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Abstract

Transposable elements (TE) play critical roles in shaping genome evolution. Highly repetitive TE sequences are also a major 
source of assembly gaps making it difficult to fully understand the impact of these elements on host genomes. The increased 
capacity of long-read sequencing technologies to span highly repetitive regions promises to provide new insights into pat
terns of TE activity across diverse taxa. Here we report the generation of highly contiguous reference genomes using 
PacBio long-read and Omni-C technologies for three species of Passerellidae sparrow. We compared these assemblies to 
three chromosome-level sparrow assemblies and nine other sparrow assemblies generated using a variety of short- and 
long-read technologies. All long-read based assemblies were longer (range: 1.12 to 1.41 Gb) than short-read assemblies 
(0.91 to 1.08 Gb) and assembly length was strongly correlated with the amount of repeat content. Repeat content for 
Bell’s sparrow (31.2% of genome) was the highest level ever reported within the order Passeriformes, which comprises 
over half of avian diversity. The highest levels of repeat content (79.2% to 93.7%) were found on the W chromosome relative 
to other regions of the genome. Finally, we show that proliferation of different TE classes varied even among species with 
similar levels of repeat content. These patterns support a dynamic model of TE expansion and contraction even in a clade 
where TEs were once thought to be fairly depauperate and static. Our work highlights how the resolution of difficult-to-as
semble regions of the genome with new sequencing technologies promises to transform our understanding of avian genome 
evolution.

Key words: Passerellidae, transposable elements, genome size, California Conservation Genomics Project, C-value.
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Introduction
The dynamics of transposable element (TE) activity within 
host genomes are a major driver of genome evolution 
(Ågren and Wright 2011). Transposable elements prolifer
ate throughout the genome either through copy-and-paste 
mechanisms (Class I elements; e.g. long interspersed nu
clear elements [LINEs]) or through cut-and-paste mechan
isms (class II elements; e.g. DNA transposons). The 
mobility of these elements in the genome contributes to 
structural variation (e.g. indels, inversions), alterations to 
gene expression, and the evolution of gene regulatory net
works (Feschotte 2008; Schrader and Schmitz 2019). Given 
the genomic disruption potentially caused by TEs, the ma
jority of new TE insertions are likely deleterious and species 
exhibit a wide range of defense mechanisms to both silence 
and delete TEs from the genome (Goodier 2016). 
Nevertheless, co-option of TEs by the host genome has 
led to the evolution of novel phenotypes (Mi et al. 2000; 
Cornelis et al. 2017) including color polymorphisms (van’t 
Hof et al. 2016; Kratochwil et al. 2022), increased immunity 
(Brosh et al. 2022), insecticide resistance (Daborn et al. 
2002), and speciation (Serrato-Capuchina and Matute 
2018). To date, much of TE biology has focused on model 
organisms with well-characterized genomic resources. 
The generation of high-quality genomes for a diversity of 
nonmodel organisms (Teeling et al. 2018; Feng et al. 
2020; Rhie et al. 2021; Lewin et al. 2022) promises to 
broaden our understanding of how co-evolutionary dy
namics between TEs and their host shape genome 
evolution.

Avian genomes provide an illuminating case of how ex
panding the diversity of available genome assemblies has 
altered our understanding of TE dynamics. Among am
niotes, birds exhibit the smallest and most constrained gen
omes. Although contraction of avian genomes likely began 
prior to the evolution of flight (Organ et al. 2007), the high 
metabolic demand of flight is the leading hypothesis for 
continued constraint on avian genome size evolution 
(Hughes and Hughes 1995; Andrews et al. 2009; Wright 
et al. 2014). Consistent with a hypothesis of constrained 
genome evolution, the first avian genomes sequenced re
vealed low repeat content (<10%), little recent TE activity, 

and high chromosomal stability (Ellegren 2010). Detailed TE 
annotation of an increasing diversity of avian genome as
semblies has since challenged the early narrative of low re
peat content and high stability. First, comparative analyses 
across 12 avian genomes showed that the apparent stabil
ity in avian genome size was actually the product of a more 
dynamic history of genomic expansions offset by 
large-scale deletions (Kapusta et al. 2017). Second, exten
sive variation in the timing and proliferation of TE elements 
has been discovered across birds (Kapusta and Suh 2017; 
Suh et al. 2018; Galbraith et al. 2021). This includes the dis
covery of relatively high repeat content of 20% to 30% in 
the orders Piciformes (woodpeckers and allies) and 
Bucerotiformes (hornbills and hoopoes; Zhang et al. 
2014; Manthey et al. 2018; Feng et al. 2020). Third, novel 
TEs have been discovered in avian lineages that derive from 
horizontal gene transfer from filarial nematodes (Suh et al. 
2016). Finally, highly contiguous assemblies have con
firmed that previous challenges to assembling the W 
chromosome were due in part to its role as a refugium 
for long terminal repeat (LTR) retrotransposons (Peona 
et al. 2021a, b; Warmuth et al. 2022).

Our understanding of TE dynamics in avian genomes is 
poised to advance further with the increased use of long- 
read sequencing technologies (Kapusta and Suh 2017; 
Rhie et al. 2021). Repetitive regions of the genome, includ
ing centromeres, telomeres, and the W chromosome, are a 
major source of assembly gaps. Consequently, repetitive 
DNA is thought to make up a large proportion of the 7% 
to 42% of the genomic DNA missing from short-read gen
ome assemblies relative to flow cytometry or densitometry 
estimates of genome size (hereafter the C-value; Peona 
et al. 2018). Indeed, a recent comparison of assembly 
methods for the paradise crow (Lycocorax pyrrhopterus) 
showed that gaps in short-read assemblies were primarily 
caused by LTR retrotransposons and simple repeats 
(Peona et al. 2021a). Further, a recent comparison of activ
ity levels of the chicken repeat 1 (CR1) retrotransposon 
across 117 avian genomes found a relationship between 
assembly contiguity (scaffold N50) and number of full 
length CR1s identified in individual genomes (Galbraith 
et al. 2021). This pattern was found across all genomes 

Significance
Transposable elements (TEs) are a major driver of genome size evolution, but their activity can be difficult to study given 
their role in causing genome assembly gaps. We explored TE detectability in relation to genome sequencing technology 
across 14 sparrow genomes. First, we find sequencing technology to be a major confounding factor in TE detection. 
Second, in genomes assembled from long-reads we find higher levels of TEs than previously reported in songbirds. 
Third, the high levels of TEs emerged from unique histories of TE proliferation and deletion across species. These findings 
highlight how the latest generation of sequencing technologies promise to reveal novel insights into TE dynamics that 
may have been missed from analyses based on short-read genome assemblies.
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analyzed and also explained intra-generic variation in CR1 
insertions. Detailed TE annotation of highly contiguous 
genomes will be essential for overcoming the confounding 
influence of assembly quality on patterns of TE diversity. In 
particular, studies leveraging highly contiguous genomes to 
explore TE dynamics across shorter evolutionary time scales 
are lacking but will be essential for understanding the con
tributions of these elements to the generation of avian 
diversity.

To this end, we performed in-depth TE annotations 
of highly contiguous genomes generated from six 
closely related sparrow species in the family Passerellidae. 
Passerellidae sparrows are a diverse clade of oscine 
Passeriformes, with 132 recognized species that are found 
throughout the Americas from northern Canada to south
ern Chile (Winkler et al. 2020). We generated de novo gen
ome assemblies for Bell’s sparrow (Artemisiospiza belli), 
Savannah sparrow (Passerculus sandwichensis), and song 
sparrow (Melospiza melodia) for this paper as part of the 
California Conservation Genomics Project (CCGP; Shaffer 
et al. 2022). We analyze these assemblies alongside three 
genomes recently sequenced by the Vertebrate Genomes 
Project (VGP; Rhie et al. 2021) for saltmarsh (Ammospiza 
caudacutus), Nelson’s (Ammospiza nelsoni), and swamp 
sparrow (Melospiza georgiana), for a study of the genomic 
basis of tidal marsh adaptation. These new genome assem
blies come from six members of the “grassland” sparrow 
clade (Klicka et al. 2014). True to their name, all species 
can be generally found in a variety of shrub and grassland 
habitats across North America. Savannah and song sparrow 
are the two most ecologically and geographically wide
spread species occupying a broad range of tundra, alpine, 
meadow, prairie, marsh, and shrub habitats from Alaska 
and northern Canada south through Mexico to 
Guatemala (Arcese et al. 2020; Wheelwright and Rising 
2020). Bell’s sparrow is found primarily in more arid chap
arral and coastal sage habitat from northwestern 
California south into Baja California, Mexico and east into 
the southern San Joaquin valley and Mojave desert of 
southeastern California (Cicero and Koo 2012). Nelson’s 
and swamp sparrow can primarily be found in central to 
eastern North America, principally in marsh habitats 
(Herbert and Mowbray 2020; Shriver et al. 2020). 
Saltmarsh sparrow is exclusively found in tidal marsh habi
tats of the Atlantic coast, and Nelson’s, swamp, song, and 
Savannah sparrow all include tidal marsh specialist subspe
cies (Greenberg et al. 2006; Walsh et al. 2019a).

Song and Savannah sparrow are two of the most poly
typic North America bird species, with 25 and 17 subspecies 
described in the song (Patten and Pruett 2009) and 
Savannah sparrow (Wheelwright and Rising 2020), respect
ively. In general, subspecific divergence across ecological 
gradients has long made all six species the focus of geo
graphic variation and speciation studies (Marshall 1948; 

Aldrich 1984; Rising 2001; Cicero and Johnson 2006; 
Walsh et al. 2017, 2019b, 2021; Mikles et al. 2020; Clark 
et al. 2022). Bell’s sparrow also forms a narrow hybrid 
zone with the sagebrush sparrow (Artemisiospiza nevadensis) 
in Owen’s Valley of eastern California (Cicero and Johnson 
2007; Cicero and Koo 2012), while Nelson’s and saltmarsh 
sparrow hybridize along the coast of southern Maine 
(Rising and Avise 1993; Shriver et al. 2005; Walsh et al. 
2015). Additionally, studies of these six sparrow species 
have provided important insights into avian life history 
and demography (Nice 1937; Johnston 1954; Keller et al. 
1994; Keller and Arcese 1998; Marr et al. 2002; 
Freeman-Gallant et al. 2005; Ruskin et al. 2017a, b; Field 
et al. 2018), physiology (Poulson 1965; Greenberg et al. 
2012; Benham and Cheviron 2020), vocal learning and be
havior (Marler and Peters 1977; Searcy and Marler 1981; 
Williams et al. 2022), and migratory behavior (Moore 
1978 ; Able and Able 1996). The generation of highly con
tiguous reference genomes for these sparrow species with 
in-depth TE annotations will thus provide a critically import
ant resource for future research in this intensively studied 
clade.

In addition to the six new sparrow genome assemblies, 
nine other assemblies were analyzed from across the 
Passerellidae family. The previous assemblies were pro
duced using a variety of short- and long-read sequencing 
approaches. Previously sequenced genomes also include 
short-read assemblies for both the song and saltmarsh 
sparrows, which allows for intra-specific comparisons to as
sess the impact of sequencing technology on repeat anno
tation. We take advantage of the diverse genomic 
resources available from within this single avian family to 
ask: (i) what is the impact of sequencing technology and as
sembly completeness on TE element annotation? And (ii) 
how do the evolutionary dynamics of TEs vary among close
ly related sparrow species? Addressing these questions will 
be important for determining how different sequencing ap
proaches may introduce bias into comparative genomics 
analyses. In addition, our comparisons provide insights 
into how analyses based on short-read assemblies may 
miss important dynamics of avian genome evolution.

Results

Genome Assemblies

The three CCGP assemblies included a low number of 337 
scaffolds in the Savannah sparrow and a high number of 
1,339 scaffolds in Bell’s sparrow; total assembly lengths 
ranged from 1.15 to 1.40 Gb (Table 1; supplementary 
figs. S1 to S3, Supplementary Material online). All assembly 
metrics indicate that the genomes are highly contiguous 
with contig N50 ranging from 5.98 to 8.31 Mb and scaffold 
N50 from 17.08 to 25.78 Mb. The largest contig length was 
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over 32.13 Mb and the longest scaffold over 99.81 Mb. 
Over 95% of the genes in the avian orthologous database 
were found to be complete and single copy in BUSCO. 
These metrics indicate that the genomes generated de 
novo by the CCGP pipeline are in line with overall contiguity 
and completeness metrics for the three genomes generated 
by the VGP. Genomes for swamp, saltmarsh, and Nelson’s 
sparrow showed similar contig N50 ranging from 8.25 to 
12.04 Mb, but scaffold N50s were approximately 3 ×  as 
large (74.25 to 78.44 Mb). The VGP genomes were also as
sembled into chromosome-level assemblies with 36 to 40 
chromosomes identified based on decreasing order of 
size. BUSCO scores were highly similar between the two 
sets of genomes ranging from 94.8% in Nelson’s sparrow 
to 95.6% in Bell’s sparrow. For the VGP genomes, 
BUSCO scores exceeded 98% when run using protein 
mode in the NCBI Eukaryotic Genome Annotation 
Pipeline (Thibaud-Nissen et al. 2013). Jupiter plots showed 
CCGP sparrow scaffolds mapping to most chromosomes of 
the zebra finch genome, with little evidence for inversions 
or translocations that may be indicative of misassemblies 

(Fig. 1). Similarly, although contact maps for the primary as
semblies of the three CCGP genomes show some level of 
fragmentation, they also reveal little evidence for 
inversions or translocations (supplementary fig. S4, 
Supplementary Material online). Given their greater con
tiguity, we only describe the primary assemblies here, but 
the sequences corresponding to both primary and alternate 
assemblies for each of the CCGP species are available on 
NCBI (See supplementary table S1, Supplementary 
Material online and Data availability for details).

Genome Size Variation in Sparrows

Adjusted genome size estimates from C-values of 
Passerellidae sparrows varied by 0.5 Gb from 1.13 Gb in 
Savannah sparrow (Passerculus sandwichensis) to 1.63 Gb 
in gray-browed brushfinch (Arremon assimilis), with a 
mean of 1.36 Gb (Fig. 2a). Previous short-read genome as
semblies of sparrows varied in length from 0.91 Gb in the 
grasshopper sparrow to 1.05 Gb in the white-throated 
sparrow assembly, which were 0.16 to 0.42 Gb smaller 

Table 1 
Comparison of assembly quality statistics and BUSCO search results among the three CCGP (left three) and three VGP (right three) genomes. BUSCO results 
for all genomes were obtained using the 8,338 universal single copy genes in birds found in the aves_odb10 database

Genome metrics Savannah Sparrow 
(Passerculus 

sandwichensis)

Bell’s Sparrow 
(Artemisiospiza 

belli)

Song Sparrow 
(Melospiza 
melodia)

Swamp sparrow 
(Melospiza 
georgiana)

Nelson’s sparrow 
(Ammospiza 

nelsoni)

Saltmarsh sparrow 
(Ammospiza 
caudacuta)

Chromosomes NA NA NA 36 37 40
# contigs 676 1,539 823 276 292 645
Largest contig 

(bp)
32,137,824 35,931,659 59,497,540 29,976,604 50,792,433 43,812,934

Total length (bp) 1,152,258,190 1,401,798,777 1,356,272,071 1,160,782,308 1,180,370,373 1,239,216,328
GC (%) 43.1 43.46 44.45 43.24 43.01 43.5
N50 5,981,027 8,253,817 8,311,625 10,446,106 12,036,358 8,252,193
N75 2,762,208 1,578,947 3,378,466 3,855,203 4,591,448 3,265,797
L50 50 45 39 36 27 39
# scaffolds 337 1,339 501 40 77 282
Largest scaffold 

(bp)
124,432,526 99,814,828 153,992,920 155,044,423 155,447,619 157,152,855

Total length (bp) 1,152,292,115 1,401,818,823 1,356,304,709 1,162,015,399 1,185,463,352 1,241,209,685
GC (%) 43.1 43.46 44.45 43.24 43.01 43.5
N50 18,220,233 17,082,054 25,784,215 74,254,230 74,723,840 78,443,464
N75 6,722,078 2,980,250 6,297,809 23,937,375 21,551,278 22,481,186
L50 17 20 14 6 6 6
# N’s per 100 kbp 2.94 1.43 2.38 106.12 429.62 160.60
BUSCO_results 

(%)
complete 95.2 95.6 95.5 94.9 94.8 95.4
complete and 

single copy
94.6 95.2 95.0 94.5 94.4 94.9

complete and 
duplicate

0.6 0.4 0.5 0.4 0.4 0.5

fragmented 2.1 1.5 1.6 1.8 1.9 1.8
missing 2.7 2.9 2.9 3.3 3.3 2.8
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than the corresponding C-value estimates of genome size 
for these species. Assembly lengths for the CCGP and 
VGP sparrow genomes varied from 1.15 Gb in the 
Savannah sparrow to 1.40 Gb in Bell’s sparrow (Fig. 2a). 
Recently released long-read assemblies of the white- 
crowned sparrow (1.12 Gb) and California towhee 
(1.41 Gb) span a similar range. The length of the assemblies 
reported here closely approximated the C-value estimates 
of genome size for the Savannah sparrow (mean 1.18 Gb 
vs. 1.15 Gb assembly) and the song sparrow (mean 
1.40 Gb vs. 1.35 Gb assembly), but was more divergent 
in the swamp sparrow (1.46 Gb vs. 1.16 Gb assembly). 
No C-value estimates exist for the other three sparrow spe
cies; however, alternate estimates of genome size are avail
able from the kmer profiles analyzed in GenomeScope 
(supplementary figs. S1 to S3, Supplementary Material on
line; https://www.genomeark.org/genomeark-all/). These 
profiles suggest that Nelson’s (assembly: 1.18 Gb; 
GenomeScope: 1.19 Gb) and saltmarsh sparrow (1.24 vs. 
1.22) assemblies closely match the expected genome 
length estimated from the kmer profile. In contrast, all 
three CCGP sparrow genome assemblies exceed the kmer 
profile genome size estimates (for example Bell’s sparrow 
assembly: 1.40 Gb vs. GenomeScope estimate: 1.13); 
whereas, the curated swamp sparrow assembly (1.16 Gb) 
was considerably shorter than the estimated length from 
GenomeScope (1.33 Gb). Together these data underscore 
the high level of completeness of the assemblies generated 
using long-read approaches, with less than 3% of the gen
ome missing from most species. The swamp sparrow as
sembly appears to be an exception with 12% to 20% of 
the genome content potentially missing (depending on 
GenomeScope or C-value estimate). Purged repeat content 

may explain some of the missing data from the swamp 
sparrow assembly. Repeat content in the swamp sparrow 
was estimated to span 18.26% of the genome using our 
Passerellidae repeat library in RepeatMasker, while k-mer 
estimates of repeat content were 30.4% from 
GenomeScope. Sparrow genome assemblies that used pri
marily short-read data were inferred to be missing as much 
as 12% to 30% of the genomic DNA (Fig. 2b).

Passerellidae De Novo Repeat Library

De novo identification of transposable elements in 
RepeatModeler2 followed by manual curation led to the 
identification of 514, 704, and 650 TE subfamilies within 
the Savannah, song, and Bell’s sparrows, respectively. 
Merging of the three sparrow libraries produced a final 
Passerellidae TE library with 1,272 elements. This includes 
361 elements shared by two or more sparrow species and 
234, 341, and 336 elements unique to Savannah, song, 
and Bell’s sparrows, respectively. Similar to other avian spe
cies, LINE and LTR elements represent the majority of TEs 
identified in these sparrow species. These include 15 shared 
LINE subfamilies and 68 shared LTR subfamilies across all 
three species. Song sparrows had the most unique LINE ele
ments (n = 58), whereas Bell’s sparrow had the most un
ique LTR elements (n = 122). Savannah sparrow had the 
least number of both elements identified (supplementary 
fig. S5, Supplementary Material online).

The curated Passerellidae repeat library was used to an
notate all 15 sparrow assemblies. Annotation results from 
RepeatMasker showed that repeat content comprises a 
considerably higher percentage of the genome in the 
more contiguous, long-read assemblies (Fig. 3a). Bell’s 
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FIG. 1.—Jupiter plot comparing higher level synteny and completeness between the zebra finch (Taeniopygia guttata) genome (bTaeGut.4) and each of 
the three CCGP draft assemblies of Passerellidae sparrow species. Zebra finch chromosomes are on the left in each plot (colored) and sparrow scaffolds are on 
the right (light gray). Twists represent reversed orientation of scaffolds between assemblies. Song and Bell’s sparrow reference genome samples were both 
from females, whereas the Savannah sparrow reference was from a male. Song and Bell’s sparrow illustrations reproduced with the permission of https:// 
birdsoftheworld.org with permission from Lynx Edicions. Savannah sparrow illustration contributed by Jillian Nichol Ditner.
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sparrow, song sparrow, and California towhee showed the 
greatest proportion of repeat content with repeats com
prising over 29% of the genome (Table 2; Fig. 3a). The 
Savannah sparrow exhibited the lowest proportion of re
peats (16.5%) among the long-read assemblies, but this 
still exceeded the 6.5% to 10.3% of the genome covered 
by repeat content identified in other sparrow species. 
Indeed, we found contig N50 to be highly predictive of total 
repeat content discovered in genome assemblies. All eight 
sparrow assemblies with a contig N50 greater than 1 Mb 
had significantly more repeat content than assemblies 
with contig N50 less than 1 Mb (Fig. 3b; t = −6.174; df =  
7.8; P = 0.0003). All assemblies with a contig N50 > 1 Mb 

were assembled using PacBio HiFi long-reads; whereas 
only 1 of 7 of the assemblies with contig N50 less than 
1 Mb included PacBio long-read sequencing in the assem
bly. Variation in assembly length among species also 
strongly predicted repeat content (adjusted R2 = 0.95, 
P-value <<0.0001; Fig. 4c). This pattern was replicated 
among different assemblies of the song sparrow and salt
marsh sparrow. Repeat content increased from 7.1% 
(0.978 Gb assembly) to 10.3% (1.06 Gb assembly) to 
29.5% (1.36 Gb assembly) as assembly length increased 
in the three song sparrow assemblies. In the saltmarsh spar
row, repeat content more than doubled from 10.6% in the 
short-read assembly (1.07 Gb) to 24.2% in the long-read 
assembly (1.24 Gb). Finally, the amount of repeat content 
significantly decreased as the percent missing DNA in
creased for each assembly with missing DNA inferred 
from the difference between C-value estimate and assem
bly length (adjusted R2 = 0.57, P-value = 0.007; Fig. 3d).

The comparison among the three song sparrow genome 
assemblies showed that LINEs and LTRs comprised the great
est number and total base pairs of newly discovered TE se
quence (Fig. 4a). We found an additional 8,375 (a ∼5% 
increase) line elements in the California versus British 
Columbia song sparrow assemblies. Despite only a small in
crease in the total number of elements, we find that these 
LINE elements span an additional 155 Mb of DNA in the 
California song sparrow genome (Fig. 4b). This discrepancy 
likely stems both from different elements segregating at dif
ferent frequencies in each population and LINEs in the 
California genome being of greater length on average. One 
of the most abundant LINE elements in the California song 
sparrow genome was found across all three of the CCGP 
sparrow genomes, but was missing from the British 
Columbia song sparrow genome. This element was 
>6500 bp in length and nearly 4,000 full length copies 
were found across the California song sparrow genome. 
Comparisons between a short-read and long-read assembly 
of the saltmarsh sparrow revealed a similar pattern (Fig. 4c 
and d). A small increase in the total number of LINE (∼3%) 
and LTR (∼16%) elements led to respective increases of 
43.1 Mb and 43.8 Mb of TE DNA discovered in these gen
omes. These results further support the inference that missing 
DNA from previous assemblies corresponds to longer TE ele
ments and may have been a major contributor to gaps.

The prevalence of different TE classes varied across our 
three genome assemblies. LTRs were the most abundant 
element within all sparrow genomes except the song spar
row assembly where LINE elements were the most abun
dant (14.58%; Table 2). Across different chromosomes, 
the density of repeat content (79.23% to 93.73%) was 
highest on the W chromosomes. W chromosome repeat 
content was particularly high in the genus Melospiza with 
over 90% of the W chromosome spanned by repetitive ele
ments in both the song and swamp sparrow. Z 
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chromosome repeat content tended to be higher than 
autosomal repeat content for all species except song and 
Bell’s sparrow (Table 2).

Timing of Repeat Proliferation

We extracted an average of 4,663 (range: 3,699 to 
4,839) ultra-conserved element (UCE) loci from the 17 
reference genomes queried (supplementary table S2, 
Supplementary Material online). From these loci we con
structed a concatenated data matrix of 4,196 UCE loci 
shared across 95% of samples with a total of 4,815,326 
base pairs. The concatenated maximum likelihood tree 
was well-resolved with all nodes receiving bootstrap sup
port of 100. This topology was used as input into 

MCMCtree to estimate divergence times among the focal 
species (see supplementary fig. S6, Supplementary 
Material online for full phylogeny). This time-calibrated 
phylogeny indicated that the white-crowned sparrow split 
from the other sequenced sparrow species at 13.3 Mya 
(95% HPD: 7.4 to 17.8; Fig. 5), Bell’s sparrow diverged 
from other species in the grassland sparrow clade 
7.9 Mya (95% HPD: 4.5 to 10.8), Ammospiza sparrows 
(Nelson’s and saltmarsh) split from Savannah, swamp, 
and song sparrow 6.8 Mya (95% HPD: 3.8 to 9.3), and 
Savannah sparrow diverged from the Melospiza sparrows 
5.8 Mya (95% HPD: 3.3 to 7.9). Within the context of these 
divergence times, members of the Passerellidae family 
show sharply divergent histories of transposable element 
proliferation (Fig. 5). All members of the grassland sparrow 

LINE
SINE
LTR
DNA
RC
Unclassified

Repeat content (%)
0 5 10 15 20 25 30

WCSP
CALT

SWSP
NESP
SMSP
SAVS 
BESP

SOSP (CA) 
SOSP (BC) 
SOSP (AK) 

WTSP
DEJU 
CHSP
GRSP

0

10

20

30

0.9 1.0 1.1 1.2 1.3 1.4
Genome assembly length (Gb)

G
en

om
e

w
id

e
re

pe
at

 c
on

te
nt

 (
%

) R  =0.96; p<<0.00012

a

c d

10

15

20

25

30

<1Mb >1Mb

G
en

om
e

w
id

e
re

pe
at

 c
on

te
nt

 (
%

)

0

10

20

30

10 20 30
DNA inferred to be missing from assembly (%)

R  =0.57; p=0.0072

G
en

om
e

w
id

e
re

pe
at

 c
on

te
nt

 (
%

)

Contig N50

b
t =-6.174; df=7.8; p=0.0003

FIG. 3.—a) Percentage of the genome comprising interspersed repeats, including: retroelements (LINE, SINE, LTR), DNA transposons (DNA), rolling-circles 
(RC), and unclassified elements (white-crowned sparrow, WCSP; California towhee, CALT; swamp sparrow, SWSP; Nelson’s sparrow, NESP; saltmarsh spar
row short-read, SALS_SR; saltmarsh sparrow long-read, SALS_VG; Savannah sparrow, SAVS; Bell’s sparrow, BESP; song sparrow, SOSP; white-throated spar
row, WTSP; dark-eyed junco, DEJU; chipping sparrow, CHSP; grasshopper sparrow, GRSP). b) The relationship between contig N50 and genome-wide repeat 
content. Significantly higher levels of repeat content were discovered in genomes with a contig N50 greater than 1 Mb. All of which were generated with 
PacBio long-read technology. c) Correlation between percent repeat content identified in each genome and the length of the assembled genome in Gb. 
d) Correlation between percent repeat content and the amount of DNA inferred to be missing from each of the sparrow assemblies. C-value is assumed 
to be the more accurate estimate of total genome length. Percent missing DNA from each sparrow assembly is estimated as the difference between the c-value 
and assembly length.

Repeat Content and Sparrow Genomes                                                                                                                            GBE

Genome Biol. Evol. 16(4) https://doi.org/10.1093/gbe/evae067 Advance Access publication 3 April 2024                                          7

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae067#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae067#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae067#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae067#supplementary-data


clade show evidence for a spike in LINE element activity in 
the autosomes ∼25 to 30 Ma. In contrast, the white- 
crowned sparrow does not show evidence for this spike, 
but rather shows a normal distribution of LINE element di
vergence centered at ∼40 to 50 Ma. Although the timing of 
LINE proliferation in grassland sparrows appears to predate 
divergence estimates among Passerellidae species (Fig. 5), 
the contrast with white-crowned sparrow suggests it may 
have occurred more recently following divergence of these 
different sparrow lineages. Despite shared evidence for this 
period of LINE activity, song sparrows have retained more 
LINE elements from this proliferation (∼14% of the gen
ome) than the other five sparrow species (only 1% to 3% 
of genomes). Bell’s sparrow shows a unique pulse of LTR 
proliferation approximately 12 Mya and a very recent 
(<5 Mya) proliferation of both LINE and LTR elements in 
the autosomes. For species with an assembled W chromo
some, all show a steady accumulation of LTR elements on 
the W chromosome, with endogenous retroviruses (ERVs) 
being the most prolific and representing up to a maximum 
of 69.2% in the song sparrow.

Discussion

Highly Contiguous and Complete Genomes Reveal High 
Repeat Content

We generated highly contiguous and complete genomes of 
three sparrow species in the family Passerellidae that we 

compared with three chromosome-level genomes gener
ated by the Vertebrate Genome Project. Contig N50 for 
the three newly generated genomes exceeded 92%, and 
the scaffold N50 exceeded 85% of all avian genomes re
cently surveyed by Bravo et al. (2021). Assembly length 
for the six species analyzed here also exceeds assembly 
lengths for all short-read based assemblies generated to 
date (1.16 to 1.40 Gb vs. 0.91 to 1.05 Gb). The longer 
length of these assemblies more closely approximates inde
pendent estimates of genome size from Feulgen image 
analysis densitometry (C-value), with song and Savannah 
sparrow missing only 2% to 3% of genomic sequence rela
tive to C-value size estimates. Longer assemblies were also 
associated with greater levels of repeat content. The high 
percentage of total interspersed repeats discovered in the 
song sparrow (31.2%), Bell’s sparrow (29.5%), and 
California towhee (30.9%; also see Black et al. 2023) gen
omes are the highest levels ever reported for Passeriformes 
and more closely resemble levels of repeat content de
scribed in the avian orders Piciformes and Bucerotiformes 
(Manthey et al. 2018; Feng et al. 2020). Although our find
ing is a novel result for passerine genome assemblies, reas
sociation kinetic studies found about 36% of the dark-eyed 
junco genome to be repetitive DNA (Shields and Straus 
1975). Recent long-read assemblies for jays in the passerine 
family Corvidae also show repeat content in-line with the 
results presented here (Benham et al. 2023; DeRaad et al. 
2023). Further, high levels of repeat content in these 

Table 2 
Percentage of each genome spanned by different classes of repeats. Estimates of each class of repeat region identified within RepeatMasker using the 
sparrow TE libraries generated de novo with RepeatModeler2

Element class: Savannah sparrow 
(Passerculus 

sandwichensis)

Bell’s sparrow 
(Artemisiospiza 

belli)

Song sparrow 
(Melospiza 
melodia)

Swamp sparrow 
(Melospiza 
georgiana)

Nelson’s sparrow 
(Ammospiza 

nelsoni)

Saltmarsh sparrow 
(Ammospiza 
caudacuta)

LINE 4.41 7.8 14.58 5.37 5.63 6.75
SINE 0.05 0.04 0.02 0.05 0.05 0.05
LTR 7.28 21.21 8.22 8.25 7.72 7.06
DNA 

transposons
0.09 0.10 0.09 0.08 0.08 0.1

Rolling-circles 0.02 0.02 0.01 0.01 0.02 0.05
Unclassified 4.66 2.01 6.56 4.51 5.81 8.40
Total 

interspersed 
repeats:

16.49 31.16 29.49 18.26 19.29 22.35

Autosomal 
chromosomes:

16.17 30.91 28.84 15.85 16.11 19.48

Z chromosome: 20.72 23.75 25.28 22.40 26.42 26.46
W chromosome: NA 82.59 91.03 93.73 79.23 NA
Other repeat 

regions:
Small RNA 0.04 0.04 0.03 0.06 0.05 0.04
Satellites 0.33 0.21 0.24 0.25 0.22 0.25
Simple repeats 1.35 1.11 1.05 1.25 1.19 1.21
Low complexity 0.25 0.20 0.20 0.23 0.28 0.32
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sparrows matches predictions that much of the missing 
genomic data from avian short-read assemblies are likely 
repetitive DNA (Elliott and Gregory 2015; Kapusta and 
Suh 2017; Peona et al. 2018). We expect that the gener
ation of additional highly contiguous and complete gen
omes using third generation sequencing technology will 
also find higher levels of repeat content in avian genomes 
than previously appreciated.

Previous sparrow genome assemblies generated using 
short-read methods were found to be missing ∼12% to 
30% of DNA sequence relative to C-values (Fig. 2b). The 
majority of this missing DNA is likely associated with highly 
repetitive regions of the genome that caused gaps in prior 
assemblies. Gaps associated with repeat regions is a well- 
established phenomenon and recent comparisons among 

sequencing technologies point to long contiguous reads 
as essential for spanning these gaps (Rhie et al. 2021). 
Similarly, we find that sparrow assemblies generated using 
PacBio long-read sequence data exhibited elevated contig 
N50 and higher percent repeat content, and that percent 
repeat content decreased in assemblies inferred to be miss
ing a greater percentage of DNA (Fig. 3). This was also true 
for intra-specific comparisons of multiple song and salt
marsh sparrow genomes where repeat content increased 
with assembly length and contiguity. The diversity of trans
posable elements can vary significantly within and among 
populations (e.g. Ficedula flycatchers; Suh et al. 2018). 
Although we compared song sparrow genomes from three 
different subspecies that could differ in repeat content and 
genome size, the patterns for song sparrow are consistent 
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with work showing increased TE discovery and abundance 
in long-read versus short-read assemblies of the same indi
vidual (Peona et al. 2021a). Our results are also consistent 
with prior work linking metrics of genome contiguity with 
levels of repeat content detected in genome assemblies 
(Galbraith et al. 2021). Overall, our analyses among closely 
related sparrow species confirms that sequencing technol
ogy appears to be a major confounding factor in compara
tive research on TE diversity.

Genome Size Evolution in Birds

Transposable elements are widely recognized as an import
ant driver of genome size evolution across Eukaryotes 
(Kidwell 2002; Elliott and Gregory 2015). Low repeat con
tent and high synteny contributed to an early view that 

avian genomes were relatively stable and constrained in 
size as an adaptation for the metabolic demands of flight 
(Hughes and Hughes 1995; Wright et al. 2014). This per
spective has been challenged with evidence of a more dy
namic history of avian genome expansions followed by 
large-scale deletions (Kapusta et al. 2017). Genome size 
variation in the Passerellidae, as measured by densitometry 
and cytometry methods, ranges from 1.13 to 1.63 Gb, with 
the Savannah sparrow possessing the smallest genome of 
any sparrow measured to date. Differences in assembly 
length across all sparrow species were entirely related to re
peat content (Fig. 3). Further, TE composition differed sig
nificantly even in species with similar genome assembly 
lengths (e.g. Bell’s and song sparrow).

Unlike the other sparrow species analyzed, CR1 LINE ele
ments were found to be the most abundant TE class within 
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the song sparrow genome. The TE landscape of the song 
sparrow genome indicates that the majority of LINE DNA 
stems from a period of increased activity 25 to 30 million 
years ago. All six sparrow species in the grassland clade 
show a spike in LINE activity during this period, but much 
of the LINE DNA from this period was eliminated in species 
other than the song sparrow. In contrast, the white- 
crowned sparrow shows a more “bell-curve” shape of 
LINE element proliferation with a peak of less than 0.5% 
at ∼30 to 40 Mya (about 20% divergence from consensus). 
The white-crowned sparrow pattern more closely resem
bles TE landscapes observed in other Passerifomes birds 
such as Ficedula flycatchers (Muscicapidae; Suh et al. 
2018) and Estrildidae finches (Boman et al. 2019). These 
patterns point to a proliferation of LINE elements within 
the grassland sparrow clade that more likely occurred after 
divergence from the white-crowned sparrow ∼13.3 Mya. 
This discrepancy in the timing of activity could reflect the 
use of a genome wide estimate of mutation rate from 
Ficedula flycatchers (Smeds et al. 2016) that may be under
estimating the true mutation rate for Passerellidae sparrows 
and/or transposable elements. Indeed, many of the host 
genome’s defense mechanisms against TE proliferation in
volve DNA-editing enzymes, such as APOBECs, which mu
tate TE sequences to silence their activity in the genome 
(Goodier 2016; Knisbacher and Levanon 2016).

LTR elements were the most abundant TE within all spar
row genomes except the song sparrow. Proliferation of 
these elements has also been more recent, beginning 
∼12 million years ago and continuing to the present. 
Recent proliferation of LTR elements was especially pro
nounced in Bell’s sparrow. Recent proliferation of LTR ele
ments more closely aligns with patterns of TE expansion 
observed in the zebra finch (Kapusta and Suh 2017) and 
the Eurasian blackcap (Sylvia atricapilla; Bours et al. 
2023). The reasons for recent LTR expansions in songbirds 
versus other avian lineages (e.g. Chicken; Warren et al. 
2017) are not entirely clear. One possibility is that competi
tion for similar genomic insertion sites between LTR and 
LINE elements could be mediated by host defenses. 
Recent work in the deer mouse (Peromyscus maniculatus; 
Gozashti et al. 2023) provided evidence for a cycle initiated 
by greater host repression of ancient ERV (a type of LTR) 
that allowed for greater LINE proliferation in the genome. 
This was followed by the invasion of the deer mouse gen
ome by a novel ERV that was hypothesized to have a greater 
immunity to host defense mechanisms and greater potential 
to outcompete LINE elements for insertion sites. A related 
possibility could reflect the accumulation of LTR elements 
on the W chromosome, many of which remain transcription
ally active and could seed invasions of the autosomal chro
mosomes (see below; Peona et al. 2021b). Whether either 
of these scenarios contributes to the recent expansions of 
LTR elements in songbird genomes awaits further study; 

however, the expanding number of avian genomes as
sembled using long-read sequence data will be essential 
for understanding the dynamics of TE proliferation and dele
tion in the evolution of avian genomes.

Differences in genome size and repeat content could be 
the result of a number of different mechanisms involved in 
TE silencing, deletion, or expansion in host genomes 
(Goodier 2016). A wide range of epigenetic mechanisms 
exist to silence TE activity in plants and animals (reviewed 
in Slotkin and Martienssen 2007). In birds, methylation of 
CpG and nonCpG sites in TEs with DNA methyltransferases 
is the primary mechanism of TE silencing that has been 
documented (Derks et al. 2016; Kapusta and Suh 2017). 
Mutating TE sequences is another mechanism hosts deploy 
to defend against TE proliferation. APOBEC genes induce 
C-to-U mutations in retrotransposons leading to inactiva
tion and degradation of these elements. The genomes of 
zebra finch and other bird species exhibit signatures of 
high APOBEC activity (Knisbacher and Levanon 2016). An 
important mechanism for the removal of LTR elements 
from the genome is ectopic recombination. This process de
letes most of the element sequence leaving only a single 
LTR and correlates with recombination rate variation across 
the genome in birds (Ji and DeWoody 2016). Finally, demo
graphic differences among populations could influence TE 
dynamics, with TEs predicted to insert and spread more rap
idly in populations with a small effective population size 
(Ne; Lynch and Conery 2003). Demographic analyses of 
the different sparrow species provide some support for 
this hypothesis as both Nelson’s and saltmarsh sparrows 
have been inferred to experience historical bottlenecks 
and lower Ne than other species (Walsh et al. 2019a, b; 
Walsh et al. 2021). In contrast, the Savannah sparrow has 
the lowest repeat content and has been inferred to main
tain high and constant effective population sizes (Benham 
and Cheviron 2019), which may be important for combat
ing TE proliferation and maintaining a smaller genome. 
However, the relationship between Ne and TE proliferation 
is not necessarily straightforward (Whitney and Garland 
2010) and some authors argue that TE expansions may 
be even more likely in species with large Ne (Ågren and 
Wright 2011).

Disruption of a host’s TE repression mechanisms can lead 
to TE expansions. Stressful conditions (e.g. thermal stress) 
can disrupt epigenetic silencing of TEs in the host genome, 
leading to TE expansions (Capy et al. 2000; Slotkin and 
Martienssen 2007). Furthermore, co-evolutionary arms 
races between TEs and the host genomes could lead to di
vergence in TE repressors among populations or closely re
lated species. Subsequent hybridization among these 
lineages could allow TEs to escape their repressors and pro
liferate throughout the genome of hybrids (Bingham et al. 
1982; Serrato-Capuchina and Matute 2018). Examples of 
TE re-activation following hybridization have been 
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documented in both plants (Josefsson et al. 2006) and ani
mals (O’Neill et al. 1998). In hybrid Helianthus sunflower 
species, proliferation of LTR elements was found to contrib
ute significantly to a 50% increase in the genome size of hy
brids relative to parental species (Ungerer et al. 2006). 
Intriguingly, Bell’s sparrow individual used to generate the 
reference assembly for this project comes from the same 
subspecies known to hybridize with sagebrush sparrow in 
a contact zone centered ca. 120 to 150 km. to the north
west of the collecting locality. Whether recent hybridization 
between Bell’s and sagebrush or Nelson’s and saltmarsh 
sparrow lineages led to a TE expansion remains to be deter
mined. However, the dynamic patterns of genome size evo
lution within sparrows indicates that the Passerellidae are 
an exciting model for future research on the dynamics of 
TE evolution.

TE Element Proliferation on Sex Chromosomes

The potential deleterious effects of TE insertions are 
thought to explain a general trend of TE prevalence in re
gions of lower recombination rate (Rizzon et al. 2002; Ji 
and DeWoody 2016; Kent et al. 2017). These patterns are 
especially pronounced on the Y/W sex chromosomes where 
a lack of recombination, low gene density, and small effect
ive population sizes are thought to allow for TE accumula
tion (Charlesworth and Langly 1989; Bachtrog 2003). This 
high TE abundance is thought to be a major contributing 
factor to the challenges of sequencing and assembling 
the W chromosome in birds and Y chromosome in mam
mals (Tomaszkiewicz et al. 2017). Consistent with these ex
pectations for the nonrecombining W chromosome, we 
found that repeat content on the W chromosome was dra
matically higher across all four female birds sequenced rela
tive to autosomal or Z chromosomes. Interspersed repeats 
comprised 79.2% and 82.6% of Nelson’s and Bell’s spar
row W chromosome, respectively, while the song and 
swamp sparrow (both Melospiza) possessed W chromo
somes with over 90% repeat content. Previous reports of 
repeat content on the W chromosome range from 22% 
in the emu (Dromaius novaehollandiae; Peona et al. 
2021a, b) to over 84% in the hooded crow (e.g. Corvus cor
nix; Warmuth et al. 2022) and 89% in Steller’s jay (e.g. 
Cyanocitta stelleri; Benham et al. 2023). Similar to other 
avian W chromosome assemblies, endogenous retroviral 
elements are the dominant element representing 42.3% 
of the song to 69.2% of Bell’s sparrow W chromosome as
sembly. Peona et al. (2021b) also showed that a dispropor
tionately large percentage of LTR elements on the avian W 
chromosome are full length retroviral elements that con
tinue to be actively transcribed. The capacity of active ele
ments to spread from the W to other regions of the 
genome makes the W chromosome a likely source for the 
recent activity and abundance of endogenous retroviral ele
ments in Passeriformes (Warren et al. 2010; Zhang et al. 

2014; Warmuth et al. 2022). Kapusta and Suh (2017) pos
ited that the abundance of these elements in Passeriformes 
may have played critical roles in their high levels of diversi
fication. The highly complete genome assemblies gener
ated via third generation sequencing techniques will 
provide new opportunities to test this hypothesis.

Conclusions

Here we report on the release of three highly contiguous as
semblies of sparrows in the family Passerellidae. The com
bination of long-read and Omni-C technology enabled 
the generation of nearly complete and highly contiguous 
assemblies. Analysis of these genomes revealed a previously 
underappreciated abundance of repetitive elements in the 
genomes of songbirds and suggests that much of the miss
ing data from other avian assemblies are likely comprised of 
repeat content. As third generation sequencing technolo
gies become the standard in avian genome assembly, the 
dynamics of TE element proliferation and genome size evo
lution across different evolutionary timescales will become 
better understood. Our results point to the strong role re
petitive element proliferation and deletion plays in the dy
namics of avian genome size evolution, even among 
closely related species.

Materials and Methods

CCGP Genome Sampling

We sequenced liver from an adult female Bell’s sparrow 
(Artemisiospiza belli canescens) collected on June 25, 
2018 at Hunter Cabin, 1.5 Mi. east of Jackass Spring, 
Death Valley National Park, Inyo Co., California 
(36.54758°N, 117.48786°W; elevation: 6860 ft). Blood 
and liver tissue samples were sequenced from an immature 
female song sparrow (Melospiza melodia gouldii) captured 
on September 5, 2020 in oak woodland habitat at Mitsui 
Ranch, Sonoma Mountain, Sonoma Co., California 
(38.33131°N; 122.57720°W). Liver tissue for sequencing 
was collected from an adult male Savannah sparrow 
(Passerculus sandwichensis alaudinus) on May 20, 2015 in 
tidal marsh habitat at the San Francisco Bay National 
Wildlife Refuge, Santa Clara Co., California (37° 26.029′ 
N; 122° 0.996′W: elevation: 4 m). Bell’s and song 
sparrow individuals were collected with approval of 
California Department of Fish and Wildlife (CDFW permit 
#: SCP-458), the U.S. Fish and Wildlife Service (USFWS per
mit #: MB153526), Death Valley National Park (Bell’s spar
row only; permit#: DEVA-2015-SCI-0040), and following 
protocols approved by the University of California, 
Berkeley IACUC (AUP-2016-04-8665-1). The Savannah 
sparrow sample was also collected with approval from 
CDFW (permit #: SCP-012913), USFWS (permit #: 
MB24360B-0), the San Francisco Bay National Wildlife 
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Refuge (special use permit: 2015-015), and using methods 
approved by the University of Illinois, Urbana-Champaign 
IACUC (protocol #: 13418). Voucher specimens were de
posited at the Museum of Vertebrate Zoology, Berkeley, 
CA for Bell’s sparrow (https://arctos.database.museum/ 
guid/MVZ:Bird:192114) and song sparrow (https://arctos. 
database.museum/guid/MVZ:Bird:193390). A specimen 
voucher of the Savannah sparrow was deposited at the 
Field Museum of Natural History in Chicago, IL (FMNH: 
Birds:499929).

DNA Extraction, Library Preparation, and Sequencing for 
CCGP Genomes

High molecular weight (HMW) genomic DNA (gDNA) for 
PacBio HiFi library preparation was extracted from 27 and 
15 mg of liver tissue from Bell’s and Savannah sparrow 
samples, respectively. Extractions were performed using 
the Nanobind Tissue Big DNA kit following the manufac
turer’s instructions (Pacific BioSciences—PacBio, Menlo 
Park, CA). For song sparrow, HMW gDNA was isolated 
from whole blood preserved in EDTA. A total of 30 µl of 
whole blood was added to 2 ml of lysis buffer containing 
100 mM NaCl, 10 mM Tris-HCl pH 8.0, 25 mM EDTA, 
0.5% (w/v) SDS and 100 µg/ml Proteinase K. Lysis was car
ried out at room temperature for a few hours until the 
solution was homogenous. The lysate was treated with 
20 µg/ml RNase A at 37 °C for 30 min and cleaned with 
equal volumes of phenol/chloroform using phase lock 
gels (Quantabio Cat # 2302830). DNA was precipitated 
by adding 0.4 ×  volume of 5 M ammonium acetate and 
3 ×  volume of ice-cold ethanol. The DNA pellet was 
washed twice with 70% ethanol and resuspended in an 
elution buffer (10 mM Tris, pH 8.0), and purity was esti
mated using absorbance ratios (260/280 = 1.81 to 1.84 
and 260/230 = 2.29 to 2.40) on a NanoDrop ND-1000 
spectrophotometer. The final DNA yield (Bell’s: 13 μg; 
Savannah: 16 μg; song: 150 μg total) was quantified using 
the Quantus Fluorometer (QuantiFluor ONE dsDNA Dye as
say; Promega, Madison, WI). The size distribution of the 
HMW DNA was estimated using the Femto Pulse system 
(Agilent, Santa Clara, CA): 62% of the fragments were 
>140 Kb for Bell’s sparrow; 60% of the fragments were 
>140 Kb for Savannah sparrow; and 85% of the DNA 
was found in fragments >120 Kb for song sparrow.

The HiFi SMRTbell library was constructed using the 
SMRTbell Express Template Prep Kit v2.0 following the 
manufacturer’s protocols (Pacific Biosciences—PacBio, 
Menlo Park, CA; Cat. #100-938-900). HMW gDNA was 
sheared to a target DNA size distribution between 15 to 
20 Kb and concentrated using 0.45 ×  of AMPure PB beads 
(PacBio Cat. #100-265-900) for the removal of single- 
strand overhangs at 37 °C for 15 min. Enzymatic steps of 
DNA damage repair were performed at 37 °C for 30 min, 

followed by the end repair and A-tailing steps at 20 °C 
for 10 min and 65 °C for 30 min. Ligation of overhang 
adapter v3 was performed at 20 °C for 60 min with subse
quent heating to 65 °C for 10 min to inactivate the ligase. 
Finally, DNA product was nuclease treated at 37 °C for 1 h. 
To collect fragments greater than 9 Kb, the resulting 
SMRTbell library was purified and concentrated with 
0.45 ×  Ampure PB beads (PacBio, Cat. #100-265-900) 
for size selection using the BluePippin system (Sage 
Science, Beverly, MA; Cat #BLF7510). The 15 to 20 Kb aver
age HiFi SMRTbell library was sequenced at the University of 
California Davis DNA Technologies Core (Davis, CA) using 
two 8 M SMRT cells, Sequel II sequencing chemistry 2.0, 
and 30-hour movies each on a PacBio Sequel II sequencer.

The Omni-C library was prepared using the Dovetail 
Omni-C Kit (Dovetail Genomics, CA) according to the man
ufacturer’s protocol with slight modifications. First, speci
men tissue was ground thoroughly with a mortar and 
pestle while cooled with liquid nitrogen. Subsequently, 
chromatin was fixed in place in the nucleus and then passed 
through 100 μm and 40 μm cell strainers to remove large 
debris. Fixed chromatin was digested under various condi
tions of DNase I until a suitable fragment length distribution 
of DNA molecules was obtained. Chromatin ends were re
paired and ligated to a biotinylated bridge adapter followed 
by proximity ligation of adapter containing ends. After 
proximity ligation, crosslinks were reversed and the DNA 
purified from proteins. Purified DNA was treated to remove 
biotin that was not internal to ligated fragments. An NGS 
library was generated using an NEB Ultra II DNA Library 
Prep kit (NEB, Ipswich, MA) with an Illumina compatible 
y-adaptor. Biotin-containing fragments were then captured 
using streptavidin beads. The post-capture product was 
split into two replicates prior to PCR enrichment to preserve 
library complexity with each replicate receiving unique dual 
indices. The library was sequenced at the Vincent J. Coates 
Genomics Sequencing Lab (Berkeley, CA) on an Illumina 
NovaSeq platform (Illumina, San Diego, CA) to generate 
over 100 million 150 bp paired end reads per species. See 
supplementary table S3, Supplementary Material online 
for details on PacBio and Illumina sequencing.

Assembly of CCGP Genomes

We assembled the genome of the three CCGP sparrows fol
lowing the CCGP assembly pipeline Version 3.0 (see Lin 
et al. 2022; supplementary table S4, Supplementary 
Material online). The pipeline takes advantage of long 
and highly accurate PacBio HiFi reads alongside chromatin 
capture Omni-C data to produce high-quality and highly 
contiguous genome assemblies while minimizing manual 
curation.

In brief, we removed remnant adapter sequences from 
the PacBio HiFi dataset for all three assemblies using 
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HiFiAdapterFilt (Sim et al. 2022) and obtained the initial 
dual assembly with the filtered PacBio reads using 
HiFiasm (Cheng et al. 2022). The dual assembly consists 
of a primary and alternate assembly: the primary assembly 
is more complete and consists of longer phased blocks, 
while the alternate consists of haplotigs (contigs with the 
same haplotype) in heterozygous regions and is more frag
mented. Given the characteristics of the latter, it cannot be 
considered a complete assembly of its own but rather is a 
complement of the primary assembly (https://lh3.github. 
io/2021/04/17/concepts-in-phased-assemblies, https://www. 
ncbi.nlm.nih.gov/grc/help/definitions/).

Next, we identified sequences corresponding to haploty
pic duplications, contig overlaps and repeats on the primary 
assembly with purge_dups (Guan et al. 2020) and trans
ferred these sequences to the corresponding alternate as
sembly. We aligned the Omni-C data to both assemblies 
following the Arima Genomics Mapping Pipeline (https:// 
github.com/ArimaGenomics/mapping_pipeline) and used 
SALSA to produce scaffolds for the primary assembly 
(Ghurye et al. 2017, Ghurye et al. 2019).

Omni-C contact maps for the primary assembly were 
produced by aligning the Omni-C data with BWA-MEM 
(Li 2013), identifying ligation junctions, and generating 
Omni-C pairs using pairtools (Open2C et al. 2023). We gen
erated a multiresolution Omni-C matrix with 
cooler (Abdennur and Mirny 2020) and balanced it with 
hicExplorer (Ramírez et al. 2018). To visualize and 
check contact maps for misassemblies, we used HiGlass 
(Kerpedjiev et al. 2018) and the PretextSuite (https:// 
github.com/wtsi-hpag/PretextView; https://github.com/wtsi- 
hpag/PretextMap; https://github.com/wtsi-hpag/Pretext 
Snapshot). In detail, if we identified a strong off-diagonal 
signal in the proximity of a join that was made by the scaf
folder, and a lack of signal in the consecutive genomic re
gion, we dissolved it by breaking the scaffolds at the 
coordinates of the join. After this process, no further man
ual joins were made. Some of the remaining gaps 
(joins generated by the scaffolder) were closed using the 
PacBio HiFi reads and YAGCloser (https://github.com/ 
merlyescalona/yagcloser). We checked for contamination 
using the BlobToolKit Framework (Challis et al. 2020). 
Finally, upon submission of the assemblies to NCBI, we 
trimmed remnants of sequence adaptors and mitochon
drial contamination identified during NCBI’s own contam
ination screening.

We assembled the mitochondrial genomes for each of 
the sparrows from their corresponding PacBio HiFi reads 
starting from the same mitochondrial sequence of 
Zonotrichia albicollis (NCBI:NC_053110.1; Feng et al. 
2020, B10K Project Consortium) and using the reference- 
guided pipeline MitoHiFi (Allio et al. 2020; Uliano-Silva 
et al. 2021). After completion of the nuclear genomes, 
we searched for matches of the resulting mitochondrial 

assembly sequence in their nuclear genome assembly using 
BLAST+ (Camacho et al. 2009), filtering out contigs and 
scaffolds from the nuclear genome with a sequence iden
tity >99% and a size smaller than the mitochondrial assem
bly sequence.

Genome Assembly Assessment

We generated k-mer counts from the PacBio HiFi 
reads using meryl (https://github.com/marbl/meryl). 
GenomeScope2.0 (Ranallo-Benavidez et al. 2020) was 
used to estimate genome features including genome size, 
heterozygosity, and repeat content from the resulting 
k-mer spectrum. To obtain general contiguity metrics, we 
ran QUAST (Gurevich et al. 2013). Genome quality and 
completeness were quantified with BUSCO 5.6.1 (Manni 
et al. 2021) using Augustus (Stanke et al. 2008), genome 
mode, and the 8,338 genes in the Aves ortholog database 
(aves_odb10). Assessment of base level accuracy (QV) and 
k-mer completeness was performed using the previously 
generated meryl database and merqury (Rhie et al. 2020). 
We further estimated genome assembly accuracy via a 
BUSCO gene set frameshift analysis using the pipeline de
scribed in Korlach et al. (2017). We followed the quality 
metric nomenclature established by Rhie et al. (2021), 
with the genome quality code x.y.Q.C, where, x = log10[
contig NG50]; y = log10[scaffold NG50]; Q = Phred base 
accuracy QV (quality value); C = % genome represented 
by the first “n” scaffolds, following a known karyotype 
of 2n = 74 for P. sandwichensis (Bird Chromosome 
database—V3.0/2022; Degrandi et al. 2020) and estimated 
2n = 80 for both M. melodia and A. belli; this estimation is 
the median number of chromosomes from closely related 
species (Genome on a Tree—GoaT; tax_tree(1729112); 
Challis et al. 2023). Quality metrics for the notation were 
calculated on the primary assemblies. Finally, we used 
the JupiterPlot pipeline (https://github.com/JustinChu/ 
JupiterPlot) to visualize higher level synteny between the 
scaffolds of each sparrow assembly and chromosomes of 
the zebra finch (Taeniopygia guttata) genome assembly 
(Warren et al. 2010). Scaffolds representing 80% of each 
draft assembly (ng = 80) were mapped to zebra finch chro
mosomes exceeding 1 Mb in length (m = 1,000,000).

VGP Genome Sampling

The three CCGP genomes were compared to three 
chromosome-level assemblies of closely related sparrows 
generated by the Vertebrate Genomes Project following 
protocols outlined in Rhie et al. (2021). These samples 
were sequenced from blood samples (100 to 200 µl in etha
nol) taken from female Nelson’s and swamp sparrows and a 
saltmarsh sparrow that was identified as a female in the 
field but lacked the W chromosome in the final assembly. 
Nelson’s sparrow sample was collected by Nicole Guido 
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(Saltmarsh Habitat and Avian Research Program) in South 
Branch Marsh River, Waldo County, Maine (44.5864°N; 
68.8591°W) on July 31, 2020. The swamp sparrow sample 
was collected by Jonathan Clark (University of New 
Hampshire) in Durham, Rockingham County, New 
Hampshire (43.14°N; 71.00°W) on July 23, 2020. The salt
marsh sparrow sample was collected by Chris Elphick 
(University of Connecticut) from Barn Island Wildlife 
Management Area, New London County, Connecticut 
(41.338°N; 71.8677°W) on August 19 2020. Sample col
lection occurred under permits of the Maine Division of 
Inland Fisheries and Wildlife (#2020-314), Connecticut 
Department of Energy and Environmental Protection 
(#0221012b), and New Hampshire Fish and Game, and fol
lowed protocols approved under the University of New 
Hampshire IACUC (#190401). All individuals were released 
at the capture location immediately after sampling. DNA 
extracted from these three species was sequenced to 
31.6 to 34.6 ×  coverage of PacBio Sequel II HiFi long reads, 
254 to 450 ×  coverage of Bionano Genomics DLS, and 103 
to 112 ×  coverage for Arima Hi-C v2. Genome assemblies 
were generated from these data with the VGP standard as
sembly pipeline version 2.0, which included hifiasm 
v0.15.4, purge_dups v. 1.2.5, solve v. 3.6.1, salsa v. 2.3. 
To ensure comparable results, we also ran BUSCO on the 
VGP genomes using identical parameters to the CCGP gen
ome assessment above and with the aves_odb10 database. 
Further details on raw data, sequence evaluations and 
curated assemblies can be found on VGP Genome Ark 
pages for Nelson’s sparrow (https://genomeark.github.io/ 
genomeark-all/Ammospiza_nelsoni.html), saltmarsh spar
row (https://genomeark.github.io/genomeark-all/Ammodr 
amus_caudacutus.html), and swamp sparrow (https:// 
genomeark.github.io/genomeark-all/Melospiza_georgiana. 
html).

Genome Size Variation Within Sparrows

We estimated the distribution of genome sizes in 
Passerellidae sparrows with c-value data from 33 indivi
duals of 21 species archived in the Animal Genome Size 
Database (Gregory 2022). The majority of these C-value es
timates were generated using Feulgen image analysis 
densitometry with original values reported in Andrews 
et al. (2009) and Wright et al. (2014). This includes all spe
cies for which we compared C-values to assembly lengths. 
C-value estimates of genome size were converted from pi
cograms to base pairs using a conversion of 1 pg =  
0.978 Gb (Dolezel et al. 2003). We additionally obtained 
genome assembly length from nine publicly available as
semblies that were sequenced previously for members of 
the Passerellidae. Six of these were based on Illumina short- 
read sequence data and include a second song sparrow 
genome from Alaska (Louha et al. 2020), a short-read gen
ome of the saltmarsh sparrow (Ammospiza caudacuta; 

Walsh et al. 2019a), plus genomes for the white-throated 
sparrow (Zonotrichia albicollis; Tuttle et al. 2016), 
dark-eyed junco (Junco hyemalis; Friis et al. 2022), chipping 
sparrow (Spizella passerina; Feng et al. 2020), and grass
hopper sparrow (Ammodramus savannarum; Carneiro 
2021). The remaining three assemblies were generated 
using PacBio long-read sequence data and include a third 
song sparrow genome from British Columbia (Feng et al. 
2020), a white-crowned sparrow genome (Zonotrichia 
leucophrys; Wu et al. 2024), and a contig-level assembly 
of the California towhee (Melozone crissalis; Black et al. 
2023). For complete GenBank accession details, sequen
cing, and assembly methods for these genomes see 
supplementary table S5, Supplementary Material
online. We compared C-value estimates of genome size 
and genome assembly length for all of the assemblies 
that included both these estimates of genome size (10 of 
15 total).

Repeat Annotation

We performed detailed de novo repeat annotation and 
manual curation of repeat libraries for Bell’s, song, and 
Savannah sparrow genomes sequenced by the CCGP in 
the program RepeatModeler2 with the ltrstruct option se
lected to improve identification of LTR elements (Flynn 
et al. 2020). Consensus transposable element libraries gen
erated from RepeatModeler2 were then curated manually 
following protocols and methods of Goubert et al. 
(2022). First, we removed any redundancy in the de novo 
repeat libraries using cd-hit-est (Li and Godzik 2006) to 
cluster any consensus sequences together that were 80 
base pairs in length and shared >80% similarity over 
more than 80% of their length. This corresponds to the 
80-80-80 rule of Wicker et al. (2007) frequently used to 
classify TE elements as a single subfamily. We then priori
tized elements for manual curation that were at least 
1,000 base pairs in length and had at least 10 blastn hits 
in the genome assembly. For each consensus sequence 
prioritized for manual curation, we used blastn (Camacho 
et al. 2009) to identify other members of each TE subfamily 
in the genome, and for each blastn hit we added 2,000 bp 
of flanking sequence to both ends of the sequence. We 
then aligned the extended sequences using mafft (Katoh 
and Standley 2013) and removed gaps automatically using 
T-coffee (Notredame et al. 2000). The multiple sequence 
alignment produced by mafft was visualized in aliview 
(Larsson 2014), and the termini of each element were iden
tified based on canonical motifs of different element classes 
(e.g. 5′ TG and 3′ CA dinucleotides in LTR elements). A con
sensus sequence of the trimmed multiple sequence align
ment was then generated using the cons tool in EMBOSS 
(Rice et al. 2000). Finally, the program TE-Aid (https:// 
github.com/clemgoub/TE-Aid) was used to confirm struc
tural properties and the presence of open reading frames 
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for the expected proteins characteristic of each class of TE 
element. This process of blast, extension, and alignment 
was repeated iteratively for each element until termini 
were discovered. Following manual curation of TE se
quences, we again used cd-hit-est with the same settings 
as above to cluster sequences belonging to the same sub
family. The final set of manually curated sequences was 
then compared against a library of avian TE elements down
loaded from repbase as well as other recently published TE 
datasets (e.g. Dromaius novaehollandiae, Peona et al. 
2021b) using cd-hit-est and the 80-80-80 rule above as a 
threshold to classify curated elements as belonging to pre
viously identified TE subfamilies. We assigned the following 
species-specific prefixes for newly identified repeat ele
ments in each sparrow species: pasSan (Passerculus sandwi
chensis), melMel (Melospiza melodia), and artBel 
(Artemisiospiza belli). For new TE subfamilies shared across 
two or more of the sparrow species we assigned the prefix 
Passerellidae. For each element, the prefix was followed by 
the superfamily identity (e.g. LTR/ERV1). For elements 
where we could not confidently identify the complete con
sensus sequence we added the suffix .inc.

Curated TE libraries for all three sparrow species were 
merged into a single Passerellidae repeat library that was 
then used to annotate transposable element diversity in 
the genome assemblies of the three CCGP sparrow gen
omes using RepeatMasker v. 4.1.2 (Smit et al. 2015 ). We 
additionally used the de novo Passerellidae TE library to an
notate the genome assemblies of the three VGP sparrow 
genomes and the nine previously sequenced sparrow gen
omes available on Genbank. Secondly, for seven sparrow 
species with a contig N50 > 1 Mb and at least a scaffold le
vel assembly, we performed separate RepeatMasker runs 
on the autosomes, Z chromosome, and W chromosome 
(if present). For the CCGP genomes, scaffolds were as
signed to these different chromosomes based on homology 
with the Zebra Finch chromosomes using Minimap2 (Li 
2018). Finally, we assessed temporal patterns of TE activity 
for these seven sparrow species. For autosomal, Z, and W 
chromosomes, we used the calcDivergenceFromAlign.pl 
script in the RepeatMasker package to estimate the 
Kimura 2-parameter (K2P) distance of each TE element 
from the consensus sequence. K2P distances were used 
to generate barplots for the LTR, SINE, LINE, and DNA 
classes of TE elements found in the genome. For autosomal 
loci, we additionally used a mutation rate estimate of 2.3 ×  
10−9 per site per year from another Passerine species 
(Ficedula albicollis, Smeds et al. 2016) to estimate the ap
proximate timing of repeat activity.

Sparrow Phylogeny Construction

To further contextualize the history of transposable elem
ent proliferation across sparrows, we constructed a time- 
calibrated phylogeny using ultra-conserved elements 

(UCE) extracted from all available sparrow genomes (14 
taxa including 12 species and 3 song sparrow subspecies) 
as well as the medium ground finch (Geospiza fortis), island 
canary (Serinus canaria), and zebra finch (Taeniopygia gut
tata) as outgroup taxa. We used the UCE-5k-probe-set and 
the phyluce pipeline (Faircloth 2016) to align probes to each 
genome, extended sequences by 1,000 bp on either flank, 
aligned sequences using mafft v. 7.49 (Katoh and Standley 
2013), and produced a final PHYLIP file of the UCEs. We 
used RAxML-NG (Stamatakis 2014) on the CIPRES science 
portal (Miller et al. 2010) to generate a maximum- 
likelihood phylogeny of the concatenated UCE loci using 
the GTRCAT model, rapid bootstrapping, and the 
autoMRE bootstrapping criterion. Secondly, we used 
MCMCtree to estimate a time-calibrated phylogeny based 
on the topology generated by RAxML-NG. We used the fos
sil sparrow Ammodramus hatcheri (Steadman 1981) to cali
brate the node between the grasshopper sparrow 
(Ammodramus savannarum) and all other sparrows. 
Following Oliveros et al. (2019), we set the calibration 
time to 12 Mya bounded by a minimum age of 7.5 Mya 
and a maximum age of 18.6 Mya. We implemented a mod
el of independent rates among branches and drawing from 
a log-normal distribution. We performed two independent 
runs of MCMCtree with each run starting from a different 
random seed. The first 50,000 iterations were removed as 
burnin before running for another 100 million iterations 
with a sample taken every 1,000 iterations. We assessed 
convergence of the two runs using tracer v. 1.6.0 
(Rambaut et al. 2018).

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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