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ABSTRACT OF THE DISSERTATION

Essays on Strategic Sophistication

by

Wanqun Zhao

Doctor of Philosophy in Management

University of California San Diego, 2021

Professor Anya Samek, Chair
Professor Charles Sprenger, Co-Chair

This dissertation investigates the persistence of strategic sophistication across differ-

ent scenarios. In daily life, people often make decisions based on their beliefs about other

people’s actions, and sometimes engage in iterated steps of reasoning. Open questions exist

for how contextual aspects influence strategic choices. When given additional information

about their opponents, or the strategic environment, do people’s strategic choices change

xii



accordingly? This dissertation uses experimental methods to answer these questions. This

work helps to inform foundational models of strategic decision making. It points to the

significant effects of contextual variables on strategic behaviors that must be incorporated

into models of choices.
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Chapter 1

Cost of Reasoning and Strategic

Sophistication
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1.1 Introduction

The use of the level-k model has prevailed in the literature for characterizing people’s

initial responses in laboratory strategic games(Nagel, 1995; Stahl and Wilson, 1994).

The model characterizes the player’s systematic deviations from the Nash equilibrium using

a bounded rational-type explanation. The level-0 type’s action is assumed to be uniformly

distributed over all actions (or in some cases, level-0 type’s action is the most prominent

action available), whereas the level-1 type has the best response to the expected action of

the level-0 type. The level-2 type has the best response to the expected action of the level-1

type. The iterations follow this pattern, as the level-k type always has the best response to

the actions of level-k−1 type. Such patterns of off-equilibrium play have been evidenced

in many laboratory experiments. In Nagel’s p-beauty contest game, Nagel found spikes that

correspond to the first and second rounds of iterative best responses (Nagel, 1995). Stahl

and Wilson found similar evidence of level-1 and level-2 types with 10 matrix games (Stahl

and Wilson, 1994). Camerer et al. developed a cognitive hierarchy model (Camerer et al.,

2004). Instead of holding a belief that all the other players are type k-1, level-k players in the

cognitive hierarchy model assign a probability distribution over all the lower types. Many

other studies used the level-k model to explain laboratory data (matrix game: Costa-Gomes

et al. (2001); beauty contest game: Ho et al. (1998); Bosch-Domènech et al. (2002); Duffy

and Nagel (1997); Grosskopf and Nagel (2008); sequential game: Ho and Su (2013);

auction: Crawford and Iriberri (2007); Ivanov et al. (2010); Crawford, Costa-Gomes and

Iriberri also provide a comprehensive literature review (Crawford et al., 2013)).

However, although the level-k model has proven its usefulness in characterizing

initial responses for many laboratory games, its predictive power remains ambiguous
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because (1) it is often used posteriorly to classify a player’s type given their actions and (2)

the model lacks components related to individual characteristics that could help identify

different types of players. It is important to understand how certain levels are reached for

each individual, as it is a starting point for the discussion of the model’s predictive power.

Alaoui and Penta developed a framework called the endogenous depth of reasoning (EDR)

model to explain what may happen in a player’s head when they encounter a given strategic

situation (Alaoui and Penta, 2016). The EDR model captures individual characteristics by

introducing cost of reasoning, which is determined both by the strategic environment and by

a player’s endogenous cognitive ability. The model includes game-specific characteristics

by introducing the benefit of reasoning through payoffs of the games. Lastly, the model

allows a clear separation of cognitive bounds and behavioral levels observed in games by

introducing higher-order beliefs. Such separation makes room for individual adjustments

of k-levels in different strategic environments. As a result, a level-1 action observed from a

game does not necessarily classify the player as a level-1 player. Instead, such action can

be a product of the player’s cost and benefit analysis and his belief about his opponents.

The EDR model provides a plausible starting point to study the persistence of the

level-k model. However, as individuals have heterogeneous costs of reasoning and belief

systems in all kinds of strategic situations, it is hard to conduct direct comparisons across

games to test whether the behavioral k-levels follow the EDR model’s predictions. In this

paper, I use Costa-Gomes and Crawford’s two-person guessing games (henceforth CGC06)

and cognitive load to create different strategic environments (Costa-Gomes and Crawford,

2006). By controlling cognitive load, I create a standard for the cost of reasoning for all the

subjects. Although individual cognitive ability may still have an effect, by using a within-
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subject experimental design, the individual effect will no longer impact the comparisons

of strategic levels across games for the same subject. The revelation of information about

the strategic environment is also carefully manipulated to clearly control the subject’s

belief space. The goal was to test whether the EDR model provides directional predictions

about the changes on k-levels across games for any given subject. Alaoui and Penta

tested the benefit part of their model using the 11–20 money request game with altered

bonus rewards (Alaoui and Penta, 2016; Arad and Rubinstein, 2012b). To the best of my

knowledge, this was the first paper to provide experimental tests of the EDR model by

introducing different strategic environments with controlled cost and belief space.

With the 18 two-person guessing games in the experiment, the results suggest

that the subject’s behavioral levels systematically vary across the games. Subjects are

mostly responsive to the changes in the strategic environment. Their directional changes

in behavioral levels can be predicted by the EDR model when they are more cognitively

capable or their opponent is less cognitively capable. An inherent cognitive bound exists

for the subjects in different strategic environments. When comparing a subject’s behavioral

levels across all the games while providing the same amount of cognitive resources, their

behavioral levels rarely exceed their cognitive bound level for that strategic environment.

A few other papers also studied the correlation of individual k-levels with cognitive

ability. Allred et al. investigated the effects of cognitive load on strategic sophistica-

tion (Allred et al., 2016). In their experiments, they asked the subjects to perform a

memorization task of either a three- or nine-digit binary number concurrently with strategic

games such as beauty contest, 11–20, and 10 matrix games. They found that subjects with

high loads (i.e., nine-digit number) were less capable of computing best responses, espe-
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cially for the beauty contest game. They were also aware of their strategic disadvantages.

The net result of cognitive load depended on the specific strategic context. Burnham et al.

used a standard psychometric test to measure the cognitive abilities of their subjects, and cor-

related the test results with subjects’ performances in a p-beauty contest game (Burnham et

al., 2009). They found a negative correlation between cognitive test scores and entries in the

beauty contest game, indicating that subjects with higher cognitive ability tend to be more

strategically sophisticated in such games. Gill and Prowse used a 60-question non-verbal

Raven test to assign subjects into high- and low-cognitive-ability groups (Gill and Prowse,

2016). They asked the subjects to play a p beauty contest game for 10 rounds, and found

that subjects in the high-cognitive-ability group converged to equilibrium faster. These

studies provided some evidence of the correlation of individual k-levels with cognitive

ability or carefully controlled cognitive tasks. In my experiment, I used memorization tasks

to manipulate the cost of reasoning for the subjects in the context of a two-person guessing

game. According to Allred et al., higher cognitive load negatively affects a subject’s ability

to calculate the best responses in this type of guessing games (Allred et al., 2016). To attain

a higher level of strategic sophistication, players have to exert more effort to combat the

effects of cognitive load; therefore, the cost of reasoning increases with cognitive load in

this strategic situation. Every subject experienced both the low and high cognitive loads at

some point during the experiment, so they were fully aware of the additional cost of reason-

ing that was added by these memorization tasks. As a result, their cost of reasoning and

their belief about their opponent’s cost of reasoning can be quantified by the cognitive load.

The stability of k-levels is an important aspect in the level-k model literature. Stahl

and Wilson used twelve normal-form games to estimate the player’s level (Stahl and Wilson,
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1995). They found that using a relatively low threshold, 35 out of 48 subjects could be

classified as stable across games. Fragiadakis et al. asked the subjects to repeat their

decisions in a series of two-person guessing games to subsequently best respond to their

past actions (Fragiadakis et al., 2016). They found that only 40% of the subjects who

were able to replicate the decisions could be classified as a known behavioral type. A few

works mentioned the predictive power of strategic sophistication. Arad and Rubinstein used

a multidimensional Colonel Blotto game to observe subject’s multidimensional iterative

reasoning process (Arad and Rubinstein, 2012a). They found that subjects with a higher

level of reasoning in the 11–20 money request game also seem to have more rounds of

iterative reasoning in this game.

Perhaps the most closely related work to this paper is Georganas, Healy, and We-

ber’s 2015 paper (Georganas et al., 2015). They conducted an experiment to examine

the cross-game stability of the k-levels. They used four matrix undercutting games and

six two-person guessing games and compared them at the individual level. They found

no correlation between the levels of reasoning across games. However, they found some

evidence of cross-game stability within the class of undercutting game. I studied a similar

question to the cross-game stability of the level-k model. Instead of introducing a second

family of games, I used cognitive load to mimic different strategic environments, and re-

stricted the subjects to fixed pairs while playing the games. The belief space was therefore

carefully controlled, and the uncertainty from playing against a new random player for

each round was completely eliminated. The data suggested that systematic level changes

can be predicted by the EDR model under certain conditions. In Section 1.2, I provide a

brief introduction to the EDR model to cover some necessary background and theoretical
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predictions. In Section 1.3, the experimental design is introduced in detail. Sections 1.4

and 1.5 cover the data analysis procedure and the discussion of the results, respectively.

Section 1.6 provides the concluding remarks.

1.2 Theoretical Consideration

1.2.1 Model

I adopted Alaoui and Penta’s EDR model for theoretical predictions (Alaoui and

Penta, 2016). In this model, players follow an endogenous reasoning process that determines

the strategic bound in a particular context. With added structure on beliefs, the model is

able to predict a player’s actual level of play in any game that could use a k-level iterative

best response reasoning process. The main benefit of using this model is that the structure

of the model allowed me to conduct a comparative statics exercise on a player’s reasoning

process. One of the main goals of this study was to conduct a comparative static exercise

on the cost side. Below, I provide more detailed descriptions of some key features of this

model. These features are relevant to the experimental design and predictions for this paper.

A player’s cognitive bound is a mapping from the incremental cost of reasoning

(c(k)) and the incremental value of reasoning (v(k)) at each level to the intersection of the

two terms.

κ(v,c) = min{k ∈ N | v(k)≥ c(k) and v(k+1)< c(k+1)} (1.1)

A player reaches their cognitive bound at the kth level by having a value of reasoning for
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that level exceeds cost of reasoning, but their cost–benefit analysis no longer supports the

one-higher level (i.e., k+1) of reasoning. Further denote the cognitive bound of player i as

k̄i, where:

k̄i = κ(vi,ci). (1.2)

According to Alaoui and Penta, the value of reasoning is affected by the payoff of

the game (Alaoui and Penta, 2016). The cost of reasoning is an endogenous characteristic

of an individual, which is largely related to their cognitive or reasoning ability. In this

paper, I take their assumption on the value of reasoning and continue to assume that the

payoff is the only incentive for players to apply logical reasoning in the games. I provide

a further discussion on the cost of reasoning. Beyond an individual’s endogenous ability,

the strategic environment (such as cognitive load) provides many challenges for a person in

applying strategic reasoning, which alters the cost of reasoning.

A player’s belief is represented as a tuple. Since the game in my design is symmetric

in payoffs, a player’s belief can be restricted to the beliefs about the cost of reasoning.

Therefore, the first element of the tuple, ci, represents player i’s own cost of reasoning.

The second element is player i’s beliefs of his opponent’s (player j) cost of reasoning,

denoted as ci
j. The last element ci j

i is player i’s second-order belief, which is their belief

about player j’s belief of themselves. Any higher-order beliefs could be nested to the first-

and second-order beliefs; therefore, a player’s belief is represented as:

ti = (ci,ci
j,c

i j
i ). (1.3)
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1.2.2 Theoretical Predictions

I formulated the testable predictions following the EDR construction discussed in

Section 1.2.1. For any game G = {Xi,ui}i=1,2, let ki(xi) be the reflected behavioral level of

player i by choosing action xi, where Xi is the set of actions available for player i and ui is

the payoff function for player i.

1. Changing the cost of reasoning: For any ci
j and ci j

i , ki(xi) (weakly) decreases with

ci. Fixing player i’s first- and second-order beliefs, their cognitive bound weakly

decreases with the cost of reasoning. The observed level of player i from the game

will also weakly decrease. In my design, for the first 16 games holding cognitive

load and information structure constant for the opponent, players will display lower

strategic levels when the memorization task is a string of seven letters.

2. Changing the opponent’s cost of reasoning: For any ci and ci j
i , ki(xi) (weakly)

decreases with ci
j. If ci j

i = ci, then player i’s cognitive bound is binding if they regard

their opponent as more sophisticated.

Player i reacts to the change in the cost of reasoning of their opponents. More

specifically, if he observes his opponent’s cost of reasoning increasing, he will adjust

their strategy in the game to best respond to his opponent. That means they may

choose to take an action that corresponds to a lower level of strategic sophistication.

However, such adjustments of strategies are binding by the cognitive bound when the

player believes their opponent has a lower cost of reasoning compared to their own

cost. In the context of my experiment, a player should choose a weakly lower level

of strategy if he observes his opponent’s memorization task becoming more difficult
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(i.e., from a string of three letters to a string of seven letters).

3. Changing the second-order belief: For any ci and ci
j, ki(xi) (weakly) decreases with

ci j
i . If ci ≥ ci j

i , then player i’s cognitive bound is binding. By fixing player i’s own

cost of reasoning and his opponent’s cost, through only changing player i′s second-

order belief, player i should adjust their strategic actions. For example, when a player

has a low cost of reasoning in the game, if they believe that their opponent has a

wrong belief about themselves, namely, they believe that their opponent thinks the

cost of reasoning for them is very high, then they can switch to an action that is

associated with a lower level of reasoning. However, this adjustment of strategic

actions according to the second-order belief is restricted by player i’s own cognitive

bound, meaning that they cannot make any adjustments that requires a higher level

of reasoning than their cognitive bound. In the context of my experimental design,

players should adjust their actions when the information structure shifts from full

revelation of cognitive load to partial revelation.

4. Cognitive bound: Given ci, for any ci
j and ci j

i , ki(xi) never exceeds k̄i. When fixing

player i’s own cost of reasoning, their behavioral level should never exceed their

cognitive bound. In the context of this experiment, on an individual level, actions

observed in games 17 and 18 should correspond to the highest level of reasoning that

one player can achieve under the respective cognitive load.
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1.3 Experimental Design

In this section, I present the details of the experimental design. The experiment

captured the process of level-k thinking through the two-person guessing game (Costa-

Gomes and Crawford, 2006). I provide a brief introduction to the game first, followed by

the treatment design and the experimental timeline.

1.3.1 The Game

The two-person guessing game is an asymmetric, two-player game. Each player has

a lower limit, ai > 0, an upper limit, bi > 0, and a target pi ∈ (0,2). Players are required

to input a guess that is within their lower and upper limit. However, their actual choice is

not restricted by the limit. Denote player i’s input by xi. If a player guesses a number xi

that falls outside the limit interval, then their guess will be adjusted to the closest bound.

For example, if xi < ai, then the adjusted guess yi will be yi = ai. If xi > bi, then the adjusted

guess yi is yi = bi. However, any guess falling within the limit interval will not be adjusted;

i.e., yi = xi.

The goal of the game is to make a guess that minimizes the difference between the

player’s own guess and the product of their target and his opponent’s guess. Denote the

difference by ei =| yi− pi · y j |. The payoff is a quasi-concave function minimized at zero.

Player i receives ui = max{0,200− ei}+max{0,100− ei
100}. Since a player’s guesses that

have the same adjusted inputs will yield the same outcome for the subject, I use the adjusted

guess yi as a proxy of how players perform in the game.

In this game, the level-0 player is assumed to play randomly according to a uniform
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distribution over the action space. Denote the theoretical predicted guess made by a k-level

player as xk
i . Given the assumption imposed on the level-0 player’s strategy, level-1 players

will best respond to the expected value of level-0 player’s guess, i.e., x1
i = pi ·E{y j | y j ∈

[a j,b j]}. The level-2 player’s strategy will then be x2
i = pi · {1(x1

j ∈ [a j,b j]) · x1
j +1(x1

j <

a j) · a j + 1(x1
j > b j) · b j}. The reasoning process follows iterative best responses. It

converges to the Nash equilibrium after finite rounds of iterations.

In this paper, I adopt 14 two-person guessing games used by CGC06 and 4 two-

person guessing games used by Georganas et al. (Costa-Gomes and Crawford, 2006;

Georganas et al., 2015). The parameters of each game are given in Table 1.1. All the players

survive at least two rounds of iterative best responses before reaching the equilibrium (as

stated in Table 1.1 ”steps to eqm” column). Since in CGC06, only a few number of subjects

reached level 3 in the reasoning process, the choice of parameters in this paper should be

sufficient to identify a player’s strategic levels in the game.

1.3.2 Cognitive Load

Before directed to the guessing game, subjects were required to memorize a string

of letters and were told that they need to recall the given string after the guessing game.

The string was composed of either three or seven random letters, for example, UMH

or WIEZOFH. The subjects were given 15 s to memorize the string; then they were

automatically directed to the guessing game.

I did not pay the subjects specifically for correct recalls. However, their payments

on the guessing game were partially dependent on this memorization task. If the recall

for the selected payment round was wrong, they were not paid for that round, and left the
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experiment with only the participation fee. Said payment scheme incentivized the subjects

to memorize the cognitive load correctly, and therefore guaranteed the effects of different

cognitive load treatments.

Table 1.1: The eighteen two-person guessing games.

Game P1’s Limits P2’s Limits
Treatment P1’s role P2’s role

Steps Eqm at

# & Target & Target to Eqm Boundary

1 [(100,900); 1.5] [(300,500); 0.7] [LL+] role B role A 5+ -

2 [(300,900); 1.3] [(100,500); 0.7] [HL-] role B role A 5+ lower

3 [(300,900); 1.3] [(300,900); 1.3] [HH+] role B role A 3 upper

4 [(300,900); 0.7] [(100,900); 1.3] [LH+] role A role B 5+ lower

5 [(100,500); 1.5] [(100,500); 0.7] [LH-] role B role A 5+ upper

6 [(100,500); 0.7] [(100,900); 0.5] [HL+] role A role B 5 lower

7 [(100,500); 0.7] [(100,500); 1.5] [LH-] role A role B 5+ -

8 [(300,500); 0.7] [(100,900); 1.5] [LL+] role A role B 5+ upper

9 [(100,500); 0.7] [(300,900); 1.3] [HL-] role A role B 5+ -

10 [(300,500); 0.7] [(100,900); 0.5] [HH-] role B role A 3 lower

11 [(100,500); 1.5] [(100,900); 0.5] [LL-] role B role A 5+ -

12 [(300,900); 1.3] [(300,900); 1.3] [HH+] role A role B 3 upper

13 [(100,900); 1.3] [(300,900); 0.7] [LH+] role B role A 5+ -

14 [(100,900); 0.5] [(300,500); 0.7] [HH-] role A role B 4 -

15 [(100,900); 0.5] [(100,500); 0.7] [HL+] role B role A 4 lower

16 [(100,500); 0.5] [(100,500); 1.5] [LL-] role A role B 5+ lower

17 [(100,900); 1.3] [(100,500); 0.5] L - - 5+ -

18 [(100,900); 1.5] [(100,500); 0.7] H - - 5+ -
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1.3.3 Treatments

The experiment consisted of two blocks. In the first block, subjects were assigned

into pairs. They played 16 two-person guessing games against each other within the fixed

pairs. In the second block, they played two guessing games against the computer. There

were a total of 18 two-person guessing games for them to complete for this experiment,

and no feedback was given throughout the process.

Against Human

I adopted a 2×2×2 design. For ease of explanation, I specify the two players in

the guessing game as having role A and role B in this section. However, subjects were not

aware of their role during the experiment. Each subject was given the role of A or B for

each treatment exactly once. I used a within-subject design.

To examine the effects of changing the cost of thinking on a subject’s level of

reasoning, I varied the cognitive load for role A, holding role B’s cognitive load constant.

As mentioned in the previous section, role A needed to memorize a string of either three or

seven random letters when playing the guessing game. To test the effects of changing the

opponent’s cost of thinking on a player’s level of strategic sophistication revealed in the

game, I also varied role B’s cognitive load by two levels. Changing the cost of thinking of

role B essentially tests the effects of changing the first-order belief for role A. Denote the

cognitive load of three letters as low load (L) and seven letters as high load (H).

Lastly, I varied the disclosure of information on the cognitive load for role B.

The exact cognitive load implemented on role A was either fully revealed to role B or

partially revealed as a probability distribution. Denote full revelation as [+] and the
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counterpart as [-]. In the partial revelation treatment, role B was told that role A has a 0.5

probability of memorizing a string of three letters and a 0.5 probability of memorizing a

string of seven letters. The full and partial revelations of the cognitive load information on

role B were a method of measuring the effects of changing the second-order belief for role

A. In the full revelation treatment, both roles A and B were aware that role A’s memorization

task is common knowledge. However, in the partial revelation treatment, role A knew

their exact memorization task was hidden to role B; therefore, their second-order belief

(i.e., their belief about role B’s belief of their own cost of thinking) may not coincide with

their actual cost of reasoning. A summary of treatments is provided in Table 1.2. In later

sections, I used role A’s label to identify the treatments, as I was essentially examining the

treatment effects for role A only. The first letter in the label indicates role A’s cognitive load

(either L or H). The second letter indicates role B’s cognitive load (opponent’s cognitive

load, either L or H), and the last element of the label indicates full or partial revelation

(role A’s second order belief, either [+] or [-]). Role B served as a supporting role to

complete the information required for each treatment. The information presented to role

B for each treatment is also presented in Table 1.2. However, when later discussing the

experimental results, I only refer to each treatment using role A’s label. Table 1.1 provides

a summary of treatments and assignments of roles for each game. Each subject played

as either role A or role B exactly once for each treatment. There are in total 16 games.

For each treatment, the pair of games are symmetric in game parameters and cognitive load

realizations. The games were played in two random orders (the first order was as game

numbers listed in Table 1.1; the second order was: 2, 13, 14, 4, 3, 1, 16, 6, 11, 8, 12, 5,

10, 15, 7, 9, 18, 17. Since for each game, there were two players assigned with different
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cognitive loads, considering player 2’s order of play, there were essentially four sequences.

The number of subjects in each order was roughly balanced. After dropping subjects with

missing data, there were 28 subjects playing the first order as player 1, 29 subjects playing

the first order as player 2, and 27 subjects playing the second order as player 1 and player 2

respectively.). Before the start of each session, one of the two was randomly selected.
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Table 1.2: The eight treatments.

Role Label Cost 1st Order Belief 2nd Order Belief

1
Role A

[LL+]
Low Low Low (full revelation)

Role B Low Low Low (full revelation)

2
Role A

[HL+]
High Low High (full revelation)

Role B Low High Low (full revelation)

3
Role A

[LH+]
Low High Low (full revelation)

Role B High Low High (full revelation)

4
Role A

[HH+]
High High High (full revelation)

Role B High High High (full revelation)

5
Role A

[LL-]
Low Low 50% Low, 50% High (partial revelation)

Role B Low 50% Low, 50% High Low (full revelation)

6
Role A

[HL-]
High Low 50% Low, 50% High (partial revelation)

Role B Low 50% Low, 50% High Low (full revelation)

7
Role A

[LH-]
Low High 50% Low, 50% High (partial revelation)

Role B High 50% Low, 50% High High (full revelation)

8
Role A

[HH-]
High High 50% Low, 50% High (partial revelation)

Role B High 50% Low, 50% High High (full revelation)

Against Computer

Subjects played against the computer for the second block of the experiment.

The computer always chooses a Nash equilibrium action. The concept of equilibrium
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was explained to the subjects. For example, subjects were told that ”a combination of

guesses, one for each person, such that each person’s guess earns them as many points

as possible, given the other person’s guess, is called an equilibrium guess.” A similar

description of equilibrium guess is found in CGC06. Subjects were also given an example

of an equilibrium guess following this description. However, they were not specifically

taught how to derive an equilibrium guess. The reason for introducing the equilibrium

concept was to encourage the subjects to perform as many rounds of iterative best responses

as possible. The two guessing games in this part are labeled 17 and 18 in Table 1.1.

1.3.4 Experimental Timeline

A total of 111 subjects were recruited for this experiment. Sessions were con-

ducted at the Incentive Lab at Rady School of Management, University of California—San

Diego (San Diego, CA, USA). The experiment was programmed and conducted using

z-tree (Fischbacher, 2007). The complete session lasted for 90 min. Subjects were given

a 5 USD show-up fee for attending the experiment and an additional $5 if they passed

the understanding test and completed the experiment. They earned an additional $8 on

average depending on their decisions for the guessing games. For those who did not pass

the understanding test, they spent about 30 min in this experiment and left with the $5

show-up fee.

Subjects were given instructions on the two-person guessing game first. After ex-

plaining the rules, I introduced four unincentivized practice rounds. During the practice

rounds, subjects played against the computer and were told that the computer will always

choose the mean of the target interval. After the subjects made a guess, feedback was
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provided for the subjects to reflect on the game rule and the payoff rule. An understanding

test was then administered. The test was composed of six questions, similar to the under-

standing test in CGC06. Standard questions included calculatiosn of best responses and

payoffs. Although subjects in the experiment were not restricted to following a level-k

reasoning process, for the purpose of the experiment, I wanted to make sure the subjects

were capable of calculating the best responses. A screenshot of the understanding test

is shown in Figure 1.1. Subjects needed to answer four out of six questions correctly to

proceed to the main part of the experiment.

Figure 1.1: Screenshot of the understanding test.

Before playing the incentivized guessing games, subjects were introduced to the

memorization task. They were given two unincentivized practice rounds for the low load

and high load treatments. During the practice round, they had the standard 15 s to memorize

the string of letters and were asked for immediate recall when the time was up. They,

however, did no get to practice the guessing game with the cognitive load implemented.
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The main experiment consisted of two parts, as discussed in Section 1.3.3. There

were 18 two-person guessing games in total. For the first 16 games, subjects were randomly

assigned into pairs and stayed within the same pair for all 16 decisions (one as player 1

and the other as player 2). For each game, subjects were given the same information set

that consisted of the types of memorization task (either string of three or seven letters, or a

probability distribution) for themselves and their opponents, whether their opponents knew

about their exact memorization task, and the targets and limits for both players. An example

of the actual decision screen is provided in Figure 1.2. Subjects were also asked to elicit

their opponents’ types of memorization task after they made their guesses and recalled the

letters. This practice allowed me to check whether the subjects received and processed

the correct information about their strategic environment. There was no feedback given

in between the 18 guessing games. This prevented the subjects from learning anything

about their opponents’ past actions. Such practice also limited the subject’s learning of the

guessing game, as no payoff information was provided. (There was limited learning of the

game. Upon checking a subject’s levels with respect to the orders of the games they played,

playing a later game was not associated with higher k-levels. The coefficient from the OLS

regression was 0.005 and it was not statistically significant.)
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Figure 1.2: Screenshot of the incentivised two-person guessing game.

Subjects took a 10-question Mensa practice test at the end of the experiment.

The test is used to measure the subject’s analytical ability. Some questions ask the subject

to identify the missing element that completes a sequence of patterns or numbers. Some

questions are verbal math questions. A couple of studies in economics literature have used

a similar test as a measure of cognitive ability (Georganas et al., 2015). I used this test

in the experiment to measure whether there were any heterogeneous treatment effects on

subjects with different exogenous cognitive abilities.

1.3.5 Discussion of the Experimental Design

First, I used letters to compose strings for the cognitive load treatment, unlike the

conventional use of binary numbers (Allred et al., 2016). This design restricts the subjects

from using the cognitive load numbers as their inputs for the guessing game. It allows a

clear separation of the two tasks, the memorization task and guessing game, and therefore

increases the reliability of the treatment effects of cognitive load. I recognized subjects

may be able to use other methods to memorize the string of letters, for example, using hand
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gestures. However, any such method also requires cognitive effort and therefore should not

significantly lessen the effects of cognitive load for treatment purposes.

Subjects remained within the fixed pair for the first 16 incentivized guessing games.

Since no feedback was given in between games, this design ensures the manipulation

of cognitive load being the only source of changing beliefs for any subject. Subjects

were different exogenously in terms of cognitive ability, so by staying in the same pair,

they carried the same beliefs about their opponents’ cognitive abilities throughout the

whole session.

Lastly, for each of the 18 incentivized tasks, subjects were given 90 s to make a

decision for the guessing game. According to Agranov et al., 90 s is enough for strategic

players to make a decision in this type of guessing game (Agranov et al., 2015). To keep

the effect of cognitive load constant across players, I only allowed the subjects to submit

their guesses after the 90 s was up. Said practice avoids some subjects naı̈vely picking a

guesses without strategic contemplation for the purpose of achieving correct recalls for the

memorization task.

1.4 Data Analysis Procedure

All the subjects played 18 games in total, each against a fixed opponent during the

experiment. There were 1998 observations of guesses. Grouping the guesses by games,

I looked for level shifts observed with raw guesses. This exercise provided a general view

of the effects of cognitive load on the games. I also used density plots of the guesses to

visualize the treatment effects.
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After the exploration of raw guesses, I estimated the level for each guess using the

maximum likelihood method. Instead of assuming the subject’s behaviors are determined

by a single type across all the games, I assumed the subject’s behavior in each game

was determined by a single type and the types across games were allowed to be different.

This was achievable with the design of my experiment with the variations on cognitive load.

Out of 1998 observations, 831 guesses correspond to a type’s exact guesses.

As about 40% of the observed guesses were a type’s exact guesses, I followed the CGC06

approach in my estimation. Specifically, for each player i, game g, and level k, if player i was

not making a type’s exact guesses in game g, then I defined a likelihood function L(yig | k,λ)

for each level k for the player in that game, with beliefs f k
g (y) and sensitivity parameter λ,

based on the assumption that they were trying to maximize their expected utility.

Formally, let xig be the raw guess observed for player i in game g. With the

specification of lower limits aig and upper limits big, the adjusted guess is then yig =

min{max{aig,xig),big}}. The density f k
g (z) represents a subject’s belief about his oppo-

nent’s action given their behavioral level being k. Although in the literature a subject’s belief

of the other player’s level could follow a certain type of distribution, for example, Poisson

distribution as in Camerer et al. (2004), in this study, I followed the standard approach

that level-k player has point belief about his opponent, that his opponent is level-(k−1)

with probability 1. y0
g is defined as uniformly spread across the action space. The expected

payoff of playing xig with behavioral level k’s belief is then:

Uk
ig(yig) =

∫ 1000

1
Uig(yig,z) fg(z)dz. (1.4)
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Let Uk
ig = [max(yk

g−0.5,aig),min(yk
g+0.5,big)] be the interval of a type-k subject’s

exact adjusted guesses, allowing an error of 0.5. Any guess for game g, subject i, who

is placed within Uk
ig, is then identified as an exact match for k-level. Conversely, define

Uk
ig
{
= [aig,big]/Uk

ig as the complement of Uk
ig within the limit interval for subject i’s game

g. The likelihood function is then the following:

L(yig|k,λ) =
exp[λUk

ig(yig)]∫
Uk

ig
{ exp[λUk

ig(w)]dw
. (1.5)

Since only one observation was used for the estimation, I took the sensitivity

parameter (λ) as 1.33, which is the averaged estimated value of λ in CGC06 with only the

subject’s guesses. The maximum likelihood estimate of a subject’s behavioral level in each

game maximizes (1.5) over k, which is:

kig = argmax
k∈{1,2,3,4,5,6}

L∗(yig|k). (1.6)

To examine the treatment effects on behavioral levels, I pooled guesses into pairs

for comparison. For example, to test the prediction on the changing cost of reasoning,

I first identified games with the same first-order belief (either low or high cost of reasoning

for opponent) and the same second-order belief (partial revelation), and then they were

separated into comparison pairs by the subject’s cognitive load tasks. The same selection

was performed following the conditions listed in each testable prediction.

For each pair of games, I first conducted a binary comparison on their behavioral

levels and I report the summary statistics. Since this is essentially a repeated measure of

behavioral level from the same sample, I then conducted the Wilcoxon signed-rank test to
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check the distribution of behavioral levels. Lastly, I ran a GLS random effect regression to

examine the treatment effects on behavioral levels. The regression was run by regressing the

estimated level on the treatment variable. A subject’s cognitive load was coded as 0 when it

was in the low load treatment, and 1 when it was a high-load treatment. The same binary

coding was also applied to the opponent’s cognitive load treatment. The full revelation of

information treatment was coded 0, whereas partial revelation was coded 1.

1.5 Results

1.5.1 General Examination of Raw Guesses

There were a total 1998 observations and 831 guesses corresponded to a specific

level (levels 1 to 5, and equilibrium). When identifying levels, I assigned the lowest

possible level to a guess that matched multiple types. For example, in game 3, equilibrium

was reached after three rounds of iterative best responses, and the equilibrium was at the

boundary of the target interval. In this case, although levels 3, 4, and 5, and the equilibrium

all have corresponding guesses at 900, a subject’s guess of 900 only assigned the subject to

type level 3. This method of identification restricted over-assignments of the types.

Figure 1.3 shows the distribution of guesses that matched specific levels. Of the

831 guesses that matched a specific level, 43.92% were level 1 guesses, 31.41% were level

2 guesses, 14.20% were equilibrium guesses, and level 3 and higher corresponded to the

remaining 10% of the guesses. To provide a clearer picture of the treatment effect, I used a

Markov matrix for some treatments with these exactly matched guesses. Tables 1.3 and 1.4

present the level transitions between comparable games. For example, Table 1.3 consists of
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all the comparable pairs of changing a subject’s own cost of reasoning, fixing the opponent

with a high cognitive load (game 7 [LH-] and game 14 [HH-]). There were a total of 111

pairs of comparisons, 24 of which had both guesses that exactly matched a specific level.

From games 7 to 14, 12 subjects reached level 1 in game 7 and 83.33% stayed at level 1 in

game 14. Eight subjects reached level 2 in game 7, 87.5% of which stayed at level 2 and

below in game 14. This result largely complies with the theory prediction that increasing

cost of reasoning while fixing first- and second-order belief constant decreases the level

of reasoning weakly. Likewise, Table 1.4 presents all the comparison pairs of changing

the subject’s first-order belief while fixing their own cost of reasoning and keeping their

second-order belief constant (game 1 [LL+], game 8 [LL+], game 4 [LH+], and game 15

[LH+]). There were a total of 444 pairs of comparison, 99 of which had both guesses

matched to a specific level. Forty pairs had level 1 guesses in the [LL+] treatment and

62.5% of them remained level 1 in the [LH+] treatment games. Similarly, 27 pairs had

level two guesses in the [LL+] treatment. When changing the subject’s first-order belief

by increasing the cognitive load of their opponents, about 90% of these pairs had level

2 or lower guesses in the [LH+] treatment. These statistics largely coincided with the

theoretical prediction—with increasing the cost of reasoning for the opponents, the subjects

adjusted by weakly decreasing their behavioral levels of playing the game. Due to the

limited number of exact matches, I was not able to conduct the same exercise for all the

treatment pairs. However, complete discussion of the treatment effects is provided below

with estimated behavioral levels.
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Figure 1.3: Distribution of exact matches.

Table 1.3: Markov matrix of level transitions for increasing cost of reasoning, opponent with
high load.

↓ to→ Level 1 Level 2 Level 3 Level 4 Level 5 Eqm Num

Level 1 83.33% 0 16.67% 0 0 0 12

Level 2 25% 62.5% 12.5% 0 0 0 8

Level 3 0 0 100% 0 0 0 1

Level 4 0 0 0 0 0 0 0

Level 5 0 0 0 0 0 0 0

Eqm 0 66.67% 33.33% 0 0 0 3
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Table 1.4: Markov matrix of level transitions for changing first-order belief, subject with
low load.

↓ to→ Level 1 Level 2 Level 3 Level 4 Level 5 Eqm Num

Level 1 62.5% 7.5% 2.5% 0 15% 12.5% 40

Level 2 3.7% 85.19% 7.41% 0 0 3.7% 27

Level 3 0 0 0 0 0 0 0

Level 4 0 0 0 0 0 0 0

Level 5 0 0 0 0 0 0 0

Eqm 31.25% 18.75% 28.13% 0 21.88% 0 32

The pattern of subjects’ adjustments to the changing strategic environment is also

illustrated with density plots of each game. This time, all the raw guesses (after adjustments

according to upper and lower limits) were used to plot the graphs. Figure 1.4 illustrates the

treatment effects for the three theoretical predictions. To better compare across games, level

1 guesses were centered, and all the guesses were adjusted accordingly. The colored vertical

lines illustrate the level-exact guesses. For example, in Figure 1.4a, the vertical red dashed

line indicates level-1 guesses. Both density plots in the figure show peaks around the red

vertical line, which indicate higher proportions of level-1 (or close to level 1) strategy used

within the games across all the subjects. Notably, in the density plot for the [LH-] treatment

(G7), there is another peak centered right at the level 2 guess for that game (indicated by

blue dashed line). The density plot clearly shows that in the game where subjects have a

lower cost of reasoning ([LH-]), guesses are congregated at both levels 1 and 2, whereas

in the game where subjects have a higher cost of reasoning ([HH-]), only a peak at the
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level-1 guess is observed. Likewise, in Figure 1.4b, four games are plotted to illustrate the

treatment effects of increasing cost of reasoning for the opponent. In Figure 1.4c, three

games are used to demonstrate changing second-order beliefs. Note that both games 1

and 8 are relevant in both graphs, as the [LL+] treatment is relevant for both comparisons.

As illustrated in the figure, in one of the games, the three peaks correspond to level 1, level

2, and equilibrium. When increasing the cost of reasoning for the opponent, the level 1 peak

is still observable; however, only one game has a level-2 peak. Similarly, when changing

the second-order belief from low load with probability 1 to (0.5, 0.5; L, H), only the level 1

peak remains, as then the subjects thought that their opponents thought there was a 50%

probability that the subject was experiencing a high cognitive load. I omitted other vertical

lines that indicated different levels due to the absence of peaks in the density plots.

1.5.2 Distribution of Levels

From the preview of results from raw guesses in the previous subsection, changing

the strategic environment appeared to lead to some structured changes in the depth of

reasoning. However, only about half of the guesses were type-exact guesses. To better

understand the treatment effects of the other half, I used maximum likelihood estimation to

assign types, and then conducted analyses based on the estimated levels.

There were a total 1998 observations of guesses. As discussed in the previous

section, I assigned a behavioral level for each observation. Surprisingly, a few guesses

corresponded to exact level 4 and level 5 guesses in my data. Therefore, I included levels 1

to 5 and the Nash equilibrium type in my estimation. Of all the observations, 1167 guesses

were estimated. The distribution of estimated levels for these guesses is shown in Table 1.5.
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(a) Density plot of changing cost of reasoning (opponent high load)

(b) Density plot of changing cost of reasoning for opponent (subject low load)

(c) Density plot of changing second-order belief (LL)

Figure 1.4: Density plot of raw guesses.
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The majority of the guesses were assigned to level 1 guesses. The level distribution for all

the guesses is shown in Table 1.6. The game number is referred to the game number list in

Table 1.1. Since all the subjects played each game exactly once, for each game listed, there

were 111 observations.

Table 1.5: Summary of estimation results.

L1 L2 L3 L4 L5 Nash

Exact 43.92% 31.41% 5.54% 1.56% 3.37% 14.20%

Estimated 71.89% 5.57% 12.94% 5.57% 3.43% 0.60%

Total 60.26% 16.32% 9.86% 3.90% 3.40% 6.26%
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Table 1.6: The frequency of levels by game.

Game # L1 L2 L3 L4 L5 Nash

All Guesses 60.26% 16.32% 9.86% 3.90% 3.40% 6.26%

1 72.97% 13.51% 0 2.70% 4.50% 6.31%

2 35.14% 16.22% 19.82% 15.32% 3.60% 9.91%

3 44.14% 22.52% 33.33% 0 0 0

4 63.06% 14.41% 1.80% 7.21% 13.51% 0

5 72.07% 12.61% 0 1.80% 0 13.51%

6 83.78% 4.50% 2.70% 9.01% 0 0

7 53.15% 12.61% 16.22% 5.41% 6.31% 6.31%

8 62.16% 12.61% 1.00% 0 0 24.32%

9 59.46% 6.31% 18.02% 1.80% 7.21% 7.21%

10 54.05% 45.95% 0 0 0 0

11 69.37% 10.81% 7.21% 1.80% 1.80% 9.01%

12 44.14% 23.42% 32.43% 0 0 0

13 70.27% 16.22% 1.00% 1.00% 5.41% 6.31%

14 73.87% 11.71% 14.41% 0 0 0

15 65.77% 15.32% 11.71% 7.21% 0 0

16 64.86% 16.22% 5.41% 2.70% 10.81% 0

17 34.23% 28.83% 3.60% 10.81% 2.70% 19.92%

18 62.16% 9.91% 9.91% 3.60% 5.41% 9.91%
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The distributions of the levels were fairly similar to the results in CGC06, except that

levels 4 and 5 were then included. Level 1 was the most prominent behavioral level. Of 1998

observations, 60.26% were level 1 guesses. In some games, level 1 was even more frequently

observed. For example, in game 1, about 70% of the guesses were classified as level 1.

A number of observations were levels 2 and 3 and Nash guesses. In my data, the occurrence

of level 3 was more frequent in a few games. For example, in game 2 and game 3, more than

20% of observations were assigned to level 3. Although some observations corresponded to

exact level 4 or level 5 guesses, the overall frequency of these two higher levels was much

lower. In about one-third of the games, no guesses were classified into these two levels.

As shown in Table 1.6, there are a pair of games that have almost identical level

distribution, game 3 and game 12. These two games have identical parameters and treat-

ments (as shown in Table 1.1). Besides these two games, the frequency of levels in other

games differed considerably. In some games, behavioral levels congregated toward levels

1 or 2, for example, games 1 and 6. In some games, such as games 2 and 9, behavioral

levels spread out across the six categories. The variations in the distribution of levels across

games could be due to the differences in the cognitive load tasks. The exact impact of the

memorization tasks is discussed in detail in the following subsections.

1.5.3 Result 1: Increasing Cost of Reasoning

As mentioned in Section 1.2.2, the first testable prediction involved fixing the

subject’s first- and second-order beliefs and examining the effect of the changing cost of

reasoning on the subject’s behavioral levels. There were essentially two comparisons in this

case: a comparison between treatment [LL-] and treatment [HL-], and between treatment
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[LH-] and [HH-]. Note that in both comparisons, the cost of reasoning for the subject

varied from low to high; therefore, it was crucial to have partial revelation of the subject’s

(role A) memorization task. In the partial revelation treatment, role B (the opponent)

only knew the probability distribution of the subject’s memorization task (0.5, 0.5; L, H);

therefore, even with the subject’s own tasks varying between two treatments, the subject’s

second-order belief was controlled to be the same. There were 222 pairs of comparison in

total. The summary statistics of the comparisons are presented in Table 1.7. The plotted

distribution of behavioral levels is presented in Figure 1.5. To aid with the interpretation of

the results, the behavioral levels in the figure are presented in a reverse order (i.e., higher

level on the left and lower level on the right).

Table 1.7: The frequency of changing behavioral levels with increasing cost of reasoning.

Pair Name (From Game a to Game b) # of Pairs Treatment Decreases Constant Increases

G16 to G9 111 LL- to HL- 20.72% 43.24% 36.03%

G7 to G14 111 LH- to HH- 39.64% 49.55% 10.81%

Combined 222 L?- to H?- 30.18% 46.40% 23.42%
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Figure 1.5: Cumulative level distribution for increasing cost of reasoning.

When the opponent’s cognitive load was controlled to be high and with partial
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revelation, subjects weakly decreased their behavioral levels 89.19% of the time (39.64%

strict decrease). In Figure 1.5b, the [LH-] treatment is first-order stochastic dominant

over the [HH-] treatment. The Wilcoxon test (Table 1.8) was significant at the 1% level

for the comparison of the distributions of behavioral levels between these two strategic

environments. When regressing the behavioral level on the treatment dummy, the result

(Table 1.9) suggested that the coefficient for treatment dummy was 0.77, which was

significant at the 1% level. This implied that the estimated behavioral level weakly decreased

when the subject’s own cognitive load increased when facing an opponent with high

cognitive load. The finding is consistent with the EDR model. The relatively large

proportion (49.55%) of constant levels may seem quite surprising at first look. One possible

explanation is that these subjects may have had different cognitive bounds in the two

treatments. In the [LH-] treatment, subjects may have adjusted their behavioral levels

downward from their cognitive bound in that treatment due to some belief they formed

when facing opponents with high cognitive loads. In the [HH-] treatment, subjects who had

a lower cognitive bound (as they had a high cognitive load) may have displayed a lower

behavioral level. When the two behavioral levels from two treatments coincided, I observed

no changes in the behavioral levels in the treatment comparison.

The result for the comparison between [LL-] and [HL-] is less clear. As shown in

Table 1.7, 63.97% of the comparisons had weakly decreasing behavioral levels (20.72%

strict decrease), and a noticeable percentage (36.03%) of the comparisons had increasing

levels. The Wilcoxon test statistic rejected the null hypothesis that the two strategic

environments have the same distribution of behavioral levels at the 5% level. However,

upon further checking using a one-tail Wilcoxon test, the distribution of behavioral levels
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shifted rightward when cognitive load changed from low to high when facing an opponent

with a low cognitive load. When conducting the standard GLS random effect regression,

the coefficient on the treatment dummy was positive and significant at the 10% level.

Table 1.8: Test results for equality of distribution.

Comparison Group (in Treatment) Wilcoxon p-Values (Two-Tailed) Wilcoxon p-Values (One-Tailed)

Changing Cost of Reasoning

LL- to HL- 0.05 ∗∗ 0.98

LH- to HH- 0.00 ∗∗∗ 0.00 ∗∗∗

Changing Opponent’s Cost of Reasoning

LL+ to LH+ 0.01 ∗∗∗ 0.00 ∗∗∗

HL+ to HH+ 0.00 ∗∗∗ 1

Changing Second Order Belief

LL+ to LL- 0.11 0.05 ∗∗

LH+ to LH- 0.00 ∗∗∗ 0.99

HL- to HL+ 0.00 ∗∗∗ 0.00 ∗∗∗

HH- to HH+ 0.00 ∗∗∗ 1

Against Computer (Nash)

L to H 0.00 ∗∗∗ 0.00 ∗∗∗

Notes: ∗ indicates < 10% significance, ∗∗ indicates < 5% significance, and ∗∗∗ indicates < 1% significance.

36



Table 1.9: Regression results for treatment effects.

Comparison Group (in Treatment) Relevant Dummy Constant Number of Obs.

Changing Cost of Reasoning

LL- to HL- 0.34 ∗ (0.18) 1.78 ∗∗∗ (0.14) 222

LH- to HH- −0.77 ∗∗∗ (0.16) 2.18 ∗∗∗ (0.12) 222

Changing Opponent’s Cost of Reasoning

LL+ to LH+ −0.27 ∗ (0.14) 2.03 ∗∗∗ (0.11) 444

HL+ to HH+ 0.33 ∗∗∗ (0.10) 1.55 ∗∗∗ (0.07) 444

Changing Second Order Belief

LL+ to LL- −0.25 (0.18) 2.04 ∗∗∗ (0.12) 333

LH+ to LH- 0.41 ∗∗∗ (0.15) 1.77 ∗∗∗ (0.09) 333

HL+ to HL- 0.57 ∗∗∗ (0.15) 1.55 ∗∗∗ (0.10) 333

HH+ to HH- −0.48 ∗∗∗ (0.09) 1.89 ∗∗∗ (0.06) 333

Notes: ∗ indicates < 10% significance, ∗∗ indicates < 5% significance, and ∗∗∗ indicates < 1% significance.

Standard errors in parenthesis.

In this analysis, I treated equilibrium level as the highest level, since it requires the

subjects to perform multiple steps of iterative best responses. However, since many games

have equilibrium at the boundary of the limit interval (games 2, 4, 6, 10, 15, and 16 have the

equilibrium at the lower limit; games 3, 5, 8, and 12 have the equilibrium at the upper limit),

if the subject chooses an equilibrium action by naı̈vely playing at the boundary, then this

behavioral level should not be considered as a higher level than any of the k levels. This was
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not the case for this comparison pair. Although game 9 ([HL-]) had 7.21% equilibrium

guesses, those guesses were not at the boundary. However, upon further checking of games

16 ([LL-]) and 9 ([HL-]), I found that the level-5 type in game 16 had the same strategy

as the equilibrium strategy of that game. Therefore, some of the equilibrium strategies in

game 16 were pooled into level-5 type, which may be one possible explanation for the

significant positive coefficient on the treatment dummy. Another explanation may be that

the subjects felt more motivated to reason at higher strategic levels when they saw the

opponents had easier strategic environments (memorizing three letters) as opposed to their

own difficult strategic environments (memorizing seven letters). As a result, they displayed

higher behavioral levels. This explanation suggests that other factors, such as motivation

factor, may also play a role in determining a subject’s behavioral levels.

1.5.4 Result 2: Increasing Cost of Reasoning for Opponent

To examine the effect of changing the first-order belief on a subject’s behavioral

level in games, I selected pairs of games with changing cognitive loads for the opponents.

For example, a comparison of behavioral levels for games 1 and 4 served the purpose.

In game 1 ([LL+]), player 1 has a low cognitive load when facing an opponent with a low

cognitive load, and there is full revelation of each other’s strategic environment. In game 4

([LH+]), player 1 has a low cognitive load when facing an opponent with high cognitive

load, and again, there is full revelation of the treatments. I found 444 pairs of comparison for

the cases wherein the subjects had low cognitive loads, and another 444 pairs of comparison

for the cases when they had high cognitive loads. The detailed comparison groups and

summary statistics are shown in Table 1.10. The plotted distribution of behavioral levels is
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presented in Figure 1.6.

Table 1.10: The frequency of changing behavioral levels with increasing cost of reasoning
for opponent.

Pair Name (From Game a to Game b) # of Pairs Treatment Decreases Constant Increases

(G1, G8) to (G4, G15) 444 LL+ to LH+ 23.87% 55.86% 20.27%

(G6, G13) to (G3, G12) 444 HL+ to HH+ 15.54% 41.44% 43.02%

Combined 888 ?L+ to ?H+ 19.71% 48.65% 31.64%
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Figure 1.6: Level Distribution for increasing cost of reasoning for opponent.

The combined results were the opposite of the theory prediction, with a signifi-

cant 31.64% of cases of increasing behavioral levels. However, upon further checking,

the majority of the increasing cases occurred when subjects are having high cognitive load.

When subjects had low cognitive load, 79.73% of the time, they weakly decreased their

behavioral levels when their opponents’ cognitive loads changed from low to high (23.87%

strict decrease). Figure 1.6a illustrates that [LL+] games had more guesses at higher levels.

This result is consistent with the EDR model. When a subject’s cost and second-order belief

was controlled across the two strategic environments, he was responsive to the changes

in his opponent’s cost of reasoning. However, some of these adjustments in behavioral
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levels were not strictly decreasing. If the subject believed that the increased opponent’s

cost of reasoning was not large enough to decrease the opponent’s behavioral level by one,

the subject’s behavioral level remained the same across the two strategic environments.

This partially explains the high percentage (55.86% and 41.44%) of constant behavioral

levels in Table 1.10. When the subject had a high cognitive load and his opponent’s cog-

nitive load changed, the result did not comply with the EDR model. A total of 43.02%

of the pairs showed increasing behavioral levels across the two strategic environments.

The frequency of levels in Table 1.6 reveals that most subjects had level 1 guesses in games

6 (83.78%) and 13 (70.27%). This gave subjects much less room to adjust their behavioral

levels downward compared to another strategic situation. Any behavioral level that was

beyond level 1 in games 3 and 12 was considered as moving the behavioral level upward.

This was one major limitation in observing the effects of changing the first-order belief

when the subject had a high cost of reasoning (i.e., high cognitive load).

The Wilcoxon signed-rank test rejected the null hypothesis that the level distribution

was the same for both treatment comparisons ([LL+] to [LH+] and [HL+] to [HH+]).

However, the one-tail test suggested that when the subject had low cognitive load, increasing

his opponent’s cost of reasoning shifted the former’s level to the left (to lower levels,

significant at the 1% level). However, when the subject had high cognitive load, the level

distribution shifted to the right. The regression coefficients suggested that increasing the

opponent’s cost of reasoning decreased the behavioral level when the subject had a low

cognitive load (significant at the 10% level).
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1.5.5 Result 3: Changing the Second-Order Belief

In the experiment, I used a (0.5, 0.5) probability distribution on the revelation

of cognitive load treatments to control for the subject’s second-order belief. In the full

revelation treatment, role B knew the exact memorization task that was received by role

A (the subject), either three (low load) or seven letters (high load) with a probability of

one. Therefore, role A’s (the subject) second-order belief was either ((1, 0); (L, H)) or ((0,

1); (L, H)). In the partial revelation treatment, role B knew that the probability of three or

seven letters for role A was (0.5, 0.5), which made role A (the subject) have a second-order

belief of ((0.5, 0.5); (L, H)). If comparing two games with different second-order beliefs for

the subject, with everything else controlled as constant, then a second-order belief of low

load with probability of one should be considered as more cognitively capable perceived

by role B than a second-order belief of((0.5, 0.5); (L, H). The experiment, as shown in

Table 1.11, supported that most subjects had a clear understanding of their opponent’s

cognitive load when the load was explicitly elicited, and they almost had uniform beliefs

about their opponents’ cognitive loads when they were in the partial revelation treatment as

role B.

Table 1.11: Subject’s belief about his opponent’s cognitive load.

Belief Elicitation

3 Letters 7 Letters Not Sure Sum

Treatments

3 Letters 591 51 24 666

7 Letters 97 546 23 666

(0.5 L, 0.5 H) 143 111 190 444
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In the dataset, I found 888 pairs for comparison that allowed me to examine the

effect of changing the second-order belief. I separated them into two groups: a comparison

between the full revelation of low load to partial revelation, and a comparison between a

partial revelation and a full revelation of high load. Both comparisons were performed in

the direction of increasing second-order belief (i.e., ci j
i increases). The detailed comparison

pairs and summary statistics are listed in Table 1.12. The distribution of behavioral levels is

plotted in Figure 1.7.

Table 1.12: The frequency of changing levels with changing second-order belief.

Pair Name (From Game a to Game b) # of Pairs Treatment Decreases Constant Increases

Second order belief: Low to (0.5 Low, 0.5 High)

(G1, G8) to G16 222 LL+ to LL- 25.68% 51.35% 22.97%

(G4, G15) to G7 222 LH+ to LH- 20.27% 43.69% 36.04%

Combined 444 L?+ to L?- 22.97% 47.52% 29.50%

Second order belief: (0.5 Low, 0.5 High) to High

G9 to (G6, G13) 222 HL- to HL+ 35.14% 52.70% 12.16%

G14 to (G3, G12) 222 HH- to HH+ 14.86% 45.50% 39.64%

Combined 444 H?- to H?+ 25.00% 49.10% 25.90%
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Figure 1.7: Level Distribution for changing second-order belief.

The effect of changing the second-order belief was generally weak, except for the

cases where the subjects had high cognitive loads when facing opponents with low cognitive

loads. For the treatment where both players had low cognitive loads, about 77.03% of

the pairs had weakly decreasing behavioral levels when second-order belief changed from

full to partial revelation. Among these comparisons, only 25.68% had strictly decreasing

levels. This finding suggested that the changes in second-order belief may not have been

strong enough for the subjects to adjust their behavioral level downward, even though

both subjects had a low cognitive load and were relatively competent at contemplating

over the strategic environment. To examine the effect of the second-order belief, it was

first necessary to determine the effect of changing the first-order belief for the same group

of subjects. In Table 1.10, the subject’s behavioral responses to the changing opponent’s
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cognitive load were limited when the subject had a high cognitive load. Now, consider

the finding in the [LH+] to [LH-] comparison to the [HH-] to [HH+] comparison (Table

1.12); changing the second-order belief of the subject effectively changed his opponent’s

first-order belief. If the subject holds the belief about his opponent (who has a high cognitive

load treatment) that the changes in his opponent’s behavioral level are limited, then the

subject should not decrease his behavioral level at all. This partially explains the low

frequency of strictly decreasing behavioral levels for subjects who faced opponents with

high cognitive loads.

The comparison between [HL-] and [HL+] is consistent with the EDR model.

In Figure 1.7c, the [HL-] treatment is first-order stochastic dominant over the [HL+]

treatment. Of the guesses, 87.84% had weakly decreasing behavioral levels, with 35.14%

having strict decreases. Changing from partial revelation to full revelation of high cognitive

load, the second-order belief decreased the subject’s cognitive capability perceived by

their opponent. Subjects were responsive to this change in the belief system, and adjusted

their behavioral levels downward to best respond to their opponents. Testable prediction 3

suggests that if the subject’s behavioral level is binding by their cognitive bound, then they

are not able to make further adjustments according to their changing beliefs. The large

percentage of constant levels for these comparisons supported this statement.

The Wilcoxon test results showed that the level distribution changed for changing

second-order belief. When conducting a one-tailed test, the test result suggested that for

[LH+ to LH-] and [HH- to HH+] treatments, the distribution of levels significantly (at the

1% level) shifted rightward (increasing behavioral levels). This may have occurred due

to the subject’s belief that their opponent with high cognitive load will engage in higher
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behavioral level. This result seems to comply with the results in Section 1.5.4, but the

underlying reasons need further investigation.

The regression coefficient on the treatment dummy further supported the results.

Since the treatment dummy was coded as zero with full revelation and one with partial

revelation, the coefficient of 0.57 for [HL-, HL+] comparison suggested that the behavioral

level decreased from partial to full revelation. It was significant at the 1% level. Again,

the [LH+, LH-] and [HH-, HH+] comparisons were the opposite direction of model predic-

tions, and they were also highly significant. In general, when the subjects faced opponents

with high cognitive loads, they were responsive to changing second-order beliefs, but not

in the direction that is predicted by the EDR model. However, when they faced more

cognitively capable opponents, then they were mostly responsive to this change in the belief

system because they thought their opponents were responsive to this information in their

strategic environment. This finding is consistent with the EDR model when the opponent

has a low cognitive load, which supports the opposite direction when the opponent is in a

less cognitively capable situation.

1.5.6 Result 4: Cognitive Bound

In block 2 of the experiment, the subjects played against the computer. They

were told that the computer was playing a Nash equilibrium strategy, and the equilibrium

concept was explained. However, they were not taught the method to derive the equilibrium.

The behavioral levels from the guesses in these two games should be considered as the

highest levels they could achieve under each cognitive load treatment. I selected all the

games with the same cognitive load treatment, either low cognitive load or high cognitive
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load, and pooled the results. A pairwise comparison between the pooled data and behavioral

level obtained from games 17 and 18 allowed me to examine the existence of cognitive

bounds. There were 888 pairs of comparison for each type of cognitive load, and the

summary statistics are shown in Table 1.13.

Table 1.13: The frequency of changing behavioral levels comparing to cognitive bound.

Cognitive Bound # of Pairs Decreases Constant Increases

Low cognitive bound

(G1, G2, G4, G7, G8, G11, G15, G16) to G17 888 18.36% 33.45% 48.20%

High cognitive bound

(G3, G5, G6, G9, G10, G12, G13, G14) to G18 888 21.96% 48.20% 29.84%

Combined 1776 20.16% 40.82% 39.02%

The result for low cognitive load treatment was interesting: 48.20% of the guesses

from block 1 games had behavioral levels lower than the subject’s respective cognitive

bound (level in game 17). Less than 20% of guesses had higher behavioral levels. This sug-

gested that in many block 1 games, subjects purposely adjusted their behavioral levels

downward due to different strategic situations, even though they had reached higher levels.

For high cognitive load treatment, about 30% of behavioral levels increased from block 1

games to game 18. However, about 50% of the guesses had the same behavioral level across

the two situations. Since high cognitive load inherently restricts the subject’s cognitive

ability, there may have been less room for downward adjustments for block 1 games. Due to

the large percentage of weakly increasing levels from block 1 to block 2 games, I con-

cluded that cognitive bound existed in most cases. In some situations, cognitive bound was
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strictly higher than the subject’s behavioral levels in games. In some situations, cognitive

bound was the same as the behavioral levels. Such cases were largely observed in the high

cognitive load treatment.

To examine whether high cognitive load had a lower level distribution, I conducted

a Wilcoxon signed-rank test on the estimated behavioral levels of games 17 (low load) and

18 (high load). Table 1.8 shows that the distributions of levels for the two treatments were

significantly different at the 1% level. The one-tailed test indicated that the distribution of

low load cognitive bound levels was to the right of the distribution of high load cognitive

bound levels. This finding indicated that subjects had a higher cognitive bound when

receiving low cognitive load treatment (memorizing a string of three letters) compared to

receiving a high cognitive load treatment (memorizing a string of seven letters).

1.5.7 Robustness Check

During the guessing games, subjects needed to memorize a string of three or seven

letters and recall the letters after they finished the guessing game. In this subsection,

I present the results of this memorization task. Although the subjects were fully aware that

if they failed to recall all the letters correctly, they would earn zero points for that round

of the game, there were still some cases of wrong recalls due to reasons such as lack of

attention or being too focused on the guessing game. I wanted to control the experimental

results for such cases, as the subjects may have engaged in reasoning at higher levels when

cognitive load did not fully apply. Table 1.14 shows the results of the memorization tasks.

Most of the memorization tasks were perfectly performed. Not surprisingly, low cognitive

load (three-letter memorization task) had more correct recalls, about 7% more than the high

47



cognitive load task. The difference was significant at the 1% level.

Table 1.14: Results of the memorization task.

3 Letters ∗∗∗ (Low Load) 7 Letters (High Load) Total

Correct 97.30% 90.89% 94.09%

Wrong 2.70% 9.11% 5.91%

# of tasks 999 999 1998

Notes: ∗ indicates < 10% significance, ∗∗ indicates < 5% significance, and ∗∗∗ indi-

cates < 1% significance.

To check whether poor performance of the memorization task affected the treat-

ment results, I excluded the data with wrong recalls and performed the analysis again.

The comparison pair was dropped from the sample if either game of the pair had incorrect

recalls. This was performed to ensure that the cognitive load was fully in effect, so that high

cognitive load added difficulties to thinking through the guessing games at higher levels,

and the cost of reasoning was higher.

Table 1.15 presents the treatment results after the robustness check. Treatments that

involved high cognitive load had more data points dropped. For example, the [HH-] to

[HH+] comparison had 444 pairs of comparison in the original sample. After robustness

check, about 100 pairs were dropped. However, the results did not change much compared

to the results presented in results 1 to 3 (Sections 1.5.3–1.5.5). The changes were mostly

within 1%. I can therefore safely conclude that the original results were robust. The quality

of the memorization task (i.e., whether the letters were correctly recalled) was almost
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independent of the treatment effects. Even in the cases of wrong recalls, the effect of

cognitive load still applied to the subjects.

Table 1.15: Summary of the robust results with incorrect recalls dropped.

Pair Name (From Game a to Game b) # of Pairs Treatment Decreases Constant Increases

Increasing Cost of Reasoning

G16 to G9 107 LL- to HL- 20.56% 43.93% 35.51%

G7 to G14 77 LH- to HH- 40.26% 48.05% 11.69%

Combined 184 L?- to H?- 28.80% 45.65% 25.54%

Increasing Cost of Reasoning for Opponent

(G1, G8) to (G4, G15) 426 LL+ to LH+ 23.71% 56.10% 20.19%

(G6, G13) to (G3, G12) 392 HL+ to HH+ 16.33% 42.09% 41.58%

Combined 818 ?L+ to ?H+ 20.17% 49.39% 30.44%

Second order belief: Low to (0.5 Low, 0.5 High)

(G1, G8) to G16 214 LL+ to LL- 26.17% 50.93% 22.90%

(G4, G15) to G7 211 LH+ to LH- 21.33% 44.08% 34.60%

Combined 425 L?+ to L?- 23.76% 47.53% 28.71%

Second order belief: (0.5 Low, 0.5 High) to High

G9 to (G6, G13) 202 HL- to HL+ 35.64% 52.48% 11.88%

G14 to (G3, G12) 152 HH- to HH+ 15.13% 45.39% 39.47%

Combined 354 H?- to H?+ 26.84% 49.44% 23.73%

1.5.8 Cognitive Tests

In this subsection, I examine the results of the Mensa practice test. The test is

composed of 10 questions and has a time limit of 10 min. Some subjects finished earlier,
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but they could never run overtime. Each correct answer is worth 1 point and all the

unattempted questions are marked as 0 points. The score distribution of 104 subjects (seven

missing) is presented in Table 1.16. There are a few very low points (2 or 3), and six

subjects had scores of 10. Most subjects earned seven or eight points in this test.

Table 1.16: Summary statistics of cognitive test score and the counts of level changes following
theory predictions.

(1) (2) (3) (4) (5) (6)

Test Score Sum.Strict Sum.Weak Cost.Weak 1st.Weak 2nd.Weak

Points possible 10 18 18 2 8 8

Max 10 13 18 2 8 8

Min 2 0 7 0 2 1

Median 7 4 13 2 6 6

Mean 7 4 13 1.5 5.5 6

To examine whether there are heterogeneous treatment effects in this experiment

due to exogenous cognitive ability, I first determined a measure of the treatment effect. Out

of all the results discussed in results 1 to 3 (Sections 1.5.3–1.5.5), there are in total 18 pairs

of comparison. For each subject, I recorded one for the pair if the level change followed the

theory prediction, and zero otherwise. As listed in Table 1.16, column Sum.Strict includes

all the 18 comparisons, and only strict changes of levels are recognized. For example, if the

pair game 16–game 9 had level 2 in both games, it is coded zero under Sum.Strict. However,

column Sum.Weak allows weak changes; therefore, the above-mentioned scenario is coded

as one under this column. The EDR model mostly discusses weak behavioral level changes

because, in some cases, the changes in belief system or costs are not big enough to shift
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a behavioral level downwards by one level (evidenced by a large percentage of constant

levels). Due to this reason, I considered ”weak” changes, and decomposed them into

columns (4) to (6), which cover the three main results. When limited to strict changes,

a number of subjects had zero pairs following theory prediction (10 out of 111 subjects),

and most subjects had only three or four pairs that had changes that could be predicted

by the EDR model. However, when allowing weak changes, seven subjects had all the

comparison pairs that were theory-predicted directional level changes, and most subjects

had about 13 to 14 comparisons that could be predicted by the EDR model. The last three

columns in Table 1.16 present results for each treatment separately.

To test whether cognitive ability had any correlation with the treatment effects,

I ran a regression after dropping the subjects with missing test scores. The result is

presented in Table 1.17. I used gender, class standing, and major as control variables.

This information was collected at the end of the experiment. It appears that the cognitive

test score and the female dummy variable were positively correlated with weak changes

(at a 5% significance level), and the treatments changing the opponent’s cost of reasoning

(changing first-order belief) and changing second-order belief. The results showed some

heterogeneous treatment effects in which the more cognitively capable subjects were more

responsive to the treatments as predicted by the EDR model, especially in those requiring

adjustments in response to the changing strategic environment of their opponents. When

the strategic environment changed, these subjects were more likely to actively adjust their

actions to gain possible strategic advantages.
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Table 1.17: Regression results for cognitive test scores on correct directional changes of
behavioral levels in block 1 games.

Sum.Strict Sum.Weak Cost.Weak First Order.Weak Second Order.Weak

Test Score
0.03

(0.16)

0.36 ∗∗

(0.18)

−0.04

(0.04)

0.23 ∗∗

(0.11)

0.17∗

(0.10)

Gender (F)
−0.73

(0.57)

1.43 ∗∗

(0.60)

0.03

(0.13)

0.83 ∗∗

(0.37)

0.57 ∗

(0.34)

Class Standing
0.33

(0.24)

−0.18

(0.25)

−0.01

(0.05)

−0.13

(0.15)

−0.04

(0.14)

Major
−0.02

(0.12)

0.00

(0.13)

−0.03

(0.03)

−0.03

(0.08)

0.01

(0.07)

Constant
3.09 ∗

(1.67)

10.04 ∗∗∗

(1.75)

1.76 ∗∗∗

(0.37)

3.94 ∗∗∗

(1.08)

4.34 ∗∗∗

(1.00)

# of Obs. 104 104 104 104 104

Notes: ”Weak” includes constant levels and decreasing levels, while ”strict” only includes strictly decreasing levels.∗

indicates < 10% significance, ∗∗ indicates < 5% significance, and ∗∗∗ indicates < 1% significance. Standard errors

in parenthesis.

Since the result above suggested that more cognitively capable subjects’ responses

to changing strategic environment were more coherent with the EDR model, I separated

the subjects into two groups according to cognitive test scores. Subjects with scores of

eight or above were labeled as high cognitive subjects (high), and the remainder were

labeled as low cognitive subjects (low). Table 1.18 presents results 1–3 again, separated

by the cognitive test scores. As discussed in results 1 to 3 (Sections 1.5.3–1.5.5), I found

significant asymmetries arising from the different strategic environments. Separating the
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subjects into two groups according to cognitive test scores allowed a closer examination of

the source of the asymmetry. In Table 1.18, result 2 and result 3.1 highlight the relatively

stable performance for the high cognitive subjects. As discussed in Section 1.5.4, subjects’

responses to their opponents’ changing cost of reasoning depended on their own cost

of reasoning. In general, their adjustments in behavioral levels only followed the EDR

model when they had a low cost of reasoning. This observation is untrue for the high

cognitive subjects, who showed relatively stable performance regardless of their own

strategic environment, with about 20% of the comparisons strictly following the EDR

model. I observed a slight increase of 10% for those that did not follow the model; however,

in general, the performance did not vary considerably. For the low cognitive subjects,

the difference was huge. The 27.54% for comparison pairs that strictly followed the model

decreased to 12.29%, and, more strikingly, the percentage of pairs that did not follow the

model increased from 19.07% to 51.27%. This huge difference showed that the asymmetry

found in the previous results was mostly due to these low cognitive subjects. There was a

similar observation for result 3.1, where the high cognitive subjects had relatively stable

performance regardless of their opponents’ cognitive loads, whereas the low cognitive test

score subjects were very sensitive to their opponents’ strategic environments. Therefore,

I concluded that the majority of asymmetric results found in results 2 and 3.1 were primarily

driven by the low cognitive subjects. They were responsive to the treatments under the

condition that they were in a more cognitively advanced situation. For results 1 and 3.2, both

high and low cognitive subjects responded asymmetrically toward the treatment. However,

as evidenced in Table 1.18, the changes from the low cognitive group were much greater

than those of their counterparts.
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Table 1.18: Results 1 to 3 separated by cognitive test scores.

Changes in Behavioral Levels

Treatment Cog Test # of Pairs Decreases Constant Increases

Result 1: Increasing Cost of Reasoning
LL- to HL- High 45 22.22% 37.78% 40.00%

LL- to HL- Low 59 16.95% 47.46% 35.59%

LH- to HH- High 45 28.89% 55.56% 15.56%

LH- to HH- Low 59 35.59% 57.63% 6.78%

Result 2: Increasing Cost of Reasoning for Opponent
LL+ to LH+ High 180 19.44% 59.44% 21.11%

LL+ to LH+ Low 236 27.54% 53.39% 19.07%

HL+ to HH+ High 180 20.00% 47.22% 32.78%

HL+ to HH+ Low 236 12.29% 36.44% 51.27%

Result 3.1: Second order belief: Low to (0.5 Low, 0.5 High)
LL+ to LL- High 90 23.33% 53.33% 23.33%

LL+ to LL- Low 118 28.81% 50.85% 20.34%

LH+ to LH- High 90 20.00% 44.44% 35.56%

LH+ to LH- Low 118 19.49% 42.37% 38.14%

Result 3.2: Second order belief: (0.5 Low, 0.5 High) to High
HL- to HL+ High 90 35.56% 48.89% 15.56%

HL- to HL+ High 118 34.75% 55.08% 10.17%

HH- to HH+ High 90 21.11% 50.00% 28.89%

HH- to HH+ High 118 11.02% 40.68% 48.31%

The impact of cognitive ability on treatment effects was further evidenced by the

regression results. In Table 1.19, the interaction term is significant for the comparison
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pairs that did not follow the EDR model ([HL+ to HH+], [LH+ to LH-], and [HH+ to

HH-]). This implied that higher cognitive test scores skewed the effects of the treatment

in the direction pointed by the EDR model. It seems that cognitive ability plays an

important role for the subjects to display behavioral changes that can be predicted by the

EDR model. The cognitive ability was captured endogenously by the treatment design

in this experiment with two kinds of cognitive load. As discussed previously, the results

differed systematically according to the amount of cognitive resources. Cognitive ability

was also captured exogenously by the Mensa practice test, as discussed in this section.

Within the asymmetric findings, subjects with higher cognitive test scores had more stable

performance regardless of their own cognitive load, and were generally more predictable

by the EDR model.
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Table 1.19: Regression results for treatment effects and cognitive test scores on behavioral lev-
els.

Comparison Dummy Score Dummy ∗ Score # Obs.

Changing Cost of Reasoning

LL- to HL- 0.81 (0.79) 0.07 (0.07) −0.06 (0.11) 208

LH- to HH- −2.13 ∗∗∗ (0.73) −0.11 (0.10) 0.19 ∗ (0.10) 208

Changing Opponent’s Cost of Reasoning

LL+ to LH+ −1.15 (0.77) −0.04 (0.09) 0.12 (0.10) 416

HL+ to HH+ 1.67 ∗∗∗ (0.44) 0.08 (0.05) −0.19 ∗∗∗ (0.06) 416

Changing Second Order Belief

LL+ to LL- −1.06 (0.75) −0.04 (0.09) 0.11 (0.10) 312

LH+ to LH- 1.77 ∗∗ (0.80) 0.08 (0.05) −0.19 ∗ (0.11) 312

HL+ to HL- 1.08 (0.75) 0.08 (0.05) −0.07 (0.10) 312

HH+ to HH- −1.85 ∗∗∗ (0.37) −0.11 ∗∗∗ (0.04) 0.19 ∗∗∗ (0.05) 312

Notes: ∗ indicates < 10% significance, ∗∗ indicates < 5% significance, and ∗∗∗ indicates

< 1% significance. Clustered individual standard errors in parenthesis.

1.6 Concluding Remarks

In this study, I designed a laboratory experiment to examine the consistency of

players’ strategic sophistication formulated by the level-k model. Following the endogenous

depth of reasoning framework, I controlled the strategic environment by varying the cost of
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reasoning for the subjects, and their first- and second-order beliefs about their opponents.

My findings were consistent with the EDR model under some conditions. When

the strategic environment was carefully controlled, subjects were very responsive towards

the changes in the environment. Subjects who have more cognitive resources (in a low

cognitive load treatment) or subjects who are facing opponents with less cognitive resources

(in a high cognitive load treatment) change strategies systematically. This behavior can

be predicted by the EDR model. Subjects in a strategically disadvantaged situation (high

cognitive load treatment) have less room for strategic adjustments. In some of my findings,

subjects appeared to try to achieve higher behavioral levels when they were under the high

cognitive load treatment. The reason for this is still unclear. It may due to the awareness of

the strategic disadvantage and the extra effort of the subjects under such situations, or some

other behavioral factors existed that were not captured by the EDR model. The underlying

reason needs further investigation. The effect of cognitive ability on the treatments was

also captured by the cognitive test. Subjects with higher test scores were more predictable

by the EDR model, regardless of the strategic environment. This finding is in line with the

asymmetry observed in my results. As the source of asymmetry was mainly the amount

of cognitive resources, it is not surprising that subjects with higher cognitive test scores

adjusted better in these tasks.

A level of cognitive bound existed for subjects in different strategic situations. When

playing games under the same amount of cognitive resources, subjects rarely had behavioral

levels that exceeded their respective cognitive bounds for that strategic situation. Significant

downward adjustments occurred from the cognitive bound in response to different strategic

environments. Overall, when there is a strict control over the strategic environment, changes
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in k-levels across games are systematic. They can be explained by the EDR model to some

extent, especially for subjects in a more cognitively advantaged situation. This study only

discusses the directional changes in the levels. Further studies could examine the criteria

and accuracy of such predictions.
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Chapter 2

Predictive Accuracy for Measures of

Higher Order Rationality - An

Experiment Using Ring Games
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2.1 Introduction

Understanding the extent of strategic sophistication is critical to making accurate

predictions for outcomes in strategic interactions. Traditionally, analysis of strategic so-

phistication begins with a representation of a coherent system of beliefs and best responses.

Rationalizable strategies (Bernheim, 1984; Pearce, 1984) are ones that can be arrived

at through such a system. Orders of rationalizable actions, termed orders of rationality,

have been used as the basis for analyzing the extent of strategic sophistication. Kneeland

(2015) provides one prominent empirical example, recovering the distribution of strategic

sophistication based on orders of rationalizable actions.

To cleanly identify orders of rationality, Kneeland (2015) introduces a novel experi-

mental design called a “ring game.” Within a ring game, subjects play in one of four roles

with a specified interaction. Each (P)layer’s payoff depends on the action of the player

indexed above them: P1’s payoff on P2’s action, P2’s payoff on P3’s action, P3’s payoff on

P4’s action; and P4’s payoff on P1’s action. The last interaction is largely inconsequential as

P4 is given a dominant strategy, which 93% of Kneeland’s subjects follow. Given virtually

all P4 subjects are rational to a first order, obeying dominance, a P3 subject who is rational

to a second order can only rationalize playing the corresponding best response to P4’s

dominant strategy. Correspondingly a P2 subject who is rational to a third order can only

rationalize playing the best response to P3’s best response to P4’s dominant strategy; and so

on. Between two game variants, G1 and G2, the action associated with P4’s dominant strat-

egy is altered, but all other aspects remain the same. Orders of rationality are identified by

examining actions in all roles, and whether they respond to the experimental manipulation

of the dominant strategy labeling for P4. Figure 2.1, Panel A reproduces the two Kneeland
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ring games, and Table 2.1 reproduces the kth-order rationalizable strategies corresponding

to the order of rationality in each role and game variant.

(a) G1

(b) G2

Panel A: Kneeland ring games

(c) G3

(d) G4

Panel B: Modified ring games

Figure 2.1: Two sets of ring games

Table 2.1: Actions and orders of rationality in Kneeland ring games

Player and Game

P1 P2 P3 P4

Order G1 G2 G1 G2 G1 G2 G1 G2

R1 (a,a) (b,b) (c,c) (a,a) (b,b) (c,c) (a,a) (b,b) (c,c) (a,c)
R2 (a,a) (b,b) (c,c) (a,a) (b,b) (c,c) (a,b) (a,c)
R3 (a,a) (b,b) (c,c) (b,a) (a,b) (a,c)
R4 (a,c) (b,a) (a,b) (a,c)

This manuscript seeks to understand the predictive accuracy of measures of strategic

sophistication derived from experimental ring game methods.1 Given the importance of

1Using other methods for identifying the extent of strategic sophistication, research has reached mixed
conclusions on predictive accuracy. For example, in a set of matrix games Stahl and Wilson (1995) documents
consistent predictions for 73% of subjects. Using the set of two-person guessing games developed by
Costa-Gomes and Crawford (2006), Zhao (2020) provides evidence of changing strategic behavior according
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making accurate behavioral predictions in a range of strategic interactions, this is a critical

research question. To date little is known on this question. In one initial test, Kneeland

(2015) documents robustness of the distribution of rationality to the order of presentation of

G1 and G2 between samples. Missing from the literature to date are broader explorations of

predictive accuracy of ring game rationality measures at both the aggregate and individual

levels.

Our test begins with a simple within-subject manipulation of the original ring game,

presented in Figure 2.1, Panel B. In our modified ring games, P4 continues to have a

dominant strategy with identical payoffs to the Kneeland configuration. Our modification

is implemented for players P3, P2, and P1. Though not a best response to P4’s dominant

strategy, for P3 action c yields a high arithmetic mean payoff and no possibility of earning

zero. This ‘focal’ strategy may be attractive for P3. Further, the existence of this focal

strategy for P3 may present a dilemma for P2: can they be assured the P3 won’t play it? Of

course, if they reason at order 2 or higher they must believe that P3 will play best response

to P4’s dominant strategy and not this focal strategy. Note that P2 also has a focal strategy,

action a, which is neither a best response to P3’s focal strategy nor a best response to P3’s

best response to P4’s dominant strategy. An identical strategy configuration exists for P1:

an iterated best response strategy, a focal strategy, and a best response to P2 playing their

focal strategy.

Our modification generates a compelling environment in which to test for the

predictive accuracy of measures of strategic sophistication revealed in the ring game. The

to subject’s cognitive resources and their understanding of the strategic environment. Georganas et al.
(2015) report some cross-game consistency of strategic levels in undercutting games, but little consistency in
two-person guessing games.
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sets of kth-order rationalizable strategies at each role are unchanged. Hence, the natural

prediction is that revealed orders will be identical in the original and modified ring games

at both the aggregate and individual level. Nonetheless, our modification is not merely

a replication with alternate payoffs or a different ordering of tasks. We design a ‘focal’

strategy for each player position. The focal strategies were designed to carry the highest

arithmetic mean payoff, and have no possibility of earning a zero payoff.2 Cooper et al.

(1990) show that such focality in payoffs for off-equilibrium strategies affects players’

choices of Pareto-dominant Nash equilibrium strategies. In our work, we similarly induce

focality in payoffs associated with non-rationalizable strategies. Players might be attracted

to such focal strategies; and additionally, they might forecast others being attracted to focal

strategies, and best respond thereto.3

The focal strategies in our modified ring games provide a plausible non-rational

strategy that a given player might use. Players iteratedlly best responding to this focal

strategy would, themselves, appear non-rational, despite the fact that they are iteratedly best-

responding to their beliefs. These best-responding subjects would appear less strategically

sophisticated than they truly are if the researcher ignores the presence of focal strategies.

Hence, if focal strategies are used and believed to be used by subjects, one may expect quite

limited consistency when measuring rationality orders in both the original and modified

ring games. ? theoretically and empirically analyze a related separation between rationality

and strategic sophistication, driven by non-degenerate beliefs about rationality. Players

without point beliefs on the rationality of others may appear non-rational even if they are

2An alternative source of focal point is through labeling. See Mehta et al. (1994), Bardsley et al. (2010).
3Crawford et al. (2008) shows iterative reasoning to focal strategies in a set of coordination games. Their

focal strategy is based on focality in the labelings. They show that the effects of focality in the labeling are
offset by payoff differences in coordination games.
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iteratedly best-responding to said beliefs. Such players’ strategic sophistication would

thus be mis-measured. In our design, focal strategies and best responses thereto create a

unique prediction for a type of strategically sophisticated but non-rational play in the ?

framework. In developing our experiments we pre-specified the potential attraction to our

focal strategies, and developed our predictions and identification of strategic sophistication

based on this focality.4

In a sample of 200 subjects, we conducted the standard Kneeland ring games and

the modified ring games presented in Figure 1. In the standard ring games, we closely

reproduce the findings of Kneeland (2015). Only 5% of subjects fail to choose the dominant

strategy as P4. Using Kneeland’s identification approach, 24.5% of subjects are classified

as having level 1 rationality, 37% as level 2, 13% as level 3, and 18.5% as level 4 (the

remaining 7% are unclassified). This classification is both similar to and similarly precise

as that of Kneeland.5

In modified ring games, again only 5% of subjects fail to choose the dominant

strategy as P4. However, the presence of focal strategies has a dramatic effect on player

behavior. Subjects appear to have qualitatively lower levels of rationality in our modified

games. Using Kneeland’s identification approach, 55% of subjects are classified as having

level 1 rationality, 9.5% as level 2, 6.5% as level 3, and 0% as level 4 (the remaining 29%

are unclassified). Within classified subjects, there is limited correlation in the levels of

rationality revealed in the original and modified ring games (Spearman correlation: 0.11,

p = 0.11 ). At both the aggregate and individual level there is limited predictive power

4Interested readers are referred to our pre-analysis plan, which lays out the details of focal strategies in
the identification of strategic sophistication: https://doi.org/10.1257/rct.5937-1.0.

5Similar to Kneeland (2015), we find that 93% of subjects are within one choice of their identified level.
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from the extent of strategic sophistication measured in original ring games.

We attempt to understand the lack of predictive validity by examining in more detail

the strategies enacted in our modified ring game. Perhaps the modification we conducted

generated substantial confusion or added too much complexity to the environment, mud-

dying responses and hampering prediction. Such ex-post arguments are contradicted by

important regularities within the modified ring game data. First, as noted above, 95% of P4

players choose their dominant strategy. Importantly, 80% of P1 subjects play their focal

strategy, making clear the attraction to focal actions. Echoes of this attraction are also seen

for other players. For example, 39% of P2 subjects play their focal strategy and 15% play

the best response to P3 playing their focal strategy. Such regularity in play contradicts the

claim that our modified ring game merely generates noisy response.

In developing our study we pre-specified the strategies that we believed would

be focal for each player. We incorporate this focality in the identification of levels of

strategic sophsitication (see subsection 3.3 for details). Incorporating focal strategies into

the identification generates a distribution of strategic levels that appears more similar to that

derived in the original ring game: 52% are classified as level 1, 30% as level 2, 11.5% as

level 3, and 6.5% as level 4. At the individual level, strategic sophistication also aligns much

more closely between games once focality is incorporated into the identification, (Spearman

correlation: 0.35, p < 0.01). This restoration of predictive accuracy demonstrates the value

of ring game measures of strategic sophistication, but requires a detailed understanding of

the strategic environment and the influence of focal strategies on all players.

Our results highlight the challenge and the promise of predictive validity for mea-

sures of strategic sophistication. When viewed at face value, out-of-sample predictive
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accuracy is quite limited. Nonetheless, once the researcher is endowed with a reasonable

model of the strategic environment, accuracy is restored. Measures of strategic sophistica-

tion are consistent when appropriately grounded, but how is a researcher to know what that

grounding should be? Interestingly, the existence of a dominant strategy in our modified

ring game, chosen by an overwhelming majority of subjects, does not provide sufficient

grounding to organize the rest of play.

One may consider our results and the sensitivity of rationality measures as a basis

for preferring more abstract measures of strategic sophistication, such as cognitive ability

or psychological assessments. Our data indicate that this is unlikely to be a valuable path

forward. In addition to our modified ring games we also collected data on cognitive ability

measures and psychological tests such as the “reading the mind in the eyes” task (Baron-

Cohen et al., 2001) that have been used in prior work. These more abstract measures have

limited correlation with strategic sophistication in either the original or our modified ring

games.

The lesson from our work is that researchers must be extremely careful when

porting measures of strategic sophistication out-of-sample. Prediction is possible from the

measures of Kneeland (2015), but requires a thorough advanced assessment of the strategic

environment in which the researcher is attempting to make predictions.

This manuscript proceeds as follows: we introduce our experimental design in

section 2. Section 3 presents our main results. In section 4, we discuss more abstract

measures of strategic sophistication. Section 5 concludes.
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2.2 Experimental Design

We implemented two sets of ring games to elicit subjects’ orders of rationality —

Kneeland’s original ring games and our modified ring games. We also issued four sets

of more general ability and cognitive tests — best response task, an “eye gaze” test for

Theory of Mind ability (Baron-Cohen et al. (2001)), Mensa IQ practice problems, and the

three-item cognitive reflection test (Frederick (2005)).

2.2.1 Original Ring Games and Modified Ring Games

We adopted Kneeland’s design of the ring game as the original ring game in

our experiment (see Figure 2.1, Panel A). To examine the predictive power of orders of

rationality derived from the original ring game, we modified the original ring game by

introducing ‘focal’ actions for player positions P3, P2, and P1. These focal strategies have

the highest arithmetic mean payoff for each respective player position, while avoiding zero

payoffs. For example, in Figure 2.1, Panel B, action b is the focal strategy for P1, action c is

the focal strategy for P2 and action c is the focal strategy for P3. These focal strategies are

never dominant strategies, nor are they iterated best responses to P4’s dominant strategy. In

addition to having an iterated best response to P4’s dominant strategy and a focal strategy,

P1(P2) also has a best response to the P2(P3) playing their own focal strategy. Our modified

ring games do not make any changes to P4’s dominant strategy payoffs, but do alter the

payoffs associated with the other P4 strategies. Appendix B.1 provides screenshots of the

experimental instructions.
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2.2.2 General Strategic Ability and Cognitive Tests

To provide more abstract measures of strategic sophistication, we also implemented

a set of strategic ability and cognitive tasks. First, we issued a set of Best Response (BR)

tasks. The BR tasks test best response ability by directly defining the actions of all the

counterparts in the game. This portion of the study was composed of four additional ring

games. Each BR ring game was matched to a modified ring game, by reducing each payoff

entry of the modified ring game by 1 (except the zeros). In the BR tasks, the three ‘other

players’ are replaced with computer players. Subjects were informed that they were playing

against three computers that choose the actions that give them the highest earnings. The

subjects were also informed that the computer P4 had chosen the dominant action when

they were not playing at the P4 position. Subjects played 4 BR games, at each player

position exactly once. Appendix B.1 provides screenshots of the BR tasks.

Subjects also completed three sets of cognitive tests. First, to measure Theory of

Mind (ToM) ability, we use the “Reading the Mind in the Eyes” task (also known as the

“eye-gaze test”) (Baron-Cohen et al., 2001). In the eye gaze test, subjects identify the

emotions being expressed by a pair of eyes in 36 photographs. ToM ability is assessed from

the number of correct identifications. A few economics papers have incorporated this test

in their design. The findings suggest that higher test scores in the eye-gaze test seem to

be an indication of stronger ability in strategic thinking (Bruguier et al., 2010; Georganas

et al., 2015). Second, we selected 10 questions from the Mensa practice problems as a

measure cognitive ability. Subjects had 10 minutes to complete the 10 problems. Third,

we implemented the standard 3-item Cognitive Reflection Test (CRT) of Frederick (2005).

Appendix B.1 provides screenshots of these additional tasks.
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2.2.3 Experimental Timeline

Two-hundred subjects were recruited from the subject pool of the Incentive Lab

(University of California - San Diego, USA). We conducted the experiment using the Z-Tree

program (Fischbacher, 2007). Subjects received a $5 show-up fee and earned an additional

$17 on average (The minimum payment was $5, and the maximum payment was $35).

The experiment was conducted in three main sections. First, subjects were given

instructions for the eye-gaze test. After practicing for 1 round, they completed the 36

questions of the task without feedback between questions. This part of the experiment was

unincentivized.

Second, subjects were introduced to the ring games using the same instructions

as Kneeland’s (2015) experiment. Experimental instructions were read aloud by the

experimenters at the beginning of this portion of the experiment. Subjects were then given

an understanding test consisting of 4 questions. For each understanding question, subjects

were able to see feedback with correct answers and explanations immediately after they

submitted their answers to ensure that the subjects understood the experiment clearly.

Subjects were then randomly matched into groups of four. They played the original ring

games (G1 and G2) and the modified ring games (G3 and G4) within these fixed groups.

Each subject played in each player position for each ring game exactly once, making 16

games in total. The 16 ring games were issued in alternate order (one modified game, one

original game, one modified game, etc.). There was no feedback given between games.

For each ring game, subjects were given at least 90 seconds to make a decision. They

were allowed to use more time if needed, but subjects were not allowed to proceed prior to

90 seconds. After the 16 ring games, subjects completed the 4 BR tasks. Subjects were
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informed at the beginning of the BR tasks that they were playing against the computer

players. One of the 20 total games (16 ring games and 4 BR tasks) were randomly selected

for payment at the end of section 2 of the experiment.

Third, subjects completed the ten Mensa problems and the three CRT questions

without incentives. We also collected some demographic information at the end of the

experiment. Sessions lasted for about 75 minutes.

2.3 Results

The results are presented in three subsections. First, we examine behavior in

our implementation of the Kneeland ring games, reproducing the general patterns and

distribution of types observed in Kneeland (2015). Having demonstrated this replication,

in a second subsection we investigate modified ring game behavior. We document limited

consistency in rationality measures across the original ring game and our modified ring game

at both the aggregate and individual level. In a third subsection, we attempt to understand

the lack of predictive accuracy for rationality measures identified in the Kneeland ring game.

We investigate whether subjects appear drawn to the focal strategies of our design, and

whether incorporating focal strategies into the identification of strategic sophistication helps

to organize behavior. We show the plausibility of this identification approach, delivering

both more similar distributions of orders and a three-fold increase in the individual-level

correlation in strategic sophistication across games.
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2.3.1 Replication of Kneeland (2015)

Figure 2.2 presents histograms of the strategies played in each player role and game

for the 200 subjects in our study. The strategy labeling “(p,q)” corresponds to strategies in

both versions of the game noted in Table 2.1. White bars correspond to our implementation

of the standard Kneeland ring game. Beginning with P4, 95% of subjects play the dominant

strategy, (a,c). As P3, 68% of subjects play (a,b), the best response to P4’s dominant

strategy, indicating rationality of at least level 2. As P2, 32% of subjects play (b,a), the

iterated best response to P4’s dominant strategy, and indicating rationality of at least level

3. As P1, 27.5% of subjects play (a,c), the iterated best response to P4’s dominant strategy,

and indicating rationality of at least level 4.

The raw data of Figure 2.2 provides a clear indication of the distribution of levels

of strategic sophistication, but cannot be used to infer the distribution if subjects switch

between levels of play across roles. Kneeland (2015) provides an identification technique

based on strategies at each player-role. For example, to be classified as R2, a subject must

choose the dominant strategy as P4, choose the best response to this dominant strategy

as P3, and choose constant strategies in all other player roles. Kneeland’s identification

approach permits one deviation from this rule. Table 2.2 implements this approach on our

original ring game and contrasts the resulting distribution with Kneeland’s results. For our

200 subjects in the standard ring game 7% of subjects are not within one deviation of a

given level and so classified as R0, 24.5% are R1, 37% are R2, 13% are R3, and 18.5% are

R4. The same values for Kneeland (2015) are 6% R0, 23% R1, 27% R2, 22% R3, and 22%

R4.

Kneeland’s seminal ring game results were notable partially because they indicated
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Notes: The first letter in strategy labeling refers to subject’s choices in game G1 or G3, and the second letter
refers to subject’s choices in game G2 or G4.

Figure 2.2: Action profiles for the 16 ring games

a greater proportion of higher rationality levels than generally documented in other designs.

Kneeland’s results showed that of classified (non-R0) types, 76% were above R1 and
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around 46% were R3 or higher. We reproduce this core finding: of classified (non-R0)

types, 74% are above R1 and around 34% are R3 or higher. Indeed, our distribution of

levels of strategic sophistication is statistically indistinguishable from that of Kneeland

(2015) in a Mann-Whitney test (p = 0.18).

Table 2.2: Subjects classified by order of rationality, by game

R0 R1 R2 R3 R4 #

Original ring game 7% 24.5% 37% 13% 18.5% 200
Modified ring game 29% 55% 9.5% 6.5% 0 200
Kneeland (2015) results 6% 23% 27% 22% 22% 116

Notes: Mann-Whitney test p-values: Original ring game and Kneeland’s
results, 0.18; Modified ring game and Kneeland’s results, < 0.01; Original
ring game and modified ring game, < 0.01.

2.3.2 Modified Ring Game

Figure 2.2 contrasts strategies in our modified ring games with those played in

the original versions. Beginning with P4, 95% of subjects play the dominant strategy,

(a,c), identical to the standard ring game. At the other player roles, behavior diverges

considerably. Only 16.5% of P3 subjects play (a,b), the best response to P4’s dominant

strategy, indicating rationality of at least level 2. More prevalent strategies are (c,c), a

level 1 response, and (a,c), which is not rationalizable. As P2, only 7.5% of subjects play

(b,a), the level 3 strategy, and as P1 only 1.5% of subjects play (a,c), the level 4 strategy.

The most prevalent strategies at these player roles are (c,c) and (b,b), respectively, both

level 1 responses. In player roles P3, P2, and P1, we reject the null hypothesis of identical
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distributions of strategies across the original and modified ring game.6

Table 2.2 conducts the Kneeland identification on our modified ring game behavior

and provides distributional contrasts with the original ring game. For our 200 subjects in

the modified ring game 29% of subjects are not within one deviation of a given level and

so classified as R0, 55% are R1, 9.5% are R2, 6.5% are R3, and 0% are R4. In addition

to having more R0 types than the standard ring game, the modified ring game provides a

substantially different image of the proportion of higher types. Of classified (non-R0) types,

only 23% are above R1 and around 9% are R3 or higher. We reject the null hypothesis

that the distributions of levels of strategic sophistication are equal across our original and

modified ring games in a Mann-Whitney test (p < 0.01).

Table 2.3: Subject’s types by modified ring game and original ring game

Original RG

R0 R1 R2 R3 R4 Total

M
od

ifi
ed

R
G R0 3% 4% 11% 4.5% 6.5% 29%

R1 4% 20% 21% 5% 5% 55%
R2 - 0.5% 3.5% 2.5% 3% 9.5%
R3 - - 1.5% 1% 4% 6.5%
R4 - - - - -
Total 7% 24.5% 37% 13% 18.5%

Notes: Spearman correlation: 0.11

Despite the reliable replication of dominant strategy play for P4, the aggregate

distributions of strategic sophistication appear dramatically different across our original and

modified ring games. In Table 2.3, we examine individual level behavior by correlating the

classified levels across the two games. The Spearman correlation in strategic sophistication

6Mann-Whitney tests: P1, p < 0.01; P2, p < 0.01; P3, p < 0.01; P4, p = 0.39.
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across the two games is 0.11. In addition to yielding a qualitatively different message on the

distribution of strategic sophistication, individual classifications in the modified ring game

are largely independent from those in the original ring game. This independence highlights

a marked inability to predict behavior from ring game rationality classifications. Relying

on the original ring game to make out-of-sample predictions to the modified ring game, one

would accurately predict for only 27.5% of subjects (the diagonal sum of Table 2.3), which

is only marginally better than accurate prediction with uniform random choice, i.e., 20%.7

2.3.3 Focal Strategies: Understanding Predictive Inaccuracy

Though both the original and modified ring games reliably generate dominant

strategy play for P4, the remaining players in the modified ring game do not reliably

iteratedly best respond to this play. A natural question is whether the modified ring game

generates confusion, leading to unreliable, noisy data. Under this interpretation, the lack

of predictive validity from strategic sophistication identified in the original ring game is

merely a consequence of complicated experimental design. An alternative is that subject

behavior is organized, but around salient features of the modified ring game rather than

P4’s dominant strategy play. We discern between these two interpretations by assessing an

alternative taxonomy of strategic sophistication, which incorporates focal strategies into

the identification strategy.

Importantly, one cannot provide the identification approach after having examined

the data, it must be pre-registered. If a researcher does not pre-state their proposed method

for identification, then they may make use of additional degrees of freedom afforded by

7Test of proportions, p = 0.11.
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having peeked at the data. Our modified ring game design had a specific objective of

providing players P3, P2, and P1 a focal strategy with high arithmetic mean payoffs, a

best response to the focal strategy of the player above them, and an iterated best response

to P4’s dominant strategy. We presumed that P4’s dominant strategy is also focal. This

understanding of our design led us to construct an alternate taxonomy, which we label F

to denote its basis in focality. Table 2.4 provides this taxonomy, which was pre-registered

with our pre-analysis plan and can be found at https://doi.org/10.1257/rct.5937-1.0.

Table 2.4: Predicted actions under rationality and assumptions about focality in modified ring
games

Modified Ring Games

P1 P2 P3 P4

Type G3 G4 G3 G4 G3 G4 G3 G4

F1 (b,b) (c,c) (c,c) (a,c)
F2 (b,b) (a,a) (a,b) (a,c)
F3 (c,c) (b,a) (a,b) (a,c)
F4 (a,c) (b,a) (a,b) (a,c)

Under the F measure of strategic sophistication, an F1 player plays their focal

strategy, an F2 player best responds to the player above them playing their focal strategy,

an F3 player iteratedly best responds to the player two above them playing their focal

strategy, etc. Table 2.4 presents the strategies associated with each level in the modified

ring game. The admissible strategies under the F-measure are a strict subset of those for

the R-measure in the modified ring game noted in Table 2.1. Note, however, that a single

behavioral pattern would be interpreted differently by the two measures. For example,

consider the P1 strategy (c,c), which would be interpreted under the R-measure as either

an R1,R2, or R3 strategy, but is interpreted under the F-measure as only an F3 strategy.
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Figure 2.2 demonstrates the value of incorporating focality into the identification

of strategic sophistication. Consider P3: where (a,a), (b,b), and (c,c) strategies are

admissible under R1, but only (c,c) is admissible under F1. Among these three, only the

focal strategy, (c,c), is chosen in the modified ring game. Additionally, (c,c) is the second

most frequent choice for P3, and more frequently chosen than the best response to Player

4’s dominant strategy, (a,b).8 For P2 and P1, the most frequently chosen strategy are focal

with (c,c) chosen 39% of the time by P2 , and (b,b) chosen 80% of the time by P1. Among

the constant strategies, (a,a), (b,b), (c,c), subjects much more frequently choose the one

that is F-admissible at each player role relative to the others (51.3% vs 6.5% of strategies

for players P3, P2, and P1). In addition to focal strategy play, echoes of the effect of focal

strategies for other players are observed: 15% of P2 play (a,a), the best response to P3

playing their focal strategy.

Because the admissible strategies under the F-measure at each level are subsets of

those admissible for the R-measure in the modified ring game, the identification method of

Kneeland would necessarily classify fewer subjects under levels of F1−F4 than R1−R4.9

One benefit of the increased restrictiveness of the F-taxonomy is that for each player role at

each level, an exact prediction for behavior is made. This allows us to implement spike-logit

estimation techniques frequently used in the estimation of strategic sophistication in other

8The modal choice for P3 is (a,c), which is not rationalizable, but is within one deviation of both the
focal strategy and the best response.

9Indeed, under the identification technique of Kneeland 39.5% of subjects are not within one deviation of
a given level and so classified as F0, 43% are F1, 14% are F2, 2.5% are F3, and 1% are F4. The increase of
10%-age points in unclassified subjects relative to the R-taxonomy is due to the increased restrictiveness of
admissible strategies under the F-taxonomy. Interestingly, despite this increased restrictiveness, the Spearman
correlation in levels of strategic sophistication between the standard ring game R-level and the modified ring
game F-level is 0.06, a similar value to the correlation in R-levels across the two games.
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games10 to provide a best fitting F-level for each subject.11 Appendix A.1 provides the

details of this estimation strategy and its in-sample properties. Notably, this estimation

method accurately predicts 82% of choices in-sample for the modified ring game.

Table 2.5: Subject’s types by modified ring game(F) and standard ring game(R)

Original RG

R0 R1 R2 R3 R4 Total

M
od

ifi
ed

R
G F1 3.5% 20.5% 18% 5% 5% 52%

F2 2% 3% 14% 5.5% 5.5% 30%
F3 - 1% 4% 2.5% 4% 11.5%
F4 1.5% - 1% - 4% 6.5%
Total 7% 24.5% 37% 13% 18.5%

Notes: Spearman correlation: 0.35

Table 2.5 provides the distribution of F-levels recovered from our maximum likeli-

hood exercise along with the individual correlation between R and F levels across games.

Because the classification technique provides a best fitting F-type for each subject, no one

is unclassified.12 For our 200 subjects, 52% are classified as F1, 30% as F2, 11.5% as

F3, and 6.5% as F4. This classification leads to a different representation of the levels of

sophistication than previously obtained in the modified ring game: 48% of subjects are

classified above F1 and 18% are F3 or higher. These values are around twice as large as

those from Kneeland’s R-level classification in this game (23% above R1, and 9% R3 or

10See, for example, Costa-Gomes and Crawford (2006), Garcı́a-Pola et al. (2020).
11We cannot conduct the same estimation for the R-measure. Lower R types are allowed to choose any

actions at higher player positions, as long as the actions are consistent across the two games. As a result,
one cannot pin down a subject’s action and his belief about other player’s actions if he is not choosing a
rationalizable strategy. However, we are able to conduct the same estimation for the F-measure in the original
ring games. See appendix A.1 for details.

12There are a few subjects for whom the fit is very poor. We include these subjects because the correspond-
ing risk of misclassification should work against finding predictive accuracy across games.
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higher), and more closely corresponds with the message from original ring game on the

distribution of strategic sophistication.

Table 2.5 also reports the Spearman correlation from Kneeland’s R-classification

for the standard ring game and the F-classification for the modified ring game. Here,

we identify much more stability in identified types than previously documented. The

Spearman correlation in levels of strategic sophistication is 0.35. Indeed, now relying on

the standard ring game to make out-of-sample predictions to the modified ring game, one

would accurately predict for 41% of subjects, substantially more than the uniform chance

rate of 25%.13

We have shown that the R-classification has limited predictive accuracy across

games, while the F-classification in the modified ring game and the R-classification in the

standard ring game are more highly correlated. One may naturally wonder about how well

the F-classification performs across games. Kneeland’s original ring game also features

strategies with high arithmetic mean payoffs and avoidance of zeros. However, these

strategies and best responses thereto coincide with iterated best response to P4’s dominant

strategy. Hence, it is challenging to disentangle rationality from focality in the original

Kneeland game. Nonetheless, in Appendix A.1 we provide the F-classification applied to

the original ring game. As expected, the distributions of F- and R-orders are quite similar

for the original game. Thus the correlation between F-classifications across the original

and modified games is quite similar to that reported in Table 2.5, (Spearman correlation =

0.38).
13The uniform chance rate is 25% as there are no F0 types in our classification technique. Test of

proportions, p < 0.01.
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2.4 Discussion: More General Measures of Strategic So-

phistication

The results to here show clear challenges for the predictive validity of measures

of strategic sophistication derived from experimental ring games. Using measures based

on orders of rationalizability, the extent of strategic sophistication is largely uncorrelated

across the original ring game of Kneeland (2015) and our modified ring game. This lack

of predictive power is not a product of noisy response or decision errors. Our modified

ring games incorporate focal, high average-payoff strategies into the original ring game.

Pre-specified measures of strategic sophistication incorporating focal strategies in the

identification strategy in the modified ring game correlate much more highly with original

ring game play than standard rationality measures do.

Insights into the organizing principles of play between the original and modified ring

games permit us to make more reliable predictions across games. Without such insights,

how can researchers make predictions across different contexts? If different contexts

generally yield different strategic approaches, as ours apparently do, any given measure

may lack predictive validity.

One potentially promising approach to restoring validity is to use more general

measures of strategic sophistication, untied to a specific game or belief structure on the play

of others. We consider four such measures. First, to remove dependencies of strategic play

on the beliefs of others’ strategies, we implemented a Best Response (BR) task. Our BR

task is identical to the ring game, except subjects are told the other players are computers
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maximizing their payment.14 We calculate the level of best response BR1-BR4 following

the logic of our prior taxonomies.15 Second, we conduct a general psychological test

for general understanding the emotions and intentions of others, the ‘eye-gaze test’ of

Baron-Cohen et al., (2001). Third, to provide a general measure of cognitive ability, we

consider an IQ test composed of 10 Mensa practice problems. Fourth, we consider the

standard 3-item cognitive reflection test (CRT) of Frederick (2005) as an alternate cognitive

ability measure. Our eye-gaze and cognitive ability results are comparable to those of

previous studies.16

If more general measures yield more portable lessons on strategic sophistication,

they should explain behavior to a similar degree across different strategic environments. In

Table 2.6, we provide corresponding analysis, regressing the degree of strategic sophistica-

tion in our standard and modified ring games on our four more general measures, controlling

for observable characteristics. Beginning with BR tasks in columns (1), (3), and (5) of

Table 2.6, we find that either alone or conjunction with the other measures, best response

ability correlates significantly with standard ring game and modified ring game behavior.

14See appendix B.1 for detailed experimental instructions.
15With the elimination of strategic uncertainty, the game becomes plausibly ‘easier’ and more subjects

will be classified as higher order rational. This is indeed what we observe with our subjects. Only 2% of the
subjects are unclassified. There are 21.5% of the subjects choosing focal strategies at each player position,
therefore classified as BR1 — best responding to their own payoff. There are 16.5% of subjects choosing
actions that are best responses to the focal strategies of one player above them (1st order payoff) and classified
as BR2. We also observe 14.5% of subjects being BR3, playing actions that are iterated best responses to the
focal strategies of two players above them (2nd order payoff). Lastly, there are 45.5% of subjects that are
classified as BR4, playing actions of best responses to P4’s dominant strategy at each player positions. This
significant proportion of higher types is very different from our results of the modified ring games, where we
only observe 17.5% F3 or higher types.

16Baron-Cohen et al. (2001)Baron-Cohen et al. (2001) reports an average score of 81%. Our average score
is 78%. Zhao (2020)Zhao (2020) uses the same set of Mensa practice problems and reports an average score
of 7. We report an average score of 6.7. For the CRT test, Frederick (2005)Frederick (2005) reports an overall
average percentages of players scoring (0,1,2,3) as (33%, 28%, 23%, 17%). Our scores are distributed as
(33.5%, 25.5%, 23%, 18%). This is in fact very close to the results from the meta-study.
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Importantly, the degree of predictive power across the two games differs qualitatively. The

partial R2 values for BR measures are three times higher for the R-taxonomy in the standard

ring game than for R-taxonomy in the modified ring game. In the modified ring game, BR

measures explain only 4 percent of the variation in R-values. Following our experimental

findings, one may imagine that BR measures would be predictive of modified ring game

behavior if one considered the F-taxonomy. That is not the case as BR measures have

even less predictive power for the F-taxonomy in the modified ring game, explaining only

around 3 percent of the variation in F-values. In addition to BR measures, we consider the

the alternate general measures for strategic sophistication in columns (2), (4), and (6) of

Table 2.6. The alternate measures add very little explanatory power regardless of game or

measure of strategic sophistication under consideration.
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Table 2.6: Regression results

DV: R-type (standard) DV: R-type (modified) DV: F-type (modified)
(1) (2) (3) (4) (5) (6)

BR test
0.36∗∗∗

(0.06)
0.35∗∗∗

(0.06)
0.13∗∗∗

(0.04)
0.12∗∗∗

(0.05)
0.12∗∗

(0.05)
0.12∗∗

(0.05)

Eye gaze test -
0.00

(0.02) -
0.01

(0.02) -
-0.03
(0.02)

IQ test -
0.11∗∗

(0.04) -
0.04

(0.03) -
-0.00
(0.04)

CRT -
-0.07
(0.09) -

-0.01
(0.06) -

0.01
(0.07)

age
-0.02
(0.02)

-0.02
(0.02)

-0.00
(0.01)

-0.00
(0.01)

-0.01
(0.01)

-0.01
(0.01)

gender
-0.09
(0.14)

-0.07
(0.15)

0.01
(0.10)

0.02
(0.11)

-0.07
(0.11)

-0.04
(0.12)

year in school
0.13∗

(0.07)
0.12∗

(0.06)
0.06

(0.05)
0.05

(0.05)
-0.04
(0.05)

-0.04
(0.05)

major
-0.04
(0.04)

-0.03
(0.04)

0.01
(0.03)

0.02
(0.03)

0.01
(0.03)

0.01
(0.03)

race
0.01

(0.04)
0.02

(0.04)
0.01

(0.03)
0.02

(0.03)
0.03

(0.03)
0.02

(0.03)

Multiple R2 0.18 0.21 0.05 0.06 0.05 0.06
Adjusted R2 0.16 0.17 0.02 0.02 0.02 0.01
Partial R2 0.15 0.18 0.04 0.06 0.03 0.04

Notes: Column (1) (3) and (5) preserves the results without additional cognitive test. Column (2) (4)

and (6) includes the cognitive test results as regressors. The reduced model includes age, gender, year

in school, major and race. Partial R2 is for everything above the demographics. ∗ indicates < 10%

significance. ∗∗ indicates < 5% significance. ∗∗∗ indicates < 1% significance. Standard error in

parenthesis.
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The findings of Table 2.6 suggest that more general measures of strategic sophistica-

tion, while potentially correlated with behavior in different environments, cannot generally

be used to make accurate predictions in different strategic contexts. Even our most credible

general test, the BR task, where subjects experience the same game form as our ring games,

consistent predictions are not obtained across contexts.

2.5 Concluding Remarks

Knowing a player’s level of strategic sophistication from one environment, can

we make reliable predictions about their behavior in another? This is the central question

addressed in this paper. In a laboratory experiment, we provide two sets of ring games

(Kneeland, 2015), and examine the consistencies of resulting rationality measures. The

games we use retain the key organization of the original ring game of Kneeland (2015), and

our modification introduces focal, high average-payoff strategies for each player position.

When using the standard rationality measures to identify subjects’ degree of strategic

sophistication, we observe substantial differences between the two sets of ring games at

both the aggregate and individual level. At the behavioral level, this inconsistency is driven

by subjects playing focal strategies and best responses to focal strategies in our modified

games.

When we incorporate focal strategies in identification of strategic sophistication,

we are able to restore predictive power. We further investigate if more general ability

and psychological tests may be easier routes to provide out-of-sample predictions in new

strategic environments. There is little success with these more general measures.
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What can researchers do if they wish to make predictions for strategic play across

contexts. Our findings point to one possible path: investment into understanding the

organizing principles of play. If each context’s additional considerations are understood in

detail, accurate predictions may be obtained. Predictive validity is restored in our setting

by specifying organizing principles of play around focal strategies. In other contexts,

the organizing principles will clearly be different than ours, but they must be understood

in detail. Without that understanding, external validity for any given measure will be

compromised and the measurement of strategic sophistication may lack purpose.
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Chapter 3

Learning of Strategic Sophistication
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3.1 Introduction

Nash equilibrium is the benchmark solution concept to predict players’ behavior

in games. Equilibrium requires that players are perfectly rational, with common identical

beliefs about equilibrium play. Many experimental studies to date have shown that people’s

initial responses in strategic games may not strictly follow equilibrium predictions. Re-

searchers have identified a number of non-equilibrium behavioral rules that better describe

initial play (for example: beauty contest game, Nagel (1995); normal-form games, Stahl and

Wilson (1994, 1995), Costa-Gomes et al. (2001); two-person guessing game, Costa-Gomes

and Crawford (2006); 11-20 money request game, Arad and Rubinstein (2012b), among

many others).

Two challenges to the standard equilibrium concept have been identified in these

settings. First, the assumption of common knowledge of rationality may face challenges

simply because players may not be strategic enough to understand the games fully and solve

for the equilibrium immediately. Second, even if the players are aware of the equilibrium of

the game, they may not have common identical beliefs about others also knowing it. Absent

the assurance of common knowledge of rationality, players’ beliefs can be potentially

influenced by many factors including past experience and past opponent’s play.

Strategic players may update their beliefs about other players when historical in-

formation about actions or payoff is given in repeated games. Researchers have utilized

statistical learning models to predict subjects’ future choices, after observing his responses

to such historical information (e.g., Fudenberg and Kreps (1993), Fudenberg and Levine

(1998a,b), and Camerer and Ho (1999)). They do so by analyzing the subject’s initial

choices, estimating an updating rule, and assigning the subjects with a probability distribu-
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tion of actions and corresponding behavioral types according to the actions with the highest

probability.

In this manuscript, we analyze how learning from past strategic interactions is

deployed in potentially new strategic setting. Can subjects learn their opponent’s strategic

types through historical information of actions even if those actions occurred in a different

context? Given that there is relatively limited literature on learning across strategic context

as compared to the broader literature on learning, this question is of crucial importance. If

players can learn about the strategic types of other players through their historical actions

in different environments and respond to the learned types, researchers will be able to make

broader predictions about behavior.

We conduct a set of online ‘laboratory’ experiments to investigate this question.

Subjects in our experiment proceed through 15 strategic games. In the first part of the

experiment, they play five rounds of 11-20 money request games. This game provides a

natural trigger for level-k reasoning model (Stahl and Wilson, 1994, 1995; Nagel, 1995),

which is an off-equilibrium behavioral model used to characterize subject’s initial responses

in games. We collect the subject’s initial play with the first part of the experiment. In the

second part of the experiment, subjects play a subsequent ten additional strategic games. In

treatment 1, they play the 11-20 games again, while in treatment 2, they play ten rounds of

6-15 money request games. In the second part of the experiment, subjects are revealed their

opponent’s historical information of actions in part-one games fifty percent of the time. We

examine if learning happens by comparing the strategic levels of the subjects for games

with and without historical information, both at the aggregate distributional level and at the

individual level.
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For the first treatment, where the games for the two parts are the same, we document

a significant shift in the distribution of choices. Subject choose strategies that correspond to

higher-level types much more often when knowing about their opponent’s historical actions.

At the individual level, knowing the opponent’s most recent strategy has a significant effect

in shaping the subject’s behavior in part-two games. In contrast, for the second treatment

with different part-two games, we do not find a significant difference in the aggregate

distributions of actions. However, at the individual level, knowing the historical information

of the opponent’s past choices in the 11-20 game still has an effect on the subject’s decisions

in the 6-15 game. More importantly, when the strategic games are different, subjects rely

more on the historical information of their opponent’s initial choices in the other game.

We interpret the portability of historical information through the lens of levels

of strategic sophistication. Although strategic contexts are different, as the case in our

second treatment, the common element of people’s behaviors in such strategic games is

the levels of strategic sophistication. The strategic levels, reflected from their choices in

the games, carry some information about the players, that could be utilized in following

interactions. Stahl (1996) constructs a rule learning model that is similar to our approach.

He discussed the learning model using Nagel’s beauty contest game data (Nagel, 1995).

Instead of showing subjects the actions from the previous rounds, subjects are shown the

winning number (mean guess) from the previous round. The rule learning model assumes

that subjects have an initial propensity towards all the behavioral rules, and update the

propensity according to the hypothetical relative performance of each behavioral rule in the

previous rounds, given the summary statistics of the games. Although this approach also

considers behavioral rules, it is conceptually different from our approach. The rule learning
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model is game-specific as the updating on the propensities is payoff driven. Rather than

learning about other player’s behavioral types, this model focuses on learning about which

behavioral type performs better. Therefore it will be challenging to utilize the rule learning

dynamics across strategic settings.

There are a number of manuscripts that study learning across games. Cooper

and Kagel (2008) study learning across signaling games with changing payoffs. They

document a significant fraction of sophisticated learners in the population, and report

an increasing proportion of sophisticated learning with experience. Cooper and Kagel

(2009) examine the effect of using meaningful context, as compared to abstract context,

and find that meaningful context aids positive transfers across games. Rick and Weber

(2010) study learning across dominance-solvable games. Instead of providing their subjects

with feedback, they provide 20 seconds of reflection time after each game. They show

that learning that happened in earlier games is transferred to later games. Garcia-Pola and

Iriberri (2019) study learning with feedback in a set of normal-form games. They examine

subject’s naivete and sophistication in initial and repeated play, and they find no correlation.

There are also papers on learning across games that are more different in the setup.

Dufwenberg et al. (2010) compare subject’s behaviors in the game of 6 and the game of 21,

and provide evidence for learning from simpler games to more complex games. Gneezy et

al. (2010) study the sequential race game, and show that learning happens within the same

game by playing repeatedly. There are fewer errors made by the subjects towards the end

of the game. They also show that the concept of solving the game can be transferred to

a similar game. Our study adds to the literature by providing a unique angle of learning

across games. Studies in the literature have an emphasis on learning through the contextual
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setup of the games or the underlying solution concepts of the games. Our study points to

the direction of learning about the opponent’s strategic types. Subjects may not necessarily

appear to be more strategic with this type of learning, but they may play more optimally

in the new games, as they are able to update their beliefs about their opponents1 and

subsequently choose strategies that are best responses to the beliefs.

Our results highlight the plausibility of learning the levels of strategic sophistication

across strategic contexts. We show that subjects are responsive towards historical infor-

mation of their opponent’s past actions. More importantly, our results reveal the relative

importance of historical information in different situations. In the learning literature, most

studies focus on learning within a single strategic context; and even for those who study

learning across games, learning about other player’s actions is seldom discussed. However,

in real-world settings, repeated interactions with changing strategic contexts should be

considered the norm. Without an understanding of learning from other players’ historical

actions in a different context, how do researchers make reliable predictions about people’s

behaviors in such situations? Our study points to a plausible way of interpreting historical

information, through the lens of levels of strategic sophistication. We argue that strategic

levels are mutual components in many strategic setups, and should be considered when

collecting information about historical interactions.

This paper proceeds as follows: we introduce the experimental design in section 2.

Section 3 presents our main results, and section 4 concludes.

1Other works on updating beliefs about opponents include learning through exogenous labeling, see
Dufwenberg et al. (2005), Levitt et al. (2011), ?; through cognitive tests, see Alaoui and Penta (2016), Gill
and Prowse (2016); through understanding the strategic environment, Zhao (2020).
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3.2 Experimental Design

Our experiment consists of three parts. Part one is identical for all experimental

sessions. Part two has two different treatments, explained below. Part three consists of

a 5-question Raven test, and a few demographic questions. They are the same across all

sessions as well. Subjects are aware that the experiment has three parts at the beginning

of the session. However, the instruction for each part is given only when the experiment

progresses to that part. The details for each part and the experimental timeline will be

explained below.

3.2.1 Part one of the experiments

In part one of the experiments, we ask the subjects to play five rounds of 11-20

money request game (Arad and Rubinstein, 2012b). In each game, subjects play in fixed

pairs. They each pick a number between 11 and 20, and receive the amount they pick, in

tokens. In addition, if they pick a number that is exactly one less than their opponent, they

receive extra 20 tokens. There is no feedback given in part one of the experiment, and the

subjects are not informed that they are playing in fixed pairs for this part of the experiment.

3.2.2 Part two of the experiment

Part two of the experiment has two treatments. In the first treatment, subjects play

ten rounds of 11-20 money request games. The instruction for these games is the same

as the instruction for the part-one games. In addition, the subjects are informed that they

may receive some additional information (which later during the game, revealed to them as
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their opponent’s historical actions) for each game. In the second treatment, subjects play

ten rounds of 6-15 money request games. In each game, subjects play in pairs. They are

asked to pick a number between 6 and 15. They receive the amount they pick, in tokens. In

addition, if they pick a number that is exactly one less than their opponent, they receive

extra 20 tokens. They also receive additional 5 tokens when calculating payoffs for each

6-15 game (detailed experimental instruction in appendix B.1). This is to ensure that the

incentive structure is the same across the two treatments.

During part two of the experiment, subjects switch opponents every two rounds.

There are in total ten rounds, therefore each subject plays against five different opponents

during part two. In odd number rounds, they do not receive any historical information

about their opponent’s past choices. In even number rounds, we reveal to the subjects

their opponent’s choices during part one of the experiment (i.e. subjects see a list of five

numbers, for example, ”18, 18, 19, 20, 19”). In all ten rounds, we tell the subjects that their

opponent may or may not receive some historical information about themselves. This is to

ensure that the subject’s second-order belief stays constant across games.

To control for the repeated game effect, in each round, we reveal to the subjects that

if they have played with their opponent in part one of the experiment. Since the subjects

play in fixed pairs in part one, they each only have one other player they have interacted

with before. In the first two rounds, we make the subjects play with their part-one opponent,

and tell them they have played with him/her in the previous games during part one of the

experiment. In the following eight rounds, we explicitly tell the subjects that they are

playing with another person in the session that they have never interacted with in part-one

games. Beyond the information about the identity of their opponents, and their opponent’s
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past choices, there is no additional feedback given during part two of the experiment.

3.2.3 Discussion of the Experimental Design

In our design, during part two of the experiment, we manipulate the revelation

of historical information in alternating order, so that subjects are revealed about their

opponent’s past actions every other round. Although the subjects are playing with the

same opponent for two rounds, we do not explicitly tell them that their opponents do

not change from the game without historical information, to the game with historical

information. Such setup of the design will not allow us to examine the isolating effects

of historical information, fixing the subject’s belief about their opponent’s other strategic

or cognitive traits. Rather, this design provides us an opportunity to compare the strategic

behaviors when historical information is available to the baseline behavior where subjects

play with a random opponent, without any information. Without informing the subjects of

the matching protocols for the second part of the experiment, we recognize the limitations

of allowing the subjects to have free beliefs about the person they are playing with. In

this sense, the treatment effects examined by comparing the two games with and without

historical information are entangled with the potential changing beliefs about the identity

of the opponents. We want to point out this feature of the design; and acknowledge

that the treatment effect discussed in this paper represents the effect of knowing a random

opponent’s historical information, rather than the effect of updating about a known opponent

based on the availability of their past action information.
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3.2.4 Experimental timeline

One hundred and fifty-six subjects were recruited from the subject pool of the

Incentive Lab (University of California - San Diego, USA). Subjects were randomly

selected to the two treatments. Seventy-two subjects participated in treatment one, and

eighty-four subjects participated in the second treatment. We conducted the experiment

online using the O-Tree program (Chen et al., 2016) and AWS server. Subjects received

a $2 show-up fee and earned an additional $6.5 on average (The minimum payment was

$5.6, and the maximum payment was $13.7).

At the beginning of the session, subjects reported to the experimenter using ZOOM

video conference. The experimenter sent each subject a private chat message with a

personal link to the study. All the information about the study, including the consent form,

the instruction, and the experiments are deployed to the online server. Subjects interacted

with the web page during the entire experiment. However, they were required to stay in the

ZOOM session and keep the video camera on. This was to ensure that the subjects were

engaged with the study during the entire session.

The study consists of three parts. At the beginning of each part, the instructions

were read aloud by the experiment in the ZOOM conference. Subjects were also able to

read the instructions on their screens. We tried to mimic the laboratory setup as much as

possible to ensure the subjects understood the instructions fully and concentrated on the

study. In the last part of the study, subjects were required to complete a 5-question raven

test. For each question, they saw a pattern with a piece missing on the screen. There were

also eight pieces below the pattern. Subjects were asked to choose the piece that is the

right one to complete the pattern. They had five minutes to complete the test. They were
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allowed to submit their answers early. They were informed about their score at the end of

the experiment. However, this part was not incentivized.

At the end of the session, we collected some demographic information from the

subjects. One game of the fifteen money request games from the first two parts of the

experiment was randomly selected for payments. Subjects collected tokens during the ex-

periment, and each token was worth 30 cents. The payments were made through Venmo. To

ensure that the subjects were properly incentivized during the experiment, the experimenter

sent each subject one cent of validation payment at the beginning of the sessions. The final

payments were made to the subjects within 24 hours after the sessions. Sessions lasted for

about 30 minutes.

3.3 Results

The results are presented in three subsections. First, we examine behavior in

part one of the experiment, reproducing the distribution of choices observed in Arad and

Rubinstein (2012b) (henceforth AR2012). Having established the baseline for subjects’

behaviors in the 11-20 games, in the second subsection we investigate the 11-20 game

behaviors under treatment one. When historical information about the opponent’s actions

in part-one games is given, we document a shift in the distribution of choices. Moreover,

we show that knowing opponent’s last action from part-one games has a significant effect

on shaping behaviors in the 11-20 games in part two. In the third subsection, we attempt to

understand if the learning behavior observed in treatment one is a mere result of replicating

the opponent’s past choices. We investigate whether subjects behave differently in the set
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of 6-15 games, with and without information about their opponent’s actions in part-one

games. We show the plausibility of learning on the strategic levels through a set of different

games. Subjects not only adjust their strategic levels according to the information given,

but also show a tendency to rely on the information about their opponent’s initial actions in

the part-one games.

3.3.1 Baseline results of 11-20 Games

Figure 3.1 shows the density plots of the choices played in the part-one 11-20 games

for the 156 subjects in our study. The black line represents AR2012 results, the red line

corresponds to treatment one’s part-one results and the green line corresponds to treatment

two’s part-one results. Although the density plots for our results do not completely overlap

with AR2012, there is no significant difference between the choice distributions (p=0.33,

χ2test, with our two treatments pooled together). The choices made by our subjects across

the two treatments have essentially identical distributions, as observed in the figure (p=0.24,

χ2 test). Table 3.1 shows the distribution of actions for part-one games.

Table 3.1: Relative frequencies of actions in part1 11-20 game

11(%) 12(%) 13(%) 14(%) 15(%) 16(%) 17(%) 18(%) 19(%) 20(%) N

AR(2012) 4 0 3 6 1 6 32 30 12 6 108
T1 (Part1) 3 1 4 4 8 7 14 28 21 11 360
T2 (Part1) 2 2 3 5 6 9 14 24 23 13 420

Due to the natural setup of the 11-20 game, every strategy could be considered as

a level-k strategy for some k. Table 3.2 shows the results for strategic levels. Similar to

AR2012 results, we document the vast majority of subjects (62 percent) chose the actions
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Figure 3.1: Choice densities for Part 1 11-20 Games

17-18-19, which correspond to 1-2-3 levels of reasoning respectively. For choices of smaller

numbers, however, as Arad and Rubinstein (2012b) mentioned, choices of 11-16 do not

necessarily mean that they are results of 4 to 9 rounds of iterated reasoning. We document

about 8% of choices for both 15 and 16 respectively. We still consider them as level-4 (L4)

and level-5 (L5) strategies as they represent a considerable amount of choices made by our

subjects. For choices of 11-14, we pool them together and assign them to level-5+. Notably

these choices were mostly made in earlier rounds (14% in round-1 and 7% in round 5).

As our part-one games consist of five rounds of 11-20 games, we document a small order

effect of the games. Although no feedback was given in-between rounds, subjects chose
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slightly larger numbers at later rounds 2.

Table 3.2: Relative frequencies of k-levels for part1 11-20 games

L0(%) L1(%) L2(%) L3(%) L4(%) L5(%) L5+(%) N

Part1(T1) 11 21 28 14 7 8 11 360

Part1(T2) 13 23 24 14 9 6 12 420

AR2012’s 11-20 game serves as an excellent baseline for this study because the

game design provides a very intuitive level-0 specification, and straightforward iterated

reasoning pathway. If following the iterated best-responding strategy, the choices made

for this game are relatively easy to be interpreted as steps of reasoning. This will become

a crucial point for our subjects in part two of the experiment, where they observe their

opponent’s part-one actions. We document stable distributions of actions in part-one games

across our two treatments, which make the two treatments comparable when we discuss the

results later.

3.3.2 Results for learning within identical games

Under treatment one, subjects played ten more rounds of 11-20 games in part 2 of

the experiment. They each played against five different opponents3. As subjects interacted

with the same opponents twice, once with information about their opponent’s part-one
2coefficient is 0.11 when regressing subject’s choices on round number, p=0.03.
3Subjects played against their part-one opponents in the first two rounds. There is no repeated game effect.

We check by regressing their choices in part 2 on a binary variable which indicates whether the opponent is
the part-one opponent. The coefficient is -0.08, p=0.64.
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actions and once without, we are able to do a side-by-side comparison of their decisions in

this part of the experiment. Figure 3.2 presents the density plots of the subject’s actions.

The black line indicates choices without information (INFO0), and the red line indicates

choices with information (INFO1). As shown in the figure, there is a significant shift in

the distribution of choices. With additional information, subjects chose smaller numbers

considerably more often4.
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Figure 3.2: Choice densities for Part 2 (Treatment1) 11-20 Games

Table 3.3 conducts the level-k identification on the part-two 11-20 games and

provides distributional contrasts for games with and without information. Notably, the L3

strategy was played 26% of the time when the opponent’s information was revealed, as

4p= 0.02, Wilcoxon signed-rank test with paired samples.
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compared to 14% when no information was revealed and 14% in the baseline games. This

significant increased frequency of playing higher-level strategies provides some evidence

on the effect of knowing the opponent’s historical actions. In the contrast, lower-level

strategies, especially the L0 strategy was favorable when no information was revealed, as it

provides a guaranteed six dollars in payment in this experiment. It was played 20% under

INFO0, while merely 12% under INFO1.

Table 3.3: Relative frequencies of k-levels for part2 11-20 games (T1)

L0(%) L1(%) L2(%) L3(%) L4(%) L5(%) L5+(%) N

INFO0 20 17 28 14 8 6 8 360

INFO1 12 19 21 26 9 6 7 360

Part2(T1) 16 18 24 20 9 6 8 720

Given that revealing the opponent’s historical actions has an impact on the subject’s

strategies, we next investigate the underlying mechanism of this impact. Our subjects saw a

list of five choices made by their opponents in the first part of the experiment, whenever

this information was given to them. If their strategies in part-two games were dependent

on the information, they would need to interpret the list of five numbers, and generate an

assessment of their opponent’s strategic levels based on those choices. Here we consider

three metrics of the historical actions: the initial strategy, the most recent strategy (in this

case, the strategy for the last round of part-one games), and the strategy with the highest

frequency (mode). In Table 3.4, we provide corresponding analysis, regressing the strategic
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levels in our part-two 11-20 games on the interacting terms of the dummy treatment variable

(info) and the strategic levels as reflected by the three metrics, controlling for observable

characteristics. Column (1)-(3) examines the three metrics respectively. We find that the

treatment effects for each of the metrics correlate significantly with part-two game behavior.

However, when examining the relative explanatory power of these three metrics, in column

(4) we find that knowing the opponent’s strategic type based on their most recent actions

has a significant effect on shaping the strategy for the part-two 11-20 games.
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Table 3.4: Regression results for treatment1

DV: Strategic levels for part2 11-20 games
(1) (2) (3) (4)

Initial ∗ info
0.15∗∗

(0.06) - -
-0.01
(0.25)

Last ∗ info -
0.27∗∗∗

(0.08) -
0.20∗∗

(0.10)

Mode ∗ info - -
0.23∗∗∗

(0.07)
0.12

(0.11)

Initial
-0.05
(0.03) - -

0.01
(0.05)

Last -
-0.08∗∗

(0.04) -
-0.06
(0.05)

Mode - -
-0.07∗∗

(0.03)
-0.04
(0.06)

Info
-0.17
(0.22)

-0.34
(0.23)

-0.33
(0.22)

-0.45∗

(0.25)

Raven
0.08

(0.16)
0.08

(0.16)
0.08

(0.16)
0.08

(0.16)

Constant
2.65∗∗

(1.21)
2.68∗∗

(1.22)
2.69∗∗

(1.20)
2.70∗∗

(1.21)

Control Yes Yes Yes Yes
R2 0.07 0.09 0.08 0.09
N 720 720 720 720

Notes: Control variables include age, gender, year in school, major

and race. ∗ indicates < 10% significance. ∗∗ indicates < 5% signifi-

cance. ∗∗∗ indicates < 1% significance. Robust clustered individual

standard error in parenthesis.

We next examine how subjects respond to their opponent’s strategic types, based
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on their most recent actions. Table 3.5 provides the distribution of strategic levels for our

subjects in the part-two 11-20 games in conjunction with their opponent’s strategic types

for the last game in part one of the experiment. Notably, for each opponent’s type, subjects

chose to respond with a strategy that was one level higher, the majority of the time (except

when the opponent was L5). This could be viewed as choosing a strategy that was a direct

best response to their opponent’s types and was used 41.4% of the time. The second most

used strategy was to replicate their opponent’s actions, which was adopted 14.2% of the

time. This part of the analysis is exploratory, but provides an interesting direction for future

work to study the predictive accuracy of strategic levels in games with feedback about

historical actions.

Table 3.5: Subject’s type by part-two games with information about opponent’s part-one’s last
game

Opponent’s type for part1’s last game

L0 L1 L2 L3 L4 L5 L5+ Total

Pa
rt

2
11

-2
0

ga
m

es

L0 1.9% 1.7% 1.9% 1.7% 0.6% 2.2% 1.9% 11.9%
L1 10.8% 2.5% 3.3% 1.1% - 0.8% 0.6% 19.1%
L2 2.8% 8.9% 4.7% 1.9% 0.3% 1.7% 0.3% 20.6%
L3 3.3% 3.3% 15.8% 1.9% 0.6% 0.8% 0.6% 26.3%
L4 0.8% 0.8% 2.8% 3.6% 0.3% 0.3% 0.6% 9.2%
L5 0.3% - 1.7% 1.1% 0.6% 1.1% 1.1% 5.9%
L5+ 0.6% - 1.4% 1.1% 0.6% 1.7% 1.7% 7.1%
Total 20.5% 17.% 31.6% 12.4% 3% 8.6% 6.8%
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3.3.3 Results for learning across different games

Though information about the opponent’s historical actions generates different

responses in the set of 11-20 games, questions remain for whether the treatment effects were

channeled through the revealed actions or the underlying strategic levels of those revealed

actions. To answer this question, in the second treatment of the study, we implement a set of

6-15 money request games in the second part of the experiment. Again, similar to treatment

1, in part two of the experiment, subjects were given information about their opponent’s

actions in part-one 11-20 games fifty percent of the time. Since part-two games were

different from 11-20 games in this treatment, subjects were not able to directly replicate

or choose an action that is the best response to the historical actions that were revealed to

them. If they were responsive towards the historical information, then they had to convert

that information to something that is a mutual component to both games, which is the levels

of strategic sophistication.

Figure 3.3 presents the density plots of the subject’s actions in the set of 6-15 games.

The black line indicates choices without information (INFO0), and the red line indicates

choices with historical information (INFO1). As presented in the figure, there is a slight

shift in the distribution of actions. With additional information, subjects chose smaller

numbers slightly more often. However, there is no significant difference for the two choice

distributions5.

Similar to the 11-20 money request game, every strategy of the 6-15 game could be

considered as a level-k strategy for some k. The L0-type is non-strategic, therefore choosing

the salient number in the set of choices (in this case, 15), without considering other people’s

5p=0.51, one tail Wilcoxon signed-rank test with paired samples
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Figure 3.3: Choice densities for Part 2 (Treatment2) 6-15 Games

actions. An L1-type chooses an action that is the best response to the L0-type’s expected

action. In this game setup, the L1-type’s strategy is 14. Following the level-k reasoning

model, each Lk-type chooses an action that is the best response to Lk−1-type, which is

one number smaller in this setup. Table 3.6 provides the level-k identification on the set of

6-15 games and provides distributional contrasts for games with and without the opponent’s

historical information. There was a slightly lower frequency of L0 strategy for the games

with information (13% of the time, as compared to 19% under INFO0), and slightly higher

frequency of L2 strategy (28% of the time, as compared to 21% under INFO0). However,

in general, there is no significant difference in the distribution of k-levels.
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Table 3.6: Relative frequencies of k-levels for part2 6-15 games (T2)

L0(%) L1(%) L2(%) L3(%) L4(%) L5(%) L5+(%) N

INFO0 19 26 21 13 7 4 11 420

INFO1 13 26 28 14 9 4 6 420

Part2(T2) 16 26 24 13 8 4 9 840

Although aggregate strategic levels do not differ much for the two comparison

groups (INFO0 and INFO1), one may wonder if at the individual level, knowing the

opponent’s historical actions for 11-20 games has an effect on the subject’s decisions in the

6-15 games. As discussed previously, if historical information of actions in a different game

has an effect, it has to be related to the underlying strategic levels of those actions. Again,

we consider three metrics, the revealed strategic levels of the initial strategy, that of the most

recent strategy, and that of the mode strategy. Table 3.7 provides the corresponding analysis,

regressing the strategic levels in 6-15 money request games on the interacting terms of the

dummy treatment variable (info) and the strategic levels as reflected by the three metrics,

controlling for observable characteristics. When examining the treatment effects of each

metric respectively, column (1)-(3) shows that revealing each of the metrics has a significant

effect on the 6-15 game behavior. This is similar to the results when the two sets of games

are the same. This shows that at the individual level, knowing the opponent’s historical

actions of a different game helps shaping the behavior in a new game. Even though it is

impossible to replicate the strategies directly, some beliefs about the opponent’s strategic
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levels could be updated with the revealed information. Learning in fact happened at a more

fundamental level, where the opponent’s levels of strategic sophistication were studied,

instead of strategies or actions at their face values.

Interestingly, when examining the relative explanatory power of the three metrics,

column (4) shows that only information about the opponent’s initial strategy significantly

correlates with behaviors in the part-two games. This is very different from our previous

results, where the opponent’s most recent strategy plays a significant role in shaping

behaviors. One explanation for the difference is that games in the second part of the

experiments are different. In the first treatment, part one and part two have identical games.

When assessing the opponent’s levels of strategic sophistication, his most recent strategy

has a higher weight than strategies from other rounds of the games, as it includes not only

the information about the opponent’s understanding of the game, but also some information

about his experience level of the repeated games. However, when the game changes

(as in the case of treatment two), initial responses to a game provide more information

about a player’s potential strategic levels in a new strategic context. Our results for the

second treatment present the effects of revealing historical information of the opponent’s

past actions from another strategic context in shaping the strategic responses in a new

environment. More importantly, the findings point to the importance of understanding

which piece of historical information matters. When playing repeated games, perhaps the

opponent’s most recent strategy carries the most information. However, when interacting in

a new strategic context, subjects care more about their opponent’s initial responses to other

games, and really utilize that information to understand their opponent’s strategic levels

when possible.
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Table 3.7: Regression results for treatment2

DV: Strategic levels for part2 6-15 games
(1) (2) (3) (4)

Initial ∗ info
0.12∗∗∗

(0.05) - -
0.14∗∗

(0.19)

Last ∗ info -
0.10∗

(0.06) -
0.07

(0.0)6

Mode ∗ info - -
0.10∗

(0.06)
-0.07
(0.08)

Initial
-0.00
(0.03) - -

-0.00
(0.05)

Last -
-0.02
(0.03) -

-0.3
(0.04)

Mode - -
0.00

(0.03)
0.03

(0.07)

Info
-0.32∗

(0.18)
-0.22
(0.16)

-0.22
(0.17)

-0.37∗

(0.19)

Raven
-0.27∗∗

(0.11)
-0.27∗∗

(0.11)
-0.27∗∗

(0.11))
-0.27∗∗

(0.11)

Constant
2.41∗∗∗

(0.76)
2.44∗∗∗

(0.76)
2.39∗∗∗

(0.75)
2.44∗∗∗

(0.76)

Control Yes Yes Yes Yes
R2 0.12 0.11 0.12 0.12
N 840 840 840 840

Notes: Control variables include age, gender, year in school, major and

race. ∗ indicates < 10% significance. ∗∗ indicates < 5% significance.

∗∗∗ indicates < 1% significance. Robust clustered individual standard

error in parenthesis.
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3.4 Concluding Remarks

Knowing other people’s historical information of past actions from a strategic game,

can players learn about other people’s levels of strategic sophistication? This is the central

question addressed in this paper. In an online laboratory experiment, we provide two sets

of strategic games, and examine if the subject’s behavior in the latter games changes with

information of their opponent’s historical actions in the first set of games. When the two

sets of games are identical, we find a significant shift in the distribution of choices when

historical information is revealed. We also discover that information about the opponent’s

most recent strategy plays a significant role in determining strategies in the second set of

games. When the two sets of games are different, we no longer find a significant difference

in the distribution of choices. However, on the individual level, historical information

still matters, but the relative importance of the information changes. When the games are

different, subjects rely more on the information about their opponent’s initial choices in the

other game.

We show the plausibility of learning of strategic sophistication in this paper. Re-

peated interactions of individuals in different strategic contexts should no longer be consid-

ered as independent events. Even in the case when the contexts are drastically different, it

is still possible for individuals to have some assessment about their counterpart’s strategic

levels through past interactions, and utilize that information in the new strategic interac-

tions. In this paper, we provide an exploratory analysis of how individuals respond to the

perceived strategic levels from historical actions. Future work could be done on improving

the predictive accuracy under such circumstances. We utilize the level-k reasoning model

in our design to study the question. However, we recognize that this behavioral model does
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not apply to all the strategic contexts. Learning of strategic sophistication with changing

behavioral models remains an important open question for future studies.
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A.1 Estimation Strategy

The modified ring game offers unique action profiles for each player-type. With that

benefit, we are able to implement the spike-logit maximum likelihood estimation to assign

types for all of our subjects. Below we first describe the maximum likelihood function in

detail, and then present the estimation results.

For each subject i, and set of eight modified ring games g ∈ G, we estimate a type

k by defining a likelihood function Li(εi,λi,k | sig). We assume subjects follow type-k

strategy with probability (1− ε) and with probability ε ∈ [0,1], make mistakes that have

a spike-logit error structure. When they make a mistake, they only play actions that are

not type’s predicted strategies with positive probability. With such error structure, the

probability of selecting a type-inconsistent strategy is sensitive to the payoffs. This captures

the attraction created by the focal strategies in our modified ring games. We assume type-1

subjects always choose the focal strategy, regardless of his player positions. Based on type-

1’s predicted strategy profiles, we are able to pin down a unique strategy profile for each

type, as type-k only respond to (k−1)th-order payoffs. Following these unique strategy

profiles, we further assume that type-k subjects have point belief about their opponent’s

actions at each player position.

Formally, let Si,g be the set of actions available to player i in game g, and sk
g be

type-k’s predicted strategy in game g. Since player i’s payoff is also determined by his

immediate opponent’s action, let s j,g be player i’s immediate opponent’s action in game g,

and f k
g (s j,g) be type-k’s belief in game g. λi is the sensitive parameter that will be estimated
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at individual level. Then dk
g(si,g,λi) denotes type-k’s error density when choosing si,g.

dk
g(si,g,λi) =

exp[λi ∑s j,g∈S j,g ui,g(si,g,s j,g) f k
g (s j,g)]

∑si,g∈Si,g\sk
g
exp[λi ∑s j,g∈S j,g ui,g(si,g,s j,g) f k

g (s j,g)]
(A.1)

for si,g ∈ Si,g\sk
g, and 0 elsewhere.

Let Ii(si,g,k) be the indicator function that subject i follows type-k’s strategy for

game g. Then the likelihood of observing si,g in game g, for type-k is given by

Li(εi,λi,k | si,g) = (1− εi)Ii(si,g,k)+ εi(1− Ii(si,g,k))dk
g(si,g,λi) (A.2)

For the set of ring games, the likelihood function for observing si,G for type-k is

given by

L(εi,λi,k | si,G) = ∏
g∈G

Li(εi,λi,k | si,g) (A.3)

In practice, we estimate εi in the sample through subject’s actual error rate for each

type. We jointly estimate k and λi by grid search over 405 possible values. Table A.1

shows the estimation results. The accuracy rate is obtained by counting the number of

type-exact actions over the total number of type-predicted actions. For example, F1-type

have 104 subjects, predicting a total of 832 actions with the eight modified ring games.

There are 89% of the actions by these 104 subjects that comply with F1-type’s prediction.

Note that lower types have a generally higher accuracy rate. This is mainly due to the

higher proportion of type-exact subjects that exist for these lower types. Figure A.1 shows
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the action profiles of the subjects for each F-types. There is a significant shift from large

proportion of focal strategies observed in the lower types, to some non-focal strategies

observed in the higher-order rational types.

Table A.1: Estimation results

# of subjects Accuracy rate

F1 104 89%
F2 60 81%
F3 23 64%
F4 13 61%
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(a) type-F1 (b) type-F2

(c) type-F3 (d) type-F4

Figure A.1: Action profiles for each F-types

Table A.2 provides identification strategy under F-taxonomy for the original ring

games, and table A.3 shows the results of estimation, as well as the individual correlation

between F-levels across the original ring game and modified ring game. In the original ring

games, the ’focal‘ strategies coincide with rationalizable strategies. As a result, there is not

a clear separation of rationalizable action profiles and the action profiles centered around
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focal strategies or iterated best responses to focal strategies (table A.4 shows the correlation

of F-levels and R-levels in the original ring game). The individual level correlation across

the two games (Spearman correlation = 0.38) is thus similar to that using the R-taxonomy

for the original ring game and the F-taxonomy in the modified game, (Spearman correlation

= 0.35).

Table A.2: Predicted actions under rationality and assumptions about focality in original ring
games

Original Ring Games

P1 P2 P3 P4

Type G3 G4 G3 G4 G3 G4 G3 G4

F1 (a,a) (b,b) (a,a) (a,c)
F2 (a,a) (b,b) (a,b) (a,c)
F3 (a,a) (b,a) (a,b) (a,c)
F4 (a,c) (b,a) (a,b) (a,c)

Table A.3: Subject’s types by modified ring game(F) and original ring game(F)

Original RG

F1 F2 F3 F4 Total

M
od

ifi
ed

R
G F1 18.5% 21.5% 4% 8% 52%

F2 5% 13% 6% 6% 30%
F3 1% 4% 1.5% 5% 11.5%
F4 - 0.5% 1.5% 4.5% 6.5%
Total 24.5% 39% 13% 23.5%

Notes: Spearman correlation: 0.38∗∗∗
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Table A.4: Subject’s types by original ring game(R) and original ring game(F)

Original RG

R0 R1 R2 R3 R4 Total

O
ri

gi
na

lR
G F1 3% 21% 0.5% - - 24.5%

F2 2% 3% 34% - - 39%
F3 1.5% - 1% 10.5% - 13%
F4 0.5% 0.5% 1.5% 2.5% 18.5% 23.5%
Total 7% 24.5% 37% 13% 18.5%

Notes: Spearman correlation: 0.84∗∗∗

A.2 Experimental Instructions

A.2.1 Experimental Instruction for Eye-gaze Test

Welcome to the experiment! You are about to participate in an experiment in the

economics of decision-making. If you follow these instructions closely and consider your

decisions carefully, you can earn a considerable amount of money, which will be paid to

you in cash at the end of the experiment.

To ensure best results for yourself, please DO NOT COMMUNICATE with the

other participants at any point during the experiment. If you have any questions, or need

assistance of any kind, raise your hand and one of the experimenters will approach you.

There are two parts for today’s experiment. The instruction for part 2 of the

experiment will be given separately after the completion of part 1.

PART 1 of the Experiment

During part 1 of the experiment, you will answer 36 questions. For each question,

you will see a picture of a set of eyes of a person on the screen. Below the picture, there
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will be four words. Choose and select the word that best describes what the person in the

picture is thinking or feeling. You may feel that more than one word is applicable but please

choose just one word, the word which you consider to be most suitable. Before making

your choice, make sure that you have read all 4 words. You should try to do the task as

quickly as possible but you will not be timed. If you really don’t know what a word means,

you can look it up in the definition handout in the following pages.

If you have understood the instruction for part 1 of the experiment, please click the

button on the screen to proceed to the practice screen. You will have a chance to see what

part 1 of the experiment looks like, before going to the actual questions.

A.2.2 Experimental Instruction for Ring Game

Welcome back for part 2 of the experiment!

The Basic Idea

You will 16 4-player games. In each of these games, you will be randomly matched

with other participants currently in this room. We do our best to ensure that you and your

counterparts remain anonymous. For each game, you will choose one of three actions. Each

other participant in your game will also choose one of three actions.
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Your earnings will depend on the combination of your action and player 2’s action.

These earnings possibilities will be presented in a table like the one above. Your action

will determine the row of the tables and player 2’s action will determine the column of the

table. You may choose action a, b, or c and player 2 will choose action d, e, or f. The cell

corresponding to this combination of actions will determine your earnings.

For example, in the above game, if you choose a and player 2 chooses d, you would

earn 10 dollars. If instead player 2 chooses e, you would earn 4 dollars.

Player 2, Player 3, and Player 4’s earnings are listed in the other three tables. Player

2 may choose action d, e, or f, Player 3 may choose action g, h, or i, and Player 4 may

choose action j, k, or l. Player 2’s earnings depend upon the action he chooses and the

action Player 3 chooses. Player 3’s earnings depend upon the action he chooses and the

action Player 4 chooses. Player 4’s earnings depend upon the action he chooses and the

action you choose.

For example, if you choose c, player 2 chooses e, player 3 chooses h, and player 4

chooses k, then you would earn 18 dollars, player 2 would earn 12 dollars, player 3 would

earn 8 dollars, and player 4 would earn 18 dollars.

You will be required to spend at least 90 seconds on each game. You may spend
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more time on each game if you wish.

Earnings You will earn a show-up payment of $5 for arriving to the experiment on

time and participating.

In addition to the show-up payment, one game may be randomly selected for

payment at the end of the experiment. Every participant will be paid based on their actions

and the actions of their randomly chosen group members in the selected game. Any of the

games could be the one selected. So you should treat each game like it will be the one

determining your payment.

You will be informed of your payment, the game chosen for payment, what action

you chose in that game, and the actions of your randomly matched counterparts only at the

end of the experiment. You will not learn any other information about the actions of the

other players during the experiment. The identity of your randomly chosen counterparts

will never be revealed.

If you have understood the instruction for part 2 of the experiment, please click the

button on the screen to proceed to the understanding quiz. There are 5 questions in the quiz.

Answer those questions, and review the feedback given in the following screens. During

the time, please raise your hand if you have any question regarding the quiz questions or

the quiz answers. One of the experimenters will approach you and answer your questions.

A.2.3 Experimental Instruction for BR test

You have finished playing 16 games. You will now play additional 4 games with

the computer. The computer will choose an action for player 2, player 3, and player 4

respectively. You will be given additional information about hte computer’s (player 2,
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player 3, and player 4’s) choices in the game. Please pay attention to those information.

One of these games may also be selected for payment at the end of the experiment.

So you should treat each of these games like it will be the one determining your payment.

Please raise your hand if you have any question. Otherwise, click the ’continue‘

button below.

Your earnings are given by the blue numbers. You may choose action a, b, or c.

Your earnings will depend upon the action you choose and the action that Player 2 chooses.

In the above game, Player 2 (the computer), Player 3 (the computer) and Player 4

(the computer) have chosen the actions that give them the highest earnings.

Please choose your action.
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Your earnings are given by the blue numbers. You may choose action a, b, or c.

Your earnings will depend upon the action you choose and the action that Player 2 chooses.

In the above game, Player 2 (the computer) has chosen the action ’d‘. Player 3 (the

computer) and Player 4 (the computer) have chosen the actions that give them the highest

earnings.

Please choose your action.

Your earnings are given by the blue numbers. You may choose action a, b, or c.

Your earnings will depend upon the action you choose and the action that Player 2 chooses.

In the above game, Player 2 (the computer) has chosen the action that gives him the

highest earnings. Player 3 (the computer) has chosen the action ’i‘. Player 4 (the computer)

has chosen the action that gives him the highest earnings.

Please choose your action.
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Your earnings are given by the blue numbers. You may choose action a, b, or c.

Your earnings will depend upon the action you choose and the action that Player 2 chooses.

In the above game, Player 2 (the computer) and Player 3 (the computer) have chosen

the actions that give them the highest earnings. Player 4 (the computer) has chosen the

action ’j‘.

Please choose your action.
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Appendix for Chapter 3
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B.1 Experimental Instructions

B.1.1 Experimental instruction for Part 1 of the experiment

In part 1 of the experiment, you will be randomly matched with other players in

this session. We do our best to ensure that you and your counterpart remain anonymous.

For each game, you will be asked to pick a number between 11 and 20. You will

always receive the amount that you announce, in tokens. In addition:

-If you give a number that’s exactly one less than your opponent, you receive extra

20 tokens.

Example:

-If you pick 17 and your opponent picks 19, then you receive 17 tokens and he

receives 19 tokens

-If you pick 12 and your opponent picks 13, then you receive 32 tokens and he

receives 13 tokens.

-If you picks 16 and you opponent picks 15, then you receive 16 tokens and he

receives 35 tokens.

Each token is worth 30 cents.

Earnings:

You will earn a show-up payment of $2 for arriving to the experiment on time and

participating. In addition to the show-up payment, one game may be randomly selected

for payment at the end of the experiment. Every participant will be paid based on their

actions and the actions of their randomly chosen counterparts in the selected game. Any of

the games could be the one selected. So you should treat each game like it will be the one
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determining your payment.

Note:

To ensure the online experiment runs smoothly, each game in this experiment has a

time limit of 2 minutes. If you do not make a choice before the time runs out, you will be

logged out of this experiment. You will see a timer on the screen to show you how much

time is left for each game. Thank you for your understanding.

If you have understood the instruction, please click the button on the screen to

proceed to part 1 of the experiment.

Please only select the option below if the experimenter has finished reading the

instructions for this part of the experiment.

B.1.2 Experimental instruction for Part 2 of the experiment (treat-

ment2)

In part 2 of the experiment, you will be randomly matched with other players in

this session. We do our best to ensure that you and your counterpart remain anonymous.

For each game, you will be asked to pick a number between 6 and 15. You will

always receive the amount that you announce, in tokens. In addition:

-If you give a number that’s exactly one less than your opponent, you receive extra

20 tokens.

Example:

-If you pick 12 and your opponent picks 14, then you receive 12 tokens and he

receives 14 tokens.

-If you pick 7 and your opponent picks 8, then you receive 27 tokens and he receives
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8 tokens.

-If you picks 11 and you opponent picks 10, then you receive 11 tokens and he

receives 30 tokens.

You will also receive additional 5 tokens for each game. Each token is worth 30

cents.

In addition, in each game, you may or may not receive some additional information

about your counterpart. Those information, whether given to you or not, will be clearly

stated on your screen.

Earnings:

Together with games in part 1 of the experiment, one game may be randomly

selected for payment at the end of the experiment. Every participant will be paid based on

their actions and the actions of their randomly chosen counterparts in the selected game.

Any of the games could be the one selected. So you should treat each game like it will be

the one determining your payment.

Note:

To ensure the online experiment runs smoothly, each game in this experiment has a

time limit of 2 minutes. If you do not make a choice before the time runs out, you will be

logged out of this experiment. You will see a timer on the screen to show you how much

time is left for each game. Thank you for your understanding.

If you have understood the instruction, please click the button on the screen to

proceed to part 2 of the experiment.

Please only select the option below if the experimenter has finished reading the

instructions for this part of the experiment.
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B.1.3 Experimental instruction for Part 3 of the experiment

Welcome to Part 3 of the experiment!

For this part of the experiment, you will complete 5 questions. For every question,

there is a pattern with a piece missing and a number of pieces below the pattern. You have

to choose which of the pieces below is the right one to complete the pattern. In each case,

one and only one of the pieces is the right one to complete the pattern.

For each question, please select your answers below the patterns. You will score 1

point for every right answer. You will not be penalized for wrong answers. You will have 5

minutes to complete the questions. You will see a timer on the top of your screen. You can

submit your answers early. However, once the time is up, you answers will be automatically

submitted. You will have the chance to know your score at the end of the experiment.

After completing the 5 questions, you will be directed to answer a few demographic

questions. At the end of the experiment, we will show you the game number that has been

randomly selected for payment for this session, as well as your choice and the choice of

your counterpart for that game. Please allow up to 24 hours for the payments to arrive

through Venmo.

If you have understood the instruction, please click the button on the screen to

proceed to part 3 of the experiment.

Please only select the option below if the experimenter has finished reading the

instructions for this part of the experiment.
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