
UC Davis
UC Davis Previously Published Works

Title
Refinement of a coarse-grained model of poly(2,6-dimethyl-1,4-phenylene ether) and its 
application to blends of PPE and PS

Permalink
https://escholarship.org/uc/item/2ks26308

Journal
Molecular Simulation, 42(4)

ISSN
0892-7022

Authors
Wang, Huan
Shentu, Baoqing
Faller, Roland

Publication Date
2016-03-03

DOI
10.1080/08927022.2015.1047368
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2ks26308
https://escholarship.org
http://www.cdlib.org/


Refinement of a Coarse-Grained Model of Poly(2,6-dimethyl-1,4-

phenylene ether) and its Application to blends of PPE and PS 

Huan Wanga,b, Baoqing Shentu*b and Roland Faller*a,

a Department of Chemical Engineering & Materials Science, University of California at Davis, 

One Shields Ave, Davis, California 95616, United States

bState Key Lab of Chemical Engineering, College of Chemical and biological Engineering, 

Zhejiang University, Hangzhou 310027, China

*Corresponding authors. Email: rfaller@ucdavis.edu; shentu@zju.edu.cn.

Abstract:

A coarse-grained (CG) molecular simulation model has been refined for poly

(2,6-dimethyl-1,4-phenylene  ether)  (PPE).  This  was  successfully  validated  against

atomistic  simulation  and  experimental  data.  Particularly,  the  glass  transition

temperature  (Tg)  of  PPE  was  studied  using  both  atomistic  and  CG  models  and

compared favorably to experimental data. In addition, we used the CG model together

with an existing Martini CG model of polystyrene (PS) to study the blending behavior

of these two polymers.  We solved the problem to mix the different potentials and

molecular dynamics of high-molecular-weight blends of PPE/PS was performed in

detail.
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1. Introduction

Molecular  dynamics  (MD)  simulation  has  been  extensively  used  to  study

physical  and chemical  properties  of  a  wide  variety of  polymers  [1-12].  However,

conventional  atomistic  molecular  dynamic  simulations  of  high-molecular-weight

polymer melts are subject to severe limitations of computational resources in both

time and length scales. Coarse grained (CG) models provide a means to expand the

utility of existing computational resources by allowing the exploration of far greater

temporal and spatial  scales than simulations in full  atomistic detail. Basically,  CG

models group clusters of atoms into super-atoms, or beads, thus reducing the total

number of interaction sites in the system. With this approach in mind, many groups

have developed CG models  using various approaches  with numerous applications

appearing in the literature over the past four decades [13-17]. But most CG models

have focused on a  few classical  polymer types such as polystyrene  (PS) [18-26].

Many other  polymers  like,  e.g,  poly (2,6-dimethyl-1,4-phenylene ether) (PPE) are

largely ignored despite their importance.

A standard CG model  for polymers,  lipids and other molecules of biological

interest  is  the  MARTINI  model  [27-31],  and  this  model  has  been  extended  to

polymers  like  PS,  [32,33]  poly(ethylene  glycol)  [34],  poly(ethylene  oxide)  and

dendrimers [35] etc.  Benzene rings are  modelled by three beads in the MARTINI

approach. But the benzene rings in PPE chains are connected in their para-position

with each other,  therefore (Scheme 1),  a three-bead ring is not appropriate.  A CG

model for phenyl-based molecules has been developed by DeVane et al, [36] which



provides an alternative strategy for the construction of a CG model for PPE. However,

PPE is not usually applied in its pure form, and PPE/PS is the most common PPE

based blend in industry [37-43]. Thus, making this CG model suitable for the study of

blends is necessary.

In this contribution, we present the refinement of a CG model for PPE and its

application of modeling bulk PPE melts and PPE/PS blends by combining this model

with a Martini based CG model for PS.

2. Models and Methods

2.1 Models

The Construction of Coarse-Grained Model for PPE. The CG model of PPE

presented here is developed based on previous work by DeVane et al. [36]. The model

uses  three  types  of  coarse-grained  beads  for  PPE,  and  each  repeating  unit  is

represented by four  beads,  leading to a mapping ratio of 4 CG sites to  18 atoms.

Scheme 1 shows the atomistic description of PPE is mapped onto the coarse-grained

model.

Scheme 1 The CG mapping of a PPE unit

The  PPE  CG  model is composed of two XYR beads, a BER bead and a PHR

bead. Here, a BER bead represents one of the four equivalent sites of a benzene ring

with no side groups, XYR beads represent a BER bead with a methyl group attached,



and a PHR bead represents a BER bead with an oxygen or a hydroxyl group attached.

The intramolecular potential was parametrized to reproduce the bond distances and

angles taken from a geometry-optimized structure. The center of mass of C1, a quarter

of C2, and a quarter of C6 as well as the hydrogens attached are assigned to BER; the

center of mass of C4, a quarter of C3, a quarter of C5 and the oxygen is subsumed

into PHR. The center of mass of the methyl group attach to C3 and three quarters of

C2 and C3 is the location of one XYR. Similarly the location of the other XYR could

be located. Bonds between CG beads are modeled via harmonic potentials with an

equilibrium bond length  r0 and a force constant  kb. Equivalently we have harmonic

angles with 0and ka. A dihedral angle maintains a planar ring geometry (Eq.1).

)]cos(1[)( dnkv ddihedral        Eq.1

Here,  kd is  the  force  constant,  n determines  the  periodicity,  d is  the  equilibrium

dihedral angle. Nonbonded interactions between noncharged beads are described by

9-6  potentials  and  Lorentz-Berthelot  like  combining  rules  generate  the  cross

interactions of different CG sites (Eq 2 & 3).
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Here, aa and aa represent the self-interaction value,ab and ab represent those for

the cross interaction. All parameters are listed in Tables 1-4.

    Parameters  for  the  PHR-XYR bond,  XYR-PHR-XYR angle,  PHR-XYR-BER



angle, BER-PHR-XYR angle, BER-XYR-PHR-BER dihedral, XYR-PHR-BER-XYR

dihedral, and PHR-BER-XYR-PHR dihedral are calculated according to the structural

information provided by the atomistic force field PCFF [44-54], since they are not

available in DeVane’s work. Considering the difference between the PPE polymer and

its DMP monomer, we make several adjustments to other parameters in order to make

the parameters suitable for PPE in this study, especially to the PHR bead, because

most of the PHR beads here represent a BER bead with an ether oxygen rather than a

hydroxyl  oxygen.  Additionally,  the  densities  of  both  DMP and  PPE  (degree  of

polymerization DP=20)  are  used  as  the  target  to  adjust  the  set  of  non-bonded

parameters.

Table 1 Bond parameters

types kb (kcal/mol/Å2) r0(Å)
BER-XYR 40.0 2.700
PHR-XYR 40.0 3.100
BER-PHR 40.0 1.800

Table 2 Angle Parameters

types ka (kcal/mol/radian2) (degree)
XYR-BER-XYR 30.0 112.317
XYR-PHR-XYR 30.0 91.357
PHR-XYR-BER 30.0 78.163
BER-PHR-XYR 30.0 117.000
XYR-BER-PHR 30.0 111.000

Table 3 Dihedral Parameters (Eq.1)

types kd (kcal/mol) n d (degree) weighting factor
BER-XYR-PHR-XYR 60.0 1 180.0 0
BER-XYR-PHR-BER 30.0 1 60.0 0
XYR-PHR-BER-XYR 30.0 1 120.0 0
PHR-BER-XYR-PHR 30.0 1 60.0 0

Table 4 Nonbonded parameters for Eq. 2 and 3



types  
BER 0.295 3.850
PHR 0.928 3.550
XYR 0.54 4.050

The combination of CG models of PPE and PS.  The CG model of PS employed

here is the Martini based model developed by Rossi et al. [32,33]. In contrast to the 9-

6 model for PPE, a standard Lennard Jones 12-6 potential function (Eq.4) is used for

PS and shifted as is customary for Martini. In order to solve the problem of combining

two different non-bonded potential forms, we tried mixing the potentials by arithmetic

and geometric means, and compared the results to the atomistic data. An arithmetic

average was chosen to be the mixing potential (Eq.5 and Table 5).  Clearly such a

mixing has no direct physical meaning but it can only be justified by testing.
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Table 5 Nonbonded mixing parameters for Eq.5

Types  
BER 1.18 4.235
PHR 3.721 3.905
XYR 2.16 4.455

B 2.5 4.730
R 2.4 4.510

2.2 Simulation Details

All simulations were carried out using the LAMMPS code developed by Sandia

National Laboratory [55] and analysis was performed using VMD [56]. The polymer

consistent  force  field  (PCFF)  [44-54]  was  employed  throughout  the  atomistic



simulations. The simulations employ periodic boundary condition in all directions and

all PS chains in the atomistic simulations are isotactic. For setting up pure PPE, we

first put one chain in a box, for PPE/PS blends, we put one chain for each polymer in

a box. And then we replicated the whole box as many times as needed and made sure

that  the final  box is cubic.  Constant  temperature and constant  pressure (p=1 atm)

molecular dynamics simulations were performed using  the Nose-Hoover thermostat

and barostat  [44]  after  minimization to  equilibrate  the system for 100 ns,  and the

equilibrations of all systems were monitored by density as a function of time.  The

atomistic simulations used a timestep of 1fs, and CG simulations employed a timestep

of  10  fs,  and  all  PPE/PS  blends  were  50:50  (by  mol).  More  details  about  the

simulations of different systems are listed in Table 6.

Table 6 Details of atomistic and CG simulations performed

  DP nPPE nPS

Atomistic pure PPE 5 36 —

10 36 —

20 36 —

30 36 —

PPE/PS 10 27 27

20 27 27

CG pure PPE 5 36 —

10 36 —

20 36 —

30 36 —

50 36 —

80 36 —

100 36 —

PPE/PS 10 64 64

20 64 64

50 40 40



80 40 40

DP, nPPE and nPS are the polymerization degrees, the number of PPE chains and the number of

PS chains.

After the equilibration of the systems, glass transition temperatures (Tg) of PPE

with different polymerization degrees (DP) were obtained by performing cooling NPT

simulations from  800 K to 1 K in 20 ns. Radii  of gyration were calculated every

20000 steps over 10000000 steps. Mean squared displacements were also calculated

with a running time average (Nevery=20, Nrepeat=100 and Nfreq=20000)  after the

equilibration.

3. Results and Discussion

3.1 Coarse-Grained model of PPE

  The density of the monomer 2,6-dimethylphenol (DMP) is calculated at 323.15K

which is slightly above the melting point (318.15-320.15K) to  make sure that  the

model is appropriate for this system. The density of DMP at 323.15 K in the liquid

state is measured to be 0.97 g/cm3 using Dilatometer DIL402C produced by Netzsch,

Germany. in experiment, and the densities calculated here by AA and CG MD  are

0.95g/cm3 and 0.98g/cm3 (the relative errors are estimated to be -2.06% and +1.03%),

respectively,  showing  these  two  models  are  reliable for  this  property. The  radial

distribution functions (RDFs) from bulk PPE simulations  are calculated to test the

structural properties of the CG model against atomistic data. As shown in Scheme 2,

we use the same position (red circle) in each unit of polymer chain to calculate the

RDFs from AA MD and CG MD. The shapes of CG RDF line (dashed line) agree

reasonably well with that of AA simulations (solid line) in Figure 1. It is worth noting



that this is not a structurally coarse-grained model such that perfect agreement cannot

be  expected.  The agreement  is  essentially  independent  of  chain  length.  The main

discrepancy is in the area around 7 Å where the atomistic data predicts a deeper dip,

i.e. a locally more pronounced structure.

Scheme 2

Figure 1 Radial distribution functions in atomistic and coarse-grained representation

for different degrees of polymerization

The structure factors (S(k)) of coarse-grained simulations with different DPs are

calculated [57] and they are shown in Figure 2 in comparison to the atomistic ones.



The S(k) calculated from both type of simulations are in good agreement. They both

show a clear peak at 1.5 nm and some other smaller peaks around 2~10 nm. 

Figure 2 Structure factors of atomistic and coarse-grained models for different

degrees of polymerization



Figure 3 The end-to-end autocorrelation function for coarse-grained simulations with

different degrees of polymerization

Furthermore, Figure 3 presents the decay of the autocorrelation function for the

end-to-end vector  [58]  with  chain  lengths  ranging from 20  to  80  for  the  coarse-

grained simulations of PPE. The rates of <r(t)•r(0)>/<r2> approaching zero measures

how long the chains need to “forget” their initial conformations. As shown in the fig-

ure, the relaxation time rise with increasing chain length, and it takes about 1.3 ns for

chains with DP=20 to reach zero, for the chains with DP=50 this time increases to ap-

proximately 4.5 ns, and it can take as long as 12 ns for the chains with DP=80 to re-

lax, thus a equilibration time of 100 ns is enough for the systems to be prepared for

the subsequent simulations.

Table 7 Radii of gyration for PPEs with different DP at 540 K

DP Rg/Atomistic(Å) Rg/CG(Å)
5 6.30 6.80
10 10.7 11.26
20 11.98 12.16
30 15.20 14.70
50 — 17.23
80 — 27.03
100 — 32.35



Figure 4 Rg
2 versus DP for atomistic and CG simulations

  The  glass  transition  is  one  of  the  most  important  properties  of  polymers  for

theoretical and practical reasons, it is usually studied through isobaric conditions [59],

during which the volume varies in accordance with the temperature change. As the

temperature increases the change in free volume of a polymer is small below the glass

transition temperature (Tg) but the rate of change increases abruptly at Tg. Thus Tg can

be determined as the temperature marking the discontinuity in slope of the plots of V-

T data  for  both  atomistic  and CG models  here,  and the  results  are compared to

experimental data in Table 8.



Figure 5 Specific volume in NPT simulations versus temperature for both AA and CG

models of PPE with different DPs.

As shown in Table  7, the radii of gyration (Rg) at  540K for polymers with DP

from 5 to 30 are calculated by both atomistic and CG MD, showing good agreement.

In addition, Rg of PPE with DP=50, 80 and 100 are also calculated. It is obvious that

Rg of PPE increases with the increasing of DP and Rg can be used to evaluate the size

of  the  molecule. In  addition,  Rg
2 versus  DP are  plotted  in  Figure  4,  and  Rg

2 are

approximately  linear  with DP for  both  atomistic  and CG simulations  indicating a

random walk structure in the melt.

Table 8 Glass transition temperatures of PPE with different DPs

DP Atomistic Tg /K CG Tg /K Experimental Tg /K [60,61]
10 437 440 405
20 467 440 437
30 517 465 457
50 — 504 470
80 — 499 478
100 — 522 480

It is clear from Figure 5 and Table 8 that the Tg from the CG model corresponds

well  with  atomistic  model  during  the  cooling  process.  Most  Tg are  about  30-40

degrees higher than experimental data, [60,61] which is reasonable as the cooling rate



in MD simulation is much faster than in experiment, and in simulations, all polymers

have exactly the same molecular weight. Simulations for high-molecular-weight PPEs

are also run using CG model and Tg are calculated. Tg of PPE with DP=50, 80 and 100

are  shown in  Figure  3  and Table  8. Again  the  calculated  Tg are  all  about  20~40

degrees  higher  than  experimental  values.  All  this  illustrates that  the  CG model  is

appropriate to study PPE.

3.2 The Combination of CG Models for PPE and PS

Table 9 Densities for blending system with different DPs

DP 10 20 50 80
Atomistic (g/cm-3) 0.99 0.98

CG (g/cm-3) 0.98 0.96 0.90 0.90
Our main interest in parameterizing a CG model for PPE is to provide accurate

dynamic information over longer times or for larger systems than is possible using

atomistic simulations. We are also interested in the performance of the CG model for

PPE when it is blended with another polymer. To evaluate this issue, we combine the

CG model for PPE constructed above with the Martini PS model developed by Rossi

et al. [32,33]. In order to make this combination work for a PPE/PS blend, we needed

to develop mixing rules as described in Section 2.1. The densities of PPE/PS blends

with different DPs for both atomistic and CG simulations are listed in Table 9. The

results of RDFs for the atoms and beads shown in Scheme 3 of PPE/PS blend are

presented in Figure 6. We compared the CG model to the atomistic one at DP=10. The

RDF curves of the CG are reasonably close to the atomistic data considering again

that  the  model  was not  structurally  coarse-grained.  The main  different  is  that  the

atomistic double peak in Figure  6 (c) collapses into a broad single peak in the CG



model. Furthermore, we increase the molecular weight of polymers (Fig. 6 (d)) using

the CG model, no phase separation is observed, meaning that all of the systems are

miscible and the blend structure is only weakly dependent on molecular weight.

Scheme 3

Figure 6 (a) RDF of benzene carbon and BER in PPE (DP=10) (b) RDF of C and



B in PS (DP=10) (c) RDF of PPE and PS (DP=10) (d) RDF of PPE and PS with

different molecular weights for CG model

    We estimate the sizes of the molecules by the radii of gyration (Rg), and the

average  Rg of PPE and PS for both atomistic and CG simulations are listed in

Table 10 where we see that the CG simulation results agree well with atomistic

simulation.

Table 10 Radii of gyration for PPE/PSs with different DP at 540 K/ Å

DP Rg/AA(Å) Rg/CG(Å)
PPE PS PPE PS

10 11.4 6.52 11.6 6.7
20 11.98 10.03 12.9 10.4
50 17.4 14
80 34 23.6

     We finally employ mean squared displacement (MSD) analysis to characterize the

motion and to determine the mobility of central monomers of polymer chains. It can

be observed from Figure 7 that the central monomers of PS move much faster than the

ones of PPE chains. On the other hand, the mobility of central monomers first slightly

increases  with  increasing  molecular  weight  and  then  rapidly  decreases.  It  can  be

explained that  the  flexibility  of  chains increases  when DP increases  (transitioning

from oligomers to polymers), but when the molecular weight is large enough,  the

mobility of whole chain decreases rapidly, then the mobility of the central monomer

decreases.



Figure 7 MSD of central monomers in PPE and PS with different polymerization

degrees in the CG model

4. Conclusions

We  construct  a  coarse-grained  model  for  PPE  based  on  previous  work  and

evaluate this model by comparing the simulation results to the atomistic model and

experimental  data.  In  addition,  we combine this newly developed CG model with

another CG model for PS. This work has demonstrated the ability of this potential to

model systems at the CG level with sufficient accuracy to predict the properties of

PPE and its blends. The dynamics in the blend show that PPE is clearly the more

mobile species.

Atomistic and CG simulations are in general in good agreement for the short



chains where atomistic simulations are possible. Thus, we can expect that the larger

CG simulations of  high  molecular  weight  blends are  also  truthful  models  for  the

structure. The glass transition of PPE is predicted to within about 40 K which is very

good agreement keeping in mind that the cooling rate is way too fast compared to

experiments.
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