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The Pdx1-Bound Swi/Snf Chromatin Remodeling Complex
Regulates Pancreatic Progenitor Cell Proliferation and

Mature Islet 3-Cell Function
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Transcription factors positively and/or negatively im-
pact gene expression by recruiting coregulatory fac-
tors, which interact through protein-protein binding.
Here we demonstrate that mouse pancreas size and
islet B-cell function are controlled by the ATP-
dependent Swi/Snf chromatin remodeling coregulatory
complex that physically associates with Pdx1, a diabetes-
linked transcription factor essential to pancreatic
morphogenesis and adult islet cell function and mainte-
nance. Early embryonic deletion of just the Swi/Snf Brg1
ATPase subunit reduced multipotent pancreatic progeni-
tor cell proliferation and resulted in pancreas hypoplasia.
In contrast, removal of both Swi/Snf ATPase subunits,
Brg1 and Brm, was necessary to compromise adult islet
B-cell activity, which included whole-animal glucose
intolerance, hyperglycemia, and impaired insulin secre-
tion. Notably, lineage-tracing analysis revealed Swi/
Snf-deficient B-cells lost the ability to produce the
mRNAs for Ins and other key metabolic genes with-
out effecting the expression of many essential islet-
enriched transcription factors. Swi/Snf was necessary
for Pdx1 to bind to the Ins gene enhancer, demon-
strating the importance of this association in mediating
chromatin accessibility. These results illustrate how
fundamental the Pdx1:Swi/Snf coregulator complex is in
the pancreas, and we discuss how disrupting their
association could influence type 1 and type 2 diabetes
susceptibility.

The mammalian pancreas consists of two functionally
distinct compartments: the exocrine pancreas containing
acinar and ductal cells essential for secreting diges-
tive enzymes, and the endocrine pancreas containing
hormone-secreting a- (glucagon), B- (insulin), 8- (somato-
statin), &- (ghrelin), and pancreatic polypeptide cells of
the islets of Langerhans that are essential for regulating
glucose homeostasis. All of these pancreatic cells derive
from a common pool of progenitor cells at mouse embry-
onic day (e)8.5 that express the pancreas and duodenum
homeobox 1 (Pdx1) transcription factor, a critical regulator
of pancreas development, later (3-cell formation, and adult
islet B-cell function. In fact, pancreas agenesis occurs in
mice and humans that lack PDX1 (1,2), whereas hetero-
zygous mutations cause type 2 diabetes (T2D) because of
islet B-cell dysfunction (3).

Embryonic Pdx1" pancreatic progenitor cells rapidly
divide and acquire the expression of other transcription
factors essential to organ expansion and lineage diver-
sification, including Ptfla (4) and Sox9 (5). These
Pdx1"Ptfla"Sox9" cells form the highly proliferative multi-
potent pancreatic progenitor cell (MPC) pool that differ-
entiates into the distinct exocrine, ductal, and islet cell
types (6). Notably, pancreas mass is restricted in mice by
the MPC pool size (7), which is affected by early embryonic
genetic removal of Pdx1, Ptfla, or Sox9 (2,4,5). Because
of considerable variations in pancreas mass (and there-
fore variable B-cell number) between humans (8),
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understanding how the transcriptional activities of these
essential MPC regulators control growth rate and final
organ size is of significant importance. It has been pro-
posed that dissimilarities in pancreas mass influence di-
abetes susceptibility, a proposal supported by the reduced
pancreas size of autoantibody-positive individuals with
type 1 diabetes (9).

In the postnatal pancreas, Pdx1 is produced at much
higher levels in islet B-cells than in other pancreas cell
types (10). Conditional removal of Pdx1 from these cells
in mice leads to a profound loss of B-cell function and
identity, because these cells rapidly transdifferentiate to
glucagon” and insulin~ «-like cells (11). This remarkable
control derives not only from the positive actions of Pdx1
on target gene transcription but also from its repression
of key a-cell functional genes in B-cells, such as MafB and
Gcg. As a result of these novel and fundamental proper-
ties, Pdx1 is viewed as one of the most critical pancreas-
enriched transcription factors (6).

Transcription factors like Pdx1 predominantly control
gene expression through the recruitment of coregulators,
often operating as large multiprotein complexes. These co-
regulators affect transcriptional activity positively and/or
negatively, for example, by displacing nucleosomes, epige-
netically modifying histones/DNA, and affecting recruit-
ment of the RNA polymerase II transcriptional machinery.
Because of limited knowledge of the coregulators influencing
Pdx1 activity, an unbiased chemical crosslinking, immuno-
precipitation, and mass spectrometry analysis was used to
identify interacting proteins in rodent -cell lines. Numer-
ous proteins with an array of cellular functions were found
to associate with Pdx1, including the ATP-dependent
Swi/Snf chromatin remodeling complex (12). Significantly,
Pdx1 was the principal islet B-cell-enriched transcription
factor binding to Swi/Snf in mouse B-cell lines (12).

The multisubunit Swi/Snf complex uses the energy of
ATP hydrolysis, through the actions of the two mutually
exclusive Brgl (i.e., also referred to as Smarca4) and Brm
(i.e., Smarca2) ATPase subunits (13,14) (Fig. 14), to disrupt
DNA-nucleosome contacts and influence DNA accessibil-
ity. We previously discovered that in vitro knockdown of
Brgl in rodent -cell lines negatively affected Pdx1 target
gene expression (e.g., Ins, MafA, and Glut2). Moreover,
Pdx1:Swi/Snf interactions were not only acutely enhanced
in islet B-cells by increased glucose concentrations but
were also reduced in human T2D B-cells (12). Here we
show that the Pdx1:Brgl/Swi/Snf complex is critical for
mouse MPC proliferation, with embryonic conditional
deletion of only the Brgl gene encoding ATPase resulting
in a ~50% smaller pancreas. In contrast, removing both
Brgl and Brm was necessary to impact postnatal B-cells,
causing severe changes in expression of Ins and other
B-cell regulatory genes, a hallmark feature of T2D B-cells.
Collectively, our results suggest that Pdx1:Swi/Snf is required
for controlling the growth rate of the embryonic pancreas,
and thus its final postnatal size, and for maintaining [3-cell
identity in adult islets.
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RESEARCH DESIGN AND METHODS

Animals

Ptfla-Cre (15) and MIP-Cre®®T (16) mice were used to
remove the Loxp sites surrounding exons 17 and 18 of
the Brgl locus (Brg1”’ [17]) and the Stop cassette in
the Rosa26-Loxp-Stop-Loxp-tdTomato lineage reporter
(R26-5EtdTomato [181) Bym ™™ mice were generated using ho-
mologous recombination to insert the neomycin gene into
Brm exon 4 (19). The following genotypes were used for the
developmental studies: control, Ptfla—Cre;Brglf/ " or Ptfla-
Cre;Brglf/J';BrmJ'/*; experimental, BrglA’””‘ (Ptfla-
Cre;Brglf/f), Brm’~ (Ptfla-Cre;Brm /"), and DKO?P"
(Ptfla-Cre;Brglf/ .Brm~"7). Noon of the day of the vaginal
plug discovery was designated day e0.5. For BrdU injec-
tions, 100 mg of BrdU (B5002; Sigma-Aldrich) per kilo-
gram of pregnant dam body weight was injected 30 min
before embryo harvest.

The adult studies consisted of these genotypes: con-
trol, MIP-Cre™ T;Brg1”*;Brm*’~;R26 5L tdTomato/ s, 4nd
experimental, BrglAB :-Brm"’~ (MIP—CreERT;Brglf/ fBrm™~;
R26LSLthomato/+)’ BrglAB/+;Brm*/* (MIP-CV@ERT;
Brgl™*; Brm~/~; R26SLtdTomate/+y and BDKO (MIP-
CVEERT; Bi’glf/f; Brm —/—; R26LSLthomato/+)‘ CreERT—
mediated recombination of Brgl”f and the R26-StdTomate
was achieved by administration of 4 mg tamoxifen (T5648;
Sigma-Aldrich) by oral gavage three times over a 5-day period.

Intraperitoneal Glucose Tolerance Test and Serum
Insulin Measurements

Mice (n = 5-12) were given intraperitoneal injection of
D-glucose (2 mg/g body wt) after a 6-h fast. Blood glucose
was measured using a FreeStyle glucometer (Abbott Di-
abetes Care). Serum insulin was measured by radio immu-
noassay at the Vanderbilt Hormone Assay and Analytical
Services Core.

Glucose-Stimulated Insulin Secretion

Secreted insulin from isolated control and BDKO mice
(n = 8-10) islets was performed as described previously
(20). The outcome was presented as the fold change
between the percentage of secreted insulin (relative to
insulin content) at 16.7 mmol/L glucose and the per-
centage of secreted insulin (relative to insulin content)
at 2.8 mmol/L glucose. Islet insulin content was calcu-
lated as the concentration of insulin per islet in each
reaction (ng/mL/islet).

Tissue Preparation and Immunostaining

Whole embryos and adult pancreata were fixed in 4% (v/v)
paraformaldehyde, embedded, and sectioned to 6 pm.
Immunofluorescence staining was performed as previously
described (21) with the antibodies listed in Supplemen-
tary Table 1. Embryos were cut on the transverse (cross-
sections) plane throughout the pancreatic epithelium, and
manual cell counting was performed on antibody-stained
sections prepared every 60 pm (e12.5) or 90 pm (el5.5)
from the superior to inferior region.
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Figure 1—Pancreas size is reduced upon embryonic deletion of the mouse Brg7 Swi/Snf ATPase subunit. A: Schematic illustrating the
composition of the mammalian Swi/Snf complex, with the core of the coregulator containing the Brg1 or Brm ATPase and the BAF47,
BAF155, and BAF170 subunits (white font). Swi/Snf complexes also contain 8-10 other BAFs (Brm- or Brg1-associated factors) and
accessory subunits, which vary depending on the tissue and developmental stage (14). B: Representative image of the pancreas (panc),
stomach (st), spleen (sp), and duodenum (duod) in P1 control, Brg14P3", Brm~’~, and DKO*P®"° mice.

Proximity Ligation Assay

The assay was performed on e12.5 sections following the
manufacturer’s protocol (Sigma-Aldrich) with goat tran-
scription factors Pdx1 (1:20,000) (AB47383; Abcam),
Ptfla (1:2,000) (from C.V.E.W.) or rabbit Sox9 (1:500)
(AB5535; Millipore) in combination with rabbit ATPase
Brgl (1:400) (sc-10768; Santa Cruz Biotechnology), goat
Brgl (1:500) (AF5738; R & D Systems), mouse Brm (1:500)
(sc-17828; Santa Cruz Biotechnology), or rabbit Brm
(1:500) (ab1559; Abcam) antibodies. Immunofluorescence
Z-Stack images were acquired on a Zeiss Axioimager M2
fluorescence scope and processed using ImageJ software.

Flow Cytometry, RNA Purification, and Quality Control
of Sorted -Cells

Isolated islets were dispersed into a single-cell suspension
(Accumax; A7089; Sigma-Aldrich), stained with DAPI, and
sorted by gating for Tomato ' DAPI" cells by FACS at the
Vanderbilt Flow Cytometry Core. RNA was isolated from
EACS-purified B-cells (control: 10,215 = 1,589 cells [n = 3],
BDKO: 16,267 = 3,032 cells [n = 3]) using the Maxwell
16 LEV simplyRNA Tissue Kit (TM351; Promega), and then
DNAse was treated and analyzed on an Agilent 2100 Bio-
analyzer. Only samples with an RNA Integrity Number >8.0
were used for cDNA synthesis and library preparation.

RNA Sequencing and Analysis
cDNA libraries were constructed from RNA isolated from
FACS-purified control and BDKO islet B-cells, and paired-

end sequencing of three replicates was performed on an
Mumina NovaSeq6000 (150 nucleotide reads). The gener-
ated FASTQ files were processed and interpreted using the
Genialis visual informatics platform (https://www.genialis
.com). Sequence quality checks were determined using
raw and trimmed reads with FastQC (http://www
.bioinformatics.babraham.ac.uk/projects/fastqc), and
Trimmomatic (22) was used to trim adapters and filter out
poor-quality reads. Trimmed reads were then mapped to
the University of California, Santa Cruz, mm10 reference
genome using the HISAT?2 aligner (23). Gene expression
levels were quantified with HTSeg-count (24), and differ-
ential gene expression analyses were performed with
DESeq2 (25). Poorly expressed genes, which have expres-
sion count summed over all samples of <10, were filtered
out from the differential expression analysis input matrix.
RNA expression analysis of selected candidates was per-
formed with the quantitative (qQ)PCR primers provided in
Supplementary Table 2.

Chromatin Immunoprecipitation Assays

Chromatin was prepared from 1,000 to 1,400 control
or BDKO islets and chromatin immunoprecipitation
(ChIP) was conducted with Pdx1 (AB47383), Nkx2.2
(HPA003468; Sigma-Aldrich), or IgG antibodies as de-
scribed previously (21) (n = 3). The chromatin was sheared
to ~200-300 base pairs (bp). gPCR was performed with
immunoprecipitated DNA over Ins2 (i.e., —95/—35 bp)
and Nkx6.1 (—884/—720 bp). Binding enrichment is
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presented as the fold enrichment of the transcription
factor signal on Ins2 or Nkx6.1 over the control B-actin
signal relative to IgG. Primer sequences are available in
Supplementary Table 2.

Statistical Analysis

Statistical significance was determined using the two-
tailed Student t test. Data are presented as the mean *
SEM. A threshold of P < 0.05 was used to declare
significance.

Study Approval

All animal studies were reviewed and approved by the
Vanderbilt University Institutional Animal Care and Use
Committee. Mice were housed and cared for according to
the Vanderbilt Department of Animal Care and the In-
stitutional Animal Care and Use Committee/Office of
Animal Welfare Assurance standards and guidelines.

RESULTS

Embryonic Pancreas-Specific Removal of the Brg1
ATPase Results in Pancreatic Hypoplasia
To evaluate the mechanistic basis by which Swi/Snf con-
trols pancreas mass in vivo, we crossed mice producing
a Cre recombinase driven by the Ptfla locus (Ptfla-Cre
[15]) with mice containing Loxp sites surrounding exons
17 and 18 of the Brgl gene (i.e., BrglAp“”C [17]) or
constitutive Brm-null (Brm~’~ [19]) alleles or in combi-
nation to create a developmental double knockout
(DKOA’”“”‘). Brm™’” animals are viable, fertile, and have
no overt physiological or morphological phenotypes (19).
Brgl removal was observed in ~50% of €12.5 pancreatic
epithelial cells in Brgl***™ and DKO“**™ mutants. Brgl
levels did not increase in Brm~’~ embryos (Supplementary
Fig. 1) and Brm did not in Brgl***™ mutants (Supplemen-
tary Fig. 2), signifying no compensatory upregulation
between these alternative ATPase Swi/Snf subunits.
At postnatal day 1 (P1), BrglAW"C mice showed a se-
vere reduction in pancreas size that was not observed
in Brm ’~ mice or exacerbated in DKO*P®" (Fig. 1B).
However, the size of the spleen, liver, and kidneys was
unaffected in the Swi/Snf ATPase mutants (Fig. 1B)
(data not shown). The incomplete inactivation of
Brgl within the MPC pool (Supplementary Fig. 1) led
to the presence of nonrecombined escaper cells, with
Brgl absent from most P1 acinar cells (in which Ptfla
expression is enriched and thereby increasing the likeli-
hood of inactivation of Brgl™” alleles) but present in
islet hormone® Ptfla™ cells (4) (Supplementary Fig. 3).
The preservation of Brgl in DKO*P*"™ islets presumably
allows normal control of blood glucose levels postna-
tally, because B-cells totally deficient in all Swi/Snf
activity have a significant impairment (described be-
low). These observations suggest that the pancreatic
hypoplasia reported in the 3-week-old Brgl“F®"
mutants (26) results from a reduction in embryonic
MPC numbers.
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Pdx1 Binds to Brg1 and Brm1 in MPCs and Not Ptf1a or
Sox9

The proximity ligation assay (PLA) was used to evaluate
the ability of Pdx1, Ptfla, and Sox9 to interact with Brgl
and Brm in the developing pancreas, wherein a punc-
tate fluorescent signal is generated if the physical dis-
tance between interacting proteins is within 30-40 nm.
Pdx1:Brgl and Pdx1:Brm signals were clearly detectable
in €12.5 pancreatic epithelium, but scant binding was
found between Ptfla and Sox9 with either Swi/Snf ATPase
subunits (Fig. 2). These results imply that Swi/Snf actions
in MPCs are mediated principally through Pdx1.

All Pancreatic Cell Lineages Are Reduced in e15.5
Brg14P3"° Mutants

To determine whether the absence of Pdx1-recruited Brgl/
Swi/Snf impacted the loss of specific pancreatic cell line-
ages, we immunostained and quantitated serially cut con-
trol and mutant el5.5 sections for cell type markers
characteristic of this developmental stage. Expression of
Sox9 at €15.5 denotes a population of bipotent progenitor
cells (27), and neurogenin 3 (Neurog3) marks the subset of
cells destined to become islet endocrine cells (28). We
found that the number of cells expressing Sox9 and
Neurog3 was reduced by ~50% in Brgl“*™™ pancreata,
which was not decreased further in the DKO***™ mutant
(Fig. 3A and B). Moreover, the number of insulin®, gluca-
gon’, and somatostatin” cells, along with carboxypeptidase
1" (Cpal) acinar cells, was also reduced by ~50% in the
Brgl**™ and DKO“"™™ mutants (Fig. 3C and D). In
addition, ductal branching was less expansive in Brgl“P*™
than in control embryos, which was expected due to re-
duced Brg1®"*™™ pancreatic cell numbers (Supplementary
Fig. 4). Together, these results demonstrate that all pan-
creatic lineages are negatively influenced by the loss of the
embryonic Pdx1:Brgl/Swi/Snf complex.

Brg1-Deficient MPCs Have Reduced Proliferative
Capacity

We next investigated whether the reduction in pancreatic
cell type formation directly resulted from depletion of the
embryonic Brgl®P™™ MPC pool. In agreement with this
prediction, the number of coexpressing Pdx1l and Sox9
cells at e12.5 was reduced by ~40% (Fig. 4A). However,
there was no detectable difference in TUNEL" cell numbers
in the €12.5 control and Brgl“*?*™ E-cadherin® pancreatic
epithelium (data not shown), suggesting that the de-
creased MPC population was not due to increased cell
death. Pregnant dams were then injected with BrdU to
assess the proliferation of Brgl-deficient MPCs. Control,
Brg1*P*™, and DKO“P™™ mutants incorporated BrdU into
~30% of wild-type MPCs at e12.5, whereas incorporation
in Brgl-deficient MPCs was only 14.4 = 0.7% and 14.8 *
1.8% in the Brgl*?™™ and DKO*P*™ mutants, respectively
(Fig. 4B). These studies illustrate the novel function for
Pdx1:Brgl/Swi/Snf in modulating MPC proliferation in
the developing pancreas, which to our knowledge is the
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first transcriptional coregulator shown to influence MPC
number and pancreas mass.

Impaired Adult Islet g-Cell Function Is Only Observed
Upon Removal of Both the Brg1 and Brm ATPase
Subunits of Swi/Snf

To test whether Pdx1:Swi/Snf also contributed to adult
B-cell function, we crossed transgenic mice containing
a tamoxifen-inducible, B-cell-specific Cre (mouse Insl
enhancer/promoter [MIP]-driven CrefRT [16]) and the
Rosa26-Loxp-Stop-Loxp-tdTomato (R26LSE-tdTomato 1181y 1in-
eage reporter with Brglf f.Brm*™™ (termed BrglAB :Brm*’"),
Brglf/+;Brm7/7 Gie., BrglAB/+;Brm7/7), or Brglf/f;Brm7/7

Diabetes Volume 68, September 2019

(i.e., BDKO) mice. All experimental and control animals
contained the MIP-Cre®™ " transgene and received tamox-
ifen, because this Cre line contains the human growth
hormone minigene sequence that has been reported to
independently augment islet (3-cell mass, insulin content,
and insulin secretion (29). Brgl removal was induced in
4-week-old mice by three tamoxifen administrations every
other day over a 5-day period. At 2 weeks after the last
tamoxifen treatment, ~70% of islet B-cells expressed the
fluorescent Tomato lineage reporter and >90% of these
BDKO cells lacked Brgl (Supplementary Fig. 5).
Brg1*#;Brm"”’~ and Brg1***;Brm ™" mice were phys-
iologically normal 2 weeks after the last tamoxifen

Figure 2—Pdx1, but not Sox9 or Ptf1a, interacts with Brg1 and Brm in wild-type e12.5 pancreatic epithelium. PLA was performed with
antibodies specific for Brg1 (A) or Brm (B) and Sox9, Ptf1a, or Pdx1. Distinct fluorescence PLA signals were easily visible in the Pdx1:Brg1 and
Pdx1:Brm experiments, but were nearly absent in the Brg1:Sox9, Brg1:Ptf1a, Brm:Sox9, and Brm:Ptf1a assays. The yellow square demarks
the magnified area displayed below, and the dashed yellow marks outline the pancreatic epithelium. RBC, red blood cell. Scale bar = 10 pm.
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administration, whereas BDKO animals suffered from
fasting hyperglycemia, glucose intolerance, and reduced
serum insulin levels (Fig. 5A and B). Glucose intolerance
did not worsen in older mutant animals, and males and
females both exhibited similar phenotypes (Supplemen-
tary Fig. 6). Glucose-stimulated insulin secretion (GSIS)
was also compromised in size-matched islets isolated from
BDKO animals, whereas BrglAB;Brm+/_ and BrglABA;
Brm ™'~ were unaffected (Fig. 5C). In addition, we ob-
served a severe and specific reduction in BDKO islet insulin
content (Fig. 5D), suggesting that their secretion defi-
ciency results, at least in part, from limited hormone
content.

Loss of Swi/Snf Activity in BDKO Islet 3-Cells Severely
Reduces Insulin Production Despite Retention of Many
Important Enriched Transcription Factors

To gain insight into the cause of the significant decrease in
insulin content in BDKO islets, we first took a candidate
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approach to monitor for the presence of various B-cell
markers in control and BDKO pancreata. Most strikingly,
nearly every Tomato-labeled cell in BDKO islets had little
to no insulin immunoreactivity (Fig. 6A). There was also no
overt change in islet cell mass or apoptosis in mutant islets,
contrasting with the reduced pancreas mass of Brgl“P*™
mice caused by the developmental loss of this ATPase. As
expected, Tomato-labeled BrglAB;BrmJ'F and BrglAB/+;
Brm™’~ B-cells had no obvious defects in insulin pro-
duction (Supplementary Fig. 7).

Severe insulin deficiency is commonly observed upon
B-cell ablation of key lineage-determining transcription
factors such as Pdx1 (11), Nkx6.1 (30), Nkx2.2 (31), Pax6
(32), and Mnx1 (33), whereas removal of MafA impacts
islet architecture and GSIS but has little effect on insulin
content (34). Interestingly, Pdx1, Nkx6.1, Nkx2.2, Pax6,
and Mnx1 levels were unaffected in Swi/Snf-deficient
Tomato" cells by immunofluorescence analysis, although
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Figure 3—All pancreatic cell lineages are reduced in e15.5 Brg14P2" and DKO*P2™ epithelium. Control, Brg74P2"°, and DKO*P"° mutant
embryos were stained with antibodies specific for E-cadherin and Sox9 (A), E-cadherin and Neurog3 (B), insulin (Ins), somatostatin (Sst), and
glucagon (Geg) (C), or Cpat (D). The yellow square in B marks the magnified area in the panel. DAPI nuclear staining is also provided in C and
D. Cell type counting was performed on sections 90-um apart that spanned the entire pancreatic region (n = 3). *P < 0.05. *P < 0.01. **P <

0.001. n.s., not significant. Scale bar = 50 pm.
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MafA levels were significantly reduced (Fig. 6B and Sup-
plementary Fig. 8). Moreover, BDKO Tomato" cells did not
produce the a-cell-specific glucagon hormone, an effect
seen upon removal of Pdx1 from adult B-cells (11). In
addition, somatostatin expression was not induced in this
cell population (Supplementary Fig. 8), which occurs upon
deletion of, for example, Mnx1 from B-cells (33). Overall,
there was also no difference in the islet o- and 8-cell mass
between control and BDKO islets (Supplementary Fig. 8).

Expression of Pdx1-Regulated Genes Involved in Cell
Maturation, Insulin Production, and Insulin Secretion Is
Affected in BDKO B-Cells

To more comprehensively define the molecular influence
Swi/Snf has on -cells, RNA sequencing was performed on
FACS Tomato" cells from control and BDKO islets. Using
a * twofold cutoff and false discovery rate of <0.05, there
were 1,789 downregulated and 1,273 upregulated genes in
BDKO B-cells (Fig. 7A). Gene ontology analysis (35,36) of

Diabetes Volume 68, September 2019

these differentially expressed BDKO genes using Database
for Annotation, Visualization and Integrated Discovery
(DAVID) led to the identification of a very diverse array
of biological pathways associated with Swi/Snf control,
including cell adhesion, ion transport, cell differentiation,
cell migration, cell proliferation, and carbohydrate metab-
olism (Supplementary Table 3). Expression of some of the
most upregulated genes, including Cregl, Scg3, Gucyla3,
and Gucylb3, was confirmed by qPCR analysis (Fig. 7B);
however, the impact of these genes on B-cells is unclear.

Greater insight into how Pdx1:Swi/Snf regulated gene
expression was obtained upon comparing genes bound by
Pdx1 in ChIP-sequencing analysis of mouse islets (37) to
those upregulated or downregulated in BDKO B-cells.
Genes upregulated and bound by Pdx1 (507/1,273) resided
in biological pathways linked to cell adhesion and neuro-
muscular functions, whereas downregulated BDKO genes
bound by Pdx1 (917/1,789) defined functional networks
linked to insulin secretion and glucose homeostasis (Fig.
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8A and Supplementary Table 4). Consequently, we con-
cluded that Pdx1:Swi/Snf represents an essential posi-
tive regulator of B-cell function. Supportive evidence of
these changes came from immunofluorescence and qPCR
analysis of independently derived flow-sorted BDKO
B-cells. These genes included those strongly linked to
mature cell identity, such as Insl, Ins2, Slc2a2 (Glut2),
MafA, SIc30A8, and Ucn3 (Fig. 8B and Supplementary
Fig. 9). However, their production was unaffected in
BrglA'B;Bran and BrglAB/+;Brm7/7 islets (Supplemen-
tary Figs. 7 and 10). Collectively, our analyses revealed
that Swi/Snf-deficient B-cells have reduced expression of
numerous Pdx1-regulated genes that are essential for
sustaining (3-cell identity.

Pdx1 Binding to the Ins Enhancer Is Compromised in
BDKO p-Cells

Rodent Insl and Ins2 gene expression is largely mediated
by transcription factors that bind within cis-acting
enhancer sequences found roughly between —340
and —90 bp upstream of the transcription start site
(38), a region well conserved in the human INS gene
(39). In addition to Pdx1 binding at the A3/A4 (—201
to —195 bp in Ins2) and proximal Al (—63 to —59 bp)
elements (40), enhancer activity is mediated by several
islet-enriched transcription factors with vital roles in
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developing and adult B-cells, including Pax6 (—317 to
—311 bp) (41), Nkx2.2 (—128 to —122 bp) (42), and
MafA (=126 to —101 bp) (43).

We compared Pdx1 binding to the Ins2 and Nkx6.1
enhancers in ChIP experiments performed on control and
BDKO islets, noting that Nkx6.1 was viewed as an internal
control because expression was unaffected in BDKO islets
(Fig. 8B). Nkx2.2 binding to both enhancers was also
evaluated, with the Nkx2.2 and Pdx1l elements found
roughly —807 to —796 bp upstream of the Nkx6.1 tran-
scription start site (44)). Pdx1l binding was selectively
reduced on the Ins2 gene in BDKO islets, whereas
Nkx2.2 binding was unchanged, as was Pdx1 and
Nkx2.2 to the Nkx6.1 enhancer (Fig. 8C). These data reveal
that the presence of the Brgl/Brm-associated Swi/Snf
complex was necessary for Pdx1 binding to the Ins gene
enhancer.

DISCUSSION

The binding of transcription factors to cis-acting DNA
control elements is by itself not sufficient to regulate
target gene expression (45). Accordingly, their associated
coregulators serve as an essential layer of control by, for
example, influencing chromatin structure, enabling inter-
actions among transcription factors, and recruitment of
other effectors of RNA polymerase II. Among the hundreds
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of positive- and negative-acting transcriptional coregula-
tors, very few have been directly linked to B-cell-enriched
transcription factor activity, despite strong evidence that
Pdx1 (1,2,11), Nkx2.2 (31), Mnx1 (33), and Nkx6.1 (30)
are essential to core programs of pancreas formation and
B-cell activity. Here we evaluated the significance of Pdx1
recruitment of the Swi/Snf chromatin remodeling complex
to pancreas formation developmentally and in islet B-cells.
Conditional and constitutive mutants of the core ATPase
subunits in mice were used to modulate Swi/Snf activity
in vivo. Our results revealed that the Brgl ATPase subunit
regulates pancreas size by stimulating Pdx1:Swi/Snf-
mediated MPC proliferation, while both Brgl and Brm
regulate expression of Pdx1-driven genes required for islet
B-cell identity, including Ins.

Adult pancreas mass is limited by the size of the
embryonic MPC pool (7). Here our data demonstrated
that the inability of Pdx1 to recruit Brgl/Swi/Snf in
BrglA”“”C mice reduced acinar, ductal, and islet cell
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numbers and pancreas mass by ~50%, without affecting
formation of other organs. Moreover, we showed that this
resulted from reduced proliferation of the MPC pool.
Notably, only Pdx1 was found in the PLA to bind to
Brgl and Brm in MPCs, whereas no interactions were
observed with the MPC-enriched and functionally impor-
tant Ptfla (4) or Sox9 (5) transcription factors. This
evidence indicated that Swi/Snf regulation of MPC expan-
sion was principally through Pdx1.

Interestingly, pancreas mass was only affected in
Brgl**™™ mice and not further in the double-ATPase
DKO*P®™ mutant. This may simply mean that the Brm
ATPase, which has a much less impactful global regulatory
phenotype in relation to Brgl (19,46), has no influence on
pancreatogenesis. This possibility is supported by a recent
report that found BRM transcript levels increased (~17-
fold) during directed differentiation of human embryonic
stem cells from stage 5 MPC-like cells to stage 6 B-like
cells in vitro (Supplementary Table 5, data mined from
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reference [47]). Further, this increase in BRM provides
a plausible explanation about why eliminating both Brgl
and Brm in adult islet BDKO B-cells had such a penetrant
effect. Alternatively, Pdx1 may be recruiting a distinct Swi/
Snf-related complex, termed PBAF (polybromo-associated
BAF), that is only regulated by Brgl (48). Although many
subunits are shared between PBAF and the Brgl- and Brm-
regulated BAF (Brgl-/Brm-associated factor) complex,
each were shown to possess unique regulatory properties
in controlling vitamin D receptor—driven anti-inflammatory
and prosurvival responses in islet B-cells (49).

More broadly, our results suggest that coregulators of
Pdx1, Ptfla, and Sox9 influence pancreas size, a global
physical determinant linked to type 1 diabetes and T2D
susceptibility (9,50). Future efforts should involve not only
identifying coregulators affecting transcription factor ac-
tivity but also the processes and factors that influence
their recruitment to target loci. These would be expected to
include posttranslational modification mechanisms that
positively or negatively affect transcription factor:coregulator
interactions. For example, phosphorylation of the p53
transcription factor increases CBP/p300 histone ace-
tyltransferase association, amplifying transcriptional
activity (51).

T2D is ultimately caused by the inability of islet B-cells
to produce sufficient amounts of insulin to cause transport
of blood glucose into insulin-resistant tissues to maintain
normoglycemia. A hallmark of this disease is an increase in
the number of “empty” B-cells, defined by their lack of
insulin immunoreactivity (52). This was also a novel char-
acteristic of BDKO B-cells (Fig. 6) and associated with
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a lack of Pdx1 binding to the endogenous Ins2 gene
enhancer. These results are consistent with a recent report
showing that DNA binding by the REST transcription
factor relies on the remodeling activity of SWI/SNF in
embryonic stem cells (53). In contrast to Pdx1, there was
no apparent change in Nkx2.2 transcription factor binding
to the Ins2 gene or in Pdx1, Nkx2.2, and Nkx6.1 nuclear
protein levels. In fact, MafA was the only other core Ins
regulator apparently absent in BDKO f-cells (Fig. 7).
Because loss of MafA alone does not abolish Ins pro-
duction in MafA*?™™ (34) or MafA*? (54) mice, insulin
deficiencies in BDKO “empty” B-cells likely reflect the
combined loss of the MafA protein and inability of
Pdx1 to bind to the Ins enhancer. This proposal is sup-
ported by the ability of Pdx1 + MafA to reprogram human
islet a-cells to B-like cells (55), or in transgenic mice, when
combined with the embryonic islet cell determination
factor, Neurog3, to produce B-like cells in the intestine
of mice (56).

Circularized Chromosome Conformation Capture (i.e.,
4C) and PDX1-binding enhancer elements were used as
anchor bait sites in the human EndoC-BH1 pancreatic
B-cell line (57,58), and the human INS locus was found to
physically contact many distinct genes affecting {3-cell
secretory processes. Knockdown of INS mRNA levels
in EndoC-BH1 cells demonstrated that expression of
259 genes was affected, with 45 residing in 4C contact
regions and ~40% associated with metabolic pathways.
Moreover, these investigators proposed that the chromo-
somal interactions with the INS locus were conjoined
with the transcriptional machinery at the various loci. If
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PDX1:Swi/Snf contributed to such control, we predicted
some overlap between the BDKO-regulated genes and
those identified in the human 4C INS knockdown anal-
ysis. However, not one of their 45 genes was differentially
expressed in BDKO [-cells. Possible explanations for
this difference could involve the unique variable number
of tandem repeats regions upstream of the human INS
enhancer (39) and/or simply the experimental context
(i.e., human EndoC-BH1 cells vs. the mouse BDKO
model). Alternatively, our ability to detect Nkx2.2 binding
to the Ins2 enhancer in BDKO islets raises the possibility
that 4C-detected interactions persist because they are reg-
ulated by transcription factors binding independently of
Pdx1.

Genome-wide association studies have found numerous
genomic loci linked to T2D (59), but the Swi/Snf subunits
have not been associated directly to diabetes pathogenesis.
Notably, our results suggest that only genetic variants
leading to a complete loss of Swi/Snf activity would yield
a BDKO diabetic phenotype. However, a recent study
found that genomic deletions and rearrangements in
Swi/Snf subunits exist in approximately one-third of pan-
creatic cancers containing alterations in known tumor-
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associated genes (e.g., MYC, KRAS, CDKN2A, TGFBR2,
MAP2K4, and SMAD4) (60). Specifically in regards to the
ATPase subunits, heterozygous and homozygous mutations
in the BRG1 or BRM genes occur in 9.6% and 2.6%,
respectively, of human pancreatic cancer samples. More-
over, combined mutations in BRG1 and BRM were found in
several pancreatic cancer cell lines, but double mutations
were absent from primary tumor samples, although the
latter involved a limited sample number (60). Notably,
~80% of individuals with pancreatic cancer often present
with new-onset T2D or impaired glucose tolerance at di-
agnosis (61). Although these studies do not directly link
the prevalence of Swi/Snf subunit mutations to pancreatic
cancer—associated diabetes, loss-of-function mutations in
BRG1 and BRM provide a potential intersection for
pancreatic cancer and T2D, especially given the influence
Swi/Snf has on mature B-cell function.

Functional heterogeneity within the (3-cell population
was first described more than two decades ago (62,63),
with recent observations identifying distinct normal and
T2D -cell populations that differ in their molecular
composition and glucose-stimulated insulin secretion
properties (64). Interestingly, Pdx1, MafA, and Nkx6.1
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levels appear similar between these B-cell subtypes, raising
an intriguing possibility that variations in transcription
factor:coregulator interactions could be affecting activity.
This possibility is supported by our previous findings that
Pdx1:Swi/Snf interactions were not observed in all healthy
human islet B-cells in the PLA (12), which adds another
level of heterogeneity to a subpopulation of human B-cells.
Such observations emphasize the importance of investi-
gating how coregulator recruitment by endocrine cell-
enriched transcription factors contribute to human
B-cell functional heterogeneity under normal physiological
conditions.

Collectively, our study provides fundamental insight
into the role of Pdx1:Swi/Snf complexes in pancreas
organogenesis and in maintaining principal features of
the mature B-cell state. The translational significance of
our findings is underscored by the knowledge that in
humans, a subset of T2D B-cells lose their ability to
produce insulin and that overall pancreas size, with other-
wise normal cell-type proportional allocations, is a risk
factor in the development of diabetes. Furthermore, our
findings that Swi/Snf activity is crucial for driving Ins
expression and that Pdx1:Swi/Snf interactions are nega-
tively affected in human T2D (12) indicate that therapies
that enhance such interactions are an attractive target in
T2D. Upon broader consideration, we propose that tran-
scriptional coregulator recruitment is essential to the
formation and function of the other islet cell types (c,
B, 8, €, and pancreatic polypeptide). In this context, our
studies are currently focused on additional Pdx1-interacting
proteins, such as the multisubunit nucleosome remodeler
and deacetylase (NuRD) complex, the Myst2 histone ace-
tyltransferase, and the Tif1f3 corepressor.
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