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ABSTRACT There is little information on predator—prey interactions in wind energy landscapes in North
America, especially among terrestrial vertebrates. Here, we evaluated how proximity to roads and wind
turbines affect mesocarnivore visitation with desert tortoises (Gopherus agassizii) and their burrows in a wind
energy landscape. In 2013, we placed motion-sensor cameras facing the entrances of 46 active desert tortoise
burrows in a 5.2-km? wind energy facility near Palm Springs, California, USA. Cameras recorded images of
35 species of reptiles, mammals, and birds. Counts for 4 species of mesocarnivores at desert tortoise burrows
increased closer to dirt roads, and decreased closer to wind turbines. Our results suggest that anthropogenic
infrastructure associated with wind energy facilities could influence the general behavior of mammalian
predators and their prey. Further investigation of proximate mechanisms that underlie road and wind turbine
effects (i.e., ground vibrations, sound emission, and traffic volume) and on wind energy facility spatial designs
(i-e., road and wind turbine configuration) could prove useful for better understanding wildlife responses to
wind energy development. © 2017 The Wildlife Society.

KEY WORDS burrow symbionts, Gopherus agassizii, meso-predator, predator—prey interactions, renewable energy,

roads, trail camera.

Mesocarnivores (Mammalia: Carnivora) occupy diverse
habitats in North America, including anthropogenic land-
scapes (Ray 2000). Although fragmented landscapes may
increase extinction vulnerability of large mammalian
carnivores, small to medium-sized mesocarnivores expand
home ranges in the face of some anthropogenic changes
(Crooks and Soulé 1999, Crooks 2002, Urquiza-Haas et al.
2009). A new cause of habitat alteration in the desert
southwest, USA, is renewable energy development (Lovich
and Ennen 2011, 2013). Habitat disturbance caused by wind
energy facilities creates unique challenges and opportunities
for wildlife (Lovich and Ennen 2013, Agha et al. 20155).

Although wind energy facilities and associated infrastructure
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may create potential hazards for many species (Kuvlesky et al.
2007), these facilities may also benefit others by restricting
public access and limiting cultivation (Kelcey 1975, Lovich
and Daniels 2000). Additionally, infrastructure associated
with wind energy facilities (e.g., roads, culverts) create
movement corridors through disturbed habitat that may be
preferred by mesocarnivores (Tigas et al. 2002, Ng et al.
2004, Frey and Conover 2006, Alonso et al. 2014). However,
there is little published research about the effects of wind
energy facilities on mesocarnivores and other groups of non-
volant vertebrates (Lovich and Ennen 2013).
Mesocarnivores can be highly social or solitary and can
influence community structure in diverse habitats, including
anthropogenic landscapes (Roemer et al. 2009). As apex
predator populations decrease from human hunting pressure
or habitat loss, mesocarnivore populations can increase
(Sterner and Shumake 2001, Prugh et al. 2009, Brashares

et al. 2010). Population increase of mesocarnivores can have

Agha et al. * Mesocarnivores and Wind Energy Landscapes

1117



measurable consequences on lower trophic levels (ie.,
mesopredator release; Crooks and Soulé 1999). For example,
increased numbers of mesocarnivore predators resulting from
decreased trapping pressures on fur-bearing mammals (i.e.,
collapse of fur market) have been suggested as a cause of
increased nest predation in several taxa (e.g., reptiles and
birds; Congdon et al. 1993, 1994; Crooks and Soulé 1999;
Ritchie and Johnson 2009).

In the desert southwest region of the United States,
population declines of federally threatened desert tortoises
(Gopherus agassizii) are attributed to several factors, including
predation by carnivores (Lovich etal. 20144) and ravens (Corvus
corax; Boarman 2003), renewable energy development (Lovich
and Ennen 2011, 2013), road mortality (Von Seckendorft Hoff
and Marlow 2002), and fire (Lovich et al. 2011, U.S. Fish and
Wildlife Service 2011). Predation of adult desert tortoises by
subsidized mesocarnivores like coyotes (Canis latrans) can
negatively affect populations of tortoises locally and regionally
(Peterson 1994, Esque et al. 2010, Lovich et al. 20145).
However, instances of predation of desert tortoises for any
age-class are notoriously difficult to observe and quantify
(Peterson 1994), and therefore, evidence for most reported
predation events by mammals is circumstantial (Table 1).

The objective of our study was to evaluate how proximity to
anthropogenic infrastructure associated with wind energy
facilities, such as roads and wind turbines, affected
mesocarnivore visits to desert tortoise burrows and encounters
with desert tortoises. We asked 3 questions: what meso-
carnivore species visit desert tortoises or their burrows at a
wind energy facility in the desert southwest; how frequently do
these events occur; and does prey availability (i.e., birds,
rodents, reptiles, lagomorphs using burrows), age of the
burrow, distance to the nearest wind turbine, and distance to
the nearest dirt road influence the likelihood of mesocarnivore
visitation? For the latter question, we predicted that total
mesocarnivore counts would decrease as tortoise burrow
distance to wind turbines and dirt roads decreased because
earlier research suggested a potential variance in carnivore
occurrence across the wind energy facility resulting from
associated infrastructure (Agha et al. 20155). Although
some mesocarnivores are known to occasionally eat carrion
found underneath wind turbines (Smallwood et al. 2010).

STUDY AREA

We conducted our study at a wind energy facility, the
Mesa wind energy facility (hereafter Mesa), near Palm

Springs, Riverside County, California, USA (33°57'06” N,
116°40'02” W, WGS84). The facility includes 460 wind
turbines, 51 electrical transformers, and a network of dirt roads
(~16 km total linear distance, and ~6 m average width) on 2
sections of public land administered by the Bureau of Land
Management (T2S, R3E, section 33, 34). These 2 sections
constitute just under 5.2 km?. Mesa is located at the western
edge of the Sonoran Desert and is bordered on the north and
west by the San Bernardino Mountains. Elevation ranges from
approximately 300-900m and long-term mean winter
precipitation was 15.2 cm (Agha et al. 20154). Plant species
at Mesa are a mixture of Mojave and Sonoran desert ecosystem
assemblages, and coastal and montane plant assemblages
(Lovich and Daniels 2000). For a more detailed description of
the Mesa study site see Lovich et al. (2011) and Agha et al.
(20155).

METHODS

Data Collection
From 1June to 14 November 2013, we deployed motion sensor
cameras (models HC500 and PC800; Reconyx, Holmen, WI,
USA) at the entrances of 46 active desert tortoise burrows at
Mesa. We considered a burrow active if a tortoise occupied the
burrow in 2012 or 2013. We deployed all cameras at
approximately the same time, and straight-line distance
between cameras ranged from approximately 8 m to 2,471 m.
We mounted cameras on 1.5-m tall stakes positioned 1 m from
desert tortoise burrow entrances. Consequently, the camera
detection zone was approximately 2—4 m’, allowing us to see
the entrance of the burrow and a small extent of the
surrounding landscape (Agha et al. 20154). To avoid camera
sensitivity bias, we set all cameras to motion activation via an
infrared sensor with high motion sensitivity and programmed
them to take a series of 3 high-definition photographs at a
trigger speed of 0.2 seconds, following methods and
procedures from Rovero et al. (2013). Camera models
HC500 and PC800 only differed in their maximum
illumination range at night (15.2 vs. 18.3 m). Because our
cameras were close to burrows, we did not statistically assess
distance of wildlife from the camera in this study. However,
camera placement >1m from a burrow increased false-
detections (i.e., misfiring) caused by windblown grass or dust,
even after controlling for camera sensitivity settings.

Every 15-30 days, an investigator checked each camera and
downloaded photos. Using long-term desert tortoise data
from Mesa (1997-2013; Lovich et al. 2011, Agha et al.

Table 1. Documented or suspected terrestrial predators of the desert tortoise in North America.

Terrestrial predator species

Sources

Domestic dog

Mountain lion (Puma concolor)
Bobcat (Lynx rufus)

Gray fox (Urocyon cinereoargenteus)
Black bear (Ursus americanus)

Kit fox (Vulpes macrotis)

Ernst and Lovich (2009)
Lovich et al. (20144)

Burge (1979), Peterson (1994), Boyer and Boyer (2006), Ernst and Lovich (2009), Esque et al. (2010)
Field et al. (2007), Medica and Greger (2009)
Woodbury and Hardy (1948), Field et al. (2007)

Coombs (1977), Hohman and Ohmart (1980), Hampton (1981), Roberson et al. (1985), Baxter (1987),

Turner et al. (1987), Bjurlin and Bissonette (2004)

Coyote (Canis latrans)
American badger (Taxidea taxus)

Coombs (1977), Hohman and Ohmart (1980), Roberson et al. (1985), Berry et al. (2013), Lovich et al. (20145)
Emblidge et al. (2015), Smith et al. (2016)
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20154), we noted the date when the burrow was first
recorded as occupied by a radio-telemetered desert tortoise,
providing an approximate minimum time since first known
occupation or rough approximation for age of the burrow. As
a result of our methods for determining camera locations, all
monitored burrows were occupied at some point in the past
2 years by tracked desert tortoises. We followed approved
field methods under permits from the United States Fish and
Wildlife Service (TE-198910-1), Bureau of Land Manage-
ment, and the California Department of Fish and Wildlife
(SC-1639). The study also conformed to American Society
of Mammologists guidelines, and no mammals were
procured, handled, immobilized, marked, or transported
because this was a passive camera-trapping study only (Sikes
and Gannon 2011). The Institutional Animal Care and Use
Committee, Northern Arizona University, approved our
research procedures.

During our study, we frequently observed various animals
triggering the motion-sensor camera within short time
periods (1-5 min), creating multiple sets of photographs for a
single individual. These consecutive records exhibited high
temporal correlation (Agha et al. 20154). Consequently, if
the same species triggered the motion-sensor camera on
multiple occasions within a 5-minute period, we classified
the grouping of photos as a single camera trap event. For each
camera trap event, we first recorded the date and time the
photo was triggered, identified the species, and classified the
posture or behavior using ethograms (mammals: Fox 1969,
Lingle 2000, Way et al. 2006, MacNulty et al. 2007, Stanton
et al. 2015; desert tortoise: Ruby and Niblick 1994). With
our motion-sensor cameras, we quantified the total number
of reptile events, and mesocarnivore, bird, and other small
vertebrate events by species for each burrow. Using ArcGIS
10.1.1 (ESRI, Redlands, CA, USA) and a 10-m digital
elevation model, we estimated 3-dimensional landscape
distances (m) to the nearest wind turbine and dirt road for
desert tortoise burrows with camera traps.

Statistical Methods

To examine variation in mesocarnivore visitation (meso-
carnivore counts) at desert tortoise burrows at Mesa, we
quantified the following explanatory variables for each desert
tortoise burrow: turbine distance (distance of burrow to
nearest wind turbine), road distance (distance of burrow to
nearest dirt road), age (min. known age of burrow), and prey
availability (no. visits by mesocarnivore prey, including birds,
reptiles, and small mammals).

Using Program R (version 3.1.1), we performed a Welch’s
2-sample #-test for unequal variances (a=0.05) to test
whether desert tortoise burrows visited by mesocarnivores
were closer to roads and turbines, as compared to unvisited
burrows. Subsequently, we fit generalized linear models with a
Poisson distribution and log link to test our explanatory
variables on total counts of mesocarnivores (Cameron and
Trivedi 2013). To equate scales and account for multi-
collinearity, we standardized all explanatory variables to have a
mean of 0 and a standard deviation of 1 (Cade 2015). We used

residual deviance to perform a chi-squared goodness-of-fit

test for the global model, and concluded that our global model
fit sufficiently (P=0.63). Although 2 predictors, dirt road
distance and turbine distance, were moderately correlated
(>0.6), inclusion of both variables in the global model did not
adversely affect model stability or regression estimates (Cade
2015). In addition, using the HH package, we calculated
variance inflation factor (VIF) values for each predictor in our
global model to detect multicollinearity, and these values did
not require exclusion of any independent variables from our
analysis (O’brien 2007). Subsequently, we fit all possible
combinations of our explanatory variables using the MuMin
package (Barton 2013). To identify the most parsimonious
model, we ranked models using Akaike’s Information
Criterion corrected for small sample size (AIC,; Burnham
and Anderson 2003). We used model averaging because there
were multiple models that were <4 AIC, units from the top
model (Burnham and Anderson 2003). Finally, we provided
estimates from model averaging, unconditional standard
error, and 85% confidence intervals for supported coefficients
within our top models to ensure that model selection and
parameter evaluation criteria were congruent (Arnold 2010).

RESULTS

Over the course of the 5.5-month camera-trapping study
(7,968 total trap nights), our cameras detected 4,903 wildlife
events (including mesocarnivores and their prey species)
distributed across 46 tortoise burrows. We recorded
approximately 900 wildlife events/month and an average
of 106 wildlife events/burrow. We recorded 22 mesocarni-
vore visitations, an average of 4 events/month, by 4 species
(bobcat [Lynx rufus], coyote, gray fox [Urocyon cinereoar-
genteus], and western spotted skunk [Spilogale gracilis]) at
16 different tortoise burrows that ranged approximately
0-158 m from roads and 21-574m from wind turbines
(Table 2). Burrows visited by mesocarnivores were closer to
roads, as compared to unvisited, based on a 1-tailed #-test
(P=0.002), and an opposite relationship was documented
for wind turbines (P=0.038). Mesocarnivore visitations
occurred from 0100-0700 and 1800-2300 hours and were
evenly dispersed from mid-June to mid-November. During
our study and across 46 tortoise burrows, we also observed
1 species of tortoise, 3 species of lizards, 4 species of snakes, 7
species of small mammals (rodents and lagomorphs), and 14
species of birds, visiting and using monitored tortoise
burrows for various reasons (Table 3).

Table 2. Number of camera events recorded and mean distance (m) and
standard deviation from camera to nearest dirt road and wind turbine for
cameras placed at desert tortoise burrows at the Mesa wind energy facility

near Palm Springs, California, USA, 2013.

Agha et al. * Mesocarnivores and Wind Energy Landscapes

Road Wind turbine
Mesocarnivore N x SD x SD
Bobcat 15 7829 4459 24465 152.20
Gray fox 2 4136 5849 185.38  207.69
Coyote 4 88.39 52,53 208.79 107.21
Western spotted skunk 1 158.06 574.58
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Table 3. A list of vertebrate species (other than mesocarnivores) and their
counts documented by trail cameras, inside or near the entrance of active
desert tortoise burrows at the Mesa wind energy facility near Palm Springs,
California, USA, 2013. Species are first ordered by class and then by
number of events. Migratory species have an asterisk following the
scientific species name.

No.
Class and common name Scientific name events
Mammalia
Desert kangaroo rat Dipodomys deserti 231
Desert cottontail Sylvilagus audubonii 175
Desert woodrat Neotoma lepida 122
White-tailed antelope Ammospermophilus leucurus 86
squirrel
Desert pocket mouse Chaetodipus penicillatus 41
Black-tailed jackrabbit Lepus californicus 22
Nelson’s big horn sheep  Owis canadensis nelsoni 8

California ground squirrel =~ Otospermophilus beecheyi 3
Domestic cattle Bos taurus 2
1

Black bear Ursus americanus
Aves

Rock wren Salpinctes obsoletus 1,507

California towhee Melozone crissalis 196

Cactus wren Campylorhynchus 114
brunneicapillus

Black-throated sparrow  Amphispiza bilineata 49

Greater roadrunner Geococcyx californianus 38

Loggerhead shrike Lanius ludovicianus 24

Chukar partridge Alectoris chukar 17

Burrowing owl Athene cunicularia 13

Bewick’s wren
California quail
‘White-crowned sparrow

Thryomanes bewickii
Callipepla californica
Zonotrichia leucophrys*

=Wk 33

California thrasher Toxostoma redivivum
Common raven Corvus corax
Verdin Auriparus flaviceps

Reptilia
Desert tortoise Gopherus agassizii 2,754
Great basin whiptail Aspidoscelis tigris tigris 104
Western side-blotched Uta stansburiana 65

lizard

Desert spiny lizard Sceloporus magister 36
Sagebrush lizard Sceloporus graciosus 27
Coachwhip Masticophis flagellum 5
Long-nosed snake Rbinocheilus lecontei 1

Most mesocarnivore camera trap events (z=17 of 22)
lasted <30 seconds (time the same individual mesocarnivore
was photographed). We provide additional descriptions of
mesocarnivore interactions with desert tortoises and burrow
visitation events that lasted >30 seconds elsewhere (Supple-
ment I, available online in Supporting Information).

After model selection, we found support for 4 models
(AAIC, <4 units from top model; Arnold 2010) predicting
mesocarnivore counts (Table 4). Using model averaging, we
found that mesocarnivore counts increased with distance
from a wind turbine but decreased with distance from a dirt
road (Table 5). For example, for each 1 standard deviation
(160.08 m) increase in distance from roads, estimated
mesocarnivore counts decreased by 1.94 (85% CI=—-2.82
to —1.05). Conversely, for each 1 standard deviation
(258.87m) increase in distance from wind turbines,
estimated mesocarnivore counts increased by 1.06 (85%
CI=0.50-1.61). Additionally, we found that mesocarnivore

counts increased with estimated minimum age of a desert

Table 4. The 4 top models predicting total mesocarnivore detections from
cameras placed at desert tortoise burrows at the Mesa wind energy facility
near Palm Springs, California, USA, 2013, including standardized
explanatory effects: distance to nearest wind turbine (turbine), distance to
nearest dirt road (road), known age of burrow (age), and number of
mesocarnivore prey events (prey). All models are ranked by corrected
Akaike’s Information Criterion (AIC,) and listed with number of model
parameters (K), log-likelihood (LL), difference in AIC, relative to the best
model (AAIC,), and Akaike weight (w;).

Model K LL AIC, AAIC, w;

Road + turbine + age 4 3896 86.91 0.00 0.39
Road + turbine 3  —40.26 87.08 0.18 0.36
Road + turbine + prey 4 —-39.97 8891 2.00 0.14
Road + turbine +age +prey 5 —38.96 89.42 251  0.11

tortoise burrow. For example, for each 1 standard deviation
increase in burrow age (2.58 yr), estimated mesocarnivore
counts increased by 0.26 (85% CI=0.04-1.01). However,

prey availability failed to predict mesocarnivore counts.

DISCUSSION

Our modeling results support the hypothesis that anthropo-
genic infrastructure associated with wind energy facilities
(i.e., roads and wind turbines) potentially affect mesocarni-
vore visitation rates at desert tortoise burrows in 2 ways.
First, our model-averaged estimates suggest that the number
of visitations observed at desert tortoise burrows increases as
distance from nearest wind turbine increases (Table 5).
Ground vibrations and sound emitted by wind turbines may
act as deterrents to wildlife or adversely affect behavior
(Rabin et al. 2006, Lovich and Ennen 2013). Bobcats and
coyotes rely on visual, auditory, and olfactory cues (Wells
1978, Tewes et al. 2002), and the extent to which sound and
vibration produced by wind turbines affect prey detection for
these mesocarnivores is unknown. However, prey species
show heightened vigilance and increased caution because
turbine noise masks their ability to detect predators through
auditory cues (Rabin et al. 2006). Therefore, it is likely that
mesocarnivores are also affected by noise from wind facilities.

Second, our model-averaged estimates suggest that the
number of mesocarnivore visitations observed at desert
tortoise burrows increases as distance to dirt roads decreases
(Table 5). Dirt roads at Mesa may act as funnels for

Table 5. Model-averaged estimates of generalized linear models for
predicting mesocarnivore detections from cameras placed at desert tortoise
burrows at the Mesa wind energy facility near Palm Springs, California,
USA, 2013, including the standardized effects of distance to nearest wind
turbine (turbine), distance to nearest dirt road (road), known age of burrow
(age), and total number of mesocarnivore prey events (prey). Effects with an
85% confidence interval not overlapping zero are significant (marked with
asterisk).

Lower Upper
Fixed effects Parameter estimates SE  85% CL  85% CL
Intercept —0.97 0.30 —1.42 —0.52
Age* 0.26 0.35 0.04 1.01
Road* —1.94 0.60 -2.82 —1.05
Turbine* 1.06 0.38 0.50 1.61
Prey 0.03 0.12 —0.23 0.44
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mesocarnivores because they are potential corridors through
the wind energy facility and direct efficient animal movement
(Kelly et al. 2012). For instance, Frey and Conover (2006)
reported that meso-predators incorporate more roads in their
home ranges than expected by chance. Furthermore, Atwood
et al. (2004) suggested that traveling corridors such as roads
are critical to movement of coyotes in areas with human
activity like Mesa. Thus, increased visits to desert tortoise
burrows closer to roads may correspond to high use of dirt
roads by mesocarnivores at Mesa. Alternatively, earlier
research at the study site reported that tortoise burrows were
more likely to be closer to roads than random points, likely
for the same reason. For example, tortoises can move more
easily on dirt roads and desert washes than highly vegetated
landscapes (Lovich and Daniels 2000, Todd et al. 2016). The
relationship between mesocarnivores and roads may be an
artifact of this effect, because visited burrows were closer to
roads as compared to unvisited burrows.

Additionally, our study found that mesocarnivore counts
increased as the minimum age of the tortoise burrow
increased. The relationship between burrow age and
mesocarnivore visits may be linked to specific mesocarnivore
behavioral observations made during our study. For example,
we recorded a bobcat scent marking (i.e., spraying urine) at a
3-year-old burrow, which may be a significant mode of
communication among bobcats (Bailey 1974). Scent
marking a landmark may indicate a mesocarnivore’s long-
term presence in an area (i.e., territoriality; Bailey 1974). At
our study site, older, more stable desert tortoise burrows may
also represent essential resources for an individual meso-
carnivore (i.e., prey availability, resting, denning places), and
thus demarcation by scent marking may increase the number
of reoccurring visits.

Desert tortoises provide shelter to many species with their
burrows (Woodbury and Hardy 1948, Burge 1979, Luck-
enbach 1982, Haug et al. 1993, Walde et al. 2015), a
phenomenon shared with other Gopherus species (Jackson and
Milstrey 1989, Kent and Snell 1994, Heinrich et al. 1995,
Kinlaw 1999, Engeman et al. 2009), and summarized in Ernst
and Lovich (2009). Because tortoise burrows provide
protection from high temperatures in harsh environments
(Moratka and Berry 2002, Mack et al. 2015), they can be
suitable for a variety of commensal species (Walde et al. 2009).
These and other burrow symbionts may attract mesocarnivores
(Coombs 1979, Winegarner 1985, Toland 1991). Our
modeling results, however, did not detect a significant effect
of prey availability on mesocarnivore visitation. It is possible
that our camera traps missed predator—prey interactions
adjacent to desert tortoise burrows, or that some of our
recorded birds, reptiles, or small mammals are not commonly
predated by mesocarnivores. For example, several mesocarni-
vore records were nocturnal, whereas most of our bird
observations were diurnal. Furthermore, although birds
accounted for 40% of wildlife observations, rock wrens
(Salpinctes obsoletus; Table 3) in particular made up approxi-
mately 78% of our bird observations, which may have biased
our prey availability variable towards the occurrence of rock
wrens as compared to other prey species.

Finally, we did not detect or record any predation on adult
desert tortoises by mesocarnivores close to burrows. Failure to
detect predation could suggest that mesocarnivore species
observed in our study do not actively depredate adult desert
tortoises near burrows, or that spatial structure of the wind
energy landscape may affect predator encounter rates with
prey. Mesocarnivores are reported to be predators or scavengers
of adult desert tortoises at other less fragmented (i.e.,
homogenous) study sites (Table 1). Additionally, reptiles
are important prey items for mesocarnivores in desert
ecosystems (Herndndez et al. 1994, Delibes et al. 1997,
Paltridge 2002). Because adult tortoises have been reported in
the diet of mesocarnivores at other study sites suggests that
predation or scavenging may occur during times when tortoises
are more vulnerable (i.e., away from burrows) or other prey
species are less abundant, as during droughts (Peterson 1994,
Esque etal. 2010, Lovich et al. 20144). Alternatively, variation
in predator encounter rates with prey may be caused by spatial
structure of the wind energy landscape (e.g., landscape
heterogeneity). For example, wind energy facility spatial
design (i.e., placement of wind turbines and roads) may control
animal aggregation patterns across landscapes, thus influenc-
ing the nature of predator—prey interactions (Fortin et al.
2015).

Our sparse mesocarnivore observations and non-detection
of predation may be related to study design, camera trap
constraints, and spatial and temporal limitations (Meek et al.
2015). For instance, the proximity of our cameras to tortoise
burrows and the use of a single camera directed towards each
tortoise burrow likely limited detection of predator—prey
interactions occurring away from burrows and our inferences
on mesocarnivore behavior, orientation, and identification.
Our study was conducted over a single year and only within
the extent of the wind energy facility; therefore, our
inferences do not include seasonal variation, nor do they
account for comparisons to reference conditions (i.e.,
undisturbed habitat). Finally, our interpretations may not
fully represent behaviors shared by the wider mesocarnivore
population living in proximity to wind energy facilities
because of the small number of detections (Rowcliffe et al.

2014).
MANAGEMENT IMPLICATIONS

Our study highlights that anthropogenic infrastructure
associated with wind energy facilities potentially influences
the general behavior of terrestrial vertebrates, such as
mesocarnivores. For example, our results suggest that
mesocarnivore counts increase closer to dirt roads. Dirt
roads may facilitate movements of mesocarnivores. Further-
more, our results provide evidence that mesocarnivore counts
increase with distance from wind turbines. In devising
management plans, managers could potentially assess wind
energy facility spatial design, particularly spacing between
turbines and the number of roads, to provide habitat for
sensitive terrestrial wildlife. Future investigations could
compare terrestrial wildlife behavior among wind energy
facilities and on undisturbed public land, and record
proximate mechanisms that might underlie the effects of
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roads and wind turbines (i.e., ground vibrations, sound
emission, and traffic volume).
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