and 80%
ask for model 2. Although replication performs slightly better for model 1 requests, it is
drastically worse on model 2 requests compared to the model-parallel placement. For model-
parallel placement, because both GPUs are shared across two models, the requests to both
models follow the same latency distribution. Overall, model-parallel placement reduces the
mean latency by 6.6×.

4.3.2 When is Model Parallelism Beneficial
To further explore the nuances of model parallelism in serving, we increase the size of the
deployment to 8 GPUs and 8 Transformer models with 2.6B parameters each. As a base
setting, we set the requests to each model as a Gamma process with an average rate of 20
request/s and CV of 3; we then vary a range of factors to see their effects. Note that some
of the settings we evaluate are impossible on real hardware (e.g., exceeding the memory
capacity of a single device) so we leverage the simulator introduced in §4.5. The fidelity of
the simulator is very high as verified in §4.6.1.

The model in this case is smaller (5.2GB), so one GPU can also store multiple models without
model parallelism. We compare two placement methods: (1) Replication. In this setting,



CHAPTER 4. ALPASERVE: STATISTICAL MULTIPLEXING WITH MODEL
PARALLELISM FOR DEEP LEARNING SERVING 64

10 20 30 40
Memory Budget (GB)

1

2
M

ea
n 

La
te

nc
y 

(s
)

Model Parallelism
Replication
GPU Memory Bound

10 20 30 40
Memory Budget (GB)

5

10

P9
9 

La
te

nc
y 

(s
) Model Parallelism

Replication
GPU Memory Bound
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Figure 4.5: Serving performance with changing arrival rates. Model parallelism is beneficial
for smaller rates.

we replicate the models to different devices until each device cannot hold any extra models.
Because all the models receive equal amounts of loads on average, we replicate each model
the same number of times (fig. 4.3a). (2) Model Parallelism. Here we use inter-operator
parallelism and uniformly assign the Transformer layers to different GPUs.

Device memory. We evaluate the mean and the tail latency of the two placement methods
under different device memory capacities. For replication, more GPU memory can fit more
models onto a single GPU. For model parallelism, more GPU memory can also reduce the
number of pipeline stages and reduce the overhead as in fig. 4.3b. The resulting mean and
P99 latency is shown in fig. 4.4. With more memory, more models can fit into a single GPU,
so the benefit of statistical multiplexing diminishes because replication can also effectively
use multiple devices to serve the bursty requests to a single model. When the GPU memory
capacity is large enough to hold all models, there is no gain from model parallelism.
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Figure 4.6: Serving performance with changing CVs. Model parallelism is beneficial for
larger CVs.

Request arrival. We vary the parameters of the arrival process and compare the repli-
cation placement with the model-parallel placement with 8-stage pipeline parallelism. The
mean and P99 latency results of changing arrival rate are shown in fig. 4.5. When the arrival
rate is low, model parallelism can greatly reduce the serving latency. However, when the
arrival rate approaches the peak serving rate of the cluster, the benefit of model-parallel
placement starts to diminish. Eventually, it starts to perform worse than replication. This is
because when all models are equally saturated, the replication placement is able to achieve
efficient cluster utilization and there is no benefit to the statistical multiplexing afforded by
model parallelism. Instead, the overhead of model parallelism (§4.3.3) starts to become a
significant factor.

The mean and P99 latency results of changing CV are in fig. 4.6. With a higher CV, the
requests become more bursty, and the benefit of model parallelism becomes more significant.
As shown in the results, with a higher CV, model parallelism can greatly outperform the
performance of replication.

Service level objectives. In prediction serving settings, it is common to have tight la-
tency SLO and predictions made after these deadlines are often discarded [50]. For example,
advertising systems may choose not to show an ad rather than delay rendering user content.
In this case, the goal of the serving system is to optimize the percentage of requests that can
be finished within the deadline, i.e., SLO attainment.

In this experiment, we measure how SLOs affect the performance of the placement meth-
ods. We compare the replication and the model-parallel placement with 8-stage pipeline
parallelism. During execution, we drop the requests that will exceed the deadline even if
we schedule it immediately. We scale the SLO to different multiplies of the single device
execution latency (SLO Scale in fig. 4.7a) and compare the SLO attainment of the two
methods.
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Figure 4.7: SLO attainment with changing SLOs. Model parallelism is beneficial for smaller
SLOs.

As in fig. 4.7a, when SLO is tight (< 10× model latency), model parallelism can greatly
improve SLO attainment. However, when the SLO becomes looser, its SLO attainment
plateaus but that of the replication placement keeps growing. This result shares the same
core logic as previous experiments: When SLO becomes looser, more requests can stay in
the waiting queue, and thus the effective burstiness of the requests decreases. When many
requests are queued, the system is bounded by its total processing capability, which might
be affected by the model parallelism overhead. In the real world, the SLO requirement is
often less than 5× of the model execution latency [50], where model parallelism can improve
SLO attainment.

Summary: Model parallelism benefits model serving through statistical multiplexing
when the device memory is limited, the request rate is low, the request CV is high, or
the SLO is tight.

4.3.3 Overhead of Model Parallelism
In this section, we further investigate the overheads of different model parallel strategies and
how they affect serving performance. Similar to the setup in fig. 4.7a, we manually modify
the overhead of model parallelism. Specifically, let the latency of a single model executing on
the GPU be L and the number of pipeline stages be n. We set the total latency of pipeline
execution to be αL and the latency of each pipeline stage to be αL/n, where α is a parameter
that controls the overhead. When α = 1, model parallelism does not have any overhead and
larger α means higher overhead.

We show the results in fig. 4.7b. If model parallelism does not have any overhead (α = 1),
it can always outperform replication due to its ability to multiplex the devices. When the
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from uneven partition while the overhead of intra-op parallelism comes from communication.
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Figure 4.9: The latency, throughput and memory usage vs. #GPUs for inter-op parallelism,
intra-op parallelism, and replication. In subfigure (c), the lines for inter-op and intra-op
parallelism overlap.

overhead becomes larger and the SLO is low, model parallelism still outperforms replication.
However, with a larger SLO, the effective burstiness is reduced and the performance is
dominated by the overhead.

Given that the overhead can greatly affect serving performance, we perform a detailed study
of the multiple sources of model-parallel overhead in fig. 4.8. For inter-op parallelism, when
partitioning a single model into multiple stages, different stages need to communicate the
intermediate tensors, and we denote this overhead as the communication overhead. In addi-
tion, the pipeline execution will be bottlenecked by the execution time of the slowest stage,
making the effective latency to be the number of pipeline stages times the latency of the
slowest stage [57]. We denote this as the uneven partition overhead. As in section 4.3.3,
for inter-op parallelism, most overhead comes from the latency imbalance among different
pipeline stages, instead of the communication between stages. While our previous discussion
mainly focuses on inter-op parallelism, the other type of model parallelism, intra-op paral-
lelism, has very different performance characteristics. Its overhead is merely brought by the
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collective communication across multiple devices [94], which cannot be overlapped with the
neural network computation due to data dependency. From section 4.3.3, we can see that
the communication overhead of intra-op parallelism is much higher than inter-op parallelism.

Finally, we compare the latency, throughput, and memory consumption of different model-
parallel placements and the replication placement in fig. 4.9. Because of the sequential
dependence between the different stages, inter-op parallelism cannot reduce the execution
latency of a single input data. Instead, the latency is slightly higher due to the commu-
nication between the stages. On the other hand, intra-op parallelism can largely reduce
the latency via the parallel execution of different GPUs (section 4.3.3). However, because
inter-op parallelism can pipeline the execution of different stages and only communicate a
relatively small amount of data, it attains higher throughput compared to intra-op paral-
lelism (section 4.3.3). Because both parallel methods split the model weight tensors across
different GPUs, the total memory usage stays constant with increasing numbers of GPUs
(section 4.3.3). This makes the statistical multiplexing of different GPUs across multiple
models possible.

In the end, the tradeoff between parallelization strategies and their interplay with cluster
resources, arrival patterns, and serving objectives forms an intricate design space.

4.3.4 Queueing Theory Analysis
In this section, we use queuing theory to mathematically verify the conclusions in §4.3.2
and §4.3.3. Specifically, we analyze the case where the inputs follow the Poisson arrival
process. Since the execution time of a deep learning inference task is highly predictable [50],
we assume the request serving time is deterministic. For the single device case, suppose the
request rate to a model is λ0 and the single device latency is D with the utilization λ0D < 1,
then the average number of requests LQ and the average latency W in this M/D/1 queue
[127] are:

LQ = λ0D

2(1− λ0D) , W = D + LQD = D + λ0D
2

2(1− λ0D) .

Now consider the example in §4.3.1. Let pλ, (1 − p)λ be the average request rates for the
two models respectively, where p ∈ [0, 1] controls the percentage of requests for both models.
Then for the simple placement, the average latency can be derived as the average latency of
two independent queues:

Wsimple = D + p2λD2

2(1− pλD) + (1− p)2λD2

2(1− (1− p)λD) .

Note that Wsimple reaches minimum when p = 1/2. Intuitively, when p is not exactly half,
one model receives more requests than the other. This larger portion of requests have a
longer queueing delay, which leads to the higher overall mean latency.
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Figure 4.10: Maximal communication overhead α and uneven partition overhead β satisfy
Wpipeline ≤ Wsimple as a function of total utilization λD.

For the model-parallel case, the requests to both models merged to a single Poisson Process
with rate λ. For pipeline parallelism, suppose the latency for a single input to be Ds and the
maximum stage latency to be Dm, then the average latency would be

Wpipeline = Ds + λD2
m

2(1− λDm) .

Suppose there is no model-parallel overhead, then Ds = 2Dm = D. Let’s first consider the
case where p = 1/2 (section 4.2). We have

Wsimple = D + λD2

4− 2λD
, Wpipeline = D + λD2

8− 4λD
.

In this case, the waiting time for model-parallel execution is half of the simple placement
waiting time, as shown in the vertical lines in section 4.2. When the p is not 1/2, Wsimple
will increase while Wpipeline will stay the same, so the gap between Wsimple and Wpipeline will
be even larger, as in section 4.2.

Next, we consider the case where model parallelism incurs overhead. We measure the two
types of overheads in §4.3.3 separately: With the overhead from communication, Ds =
2Dm = αD, where α ≥ 1 is the overhead factor. With the overhead from uneven stages, we
suppose Ds = D still holds, but Dm = βD/2 where β ≥ 1 is the overhead factor. To keep
Wpipeline ≤ Wsimple, we can get the maximal α and β as a function of the total utilization
λD separately and we visualize the function in fig. 4.10. When the utilization is high, the
benefit of statistical multiplexing diminishes, and thus the overhead needs to be low, as
in §4.3.2. On the other hand, when the utilization is very low, most requests will not be
queued, and thus the communication overhead α needs to be low to keep the processing
latency to be low. Note that the maximal overhead here is based on a uniform Poisson
arrival distribution. A more bursty or more non-uniform arrival distribution will make the
simple placement performs worse and make the model-parallelism placement outperforms
the simple replication placement with even higher overhead.
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Figure 4.11: AlpaServe Runtime System Architecture

4.4 Method
From §4.3, we can see that there are several key challenges to effectively utilize model
parallelism for deep learning serving:

• Derive efficient model parallel strategies for inference to reduce the overhead of model
parallelism. Specifically, find a partitioning strategy that minimizes the stage imbal-
ance for inter-operator parallelism.

• Determine model-parallel placements according to the arrival pattern to maximize SLO
attainment.

We built AlpaServe to specifically tackle these challenges. The runtime architecture of Al-
paServe is shown in Fig. 4.11. AlpaServe utilizes a centralized controller to dispatch requests
to different groups.1 Each group hosts several model replicas on a shared model-parallel
runtime. This section describes the architecture of AlpaServe and the key algorithms for
efficiently leveraging model parallelism in a model serving system.

4.4.1 Automatic Parallelization for Inference
Since different parallelization configurations have different latency and throughput trade-
offs, we need to enumerate multiple possible configurations for every single model and let
the placement algorithm choose the best combination for all models in the whole cluster.
Therefore, given a model, AlpaServe first runs an auto-parallelization compiler with various
constraints to generate a list of possible configurations. We build several extensions on

1For a larger service, AlpaServe can be extended as a hierarchical deployment with each controller only
managing a subset of devices as in [158].
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top of an existing auto parallelization training system, Alpa [165], to make it suitable for
generating serving parallelization strategies. Alpa includes two passes for generating efficient
model parallel partitions: inter-op pass and intra-op pass. The inter-op pass uses a dynamic
programming (DP) algorithm to figure out the optimal inter-op parallel plan, and it calls
the intra-op pass for each potential pipeline stage, which is formulated as an integer linear
programming (ILP) problem, to profile its latency with the optimal intra-op parallel plan.
In AlpaServe, we keep the two compilation passes, but extends both passes for serving.

The inter-op pass in Alpa optimizes the overall pipeline execution latency, which includes
the time of forward and backward propagation and weight synchronization. However, in
serving workloads, only forward propagation is being executed and there is no need for
weight synchronization. Therefore, we reformulate the dynamic programming in AlpaServe
to merely focus on minimizing the maximal stage latency. Specifically, denote F (s, k) to be
the maximum latency when slicing layers 1 to k into s stages. We can derive F as

F (s, k) = min
1≤i≤k

{max{F (s− 1, i− 1), latency(i, k)}} ,

where latency(i, k) denotes the latency of a stage composes of layer i to k. In Alpa, the latency
function of all possible O(K2) combinations is being profiled by the intra-op pass because of
the complicated dependency between forward and backward passes. In AlpaServe, because
the pipeline stages only perform forward propagation and only communicate intermediate
results once between layer boundaries, we can accelerate the profiling by only profiling K
layers and letting latency(i, k) to be the sum of the latencies for layer i to k. This acceleration
enables us to efficiently enumerate different inter- and intra-op device partition setups and
generate a list of parallel strategies for the placement algorithm in §4.4.2.

For the intra-op pass, we extend the ILP in Alpa to drop all configurations that use data
parallelism. For serving workloads, because there is no need for weight synchronization, data
parallelism can be achieved by the replication placement. We leave the decision of whether
to replicate a model to the placement algorithm in §4.4.2.

4.4.2 Placement Algorithm
Given a set of models and a fixed cluster, AlpaServe partitions the cluster into several groups
of devices. Each group of devices selects a subset of models to serve using a shared model-
parallel configuration. Different groups can hold the same model as replicas. The requests
for a model are dispatched to the groups with the requested model replica. We call a specific
cluster group partition, model selection, and parallel configuration as a placement. Our goal
is to find a placement that maximizes the SLO attainment.

However, finding the optimal placement is a difficult combinatorial optimization problem.
The overall placement configuration space grows exponentially with the number of devices
and the number of models. To make things worse, the objective “SLO attainment” has no



CHAPTER 4. ALPASERVE: STATISTICAL MULTIPLEXING WITH MODEL
PARALLELISM FOR DEEP LEARNING SERVING 72

Algorithm 3 Simulator-Guided Greedy Model Selection.
Input: Model list M , device group list G, group parallel configurations P , workload W ,

beam size k (default = 1).
Output: The model selection best_sel.

best_sel ← ∅
beam_sels ← {∅}
while true do

new_sels ← ∅
for sel ∈ beam_sels do

for (m, (g, p)) ∈M × (G, P ) do
// Parallelize the model as in §4.4.1.
mparallelized ← parallelize(m, g, p)
sel ′ ← sel.add_model_to_group(mparallelized , g)
if sel ′ is in memory constraint then

sel ′.slo_attainment ← simulate(sel ′, W )
new_sels.append(sel ′)

end if
end for

end for
if new_sels = ∅ then

break
end if
beam_sels ← top-k_SLO_attainment(new_sels)
sel∗ ← pick_highest_SLO_attainment(beam_sels)
if sel∗.slo_att > best_sel.slo_att then

best_sel ← sel∗

end if
end while
return best_sel

simple analytical formula for an arbitrary arrival distribution. Existing tools and approx-
imations from queueing theory can only analyze simple cases in §4.3.4 and cannot model
more complex situations [127]. Therefore, we resort to a simulator-guided greedy algorithm
that calls a simulator to compute SLO attainment.

To compute the SLO attainment with a given set of requests and placement, in AlpaServe,
we assume we know the arrival process in advance. Although short-term burstiness is im-
possible to predict, the arrival pattern over longer timescales (e.g., hours or days) is often
predictable [146]. Given this predictability, AlpaServe either directly uses the history request
traces or fits a distribution from the trace and resamples new traces from the distribution
as the input workload to the simulator to compute the SLO attainment.
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We design a two-level placement algorithm: Given a cluster group partition and a shared
model-parallel configuration for each group, algorithm 3 uses a simulator-guided greedy al-
gorithm to decide which models to select for each group. Then, algorithm 4 enumerates
various potential cluster partitions and parallel configurations and compares the SLO at-
tainment from algorithm 3 to determine the optimal placement.

Given a cluster group partition with a fixed model-parallel configuration for each group,
algorithm 3 selects model replicas iteratively as a beam search algorithm: At each iteration,
it enumerates all possible (model, group) pairs, parallelizes the model on the device group
with the algorithms in §4.4.1, and checks whether the model can be put on the group under
the memory constraint. For all valid selections, it runs the simulator and computes SLO
attainment. It then picks the top-k solutions and enters the next iteration. The algorithm
terminates when no more replicas can be put into any groups.

The complexity of algorithm 3 is O(MGRSB), where M is the number of models, G is
the number of groups, R is the number of replicas we can put according to the memory
constraint, S is the number of requests in the workload (the simulation time is proportional
to the number of the requests) and B is the beam size. It runs reasonably fast for our
medium-scale cluster when the number of requests is small. When the number of requests
is very large, we propose another heuristic to accelerate: Instead of using the simulator
to evaluate all (model, group) pairs at each iteration, we can run the simulator only once
and place a model with the most unserved requests in an available group with the lowest
utilization. This reduces the time complexity to O((M +G)RS). We find this heuristic gives
solutions with SLO attainment higher than 98% of the SLO attainment get by the original
algorithm in our benchmarks.

algorithm 4 enumerates different group partitions and model-parallel configurations and
picks the best one via multiple calls to algorithm 3. When designing algorithm 4, the first
phenomenon we notice is that putting small and large models in the same group causes convoy
effects, where the requests of small models have to wait for the requests of large models and
miss the SLO. Therefore, in algorithm 4, we first cluster models into model buckets. Each
bucket contains a set of models with relatively similar sizes and every model is assigned to
one and only one bucket. Specifically, the function get_potential_model_buckets returns
all the possible model bucket partitions that separate models whose latency difference is
larger than a threshold into different disjoint buckets. We then enumerate all the potential
ways to assign the devices to each bucket in get_potential_device_buckets.

Because different buckets include a disjoint set of models, we can then figure out the optimal
placement for each bucket individually. For each bucket, we enumerate possible ways to par-
tition the devices in the bucket into several groups in get_potential_group_partitions
and enumerate the potential parallel configurations for each group with the method in
get_potential_parallel_configs. We then call algorithm 3 with greedy_placement to
place models in the model bucket to the groups in the device bucket. We send the whole
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Algorithm 4 Enumeration-Based Group Partition and Model-Parallel Configuration Selec-
tion.
Input: Model list M , cluster C, workload W .
Output: The placement best_plm.

best_plm ← ∅
B ← get_potential_model_buckets(M)
for (B1, B2, . . . , Bk) ∈ B do
H ← get_potential_device_buckets(C, B, k)
for (H1, H2, . . . , Hk) ∈ H do

// Get the placement for each bucket individually.
for i from 1 to k do

plm∗
i ← ∅

G ← get_potential_group_partitions(Hi)
for G ∈ G do
P ← get_potential_parallel_configs(G)
for P ∈ P do

plm ← greedy_selection(Bi, G, P, W )
if plm.slo_att > plm∗

i .slo_att then
plm∗

i ← plm
end if

end for
end for

end for
plm∗ ← concat(plm∗

1, ..., plm∗
k)

if plm∗.slo_att > best_plm.slo_att then
best_plm ← plm∗

end if
end for

end for
return best_plm

workload W to algorithm 3, which ignores the requests that hit the models outside of the
current bucket. Finally, a complete solution is got by concatenating the solutions for all
buckets. The algorithm returns the best solution it finds during the enumerative search
process.

Enumerating all possible choices can be slow, so we use the following heuristics to prune the
search space. Intuitively, we want the different buckets to serve a similar number of requests
per second. Therefore, we eliminate the bucket configurations with high discrepancies in
the estimated number of requests it can serve per second for each bucket. Additionally,
in get_potential_group_partitions and get_potential_parallel_configs, we assume
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all groups have the same size and the same parallel configurations except for the last group
which is used when the number of devices is not divisible by the group size.

4.4.3 Runtime Scheduling
We use a simple policy to dispatch and schedule the requests at runtime. All requests are
sent to a centralized controller. The controller dispatches each request to the group with the
shortest queue length. Each group manages a first-come-first-serve queue. When a group
receives a request, it checks whether it can serve the request under SLO and rejects the
request if it cannot. This is possible because the execution time of a DNN model is very
predictable and can be got in advance by profiling [50]. In most of our experiments, we do
not include advanced runtime policies such as batching [50], swapping, and preemption [51].
These techniques are complementary to model parallelism. Nevertheless, we discuss how
they fit into our system.

Batching. Batching multiple requests of the same model together can increase the GPU
utilization and thus increase the throughput of a serving system. In our system, we do find
batching is helpful, but the gain is limited. This is because we mainly target large models
and a small batch size can already fully saturate the GPU, which is verified in §4.6.5. To
isolate the benefits of model parallelism and make the results more explainable, we decide
to disable any batching in this chapter except for the experiments in §4.6.5.

Preemption. The optimal scheduling decision often depends on future arrivals, and lever-
aging preemption can help correct previous suboptimal decisions. The first-come-first-serve
policy may result in convoy effects when models with significantly different execution times
are placed in the same group. We anticipate a least-slack-time-first policy with preemption
can alleviate the problems [31].

Swapping. The loading overheads from the CPU or Disk to GPU memory are significant
for large models, which is the target of this chapter, so we do not implement swapping in
AlpaServe. We assume all models are placed on the GPUs. This is often required due to tight
SLOs and high rates, especially for large models. The placement of models in AlpaServe can
be updated in the periodic re-placement (e.g., every 24 hours).

Fault tolerance. While the current design of AlpaServe does not have fault tolerance as a
focus, we acknowledge several potential new challenges for fault tolerance: With model paral-
lelism, the failure of a single GPU could cause the entire group to malfunction. Additionally,
the use of a centralized controller presents a single point of failure.
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4.5 Implementation
We implement a real system and a simulator for AlpaServe with about 4k lines of code in
Python. The real system is implemented on top of an existing model-parallel training system,
Alpa [165]. We extend its auto-parallelization algorithms for inference settings to get the
model-parallel strategies. We then launch an Alpa runtime for each group and dispatch
requests to these groups via a centralized controller.

The simulator is a continuous-time, discrete-event simulator [116]. The simulator maintains
a global clock and simulates all requests and model executions on the cluster. Because
the simulator only models discrete events, it is orders of magnitude faster than the real
experiments. In our experiment, it takes less than 1 hour for a 24-hour trace. The fidelity
of the simulator is very high because of the predictability of DNN model execution, which
is verified in §4.6.1.

4.6 Evaluation
In this section, we evaluate AlpaServe’s serving ability under a variety of model and work-
load conditions. The evaluation is conducted on a range of model sizes, including those
that do and do not fit into a single GPU, and we show that AlpaServe consistently out-
performs strong baselines across all model sizes. In addition, we evaluate the robustness of
AlpaServe against changing arrival patterns and do ablation studies of our proposed tech-
niques. Evaluation results show that AlpaServe can greatly improve various performance
metrics. Specifically, AlpaServe can choose to save up to 2.3× devices, handle 10× higher
rates, 6× more burstiness, or 2.5× more stringent SLO, while meeting the latency SLOs for
over 99% requests.

4.6.1 Experiment Setup
Cluster testbed. We deploy AlpaServe on a cluster with 8 nodes and 64 GPUs. Each
node is an AWS EC2 p3.16xlarge instance with 8 NVIDIA Tesla V100 (16GB) GPUs.

Model setup. Since Transformer [138] is the default backbone for large models, we choose
two representative large Transformer model families: BERT [34] and GShard MoE [76]
for evaluation.2 In ML practice, the large model weights are usually pretrained and then
finetuned into different versions for different tasks. Hence, for each model family, we select
several most commonly used model sizes [18], and then create multiple model instances at
each size for experimentation. Also, we design some model sets to test the serving systems

2In this chapter, we focus on non-autoregressive large models which perform inference with one forward
pass, but note that the techniques proposed in this chapter can be extended to auto-regressive models like
GPT-3.
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Name Size Latency (ms) S1 S2 S3 S4

BERT-1.3B 2.4 GB 151 32 0 10 0
BERT-2.7B 5.4 GB 238 0 0 10 0
BERT-6.7B 13.4 GB 395 0 32 10 0
BERT-104B 208 GB 4600 0 0 0 4
MoE-1.3B 2.6 GB 150 0 0 10 0
MoE-2.4B 4.8 GB 171 0 0 10 0
MoE-5.3B 10.6 GB 234 0 0 10 0

Table 4.1: The first three columns list the sizes and inference latency of the models. The
latency is measured for a single query with a sequence length of 2048 on a single GPU.
BERT-104B’s latency is reported using a minimal degree of inter-op parallelism. The latter
columns list the number of instances for each model in different model sets named as S1-S4.

under different model conditions; details about model sizes, their inference latency on testbed
GPUs, and the number of model instances in each model set are provided in Tab. 4.1.

Metrics. We use SLO attainment as the major evaluation metric. Under a specific SLO
attainment goal (say, 99%), we concern with another four measures: (1) the minimal number
of devices the system needs, (2) the maximum average request rate, (3) the maximum traffic
burstiness the system can support, and (4) the minimal SLO the system can handle. We are
particularly interested in a SLO attainment of 99% (indicated by vertical lines in all curve
plots), but will also vary each variable in (1) - (4) and observe how the SLO attainment
changes.

Simulator fidelity. We want to study the system behavior under extensive models, work-
load, and resource settings, but some settings are just beyond the capacity of our testbed.
Also, it is cost- and time-prohibitive to perform all experiments on the testbed for the days-
long real traces. To mitigate the problem, we use the simulator introduced in §4.5 for the
majority of our experiments, noticing that DNN model execution [50] has high predictability,
even under parallel settings [165, 76]. We study the fidelity of the simulator in Tab. 4.2.
Given two model placement algorithms, we compare the SLO attainment reported by the
simulator and by real runs on our testbed under different SLO Scales. The error is less
than 2% in all cases, verifying the accuracy of our simulator. Additionally, we conduct
experiments on cluster testbed for results in §4.6.3.

4.6.2 End-to-end Results with Real Workloads
In this section, we compare AlpaServe against baseline methods on publicly available real
traces.
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SLO
Scale

Selective Replication AlpaServe
Real System Simulator Real System Simulator

0.5x 00.0% 00.0% 33.3% 33.3%
1x 00.0% 00.0% 53.5% 53.2%

1.5x 29.7% 30.2% 64.1% 64.7%
2x 36.9% 36.8% 79.0% 80.6%
3x 49.5% 48.5% 91.4% 92.1%
4x 58.6% 57.8% 96.4% 96.5%
5x 64.9% 64.0% 97.6% 97.9%
10x 83.1% 82.6% 100.0% 99.7%

Table 4.2: Comparison of the SLO attainment reported by the simulator and the real system
under different SLO scales.

Workloads. There does not exist an open-source production ML inference trace to the
best of our knowledge. Therefore, we use the following two production traces as a proxy:
Microsoft Azure function trace 2019 (MAF1) [121] and 2021 (MAF2) [160]. They were
originally collected from Azure serverless function invocations in two weeks, and have been
repurposed for ML serving research [14, 59]. The two traces exhibit distinct traffic patterns.
In MAF1, each function receives steady and dense incoming requests with gradually changing
rates; in MAF2, the traffic is very bursty and is distributed across functions in a highly skewed
way – some function receives orders of magnitude more requests than others. Note that most
previous works [50] are evaluated on MAF1 only. Since there are more functions than models,
following previous work [14, 59], given a model set from Tab. 4.1, we round-robin functions
to models to generate traffic for each model.

Setup. SLO attainment depends on many factors. For each metric (1) - (4) mentioned in
§4.6.1, we set a default value, e.g., the default SLO is set as tight as 5× inference latency
(SLO Scale=5). This forms a default setting, given which, we then vary one variable (while
fixing others) at a time and observe how it affects the resulting SLO attainment. To change
the two variables (3) and (4), which characterize traffic patterns, we follow Clockwork [50]
and Inferline [27] and slice the original traces into time windows, and fit the arrivals in each
time window with a Gamma Process parameterized by rate and coefficient of variance (CV).
By scaling the rate and CV and resampling from the processes, we can control the rate and
burstiness, respectively.

Baselines. We compare AlpaServe to two baseline methods: (1) Selective Replication (SR):
use AlpaServe’s placement algorithm without model parallelism, which mimics the policy of
a wide range of existing serving systems [28, 123]; (2) Clockwork++: an improved version of
the state-of-the-art model serving system Clockwork [50]. The original Clockwork continu-
ously swaps models into and out of GPUs. This helps for very small models (e.g., w/ several
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Figure 4.12: SLO attainment under various settings. In column S1@MAF1, we replay the
MAF1 trace on the model set S1, and so on. In each row, we focus on one specific metric
mentioned in §4.6.2 to see how its variation affects the performance of each serving system.
If any, the dotted vertical line shows when the system can achieve 99% SLO attainment.

million parameters) but incurs significant swapping overheads on larger models. For fair
comparisons, we implement Clockwork++ in our simulator, which swaps models following
Clockwork’s replacement strategy at the boundary of every two windows3 of the trace using
SR’s algorithm, but assuming zero swapping overheads. We believe it represents a hypo-
thetical upper bound of Clockwork’s performance. Since all the baselines can only support
models that can fit into one GPU memory,4 we use model set S1, S2 and S3 from Tab. 4.1
in this experiment.

SLO attainment vs. cluster size. fig. 4.12’s first row shows the SLO attainment with
varying cluster sizes when serving a specific (model set, trace) pair. AlpaServe outperforms
the two baselines at all times and uses far fewer devices to achieve 99% SLO attainment
thanks to model parallelism. By splitting one model replica onto N devices, AlpaServe can
achieve similar throughput as if N replica were created for replication-only methods; but note

3For MAF1, we follow Clockwork to set the window size as 60 seconds. For MAF2, we set it as 5.4K
seconds.

4In our cluster testbed, the per-GPU memory is 16GB, but the actual available space for model weights
is around 13GB due to the need to store activations and other runtime context.
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AlpaServe uses only one replica of memory. Surprisingly, although we let Clockwork++
adjust to the traffic dynamically with zero overhead, AlpaServe still wins with a static
placement; this is because model-parallel placement is by nature more robust to bursty
traffic.

It is worth noting that replication-only methods can at most place 2 replicas of BERT-2.6B
on a V100 (13GB memory budget), resulting in a substantial memory fraction, while model
parallelism can avoid such memory fractions and enable more flexible placement of models.

SLO attainment vs. rate. fig. 4.12’s 2nd row varies the rate of the workloads. For a
stable trace like MAF1, AlpaServe can handle a much higher rate than baselines. While
for a skewed and highly dynamic trace MAF2, whose traffic is dominated by a few models
and changes rapidly, the replication-based methods have to allocate the majority of the
GPUs to create many replicas for “hot” models to combat their bursty traffic; those GPUs,
however, may go idle between bursts, even with frequent re-placement as in Clockwork++.
In AlpaServe, each model needs fewer replicas to handle its peak traffic.

SLO attainment vs. CV. fig. 4.12’s 3rd row varies the CV of the workloads. The traffic
becomes more bursty with a higher CV, which aggravates the queuing effect of the system
and increases the possibility of SLO violation. The traditional solution to handle burstiness
is by over-provision, wasting a lot of resources. AlpaServe reveals a hidden opportunity to
handle this by model parallelism.

SLO attainment vs. SLO. fig. 4.12’s 4th row shows the effect of different SLO. Previous
work [50] which targets serving small models usually sets SLO to hundreds of milliseconds,
even though the actual inference latency is less than 10 ms. Thanks to the intra-op par-
allelism, AlpaServe can maintain good performance under similar SLO when serving large
models, whose inference latency can be over 100 ms. When SLO is tight, even less than
the model inference time, AlpaServe favors intra-op parallelism to reduce the inference la-
tency, which also reduces AlpaServe’s peak throughput due to the communication overhead
but can make more requests to meet their SLO. When SLO becomes looser, AlpaServe will
automatically switch to use more inter-op parallelism to get higher throughput.

4.6.3 Serving Very Large Models
Today’s large models may possess hundreds of billions of parameters [18, 94, 159]. To serve
large models at this scale, the common practice in production is to choose the model paral-
lelism strategy manually and use dedicated GPUs for each model [153]. To show AlpaServe
has improved capability in serving very large models, we deploy model set S4 on our testbed,
each requiring at least 16 GPUs to serve in terms of memory usage. As baselines, for each
model, we enumerate all combinations of inter- and intra-op parallelisms on 16 GPUs. In
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Figure 4.13: SLO attainment as we vary the rate, CV, and SLO scale. (8,2) means 8-way
inter-op parallelism and in each pipeline stage using 2-way intra-op parallelism.

contrast, AlpaServe searches for the optimal GPU group allocation and model placement
according to the arrival traffic and tries to achieve statistical multiplexing.

Offered load. In the default setting, the traffic is generated via a Gamma Process with an
average rate of 8 requests/s and CV of 4. We then split the requests to each model following a
power law distribution with an exponent of 0.5 to simulate the real-world skewness.5 Similar
to §4.6.2, we vary one of the rate, CV, or SLO in the default setting to see how each factor
contributes to the resulting performance. It is worth noting that all results presented in this
section are obtained via real execution on the testbed cluster.

SLO attainment. fig. 4.13 shows the SLO attainment of each system under various set-
tings. Although enumerating parallelism strategies and selecting the best can improve per-
formance, it still remains a substantial gap compared to AlpaServe. This means that the
traditional way of using dedicated GPUs to serve large models is not ideal. We check the
solution of AlpaServe and find it slices the cluster evenly into two groups, each with the
(4, 8) inter-/intra-op parallel configuration, and groups the models in a way that balances
the requests between two groups. This further proves that our motivation in §4.3.1 still
holds for extremely large models. By space-sharing the devices, AlpaServe can exploit new
opportunities for statistical multiplexing, which is advantageous for bursty workloads but
largely under-explored by prior work.

4.6.4 Robustness to Changing Traffic Patterns
Until now, AlpaServe’s good performance is based on the assumption we make in its place-
ment algorithm that we know the arrival process in advance. In practice, the arrival process

5Uniform split yielded similar results.
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Figure 4.14: The actual arrival traffic for AlpaServe and SR is different from what their
algorithms are assumed, while Clockwork++ runs directly on the actual traffic.
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Figure 4.15: SLO Attainment when batching is enabled. mb=2 means the maximum batch
size is 2.

can be approximated using historical traces but the unavoidable real-world variance may
make the prediction inaccurate. In this experiment, we study how AlpaServe performs if the
traffic patterns change.

We reuse the same setting for S2@MAF1 in §4.6.2, but this time for AlpaServe and SR, we
randomly slice two one-hour traces from MAF1, one is what their algorithms are assumed,
while the other one is used as the actual arrival process. While for Clockwork++, we still
run its algorithm directly on the actual arrival process to respect its online nature. Similarly,
we vary different factors and compute the SLO attainment for each system. We repeat the
experiments three times and show the average results in Fig. 4.14.

Unsurprisingly, SR’s performance drops significantly when traffic changes. By contrast,
AlpaServe maintains good performance and still outperforms Clockwork++, an online ad-
justment algorithm, using a static placement generated from substantially different traffic
patterns. This confirms that, in face of highly-dynamic traffic patterns, statistical multi-
plexing with model parallelism is a simple and better alternative than existing replication-
or replacement-based algorithms.
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4.6.5 Benefits of Dynamic Batching
Batching is a common optimization in other serving systems [50, 97, 98] and the choice of
batch size is critical to the performance because it can increase GPU utilization and thus
increase the system throughput. However, in large model scenarios, the benefit of batching
is limited mainly due to two reasons. First, for large models, a small batch size will saturate
the GPU, which means there is little gain to batching more requests. Second, the execution
latency grows linearly with the batch size [123], so when the SLO is tight (say SLO Scale is
less than 2), batching is simply not a choice.

To isolate the benefits of model parallelism and make the results more explainable, we decide
to disable any batching in other experiments but prove that the batching strategy is purely
orthogonal to the scope of this chapter in this subsection. To prove this, we implement a
standard batching algorithm in AlpaServe and evaluate its performance.

Batching strategy. When a request arrives, it will get executed immediately if any device
group is available. Otherwise, it will be put into a per-model requests queue for batching.
When a device group becomes idle, it will choose a model which has a replica on it and batch
as many requests as possible from the requests queue of the model while satisfying the SLO
requirements.

Setup. As the model size increases, the potential benefit of batching decreases. Therefore,
we choose to evaluate model set S1. We generate a synthetic Gamma Process traffic with
an average rate of 4 requests/s and a CV of 4 for each model.

SLO attainment. fig. 4.15 (left) shows the SLO attainment achieved by AlpaServe with
different maximum batch size settings under various SLO scales. When the SLO requirement
is tight, any batching will violate the SLO so there is no gain with batching enabled. Also,
although we choose to serve the smallest model in Tab. 4.1, a small batch size like 2 com-
bined with a long sequence length of 2048 already saturates the GPU, so a larger maximum
batch size brings no performance improvement. fig. 4.15 (right) compares the improvement
for AlpaServe and Clockwork++ with our batching algorithm enabled.6 When the SLO
requirement becomes loose, both AlpaServe and Clockwork++ have better SLO attainment
to some extent. Since AlpaServe’s performance is good even without batching and batched
requests with different batch sizes will incur stage imbalance and pipeline bubble in inter-op
parallel, the absolute improvement of Clockwork++ is slightly better.

4.6.6 Ablation Study
In this section, we study the effectiveness of our proposed auto-parallelization (§4.4.1) and
placement algorithms (§4.4.2).

6SR is left out to make the figure clearer as it is worse than Clockwork++.
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Figure 4.16: Comparison of the model parallel overhead between manual partition (lighter
color) and the partition found by the automatic algorithm (darker color).

Benefits of auto-parallelization. We show that the auto-parallelization ability allows
AlpaServe to not only generalize to arbitrary model architectures but even also reduce par-
allelism overheads – hence improved serving performance (see §4.3.3 for more discussion).
To see that, typical manual model-parallel parallelization strategies offered in de facto sys-
tems [2, 94, 96] is to assign an equal number of (transformer) layers to each pipeline stage.
These strategies often fail to create balanced workloads across distributed GPUs because
contemporary large models have heterogeneous layers, such as embedding operations. The
extensions introduced in §4.4.1 automatically partition the models at the computational
graph level and generate nearly-balanced stages. Empirically, as shown in Fig. 4.16, for
8 pipeline stages, auto-parallelization reduces the total overhead by 32.9% and 46.7% for
Transformer 1.3B and 2.6B respectively, which is necessary for achieving good serving per-
formance when model parallelism is used for serving.

Effectiveness of the placement algorithm. We now test the effectiveness of our place-
ment algorithm on a synthetic workload. We serve the most challenging model set S3
(Tab. 4.1) on our testbed. The rate distribution of the models follows a power law dis-
tribution. The arrival pattern of each model is a Gamma process. Three variants of the
placement algorithms are evaluated. Round robin means placing models in a round-robin
fashion and using 4-stage pipelines for all groups. Greedy placement uses our greedy place-
ment and 4-stage pipeline for all groups. Greedy placement + Group partitioning performs
greedy placement plus group partitioning search. As shown in Fig. 4.17, both placement
and group partitioning are necessary to achieve good SLO attainment. In the left subfigure,
the group partitioning increases the rate by 1.5× compared to greedy placement without
group partitioning over 99% SLO attainment, while round robin can never reach 99% SLO
attainment. In the right subfigure, the group partitioning increases the traffic burstiness
that can be handled to meet 99% SLO attainment by 1.3×.
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Figure 4.17: Ablation study of placement algorithms.

4.7 Related Work
Model serving systems. There has been a proliferation of model serving systems recently.
These range from general-purpose production-grade systems like TensorFlow Serving [98] and
NVIDIA Triton [97], which are widely used but do not provide any support for automatic
placement or latency constraints. They also include systems that are optimized for single-
model serving [153] or serving of specific classes of models (e.g., transformers) [153, 39, 166].
AlpaServe targets a broader set of models and features than these systems.

For SLO-aware, distributed serving, most serving systems ignore placement-level interac-
tions between models. Clockwork [50], for instance, primarily focuses on predictability;
when scheduling, it greedily loads and executes models on available GPUs. Shepherd [158]
utilizes preemption to correct sub-optimal scheduling decisions. For large models, loading
model weights and preemption can easily overwhelm practical SLOs. Other systems like
Clipper [28], Infaas [117], and DVABatch [29] also do not reason about the latencies of
co-located models.

Nexus [123] is very related to our work in that it examines the placement of models; however,
Nexus is an example of a system that takes the traditional replication approach described
in §4.3 and, thus, misses a broad class of potential parallelization strategies that we explore
in this chapter.

Inference optimizations for large models. AlpaServe is complementary to another
large body of work on optimizations for inference over large models. These include techniques
like quantization [33], distillation [118], offloading [2], better operator parallelism [108], and
CUDA kernel optimization [30, 60]. Some of these optimizations are intended to stem the
tide of increasing model sizes; however, all of these gains are partial— the challenge of serving
large models has continued to escalate rapidly despite these efforts.
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Model parallelism for training. AlpaServe is largely orthogonal to the large body of
work on model parallelism in training [165, 94, 57, 111, 83]. As described in §4.3, serving
presents a unique set of constraints and opportunities not found in training workloads. Where
these systems do intersect with AlpaServe, however, is in their methods for implementing
model parallelism along various dimensions. In particular, AlpaServe builds on some of the
parallelization techniques introduced in [165].

Resource allocation and multiplexing. The problem of how to multiplex limited re-
sources to the incoming requests is one of the oldest topics in computer science and has
been studied in different application domains [112, 87, 11]. Recent work on DL schedul-
ing uses swapping [9], preemption [52], interleaving [162], and space-sharing [148] to realize
fine-grained resource sharing. Rather, the contribution of this chapter is a deep empirical
analysis of the applications of these ideas to an emerging space: the serving of multiple large
models.

4.8 Conclusion and Future Work
In this chapter, we presented AlpaServe, a system for prediction servings of multiple large
deep-learning models. The key innovation of AlpaServe is integrating model parallelism
into multi-model serving. Because of the inherent overheads of model parallelism, such
parallelism is traditionally applied conservatively—reserved for cases where models simply do
not fit within a single GPU or execute within the required SLO. AlpaServe demonstrates that
model parallelism is useful for many other scenarios, quantifies the tradeoffs, and presents
techniques to automatically navigate that tradeoff space.

In the future, we will extend AlpaServe to more complicated scenarios, including serving
multiple parameter-efficient adapted models (e.g., LoRA [55]), models with dependencies,
and autoregressive models [18].
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Chapter 5

vLLM: Efficient Memory
Management for Large Language
Model Serving with PagedAttention

Chapter 4 discusses how to utilize model parallelism to optimize the serving performance for
general large deep learning models. However, serving a large language model (LLM) involves
its unique challenges, especially due to its autoregressive dependency that requires the output
tokens to be generated one by one, which heavily under-utilizes the parallel accelerators
like GPUs. Therefore, high throughput serving of large language models typically requires
batching sufficiently many requests at a time.

However, existing systems struggle to batch more requests because the key-value cache (KV
cache) memory for each request is huge and grows and shrinks dynamically. When managed
inefficiently, this memory can be significantly wasted by fragmentation and redundant du-
plication, limiting the batch size. To address this problem, we propose PagedAttention [74],
an attention algorithm inspired by the classical virtual memory and paging techniques in
operating systems. On top of it, we build vLLM, an LLM serving system that achieves
(1) near-zero waste in KV cache memory and (2) flexible sharing of KV cache within and
across requests to further reduce memory usage. Our evaluations show that vLLM improves
the throughput of popular LLMs by 2-4× with the same level of latency compared to the
state-of-the-art systems, such as FasterTransformer and Orca. The improvement is more
pronounced with longer sequences, larger models, and more complex decoding algorithms.

5.1 Introduction
The emergence of large language models like GPT [102, 18] and PaLM [25] have enabled new
applications such as programming assistants [46, 21] and universal chatbots [101, 47] that are
starting to profoundly impact our work and daily routines. Many cloud companies [99, 120]
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Figure 5.1: Left: Memory layout when serving an LLM with 13B parameters on NVIDIA
A100. The parameters (gray) persist in GPU memory throughout serving. The memory for
the KV cache (red) is (de)allocated per serving request. A small amount of memory (yellow)
is used ephemerally for activation. Right: vLLM smooths out the rapid growth curve of
KV cache memory seen in existing systems [96, 153], leading to a notable boost in serving
throughput.

are racing to provide these applications as hosted services. However, running these appli-
cations is very expensive, requiring a large number of hardware accelerators such as GPUs.
According to recent estimates, processing an LLM request can be 10× more expensive than
a traditional keyword query [115]. Given these high costs, increasing the throughput—and
hence reducing the cost per request—of LLM serving systems is becoming more important.

At the core of LLMs lies an autoregressive Transformer model [138]. This model generates
words (tokens), one at a time, based on the input (prompt) and the previous sequence of the
output’s tokens it has generated so far. For each request, this expensive process is repeated
until the model outputs a termination token. This sequential generation process makes the
workload memory-bound, underutilizing the computation power of GPUs and limiting the
serving throughput.

Improving the throughput is possible by batching multiple requests together. However,
to process many requests in a batch, the memory space for each request should be effi-
ciently managed. For example, Fig. 5.1 (left) illustrates the memory distribution for a
13B-parameter LLM on an NVIDIA A100 GPU with 40GB RAM. Approximately 65% of
the memory is allocated for the model weights, which remain static during serving. Close to
30% of the memory is used to store the dynamic states of the requests. For Transformers,
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Figure 5.2: Average percentage of memory wastes in different LLM serving systems during
the experiment in §5.6.2.

these states consist of the key and value tensors associated with the attention mechanism,
commonly referred to as KV cache [108], which represent the context from earlier tokens to
generate new output tokens in sequence. The remaining small percentage of memory is used
for other data, including activations – the ephemeral tensors created when evaluating the
LLM. Since the model weights are constant and the activations only occupy a small frac-
tion of the GPU memory, the way the KV cache is managed is critical in determining the
maximum batch size. When managed inefficiently, the KV cache memory can significantly
limit the batch size and consequently the throughput of the LLM, as illustrated in Fig. 5.1
(right).

In this chapter, we observe that existing LLM serving systems [153, 96] fall short of managing
the KV cache memory efficiently. This is mainly because they store the KV cache of a request
in contiguous memory space, as most deep learning frameworks [104, 98] require tensors to
be stored in contiguous memory. However, unlike the tensors in the traditional deep learning
workloads, the KV cache has unique characteristics: it dynamically grows and shrinks over
time as the model generates new tokens, and its lifetime and length are not known a priori.
These characteristics make the existing systems’ approach significantly inefficient in two
ways:

First, the existing systems [153, 96] suffer from internal and external memory fragmentation.
To store the KV cache of a request in contiguous space, they pre-allocate a contiguous
chunk of memory with the request’s maximum length (e.g., 2048 tokens). This can result in
severe internal fragmentation, since the request’s actual length can be much shorter than its
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maximum length (e.g., Fig. 5.11). Moreover, even if the actual length is known a priori, the
pre-allocation is still inefficient: As the entire chunk is reserved during the request’s lifetime,
other shorter requests cannot utilize any part of the chunk that is currently unused. Besides,
external memory fragmentation can also be significant, since the pre-allocated size can be
different for each request. Indeed, our profiling results in Fig. 5.2 show that only 20.4%
- 38.2% of the KV cache memory is used to store the actual token states in the existing
systems.

Second, the existing systems cannot exploit the opportunities for memory sharing. LLM
services often use advanced decoding algorithms, such as parallel sampling and beam search,
that generate multiple outputs per request. In these scenarios, the request consists of multiple
sequences that can partially share their KV cache. However, memory sharing is not possible
in the existing systems because the KV cache of the sequences is stored in separate contiguous
spaces.

To address the above limitations, we propose PagedAttention, an attention algorithm inspired
by the operating system’s (OS) solution to memory fragmentation and sharing: virtual mem-
ory with paging. PagedAttention divides the request’s KV cache into blocks, each of which
can contain the attention keys and values of a fixed number of tokens. In PagedAttention,
the blocks for the KV cache are not necessarily stored in contiguous space. Therefore, we
can manage the KV cache in a more flexible way as in OS’s virtual memory: one can think
of blocks as pages, tokens as bytes, and requests as processes. This design alleviates internal
fragmentation by using relatively small blocks and allocating them on demand. Moreover,
it eliminates external fragmentation as all blocks have the same size. Finally, it enables
memory sharing at the granularity of a block, across the different sequences associated with
the same request or even across the different requests.

In this work, we build vLLM, a high-throughput distributed LLM serving engine on top of
PagedAttention that achieves near-zero waste in KV cache memory. vLLM uses block-level
memory management and preemptive request scheduling that are co-designed with Page-
dAttention. vLLM supports popular LLMs such as GPT [18], OPT [159], and LLaMA [137]
with varying sizes, including the ones exceeding the memory capacity of a single GPU. Our
evaluations on various models and workloads show that vLLM improves the LLM serving
throughput by 2-4× compared to the state-of-the-art systems [153, 96], without affecting
the model accuracy at all. The improvements are more pronounced with longer sequences,
larger models, and more complex decoding algorithms (§5.4.3). In summary, we make the
following contributions:

• We identify the challenges in memory allocation in serving LLMs and quantify their
impact on serving performance.

• We propose PagedAttention, an attention algorithm that operates on KV cache stored
in non-contiguous paged memory, which is inspired by the virtual memory and paging
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in OS.

• We design and implement vLLM, a distributed LLM serving engine built on top of
PagedAttention.

• We evaluate vLLM on various scenarios and demonstrate that it substantially out-
performs the previous state-of-the-art solutions such as FasterTransformer [96] and
Orca [153].

5.2 Background
In this section, we describe the generation and serving procedures of typical LLMs and the
iteration-level scheduling used in LLM serving.

5.2.1 Transformer-Based Large Language Models
The task of language modeling is to model the probability of a list of tokens (x1, . . . , xn). Since
language has a natural sequential ordering, it is common to factorize the joint probability
over the whole sequence as the product of conditional probabilities (a.k.a. autoregressive
decomposition [12]):

P (x) = P (x1) · P (x2 | x1) · · ·P (xn | x1, . . . , xn−1). (5.1)

Transformers [138] have become the de facto standard architecture for modeling the probabil-
ity above at a large scale. The most important component of a Transformer-based language
model is its self-attention layers. For an input hidden state sequence (x1, . . . , xn) ∈ Rn×d,
a self-attention layer first applies linear transformations on each position i to get the query,
key, and value vectors:

qi = Wqxi, ki = Wkxi, vi = Wvxi. (5.2)
Then, the self-attention layer computes the attention score aij by multiplying the query
vector at one position with all the key vectors before it and compute the output oi as the
weighted average over the value vectors:

aij = exp(q⊤
i kj/
√

d)∑i
t=1 exp(q⊤

i kt/
√

d)
, oi =

i∑
j=1

aijvj. (5.3)

Besides the computation in Eq. 5.3, all other components in the Transformer model, including
the embedding layer, feed-forward layer, layer normalization [7], residual connection [54],
output logit computation, and the query, key, and value transformation in Eq. 5.2, are all
applied independently position-wise in a form of yi = f(xi).



CHAPTER 5. VLLM: EFFICIENT MEMORY MANAGEMENT FOR LARGE
LANGUAGE MODEL SERVING WITH PAGEDATTENTION 92

5.2.2 LLM Service & Autoregressive Generation
Once trained, LLMs are often deployed as a conditional generation service (e.g., completion
API [99] or chatbot [101, 47]). A request to an LLM service provides a list of input prompt
tokens (x1, . . . , xn), and the LLM service generates a list of output tokens (xn+1, . . . , xn+T )
according to Eq. 5.1. We refer to the concatenation of the prompt and output lists as
sequence.

Due to the decomposition in Eq. 5.1, the LLM can only sample and generate new tokens one
by one, and the generation process of each new token depends on all the previous tokens in
that sequence, specifically their key and value vectors. In this sequential generation process,
the key and value vectors of existing tokens are often cached for generating future tokens,
known as KV cache. Note that the KV cache of one token depends on all its previous
tokens. This means that the KV cache of the same token appearing at different positions in
a sequence will be different.

Given a request prompt, the generation computation in the LLM service can be decomposed
into two phases:

The prompt phase takes the whole user prompt (x1, . . . , xn) as input and computes the
probability of the first new token P (xn+1 | x1, . . . , xn). During this process, also generates
the key vectors k1, . . . , kn and value vectors v1, . . . , vn. Since prompt tokens x1, . . . , xn are
all known, the computation of the prompt phase can be parallelized using matrix-matrix
multiplication operations. Therefore, this phase can efficiently use the parallelism inherent
in GPUs.

The autoregressive generation phase generates the remaining new tokens sequen-
tially. At iteration t, the model takes one token xn+t as input and computes the probability
P (xn+t+1 | x1, . . . , xn+t) with the key vectors k1, . . . , kn+t and value vectors v1, . . . , vn+t. Note
that the key and value vectors at positions 1 to n + t− 1 are cached at previous iterations,
only the new key and value vector kn+t and vn+t are computed at this iteration. This phase
completes either when the sequence reaches a maximum length (specified by users or lim-
ited by LLMs) or when an end-of-sequence (<eos>) token is emitted. The computation at
different iterations cannot be parallelized due to the data dependency and often uses matrix-
vector multiplication, which is less efficient. As a result, this phase severely underutilizes
GPU computation and becomes memory-bound, being responsible for most portion of the
latency of a single request.

5.2.3 Batching Techniques for LLMs
The compute utilization in serving LLMs can be improved by batching multiple requests.
Because the requests share the same model weights, the overhead of moving weights is
amortized across the requests in a batch, and can be overwhelmed by the computational
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Figure 5.3: KV cache memory management in existing systems. Three types of memory
wastes – reserved, internal fragmentation, and external fragmentation – exist that prevent
other requests from fitting into the memory. The token in each memory slot represents its
KV cache. Note the same tokens can have different KV cache when at different positions.

overhead when the batch size is sufficiently large. However, batching the requests to an
LLM service is non-trivial for two reasons. First, the requests may arrive at different times.
A naive batching strategy would either make earlier requests wait for later ones or delay the
incoming requests until earlier ones finish, leading to significant queueing delays. Second, the
requests may have vastly different input and output lengths (Fig. 5.11). A straightforward
batching technique would pad the inputs and outputs of the requests to equalize their lengths,
wasting GPU computation and memory.

To address this problem, fine-grained batching mechanisms, such as cellular batching [44]
and iteration-level scheduling [153], have been proposed. Unlike traditional methods that
work at the request level, these techniques operate at the iteration level. After each iteration,
completed requests are removed from the batch, and new ones are added. Therefore, a new
request can be processed after waiting for a single iteration, not waiting for the entire batch
to complete. Moreover, with special GPU kernels, these techniques eliminate the need to pad
the inputs and outputs. By reducing the queueing delay and the inefficiencies from padding,
the fine-grained batching mechanisms significantly increase the throughput of LLM serving.

5.3 Memory Challenges in LLM Serving
Although fine-grained batching reduces the waste of computing and enables requests to be
batched in a more flexible way, the number of requests that can be batched together is
still constrained by GPU memory capacity, particularly the space allocated to store the KV
cache. In other words, the serving system’s throughput is memory-bound. Overcoming this
memory-bound requires addressing the following challenges in the memory management:

Large KV cache. The KV Cache size grows quickly with the number of requests. As an
example, for the 13B parameter OPT model [159], the KV cache of a single token demands
800 KB of space, calculated as 2 (key and value vectors) × 5120 (hidden state size) × 40
(number of layers) × 2 (bytes per FP16). Since OPT can generate sequences up to 2048
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tokens, the memory required to store the KV cache of one request can be as much as 1.6 GB.
Concurrent GPUs have memory capacities in the tens of GBs. Even if all available memory
was allocated to KV cache, only a few tens of requests could be accommodated. Moreover,
inefficient memory management can further decrease the batch size, as shown in Fig. 5.2.
Additionally, given the current trends, the GPU’s computation speed grows faster than the
memory capacity [45]. For example, from NVIDIA A100 to H100, The FLOPS increases by
more than 2x, but the GPU memory stays at 80GB maximum. Therefore, we believe the
memory will become an increasingly significant bottleneck.

Complex decoding algorithms. LLM services offer a range of decoding algorithms for
users to select from, each with varying implications for memory management complexity. For
example, when users request multiple random samples from a single input prompt, a typical
use case in program suggestion [46], the KV cache of the prompt part, which accounts for
12% of the total KV cache memory in our experiment (§5.6.3), can be shared to minimize
memory usage. On the other hand, the KV cache during the autoregressive generation phase
should remain unshared due to the different sample results and their dependence on context
and position. The extent of KV cache sharing depends on the specific decoding algorithm
employed. In more sophisticated algorithms like beam search [130], different request beams
can share larger portions (up to 55% memory saving, see §5.6.3) of their KV cache, and the
sharing pattern evolves as the decoding process advances.

Scheduling for unknown input & output lengths. The requests to an LLM service
exhibit variability in their input and output lengths. This requires the memory management
system to accommodate a wide range of prompt lengths. In addition, as the output length
of a request grows at decoding, the memory required for its KV cache also expands and may
exhaust available memory for incoming requests or ongoing generation for existing prompts.
The system needs to make scheduling decisions, such as deleting or swapping out the KV
cache of some requests from GPU memory.

5.3.1 Memory Management in Existing Systems
Since most operators in current deep learning frameworks [104, 98] require tensors to be
stored in contiguous memory, previous LLM serving systems [153, 96] also store the KV cache
of one request as a contiguous tensor across the different positions. Due to the unpredictable
output lengths from the LLM, they statically allocate a chunk of memory for a request
based on the request’s maximum possible sequence length, irrespective of the actual input
or eventual output length of the request.

Fig. 5.3 illustrates two requests: request A with 2048 maximum possible sequence length
and request B with a maximum of 512. The chunk pre-allocation scheme in existing systems
has three primary sources of memory wastes: reserved slots for future tokens, internal frag-
mentation due to over-provisioning for potential maximum sequence lengths, and external
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Figure 5.4: vLLM system overview.

fragmentation from the memory allocator like the buddy allocator. The external fragmen-
tation will never be used for generated tokens, which is known before serving a request.
Internal fragmentation also remains unused, but this is only realized after a request has
finished sampling. They are both pure memory waste. Although the reserved memory is
eventually used, reserving this space for the entire request’s duration, especially when the
reserved space is large, occupies the space that could otherwise be used to process other re-
quests. We visualize the average percentage of memory wastes in our experiments in Fig. 5.2,
revealing that the actual effective memory in previous systems can be as low as 20.4%.

Although compaction [141] has been proposed as a potential solution to fragmentation,
performing compaction in a performance-sensitive LLM serving system is impractical due to
the massive KV cache. Even with compaction, the pre-allocated chunk space for each request
prevents memory sharing specific to decoding algorithms in existing memory management
systems.

5.4 Method
In this work, we develop a new attention algorithm, PagedAttention, and build an LLM
serving engine, vLLM, to tackle the challenges outlined in §5.3. The architecture of vLLM
is shown in Fig. 5.4. vLLM adopts a centralized scheduler to coordinate the execution of
distributed GPU workers. The KV cache manager effectively manages the KV cache in a
paged fashion, enabled by PagedAttention. Specifically, the KV cache manager manages
the physical KV cache memory on the GPU workers through the instructions sent by the
centralized scheduler.

Next, We describe the PagedAttention algorithm in §5.4.1. With that, we show the design of
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the KV cache manager in §5.4.2 and how it facilitates PagedAttention in §5.4.3, respectively.
Then, we show how this design facilitates effective memory management for various decod-
ing methods (§5.4.4) and handles the variable length input and output sequences (§5.4.5).
Finally, we show how the system design of vLLM works in a distributed setting (§5.4.6).

5.4.1 PagedAttention
To address the memory challenges in §5.3, we introduce PagedAttention, an attention al-
gorithm inspired by the classic idea of paging [68] in operating systems. Unlike the tra-
ditional attention algorithms, PagedAttention allows storing continuous keys and values
in non-contiguous memory space. Specifically, PagedAttention partitions the KV cache
of each sequence into KV blocks. Each block contains the key and value vectors for a
fixed number of tokens,1 which we denote as KV block size (B). Denote the key block
Kj = (k(j−1)B+1, . . . , kjB) and value block Vj = (v(j−1)B+1, . . . , vjB). The attention computa-
tion in Eq. 5.3 can be transformed into the following block-wise computation:

Aij = exp(q⊤
i Kj/

√
d)∑⌈i/B⌉

t=1 exp(q⊤
i Kt/

√
d) · 1

, oi =
⌈i/B⌉∑
j=1

VjA
⊤
ij, (5.4)

where Aij = (ai,(j−1)B+1, . . . , ai,jB) is the row vector of attention score on j-th KV block.

During the attention computation, the PagedAttention kernel identifies and fetches different
KV blocks separately. We show an example of PagedAttention in Fig. 5.5: The key and
value vectors are spread across three blocks, and the three blocks are not contiguous on the
physical memory. At each time, the kernel multiplies the query vector qi of the query token
(“forth”) and the key vectors Kj in a block (e.g., key vectors of “Four score and seven” for
block 0) to compute the attention score Aij, and later multiplies Aij with the value vectors
Vj in a block to derive the final attention output oi.

In summary, the PagedAttention algorithm allows the KV blocks to be stored in non-
contiguous physical memory, which enables more flexible paged memory management in
vLLM.

5.4.2 KV Cache Manager
The key idea behind vLLM’s memory manager is analogous to the virtual memory [68] in
operating systems. OS partitions memory into fixed-sized pages and maps user programs’
logical pages to physical pages. Contiguous logical pages can correspond to non-contiguous

1In Transformer, each token has a set of key and value vectors across layers and attention heads within a
layer. All the key and value vectors can be managed together within a single KV block, or the key and value
vectors at different heads and layers can each have a separate block and be managed in separate block tables.
The two designs have no performance difference and we choose the second one for easy implementation.
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Figure 5.5: Illustration of the PagedAttention algorithm, where the attention key and values
vectors are stored as non-contiguous blocks in the memory.

physical memory pages, allowing user programs to access memory as though it were contigu-
ous. Moreover, physical memory space needs not to be fully reserved in advance, enabling
the OS to dynamically allocate physical pages as needed. vLLM uses the ideas behind vir-
tual memory to manage the KV cache in an LLM service. Enabled by PagedAttention, we
organize the KV cache as fixed-size KV blocks, like pages in virtual memory.

A request’s KV cache is represented as a series of logical KV blocks, filled from left to right
as new tokens and their KV cache are generated. The last KV block’s unfilled positions
are reserved for future generations. On GPU workers, a block engine allocates a contiguous
chunk of GPU DRAM and divides it into physical KV blocks (this is also done on CPU
RAM for swapping; see §5.4.5). The KV block manager also maintains block tables—the
mapping between logical and physical KV blocks of each request. Each block table entry
records the corresponding physical blocks of a logical block and the number of filled positions.
Separating logical and physical KV blocks allows vLLM to dynamically grow the KV cache
memory without reserving it for all positions in advance, which eliminates most memory
waste in existing systems, as in Fig. 5.2.

5.4.3 Decoding with PagedAttention and vLLM
Next, we walk through an example, as in Fig. 5.6, to demonstrate how vLLM executes
PagedAttention and manages the memory during the decoding process of a single input
sequence: 1⃝ As in OS’s virtual memory, vLLM does not require reserving the memory
for the maximum possible generated sequence length initially. Instead, it reserves only the
necessary KV blocks to accommodate the KV cache generated during prompt computation.
In this case, The prompt has 7 tokens, so vLLM maps the first 2 logical KV blocks (0 and
1) to 2 physical KV blocks (7 and 1, respectively). In the prefill step, vLLM generates
the KV cache of the prompts and the first output token with a conventional self-attention
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Figure 5.6: Block table translation in vLLM.

algorithm (e.g., [30]). vLLM then stores the KV cache of the first 4 tokens in logical block
0 and the following 3 tokens in logical block 1. The remaining slot is reserved for the
subsequent autoregressive generation phase. 2⃝ In the first autoregressive decoding step,
vLLM generates the new token with the PagedAttention algorithm on physical blocks 7 and
1. Since one slot remains available in the last logical block, the newly generated KV cache
is stored there, and the block table’s #filled record is updated. 3⃝ At the second decoding
step, as the last logical block is full, vLLM stores the newly generated KV cache in a new
logical block; vLLM allocates a new physical block (physical block 3) for it and stores this
mapping in the block table.

Globally, for each decoding iteration, vLLM first selects a set of candidate sequences for
batching (more in §5.4.5), and allocates the physical blocks for the newly required logical
blocks. Then, vLLM concatenates all the input tokens of the current iteration (i.e., all to-
kens for prompt phase requests and the latest tokens for generation phase requests) as one
sequence and feeds it into the LLM. During LLM’s computation, vLLM uses the PagedAt-
tention kernel to access the previous KV cache stored in the form of logical KV blocks and
saves the newly generated KV cache into the physical KV blocks. Storing multiple tokens
within a KV block (block size > 1) enables the PagedAttention kernel to process the KV
cache across more positions in parallel, thus increasing the hardware utilization and reducing
latency. However, a larger block size also increases memory fragmentation. We study the
effect of block size in §5.7.2.

Again, vLLM dynamically assigns new physical blocks to logical blocks as more tokens and
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Figure 5.7: Storing the KV cache of two requests at the same time in vLLM.

their KV cache are generated. As all the blocks are filled from left to right and a new physical
block is only allocated when all previous blocks are full, vLLM limits all the memory wastes
for a request within one block, so it can effectively utilize all the memory, as shown in
Fig. 5.2. This allows more requests to fit into memory for batching—hence improving the
throughput. Once a request finishes its generation, its KV blocks can be freed to store the
KV cache of other requests. In Fig. 5.7, we show an example of vLLM managing the memory
for two sequences. The logical blocks of the two sequences are mapped to different physical
blocks within the space reserved by the block engine in GPU workers. The neighboring
logical blocks of both sequences do not need to be contiguous in physical GPU memory and
the space of physical blocks can be effectively utilized by both sequences.

5.4.4 Application to Other Decoding Scenarios
§5.4.3 shows how PagedAttention and vLLM handle basic decoding algorithms, such as
greedy decoding and sampling, that take one user prompt as input and generate a single
output sequence. In many successful LLM applications [46, 99], an LLM service must offer
more complex decoding scenarios that exhibit complex accessing patterns and more oppor-
tunities for memory sharing. We show the general applicability of vLLM on them in this
section.

Parallel sampling. In LLM-based program assistants [21, 46], an LLM generates multiple
sampled outputs for a single input prompt; users can choose a favorite output from various
candidates. So far we have implicitly assumed that a request generates a single sequence. In
the remainder of this chapter, we assume the more general case in which a request generates
multiple sequences. In parallel sampling, one request includes multiple samples sharing the
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same input prompt, allowing the KV cache of the prompt to be shared as well. Via its
PagedAttention and paged memory management, vLLM can realize this sharing easily and
save memory.

Fig. 5.8 shows an example of parallel decoding for two outputs. Since both outputs share
the same prompt, we only reserve space for one copy of the prompt’s state at the prompt
phase; the logical blocks for the prompts of both sequences are mapped to the same physical
blocks: the logical block 0 and 1 of both sequences are mapped to physical blocks 7 and
1, respectively. Since a single physical block can be mapped to multiple logical blocks, we
introduce a reference count for each physical block. In this case, the reference counts for
physical blocks 7 and 1 are both 2. At the generation phase, the two outputs sample different
output tokens and need separate storage for KV cache. vLLM implements a copy-on-write
mechanism at the block granularity for the physical blocks that need modification by multiple
sequences, similar to the copy-on-write technique in OS virtual memory (e.g., when forking
a process). Specifically, in Fig. 5.8, when sample A1 needs to write to its last logical block
(logical block 1), vLLM recognizes that the reference count of the corresponding physical
block (physical block 1) is greater than 1; it allocates a new physical block (physical block 3),
instructs the block engine to copy the information from physical block 1, and decreases the
reference count to 1. Next, when sample A2 writes to physical block 1, the reference count
is already reduced to 1; thus A2 directly writes its newly generated KV cache to physical
block 1.

In summary, vLLM enables the sharing of most of the space used to store the prompts’ KV
cache across multiple output samples, with the exception of the final logical block, which is
managed by a copy-on-write mechanism. By sharing physical blocks across multiple samples,
memory usage can be greatly reduced, especially for long input prompts.

Beam search. In LLM tasks like machine translation [149], the users expect the top-k most
appropriate translations output by the LLM. Beam search [130] is widely used to decode the
most probable output sequence from an LLM, as it mitigates the computational complexity
of fully traversing the sample space. The algorithm relies on the beam width parameter k,
which determines the number of top candidates retained at every step. During decoding,
beam search expands each candidate sequence in the beam by considering all possible tokens,
computes their respective probabilities using the LLM, and retains the top-k most probable
sequences out of k · |V | candidates, where |V | is the vocabulary size.

Unlike parallel decoding, beam search facilities sharing not only the initial prompt blocks but
also other blocks across different candidates, and the sharing patterns dynamically change
as the decoding process advances, similar to the process tree in the OS created by compound
forks. Fig. 5.9 shows how vLLM manages the KV blocks for a beam search example with
k = 4. Prior to the iteration illustrated as the dotted line, each candidate sequence has used
4 full logical blocks. All beam candidates share the first block 0 (i.e., prompt). Candidate
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3 digresses from others from the second block. Candidates 0-2 share the first 3 blocks and
diverge at the fourth block. At subsequent iterations, the top-4 probable candidates all
originate from candidates 1 and 2. As the original candidates 0 and 3 are no longer among
the top candidates, their logical blocks are freed, and the reference counts of corresponding
physical blocks are reduced. vLLM frees all physical blocks whose reference counts reach 0
(blocks 2, 4, 5, 8). Then, vLLM allocates new physical blocks (blocks 9-12) to store the new
KV cache from the new candidates. Now, all candidates share blocks 0, 1, 3; candidates 0
and 1 share block 6, and candidates 2 and 3 further share block 7.

Previous LLM serving systems require frequent memory copies of the KV cache across the
beam candidates. For example, in the case shown in Fig. 5.9, after the dotted line, candidate
3 would need to copy a large portion of candidate 2’s KV cache to continue generation. This
frequent memory copy overhead is significantly reduced by vLLM’s physical block sharing.
In vLLM, most blocks of different beam candidates can be shared. The copy-on-write mech-
anism is applied only when the newly generated tokens are within an old shared block, as in
parallel decoding. This involves only copying one block of data.

Shared prefix. Commonly, the LLM user provides a (long) description of the task in-
cluding instructions and example inputs and outputs, also known as system prompt [100].
The description is concatenated with the actual task input to form the prompt of the re-
quest. The LLM generates outputs based on the full prompt. Fig. 5.10 shows an example.
Moreover, the shared prefix can be further tuned, via prompt engineering, to improve the
accuracy of the downstream tasks [80, 77].

For this type of application, many user prompts share a prefix, thus the LLM service provider
can store the KV cache of the prefix in advance to reduce the redundant computation spent
on the prefix. In vLLM, this can be conveniently achieved by reserving a set of physical
blocks for a set of predefined shared prefixes by the LLM service provider, as how OS handles
shared library across processes. A user input prompt with the shared prefix can simply map
its logical blocks to the cached physical blocks (with the last block marked copy-on-write).
The prompt phase computation only needs to execute on the user’s task input.

Mixed decoding methods. The decoding methods discussed earlier exhibit diverse mem-
ory sharing and accessing patterns. Nonetheless, vLLM facilitates the simultaneous process-
ing of requests with different decoding preferences, which existing systems cannot efficiently
do. This is because vLLM conceals the complex memory sharing between different sequences
via a common mapping layer that translates logical blocks to physical blocks. The LLM and
its execution kernel only see a list of physical block IDs for each sequence and do not need
to handle sharing patterns across sequences. Compared to existing systems, this approach
broadens the batching opportunities for requests with different sampling requirements, ulti-
mately increasing the system’s overall throughput.
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Figure 5.10: Shared prompt example for machine translation. The examples are adopted
from [18].

5.4.5 Scheduling and Preemption
When the request traffic surpasses the system’s capacity, vLLM must prioritize a subset
of requests. In vLLM, we adopt the first-come-first-serve (FCFS) scheduling policy for
all requests, ensuring fairness and preventing starvation. When vLLM needs to preempt
requests, it ensures that the earliest arrived requests are served first and the latest requests
are preempted first.

LLM services face a unique challenge: the input prompts for an LLM can vary significantly
in length, and the resulting output lengths are not known a priori, contingent on both the
input prompt and the model. As the number of requests and their outputs grow, vLLM can
run out of the GPU’s physical blocks to store the newly generated KV cache. There are
two classic questions that vLLM needs to answer in this context: (1) Which blocks should
it evict? (2) How to recover evicted blocks if needed again? Typically, eviction policies
use heuristics to predict which block will be accessed furthest in the future and evict that
block. Since in our case we know that all blocks of a sequence are accessed together, we
implement an all-or-nothing eviction policy, i.e., either evict all or none of the blocks of
a sequence. Furthermore, multiple sequences within one request (e.g., beam candidates in
one beam search request) are gang-scheduled as a sequence group. The sequences within
one sequence group are always preempted or rescheduled together due to potential memory
sharing across those sequences. To answer the second question of how to recover an evicted
block, we consider two techniques:

Swapping. This is the classic technique used by most virtual memory implementations
which copy the evicted pages to a swap space on the disk. In our case, we copy evicted
blocks to the CPU memory. As shown in Fig. 5.4, besides the GPU block allocator, vLLM
includes a CPU block allocator to manage the physical blocks swapped to CPU RAM. When
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vLLM exhausts free physical blocks for new tokens, it selects a set of sequences to evict and
transfer their KV cache to the CPU. Once it preempts a sequence and evicts its blocks,
vLLM stops accepting new requests until all preempted sequences are completed. Once a
request completes, its blocks are freed from memory, and the blocks of a preempted sequence
are brought back in to continue the processing of that sequence. Note that with this design,
the number of blocks swapped to the CPU RAM never exceeds the number of total physical
blocks in the GPU RAM, so the swap space on the CPU RAM is bounded by the GPU
memory allocated for the KV cache.

Recomputation. In this case, we simply recompute the KV cache when the preempted
sequences are rescheduled. Note that recomputation latency can be significantly lower than
the original latency, as the tokens generated at decoding can be concatenated with the
original user prompt as a new prompt—their KV cache at all positions can be generated in
one prompt phase iteration.

The performances of swapping and recomputation depend on the bandwidth between CPU
RAM and GPU memory and the computation power of the GPU. We examine the speeds
of swapping and recomputation in §5.7.3.

5.4.6 Distributed Execution
Many LLMs have parameter sizes exceeding the capacity of a single GPU [18, 25]. There-
fore, it is necessary to partition them across distributed GPUs and execute them in a model
parallel fashion [165, 82]. This calls for a memory manager capable of handling distributed
memory. vLLM is effective in distributed settings by supporting the widely used Megatron-
LM style tensor model parallelism strategy on Transformers [125]. This strategy adheres
to an SPMD (Single Program Multiple Data) execution schedule, wherein the linear layers
are partitioned to perform block-wise matrix multiplication, and the the GPUs constantly
synchronize intermediate results via an all-reduce operation. Specifically, the attention op-
erator is split on the attention head dimension, each SPMD process takes care of a subset
of attention heads in multi-head attention.

We observe that even with model parallel execution, each model shard still processes the
same set of input tokens, thus requiring the KV Cache for the same positions. Therefore,
vLLM features a single KV cache manager within the centralized scheduler, as in Fig. 5.4.
Different GPU workers share the manager, as well as the mapping from logical blocks to
physical blocks. This common mapping allows GPU workers to execute the model with
the physical blocks provided by the scheduler for each input request. Although each GPU
worker has the same physical block IDs, a worker only stores a portion of the KV cache for
its corresponding attention heads.

In each step, the scheduler first prepares the message with input token IDs for each request
in the batch, as well as the block table for each request. Next, the scheduler broadcasts
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Table 5.1: Model sizes and server configurations.

Model size 13B 66B 175B

GPUs A100 4×A100 8×A100-80GB
Total GPU memory 40 GB 160 GB 640 GB
Parameter size 26 GB 132 GB 346 GB

Memory for KV cache 12 GB 21 GB 264 GB
Max. # KV cache slots 15.7K 9.7K 60.1K

this control message to the GPU workers. Then, the GPU workers start to execute the
model with the input token IDs. In the attention layers, the GPU workers read the KV
cache according to the block table in the control message. During execution, the GPU
workers synchronize the intermediate results with the all-reduce communication primitive
without the coordination of the scheduler, as in [125]. In the end, the GPU workers send the
sampled tokens of this iteration back to the scheduler. In summary, GPU workers do not
need to synchronize on memory management as they only need to receive all the memory
management information at the beginning of each decoding iteration along with the step
inputs.

5.5 Implementation
vLLM is an end-to-end serving system with a FastAPI [40] frontend and a GPU-based
inference engine. The frontend extends the OpenAI API [99] interface, allowing users to
customize sampling parameters for each request, such as the maximum sequence length and
the beam width k. The vLLM engine is written in 8.5K lines of Python and 2K lines of
C++/CUDA code. We develop control-related components including the scheduler and the
block manager in Python while developing custom CUDA kernels for key operations such as
PagedAttention. For the model executor, we implement popular LLMs such as GPT [18],
OPT [159], and LLaMA [137] using PyTorch [104] and Transformers [147]. We use NCCL [95]
for tensor communication across the distributed GPU workers.

5.5.1 Kernel-level Optimization
Since PagedAttention introduces memory access patterns that are not efficiently supported
by existing systems, we develop several GPU kernels for optimizing it. (1) Fused reshape and
block write. In every Transformer layer, the new KV cache are split into blocks, reshaped to a
memory layout optimized for block read, then saved at positions specified by the block table.
To minimize kernel launch overheads, we fuse them into a single kernel. (2) Fusing block
read and attention. We adapt the attention kernel in FasterTransformer [96] to read KV
cache according to the block table and perform attention operations on the fly. To ensure
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Figure 5.11: Input and output length distributions of the (a) ShareGPT and (b) Alpaca
datasets.

coalesced memory access, we assign a GPU warp to read each block. Moreover, we add
support for variable sequence lengths within a request batch. (3) Fused block copy. Block
copy operations, issued by the copy-on-write mechanism, may operate on discontinuous
blocks. This can lead to numerous invocations of small data movements if we use the
cudaMemcpyAsync API. To mitigate the overhead, we implement a kernel that batches the
copy operations for different blocks into a single kernel launch.

5.5.2 Supporting Various Decoding Algorithms
vLLM implements various decoding algorithms using three key methods: fork, append, and
free. The fork method creates a new sequence from an existing one. The append method
appends a new token to the sequence. Finally, the free method deletes the sequence.
For instance, in parallel sampling, vLLM creates multiple output sequences from the single
input sequence using the fork method. It then adds new tokens to these sequences in every
iteration with append, and deletes sequences that meet a stopping condition using free.
The same strategy is also applied in beam search and prefix sharing by vLLM. We believe
future decoding algorithms can also be supported by combining these methods.

5.6 Evaluation
In this section, we evaluate the performance of vLLM under a variety of workloads.
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Figure 5.12: Single sequence generation with OPT models on the ShareGPT and Alpaca
dataset
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Figure 5.13: Average number of batched requests when serving OPT-13B for the ShareGPT
(2 reqs/s) and Alpaca (30 reqs/s) traces.

5.6.1 Experimental Setup
Model and server configurations. We use OPT [159] models with 13B, 66B, and 175B
parameters and LLaMA [137] with 13B parameters for our evaluation. 13B and 66B are
popular sizes for LLMs as shown in an LLM leaderboard [103], while 175B is the size of the
famous GPT-3 [18] model. For all of our experiments, we use A2 instances with NVIDIA
A100 GPUs on Google Cloud Platform. The detailed model sizes and server configurations
are shown in Table 5.1.
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Figure 5.14: Parallel generation and beam search with OPT-13B on the Alpaca dataset.

Workloads. We synthesize workloads based on ShareGPT [135] and Alpaca [131] datasets,
which contain input and output texts of real LLM services. The ShareGPT dataset is a collec-
tion of user-shared conversations with ChatGPT [101]. The Alpaca dataset is an instruction
dataset generated by GPT-3.5 with self-instruct [145]. We tokenize the datasets and use
their input and output lengths to synthesize client requests. As shown in Fig. 5.11, the
ShareGPT dataset has 8.4× longer input prompts and 5.8× longer outputs on average than
the Alpaca dataset, with higher variance. Since these datasets do not include timestamps,
we generate request arrival times using Poisson distribution with different request rates.

Baseline 1: FasterTransformer. FasterTransformer [96] is a distributed inference engine
highly optimized for latency. As FasterTransformer does not have its own scheduler, we
implement a custom scheduler with a dynamic batching mechanism similar to the existing
serving systems such as Triton [97]. Specifically, we set a maximum batch size B as large as
possible for each experiment, according to the GPU memory capacity. The scheduler takes
up to B number of earliest arrived requests and sends the batch to FasterTransformer for
processing.

Baseline 2: Orca. Orca [153] is a state-of-the-art LLM serving system optimized for
throughput. Since Orca is not publicly available for use, we implement our own version
of Orca. We assume Orca uses the buddy allocation algorithm to determine the memory
address to store KV cache. We implement three versions of Orca based on how much it
over-reserves the space for request outputs:

• Orca (Oracle). We assume the system has the knowledge of the lengths of the
outputs that will be actually generated for the requests. This shows the upper-bound
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performance of Orca, which is infeasible to achieve in practice.

• Orca (Pow2). We assume the system over-reserves the space for outputs by at most
2×. For example, if the true output length is 25, it reserves 32 positions for outputs.

• Orca (Max). We assume the system always reserves the space up to the maximum
sequence length of the model, i.e., 2048 tokens.

Key metrics. We focus on serving throughput. Specifically, using the workloads with
different request rates, we measure normalized latency of the systems, the mean of every re-
quest’s end-to-end latency divided by its output length, as in Orca [153]. A high-throughput
serving system should retain low normalized latency against high request rates. For most
experiments, we evaluate the systems with 1-hour traces. As an exception, we use 15-minute
traces for the OPT-175B model due to the cost limit.

5.6.2 Basic Sampling
We evaluate the performance of vLLM with basic sampling (one sample per request) on
three models and two datasets. The first row of Fig. 5.12 shows the results on the ShareGPT
dataset. The curves illustrate that as the request rate increases, the latency initially increases
at a gradual pace but then suddenly explodes. This can be attributed to the fact that when
the request rate surpasses the capacity of the serving system, the queue length continues to
grow infinitely and so does the latency of the requests.

On the ShareGPT dataset, vLLM can sustain 1.7×–2.7× higher request rates compared to
Orca (Oracle) and 2.7×–8× compared to Orca (Max), while maintaining similar latencies.
This is because vLLM’s PagedAttention can efficiently manage the memory usage and thus
enable batching more requests than Orca. For example, as shown in Fig. 5.13a, for OPT-
13B vLLM processes 2.2× more requests at the same time than Orca (Oracle) and 4.3×
more requests than Orca (Max). Compared to FasterTransformer, vLLM can sustain up
to 22× higher request rates, as FasterTransformer does not utilize a fine-grained scheduling
mechanism and inefficiently manages the memory like Orca (Max).

The second row of Fig. 5.12 and Fig. 5.13b shows the results on the Alpaca dataset, which
follows a similar trend to the ShareGPT dataset. One exception is Fig. 5.12 (f), where
vLLM’s advantage over Orca (Oracle) and Orca (Pow2) is less pronounced. This is because
the model and server configuration for OPT-175B (Table 5.1) allows for large GPU memory
space available to store KV cache, while the Alpaca dataset has short sequences. In this
setup, Orca (Oracle) and Orca (Pow2) can also batch a large number of requests despite
the inefficiencies in their memory management. As a result, the performance of the systems
becomes compute-bound rather than memory-bound.
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Figure 5.15: Average amount of memory saving from sharing KV blocks, when serving OPT-
13B for the Alpaca trace.

5.6.3 Parallel Sampling and Beam Search
We evaluate the effectiveness of memory sharing in PagedAttention with two popular sam-
pling methods: parallel sampling and beam search. In parallel sampling, all parallel se-
quences in a request can share the KV cache for the prompt. As shown in the first row of
Fig. 5.14, with a larger number of sequences to sample, vLLM brings more improvement over
the Orca baselines. Similarly, the second row of Fig. 5.14 shows the results for beam search
with different beam widths. Since beam search allows for more sharing, vLLM demonstrates
even greater performance benefits. The improvement of vLLM over Orca (Oracle) on OPT-
13B and the Alpaca dataset goes from 1.3× in basic sampling to 2.3× in beam search with
a width of 6.

Fig. 5.15 plots the amount of memory saving, computed by the number of blocks we saved by
sharing divided by the number of total blocks without sharing. We show 6.1% - 9.8% memory
saving on parallel sampling and 37.6% - 55.2% on beam search. In the same experiments
with the ShareGPT dataset, we saw 16.2% - 30.5% memory saving on parallel sampling and
44.3% - 66.3% on beam search.

5.6.4 Shared prefix
We explore the effectiveness of vLLM for the case a prefix is shared among different input
prompts, as illustrated in Fig. 5.10. For the model, we use LLaMA-13B [137], which is mul-
tilingual. For the workload, we use the WMT16 [16] English-to-German translation dataset
and synthesize two prefixes that include an instruction and a few translation examples. The
first prefix includes a single example (i.e., one-shot) while the other prefix includes 5 exam-
ples (i.e., few-shot). As shown in Fig. 5.16 (a), vLLM achieves 1.67× higher throughput
than Orca (Oracle) when the one-shot prefix is shared. Furthermore, when more examples
are shared (Fig. 5.16 (b)), vLLM achieves 3.58× higher throughput than Orca (Oracle).
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Figure 5.16: Translation workload where the input prompts share a common prefix. The
prefix includes (a) 1 example with 80 tokens or (b) 5 examples with 341 tokens.
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Figure 5.17: Performance on chatbot workload.

5.6.5 Chatbot
A chatbot [101, 47, 24] is one of the most important applications of LLMs. To implement
a chatbot, we let the model generate a response by concatenating the chatting history and
the last user query into a prompt. We synthesize the chatting history and user query using
the ShareGPT dataset. Due to the limited context length of the OPT-13B model, we cut
the prompt to the last 1024 tokens and let the model generate at most 1024 tokens. We do
not store the KV cache between different conversation rounds as doing this would occupy
the space for other requests between the conversation rounds.

Fig. 5.17 shows that vLLM can sustain 2× higher request rates compared to the three
Orca baselines. Since the ShareGPT dataset contains many long conversations, the input
prompts for most requests have 1024 tokens. Due to the buddy allocation algorithm, the
Orca baselines reserve the space for 1024 tokens for the request outputs, regardless of how
they predict the output lengths. For this reason, the three Orca baselines behave similarly.
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Figure 5.18: Ablation experiments.

In contrast, vLLM can effectively handle the long prompts, as PagedAttention resolves the
problem of memory fragmentation and reservation.

5.7 Ablation Studies
In this section, we study various aspects of vLLM and evaluate the design choices we make
with ablation experiments.

5.7.1 Kernel Microbenchmark
The dynamic block mapping in PagedAttention affects the performance of the GPU op-
erations involving the stored KV cache, i.e., block read/writes and attention. Compared
to the existing systems, our GPU kernels (§5.5) involve extra overheads of accessing the
block table, executing extra branches, and handling variable sequence lengths. As shown
in Fig. 5.18a, this leads to 20–26% higher attention kernel latency, compared to the highly-
optimized FasterTransformer implementation. We believe the overhead is small as it only
affects the attention operator but not the other operators in the model, such as Linear. De-
spite the overhead, PagedAttention makes vLLM significantly outperform FasterTransformer
in end-to-end performance (§5.6).
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Figure 5.19: (a) Overhead of recomputation and swapping for different block sizes. (b)
Performance when serving OPT-13B with the ShareGPT traces at the same request rate.

5.7.2 Impact of Block Size
The choice of block size can have a substantial impact on the performance of vLLM. If the
block size is too small, vLLM may not fully utilize the GPU’s parallelism for reading and
processing KV cache. If the block size is too large, internal fragmentation increases and the
probability of sharing decreases.

In Fig. 5.18b, we evaluate the performance of vLLM with different block sizes, using the
ShareGPT and Alpaca traces with basic sampling under fixed request rates. In the ShareGPT
trace, block sizes from 16 to 128 lead to the best performance. In the Alpaca trace, while
the block size 16 and 32 work well, larger block sizes significantly degrade the performance
since the sequences become shorter than the block sizes. In practice, we find that the block
size 16 is large enough to efficiently utilize the GPU and small enough to avoid significant
internal fragmentation in most workloads. Accordingly, vLLM sets its default block size as
16.

5.7.3 Comparing Recomputation and Swapping
vLLM supports both recomputation and swapping as its recovery mechanisms. To under-
stand the tradeoffs between the two methods, we evaluate their end-to-end performance and
microbenchmark their overheads, as presented in Fig. 5.19. Our results reveal that swapping
incurs excessive overhead with small block sizes. This is because small block sizes often result
in numerous small data transfers between CPU and GPU, which limits the effective PCIe
bandwidth. In contrast, the overhead of recomputation remains constant across different
block sizes, as recomputation does not utilize the KV blocks. Thus, recomputation is more
efficient when the block size is small, while swapping is more efficient when the block size
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is large, though recomputation overhead is never higher than 20% of swapping’s latency.
For medium block sizes from 16 to 64, the two methods exhibit comparable end-to-end
performance.

5.8 Discussion
Applying the virtual memory and paging technique to other GPU workloads.
The idea of virtual memory and paging is effective for managing the KV cache in LLM
serving because the workload requires dynamic memory allocation (since the output length
is not known a priori) and its performance is bound by the GPU memory capacity. However,
this does not generally hold for every GPU workload. For example, in DNN training, the
tensor shapes are typically static, and thus memory allocation can be optimized ahead of
time. For another example, in serving DNNs that are not LLMs, an increase in memory
efficiency may not result in any performance improvement since the performance is primarily
compute-bound. In such scenarios, introducing the vLLM’s techniques may rather degrade
the performance due to the extra overhead of memory indirection and non-contiguous block
memory. However, we would be excited to see vLLM’s techniques being applied to other
workloads with similar properties to LLM serving.

LLM-specific optimizations in applying virtual memory and paging. vLLM re-
interprets and augments the idea of virtual memory and paging by leveraging the application-
specific semantics. One example is vLLM’s all-or-nothing swap-out policy, which exploits
the fact that processing a request requires all of its corresponding token states to be stored in
GPU memory. Another example is the recomputation method to recover the evicted blocks,
which is not feasible in OS. Besides, vLLM mitigates the overhead of memory indirection
in paging by fusing the GPU kernels for memory access operations with those for other
operations such as attention.

5.9 Related Work
General model serving systems. Model serving has been an active area of research
in recent years, with numerous systems proposed to tackle diverse aspects of deep learn-
ing model deployment. Clipper [28], TensorFlow Serving [98], Nexus [123], InferLine [27],
and Clockwork [50] are some earlier general model serving systems. They study batching,
caching, placement, and scheduling for serving single or multiple models. More recently,
DVABatch [29] introduces multi-entry multi-exit batching. REEF [51] and Shepherd [158]
propose preemption for serving. AlpaServe [82] utilizes model parallelism for statistical
multiplexing. However, these general systems fail to take into account the auto-regressive
property and token state of LLM inference, resulting in missed opportunities for optimiza-
tion.
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Specialized serving systems for transformers. Due to the significance of the trans-
former architecture, numerous specialized serving systems for it have been developed. These
systems utilize GPU kernel optimizations [144, 2, 96, 85], advanced batching mechanisms [39,
153], model parallelism [108, 153, 2], and parameter sharing [166] for efficient serving. Among
them, Orca [153] is most relevant to our approach.

Comparison to Orca. The iteration-level scheduling in Orca [153] and PagedAttention
in vLLM are complementary techniques: While both systems aim to increase the GPU
utilization and hence the throughput of LLM serving, Orca achieves it by scheduling and
interleaving the requests so that more requests can be processed in parallel, while vLLM
is doing so by increasing memory utilization so that the working sets of more requests fit
into memory. By reducing memory fragmentation and enabling sharing, vLLM runs more
requests in a batch in parallel and achieves a 2-4× speedup compared to Orca. Indeed,
the fine-grained scheduling and interleaving of the requests like in Orca makes memory
management more challenging, making the techniques proposed in vLLM even more crucial.

Memory optimizations. The widening gap between the compute capability and memory
capacity of accelerators has caused memory to become a bottleneck for both training and
inference. Swapping [56, 142, 114], recomputation [23, 61] and their combination [105] have
been utilized to reduce the peak memory of training. Notably, FlexGen [124] studies how
to swap weights and token states for LLM inference with limited GPU memory, but it does
not target the online serving settings. OLLA [129] optimizes the lifetime and location of
tensors to reduce fragmentation, but it does not do fine-grained block-level management or
online serving. FlashAttention [30] applies tiling and kernel optimizations to reduce the peak
memory of attention computation and reduce I/O costs. This chapter introduces a new idea
of block-level memory management in the context of online serving.

5.10 Conclusion
This chapter proposes PagedAttention, a new attention algorithm that allows attention
keys and values to be stored in non-contiguous paged memory, and presents vLLM, a high-
throughput LLM serving system with efficient memory management enabled by PagedAt-
tention. Inspired by operating systems, we demonstrate how established techniques, such as
virtual memory and copy-on-write, can be adapted to efficiently manage KV cache and han-
dle various decoding algorithms in LLM serving. Our experiments show that vLLM achieves
2-4× throughput improvements over the state-of-the-art systems.
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Chapter 6

Conclusion and Future Work

In this dissertation, we designed algorithms and built systems to improve computational
efficiency and reduce the engineering overhead when training and serving large language
models, to democratize access to the most advanced AI models for everyone. In chronological
order, we build:

• TeraPipe (chapter 2), which identifies sequence dimension as a new dimension for
fine-grained pipeline parallel training for large language models.

• Alpa (chapter 3), a compiler that can automatically generate and execute parallel
strategy for arbitrary neural networks with all existing parallel algorithms, including
data, tensor, and pipeline parallelism.

• AlpaServe (chapter 4), which utilizes model parallelism to statistically multiplex the
devices for deep learning serving. It is the first work to show that model parallelism
can also benefit small models that can fit into a single GPU.

• PagedAttention (chapter 5), an attention algorithm inspired by virtual memory and
paging in operating systems to improve the memory utilization during LLM serving,
and vLLM, an end-to-end open-source LLM serving system that achieves state-of-the-
art inference throughput.

We conclude this dissertation by discussing other related work we developed during the
course of constructing this dissertation, reflecting on lessons learned in building open-source
projects, and identifying potential areas for future research.
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6.1 Other Work During the Construction of This
Dissertation

In this section, we list other work developed during the construction of this dissertation.

Communication Optimization for LLMs. Communication has been the major over-
head introduced in distributed training and inference. To reduce communication overhead,
in [168], we developed a new broadcast-based algorithm for many-to-many communication
in large-scale pipeline parallelism, accelerating communication by more than 10x. In Ho-
plite [167], we introduced a new set of collective communication algorithms that accelerate
dynamic communication in distributed deep reinforcement learning by 4x.

LLM scaling law. Before GPT-3 [18] came out and showed its remarkable capabilities,
people were still questioning whether larger models were more efficient than smaller models
given a limited budget, which was later known as the study of scaling law. In [81], we showed
that training a larger model can be more efficient than smaller models. This
phenomenon occurs because larger models converge to lower errors faster due to their large
number of parameters. Additionally, the large models are more robust to model compression
techniques during inference. Thus, one can get the best of both training and serving efficiency
by training very large models and then heavily compressing them.

Open-source chatbots. While LLMs have significantly advanced AI, their development
has largely been confined to a few tech giants. To disrupt this concentration of power and
make LLMs more accessible to a broader audience, we built Vicuna [24], a chatbot trained
by fine-tuning LLaMA [137] on user-shared conversations on ShareGPT. It is the first open-
source chatbot that achieves on-par conversation fluency as ChatGPT.

LLM Evaluation. To evaluate Vicuna’s capability, we built Chatbot Arena [163], the
first crowdsourced LLM benchmark that reflects the actual human preference for LLMs.
Notably, Chatbot Arena is the first production deployment of vLLM. The cost reduction
from vLLM enables serving Chatbot Arena to millions of users from a research lab. Chatbot
Arena has been viewed as the most accurate benchmark for LLM-based chatbots.

6.2 Lessons Learned in Open-Source Development
Many technologies introduced in this dissertation have led to open-source projects that are
widely adopted across the industry. In this section, we discuss several lessons we learned in
the course of open-source development from an academic research environment.
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Exciting new research opportunities come from first-hand experience and de-
ployment. The biggest lesson we learned during the construction of this dissertation is
that new research ideas often come from real-world experience, which is typically a unique
advantage brought by working on open-source projects. As an example, before we started
on the PagedAttention and vLLM project, we deployed a demo service that uses Alpa and
AlpaServe to serve the OPT-175B [159] model from Meta to demonstrate the capability of
Alpa and AlpaServe. During the deployment of the service, we found that simply deploying
LLM without any optimization is extremely expensive and inefficient. We started to build a
new system with continuous batching to optimize the serving performance. During our im-
plementation, it became clear that the KV Cache memory management in existing systems
was far from optimal, and this led to our research in PagedAttention and vLLM. In summary,
having first-hand experience in real-world workloads typically reveals new insights that were
previously missing in existing works, which can lead to new exciting research opportunities.

Accessible user interface. In both Alpa and vLLM projects, one of the fundamental
philosophies we have at the beginning is to make sure the user interface is simple and easy to
start. The definition of the interface here is general: from installation and starting example,
all the way to configurations for system adaptation and code structure for advanced users
to modify the code to their own use cases. This is crucial for the open-source project to
grow: the ease of starting is crucial for bringing in new users to the project and the ease of
modification is crucial for turning new users into advanced users who can add new features
and eventually contribute to the open-source project. The users and contributors are the
key for open-source projects to survive and thrive. Additionally, designing simple interfaces
and system architectures can force us to hide the complexity from the user while keeping
the system well-structured, which is often the base of a system research problem.

People and community. The most valuable asset of an open-source project is the com-
munity of its users and contributors. While lowering the barrier for participation is crucial,
there are additional steps that maintainers can take to foster a vibrant open-source commu-
nity. First, establishing a clear project roadmap helps contributors understand the project’s
priorities. Second, creating a platform for contributors to communicate with one another
facilitates collaboration. Finally, and most importantly, maintainers should build personal
connections and trust with contributors, gradually involving them more deeply in the project.
In summary, a thriving open-source community is cultivated through a clear vision, effective
communication channels, and strong trust between the contributors.

6.3 Future Work
In recent years, LLMs and neural networks for different application domains converge to
the Transformer architecture, while the sizes of datasets and models have become the dom-
inant factor for model accuracy. This shift underscores the growing importance of systems
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optimizations in the field of deep learning. To this end, we would like to propose future
directions by exploring the fundamental system properties of LLMs and other deep learning
applications, including scheduling, heterogeneity, and fault tolerance:

Application-aware scheduling for LLM serving. LLM applications evolve in a daily
manner and the characteristics of these applications bring unique opportunities for schedul-
ing optimizations. For instance, to accomplish a complex task with an LLM, users often
specify an LLM to act as multiple specialized agents for the sub-tasks via different prompt
instructions, and then these LLM agents interact with each other, as well as external tools,
to jointly accomplish the task. The calls to one specific agent often share a large portion of
the inputs. The calls to different agents form a structured task graph. Both can be utilized
by the caching and execution scheduler. Other examples include retrieval-based genera-
tion and memory-augmented LLMs. Developing novel scheduling algorithms that utilize the
application properties can further reduce the operational cost of these large models.

Heterogeneous computing for deep learning. Different deep learning models can have
drastically different resource requirements, sometimes even for the same model at differ-
ent application stages: Vision models are typically compute-bound, while LLMs are of-
ten memory-bound; Training is compute-bound, while inference is mostly memory-bound;
Specifically for LLM inference, the prompt processing stage is often compute-bound, while
generating new tokens is memory-bound (which inspired our work on PagedAttention).
While GPUs are the king for compute-bound workloads, CPUs can be an efficient and low-
cost alternative for memory-bound tasks. At a high level, utilizing heterogeneous hardware
is an important approach to handle the different workload requirements. We are exploring
developing an abstraction that can capture the requirements of different deep-learning tasks
and building systems that can automatically distribute tasks to different hardware based on
the requirements.

Fault-tolerance in massive scale GPU cluster. Modern GPU clusters often follow
a supercomputer-style design: They assume individual GPUs do not fail often, and when
failure happens, the system restarts from a previous global checkpoint. This design worked
well back when individual deep learning jobs were using at most tens of GPUs. However,
with the rise of LLMs, a single training job can take more than ten thousand GPUs. The
failures of GPUs started to become an issue: the training job can fail more than once every
day. Some failures are also subtle: a single bit-flip of one neural network weight may lead to a
diverged training run hundreds of training steps later. However, GPUs are so expensive that
the overhead of traditional fault-tolerant systems becomes intolerable. An exciting future
research direction is to find a new computing paradigm that can handle faults in this scenario
while minimizing overhead and maximizing performance.
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Overall, the philosophy throughout this dissertation is to find fundamental problems in real-
world applications, search for highly practical solutions, and meanwhile build deployable
algorithms and systems, like Alpa and vLLM. As the scale of LLMs and other deep learning
applications continues to grow, we firmly believe the next AI breakthrough will come from
system innovations. The combination of rapidly emerging problems and finding real-world
impactful solutions allows for rich, intellectually rewarding research that can directly shape
the systems powering today’s and tomorrow’s most exciting applications.
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