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THERMODYNAMICS AND KINETICS OF SINTERING 

Carl Edward Hoge 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Materials Science and Engineering, 

College of Engineering; University of California, 
Berkeley, California 94720 

ABSTRACT 

Thermodynamic approaches to sintering have as yet received little 

theoretical or experimental investigation although a thorough under-

standing of thermodynamic factors is required to accurately predict sin-

tering phenomena. Since the basic driving force for sintering is the 

reduction in interfacial energy associated with changes in interfacial 

areas of powder compacts, the differential of the free energy, oG, must 

remain negative for sintering to proceed. If oG becomes equal to zero, 

sintering ceases and possible endpoint densities less than theoretical 

will result. 

In Part A of this report, a thermodynamic analysis of solid phase 

sintering for several geometric assemblages is performed. In this 

analysis, the solid-vapor dihedral angle is related to critical ratios 

of y /y that determine endpoint densities for each packing array. 
ss sv 

The experimental dihedral in a sintering compact is also shown to in-

fluence the vacancy concentrations near internal and external inter-

faces, ~d to determine the thermodynamic driving force for densifica-

tion. 

Thermodynamic analyses of grain boundary motion indicate that 

pores pin planar grain boundaries and that a critical grain boundary 

curvature is necessary for grain boundaries to sweep past pores leaving 
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them isolated and that this curvature is relatively independent of the 

dihedral angle for most solid phase sintering systems. 

In order to compare theory with experiment, the sintering of MgO 

compacts is investigated. Results indicate that sintering rates are 

dependent upon the thermodynamic driving force for densification and 

that ·possible endpoint densities less than theoretical may be an inherent 

characteristic of MgO for certain packing arrays. 

In Part B, a thermodynamic analysis is performed for liquid phase 

sintering systems forming zero and nonzero solid-liquid dihedral angles. 

Results indicate that critical ratios of y· /y exist which are de­s.R. tv 

pendent on the magnitude of the dihedral for the system and on the 

volume fraction of liquid phase. 

Additionally, kinetic analyses are performed using numerical inte-

gration techniques which enable a more accurate description of liquid 

phase sintering rates than have previously been discussed. These models 

are described in terms of particle size differences ,• in terms of mag-

nitudes of dihedral angles; and in terms of volume of liquid phase in 

sintering compacts. From these analyses, densification parameters are 

related to time and to the initial particle sizes~ The models are then 

discussed in terms of existing experimental data. 
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PART A: THERMODYNAMICS OF SOLID PHASE SINTERING 

I. INTRODUCTION 

If an array of particles of equilibrium single phase composition is 

subjected to sufficient temperature such that mass transfer mechanisms 

become operative, the areas of solid/vapor interfaces begin to decrease 

as solid/solid interfaces form. This process is defined as sintering, 

and the basic 'driving force for sintering is the resulting reduction in 

free energy of the system. 

In order to fully characterize sintering, knowledge of thermodynamic 

and kinetic factors is necessary. From thermodynamic analyses, inter­

facial energy relationships can be obtained which correspond to minimum 

free energy configurations for specific geometric assemblages of par­

ticulates. However, since these relationships yield only free energy 

states independent of time, they do not reveal the path of densification 

of a compact. From kinetic considerations, which encompass mechanistic 

approaches, the sintering path may be traced as a function of time. 

Generally, idealized models are formulated to simulate the kinetics 

of a sintering compact. Since no one model can accurately describe the 

entire sintering process, several are needed. When one model becomes 

inoperative, a "stage" of sintering is said to be completed, and a dif­

ferent model must then be applied to describe further sintering. 

The initial stage of sintering of a solid-vapor system has been 

associated with the formation of a "neck" at particle contact points and 

was described by Kuczynski1 in terms of a two-sphere model for several 

mechanisms of mass transport. The vaporization-condensation mechanism 

is based on the fact that the equilibrium vapor pressure of the solid is 
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higher above a convex or spherical surface than above a planar surfac~, 

and higher above a planar surface than above a concave surface. When 

two spheres are in contact, as in the model, a concave surface forms 

between them. Then a vapor pressure gradient exists between the convex 

and concave surfaces, and mat~rial transport occurs through the vapor 

phase forming a circular "neck" region and a grain boundary between the 

spheres. A similar model based on a surface diffusion mechanism leads 

to the same geometric configuration. 1 ' 2 Neither model leads to densifi-

cation of a compact. 

A model which does lead to densification is based on Nabarro 's 3 

analysis that, for a crystalline solid, there exists.a greater concentra-

tion of vacancies under a concave surface than under a stress-free planar 

surface or a convex surface. Such a concentration difference gives rise 

to a vacancy concentration gradient between the "neck'' region of a two-

sphere model and the planar grain boundary or the convex surface. Since 

material flows counter to vacancy flow, mass transfer occurs. This 

mechanism is the basis for numerous kinetic solutions for densification 

during various stages of solid phase sintering. 

4 5 6 7-12 1 Kingery, Johnson, Coble, and others ' have derived kinetic 

equations for volume and grain boundary diffusion models for densifica-

tion of solid-vapor systems of the form 

(1) 

where y, m, and K are numerical constants, D is the volume or grain 
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boundary diffusion coefficient, a 3 is the atomic .volume, y is the 
SV 

solid-vapor interfacial tension, T is the absolute temperature, k is 

Boltzmann's constant, and R is the particle radius. 

For volume diffusion mechanisms, the exponent of time, y, ranges 

from 0.40 to 0.50, depending on the geometry of the sintering model 

employed; and for grain boundary diffusion, y ranges from 0.31 to 0.33. 

The e:&:ponent, m, of particle size is 3 for volume diffusion mechanisms 

and 4 for grain boundary diffusion mechanisms. 

If an ideal one component crystalline compact is subjected to suf-

ficient temperature such that the various mass transfer mechanisms men-

tioned above become operative, solid-solid contacts begin to form or 

increase between particles. After a sufficient time, the compact is 

characterized by a solid network and an interconnecting pore phase. 

Upon further sintering, the pore phase becomes discontinuous, and even-

tually is eliminated. At this point, all of the solid-vapor interfacial 

area has also been eliminated and the compact has attained theoretical 

density. This point, however, in most cases does not constitute a mini-

mum free energy configuration since internal surfaces (grain boundaries) 

can generally continue to migrate and decrease in area until a minimum 

. 13-15 free energy configuration, corresponding to planar grain boundar1es, 

is attained. Ideally, grain boundary motion would continue until all 

internal surfaces were eliminated and a single crystal would form. 
•' 

In practice, densities less than theoretical are often obtained 

during sintering when pores become disassociated from grain boundaries 

and isolated in the grains due to grain boundary motion. Removal of 

isolated pores depends on long vacancy diffusion paths between the pore 
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surface and the grain boundary. Although the free energy of such a 

system is not at its minimum value, the change in free energy with time 

becomes so small that for all practical purposes sintering ceases, i.e., 

the slope of the free energy versus time curve approaches zero, Fig. 1. 

The effect of thermodynamic factors on endpoint densities and densi­

fication rates in real compacts has as yet received little attention. 

Therefore, several idealized geometric models will be investigated in 

order to determine thermodynamic constraints on densification and on 

grain boundary motion away from pores. 
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Figure 1.. Incremental free energy change with time for sintering of an 
ideal compact (top) and a real compact (bottom). 
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II. THERMODYNAMIC CONSIDERATIONS 

A. Thermodynamics of Endpoint Densities 

In a sinteiing powder compact as the solid/vapor interfacial area 

decreases, the solid/solid interfacial area increases. The change in 

free energy of the system at constant temperature, pressure and mole 

fraction can then be expressed as 

y dA +y dA 
sv sv ss ss 

(2) 

where 

ysv = solid/vapor interfacial energy 

,yss = solid/solid interfacial energy 

dA = differential solid/vapor interfacial area sv 

dA = differential solid/solid interfacial area ss 

As long as o(G) remains less than zero, sintering will continue. The 

first term on the right of the equation is always negative and the 

second, positive. Therefore, o(G) will be a function of the relative 

interfacial areas (geometry of the system) and interfacial energies. 

Four sintering geometries were analyzed for uniform sized spherical 

particles: diamond cubic, simple cubic, body-centered cubic, and face-

centered cubic (corresponding to particle coordination numbers of 4, 6, 

8 and 12). The particles are assumed to be single phase, crystalline, 'lit' 

and their interfacial energies isotropic. The interfacial energies are 

related as: 

= 2y cos _2<1> 
SV 

(3) 
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where ¢ is the dihedral angle. 

The densification model used is based on the concept that the cap 

material removed at a contact, or grain boundarY, between two spheres is 

uniformly distributed on the free surfaces; the particle centers then 

move toward each other and the radii of the spheres increase, keeping the 

total solid volume constant. 16 This model differs from the bridging neck 

at model contacts normally employed for predicting kinetics of solid 

phase sintering. Although neck formation is often experimentally 

observed during sintering, such a geometry is riot correct for predicting 

equilibrium conditions for thermodynamic analysis since it does not 

correspond to the minimum free energy configuration for the system. 

If two spheres are just in contact, Fig. 2A, the free energy of the 

system is a maximum. Now, if the spheres interpenetrate until a certain 

cap height, h0 , is removed and deposited in the neck region, Fig. 2B, 

the radius of each sphere is unchanged. At this point, if no further 

densification as determined by h0 or by keeping the centers of the 

spheres fixed occurs, but the solid/solid, and the solid/vapor inter-

faces equilibrate, as shown in Fig. 2C, material from. the neck region is 

then deposited uniformly on the surfaces of the spheres and R0 increases 

to Rand h
0 

to h1 so that R0-h0 = R-h1 • This geometry corresponds to 

the minimum free energy configuration for that particular degree of 

densification and becomes the model used in this analysis. It is the 

equilibrium geometry when cG in Eq. (2) becomes equal to zero. The 

Yss/ysv can then be determined for this equilibrium configuration. 

Proceeding with the thermodynamic analysis, let us consider the 

densification mechanism represented by the two~sphere model shown in 
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Figure 2. Change in free energy of a two sphere model during inter­
penetration at particle-particle contact. Spheres just touch 
(top); neck forms (middle); and equilibrium dihedral angle 
forms (bot tom) • 
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Fig. 2C. The solid-vapor interfacial area is given by 

A 
SV 

(4) 

where R is the radius of the sphere and h
1 

is the height of the spherical 

segment at any degree of densification, and n1 

nearest neighbors 

' h1/R, (similar to 

around each sphere. Setting 

Stevenson and White16
), 

A 
SV --= 
7T 

is the coordination of 

pl as a variable equal 

(5) 

Equating the original volume of the sphere, radius R0 , with the volume 

of the sphere minus caps, radius R, yields the relationship between R0 

and R for any value of P
1

• 

Substituting (6) into (5), 

A sv 

and on differentiating, 

(6) 

= 
(7) 

to 
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(8) 

Since each solid-solid con tact is shared by two spheres, t,he solid-

solid area per sphere is expressed as 

(9) 

where 

is half the boundary area per contact for a single sphere. 

By substituting (6) into (9), and P 1R for h
1

, 

(10) 

and on differentiating, 

... 
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"· 

(11) 

Substituting (11) and (8) into (2), 

o(G > syst 
= I.L__l_ ( ) y + ( ) y I dP ss . ( ) sv 1 

(12) 

and setting o(Gsyst) = 0, 

(13) 

As the interpenetration of nearest neighbor spheres and densification 

occur for each packing array, second nearest neighbors approach each other 

and planar faces in the sintering unit cell (such as (110) in BCC pack-

ing of spheres) densify. For a given sized particle the rate at' which 

any planar face densifies remains essentially constant but the total 

amount of shrinkage at this rate depends on the coordination number of 

spheres in the plane or the degree of packing. At the point when second 
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nearest neighbors touch, or when one planar face in the unit cell has 

completely densified, however, Eq. (13) no longer applies. Each of the 

packing arrays sinters differently after Eq. (13) becomes invalid and, 

therefore, must be discussed separately. 

For BCC packing of spheres (fractional void volume of 0. 32), densi-

fication proceeds according to the model until contacts form with second 

nearest neighbors along <100> directions and the coordination increases 

from 8 to 14, as seen in Fig. 3. At this point h
1 

c;ontinues to increase, 

but new contacts formed with second nearest neighbors result in removal 

of additional cap material of height h2 and the creation of new solid­

solid interfaces. It is evident that Eq. (13) no loriger describes the 

sintering of BCC packing correctly since the effect of second nearest 

neighbor contacts is not included in.the analysis. 

Proceeding in a manner similar to the analysis for nearest neighbor 

contacts, 

A 
sv 

(14) 

where n
2 

is the coordination of second nearest neighbors, and h 2 is the 

height of the cap material removed from second nearest neighbor contacts. 

Substituting h
1

= P
1

R andh
2 

= P
2

R into Eq. (14), 

A 
SV 

(15) 

By >equating the original volume of the spherical particle with the volume 

of the sphere. at some value of P, minus both sets of caps, (similar to 
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A CIOO) (110) 

B (100) (110) 

c (100) (110) 

XBL 749-7199 

Figure 3. Interpenetration of spheres in a body-centered cubic array. 
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Eq. (6)), R may be determined in terms of R
0

, P 
1

, and P 
2

• 

Substituting Eq. (16) into (15) 

The solid-solid area is given by 

A = ss 

By substituting P1R for h1, and P2R for h2, and Eq. (16) into (18), 

A 
ss 

(16) 

(17) 

(18) 

(19) 

The free energy change from the original configuration of spheres 

just touching to the configuration at any value of P is 

6G = 6A y + 6A y . 
ss ss sv sv 

2 
Since initially A is equal to zero, and A = 4nR

0 . ss sv 

(20) 
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(21) 

For two particular values of P, P A and P B, the free energy change is 

and 

2 
= Yss (A (PB)) + y (A (PB) - 4rrR0) ss sv sv (23) 

And the change in free energy from state A to state B is 

(24) 

or 

~G = y (A (PB) -A (PA)) + y (A (PB) -A (PA)) ss ss ss sv sv sv (25) 

Setting ~G = 0, gives the critical ratio of y /y for the incremental ss sv 

densification from A to B. That is, 

(26) 

This ratio is identical to that determined in Eq. (13) for the increment 

A to B. 
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Since Eqs. (17) and (19) are somewhat lengthy, it is more convenient 

to use Eq. (26) than to differentiate Eqs. (17) and -(19) and substitute 

them in Eq. (2) to determine the critical ratios-of y /y for a given 
. ss sv 

degree of densification. Therefore, by using the proper values of np 

n2 , and P2 for Eq. (26), the critical ratios of y /y for the entire 
ss sv 

system of sintering spheres can be determined for BCC packings where 

n
1 

= 8, n
2 

=_ 6, and P
2 

= (/3- 2) !13 + 2P/13. 

When an array of spheres sinter, densification will generally be 

described by two dihedral angles; the nearest neighbor dihedral angle, 

~l' and the second nearest neighbor dihedral angle, ~2 • As second 

neighbors interpenetrate, ~l continues to decrease while ~2 begins at 

0°. Therefore, ~l will be larger than ~2 at any value of P. 

Since the largest dihedral angle for a particular system determines 

the critical ratio of y /y , it is necessary to determine values of ss sv . 

~l after second nearest neighbor interpenetration has begun. The critical 

ratio for the entire system is determined by subsitution of Eqs. (17) 

and (19) into Eq. (26). But when Eqs. (16), (5), and (9) are substituted 

into Eq. {26), the critical ratio of y /y for nearest neighbor contacts 
SS SV 

can be determined at values of P corresponding to second neighbor inter-

penetration. 

Thus, it 'is necessary to calculate the critical ratios of Yss/ysv 

for nearest neighbor contacts as well as for the sum of the contacts of 

the entire system in order to determine the specific thermodynamic 

barriers to densification for a particular array of spheres. 

Referring to Fig. 3 for BCC packing of spheres, the densification 

proceeds from con~.iguration 3A, (nearest neighbors just touching), to 
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configuration 3B, (second nearest neighbors just touching), and is 

described by Eq. (13). Beyond this point, Eq. (13) is no longer valid. 

Configuration 3c corresponds to the point at whic~ second nearest neigh-

bors have interpenetrated sufficiently to cause complete densification of 

th~ unit cell. The densification path from 3B to 3C is described by 

Eqs. (17), (19), and (26). 

Since densification is measured as ~1/10 (equivalent to·h
0

/R
0

) 

where ~1 is the linear shrinkage and 10 is the original linear dimension, 

it is not strictly valid to use P 1 , i.e., h/R as a measure of densifi­

cation since R according to the model increases from R0 as the spheres 

interpenetrate, as seen in Fig. 2. 

or 

For two interpenetrating spheres, 

R - h 1 

R(l-P 1) 

p 
0 

1 - R(l-P ) 
1 

(2 7) 

(28) 

(29) 

.,. 
Using Eqs. (6) or (16), the ratio of R/R0 may be substituted into 

(29) to give the true linear shrinkage, P 0 . Therefore, when Eqs. (13) 

and (26) are plotted as a function of P0 , curves are obtained for 

critical ratios of y /y. at any degree of densificatiori for which the 
SS SV 



-18-

model holds. 

Figure 4 shows the results for BCC packing. Equation (13) describes 

the sintering of the 8 nearest neighbors until second nearest neighbors 

touch represented by segment a-b of curve a-c. At this point, P0 = 0.102 

andy /y = 1.734, corresponding to a dihedral angle ~1. = 59.6°. 
SS SV 

Beyond point b, the curve, which splits into two segments, is described 

by Eq. (26). The nearest neighbor dihedral angle continues to increase 

along the segment b-e of the curve (described by substitution of Eqs. (5), 

(9), and (16) · into (26)), while the second nearest neighbor dihedral 

angle begins to increase from 0°. At point c on the curve, just prior 

to complete densification of the unit cell, the nearest neighbor dihedral 

angle, determined by graphical methods, is ~l = 71.5°, or y /y = 
SS SV 

1.625; while the second nearest neighbor dihedral angle is ~2 = 42° or 

y /y = 1.814. The value of y /Y = 1.625 corresponds to P
0 

= 0.112 
SS SV SS SV 

on the curve at point c. However, at this value of P0 (linear shrink­

age) calculation of the fractional void volume in the unit cell accord-

ing to the mathematical model yields a value of 0.031 even though the 

degree of linear shrinkage is sufficient to completely densify the cubic 

cell. The reason for the discrepancy is that although h1 and R both 

increase during densification, in the early stages of sintering h1 in­

creases faster than R and therefore (R-h1) decreases while at large 

values of· P1 , R begins to increase faster than h1 • Thus (R-h1) actually 

goes through a minimum and then begins to increase• For all the packing 

arrays treated here, tlemodel breaks down before the minimum of (R-h1) 

is reached and therefo~e, the values of y /y critical obtained from ss sv 

.. 

..... 
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Figure 4. Densification versus critical ratio of y /y for four sintering geometries. 
ss sv 
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Eq. (26) are still valid. However, calculation of the fractional void 

volume in the unit cell from P0 leads to erroneous results at large 

values of P1 , Eq. (29). 

By assuming that the initial edge length of the unit cell is 1, and 

that at theoretical density the edge length is the cube root of the 

fractional final volume (for BCC, 3/0.68), one can obtain the true value 

of f1L/L0 , called P0 in Table I, at theoretical density for the model. 

The value for BCC packing is P 0 = 0 .121. 

The solid-vapor dihedral angle then becomes a solid-solid triple 

point with grain boundaries forming angles of 109°, 125.5°, and 125.5°. 

The combined free energy contribution of first and second neighbors 

(Eqs. (17) and (19) substituted into Eq. (26)), results in the curve 

shown along path d-e. At second neighbor contacts, the curve breaks 

discontinuously from a-b to d-e because the dihedral angle for second 

neighbor interpenetration begins at 0°. Therefore, the sum of the con-

tribution of the nearest, and second nearest neighbor free energies 

yields the total for the system, and results in the curve d-e. 

The critical dihedral angle for sintering of the·BCC array is 71.5° 

which is the value of the nearest neighbor dihedral angle, ~1 , just prior­

to complete densification of the unit cell. At any value of P 0 , one can 

determine the critical ratio of y /y for that particular degree of 
SS SV 

densification, by finding the ratio of yss/ysv on the abscissa of Fig. 4 

corresponding to the point at which P0 intersects the curve. If the 

ratio of yss/ysv is larger, or if the dihedral angle,~ 1 , is smaller 

than the value obtained from the curve, that particular value of P0 , 

and therefore, that degree of densification cannot he obtained for the 

I 
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Table I. Parameters for solid phase sirttering models 

DC sc BCC FCC 

Fractional initial void volume: 0.68 0.48 0.32 0.26 

At point of second neighbor 
contacts: 

Po (Linear shrinkage based 
on Eq. (28)) 0.277 0.184 0.102 

4> 104.4 89.6 59.6 

Ys/Ysv 1.226 1.416 1.734 

Fractional void volume 0.101 o~o36 0.062 

At endpoint of the mathematical 
model: 

Po (Linear shrinkage from 
Eq • (28)) 0.280 0.184 0.112 0.084 

. 4> 115 89.6 71.5 59.6 

Ys/Ysv 1.074 1.416 1.625 1. 734 

Fractional void volume 0.088 0.036 0.031 0.035 

At theoretical density: 

P' (Linear shrinkage of cube 0 with vriginal edge length 
of 1) · · 0.316 0.196 0.121 0.095 

" 4> 109 71.5 109 

Ys/Ysv 1.161 1. ti25 1.161 
t,._J 

Fractional void volume 0.0 0.0 0.0 0.0 
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real system. Therefore, to densify a BCC array of spheres, the equilib-. 

rium dihedral angle must be greater than 71.5° and the ratio of yss/ysv 

must be less than 1.625./ If these values are fulfil-led in a real system 

which approaches the configuration of the model, then no thermodynamic 

barrier to densification exists. 

For diamond cubic packing, (fractional void 'volume of 0 .68), Figs. 5 

and 6A, fo~r nearest neighbors interpenetrate until contacts form with 

second nearest neighbors, Fig. 6B. The ratio of yss/ysv as a function 

of P
0 

is described by Eq. (13), and segment a-b' of Fig. 4. At b', P0 = 

0.277, y /y = 1.226, and <P1 = 104.4°. Beyond b', Eq. (13) becomes 
SS SV 

invalid since interpenetration of second nearest neighbor contacts 

begins. Equations (17) and (19) may not be applied to the analysis since 

interpenetration of nearest neighbor spheres creates a line of inter-

section between second neighbor spheres instead of ? second nearest 

neighbor solid~solid planar boundary. However, Eqs. (16), (5) and (9) 

may be substituted into Eq. (26) to yield dihedral angles for siritering 

of nearest neighbors sin~e <P1 continues to increase after second neigh­

bors have contacted, and the shape of the nearest neighbor solid-solid 

interface remains circular. 

When interpenetration of second nearest neighbors is such that a 

120° solid-solid triple point forms, Fig. 6C, the model is assumed to 

have reached its endpoint since the spherical chatacter of the particles 

is lost. However, the unit cell has not densified completely at this 

point, and a residual fractional porosity of 0.088 remains, (based on a 

cube of unit edge length and a fractional porosity of 0.68). The value 
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Figure 5. Diamond cubic array of spheres. 
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Figure 6. Interpenetration of a diamond cubic array of spheres. 
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of P0 is 0.280, y /y = 1.074, and ¢1 = 115°. The curve for this step ss sv 

in densification ·corresponds to segment b '-c' of Fig. 4. For the model, 

theoretical density occurs at P0 = 0.316; however, in order to reach a 

densification corresponding to P
0 

= 0.280, ¢
1 

must be greater than 115° 

or y /y must be less than 1.074. ss sv 

For simple cubic packing of spheres, (frac.tional void volume of 

0.48), Fig. 7A, six nearest neighbors interpenetrate according to 

Eq. (13), the densification is described by segment a-b'' of Fig. 4 

until contacts form with second nearest neighbors along <110> directions. 

At this point, P
0 

= 0.184, the solid-vapor dihedrai angle is 89.6°, and 

y /y 1.416. As the coordination increases from 6 to 18, Fig. 7B, 
ss sv 

the (100) faces become completely densified, and four solid-solid inter-
' 

faces (grain boundaries) intersect at 90°. However, residual porosity 

remains on the (110) faces, Fig. 7B, and the nearest neighbor dihedral 

angle increases past 90°. In order for further densification to occur, 

the area of the (100) faces must be reduced in order that the volume of 

the unit cell can continue to decrease. As densification proceeds, by 

some other mechanism than that described in the model, material is re-

moved from first and second nearest neighbor contacts.. However, the 

coordination of solid-solid interfaces does not increase as for BCC pack~· 

ing, but rather remains at 6. Instead, a line is formed from the inter-

section of the two (1/2 00) grain boundary planes as second neighbor 

interpenetration occurs, Fig. 7C. Equation (13) is no longer valid for 

describing the densification of the system since solid-vapor area is 

being removed from second neighbors, as well as from nearest neighbors. 

Also, the description of the solid-solid interfaces is no longer that of 
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Figure 7. Interpenetration of a simple cubic array of spheres. 
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a circular section for nearest neighbors. Therefore, neither Eqs. (17) 

and (19) nor (16), (5), and (9) may be applied to the model. 

On (110) planes, as second neighbor interpenetration begins, the 

dihedral angle increases from ~P2 = 0°, Fig. 7B and 7C. However, the 

nearest neighbor dihedral angle on these planes continues to increase 

past 90°. Just prior to complete densification of the (110) face, the 

nearest neighbor dihedral angle (determined by graphical techniques), is 

~P 1 = 109°, and y /y = 1.161. 
SS SV 

At this point, the second nearest neighbor dihedral angle is ~P2 = 

89.6°. Assuming that the unit cell shrinks to a volume equal to that of 

the original sphere, the value of P0 at theoretical density is 0.196. 

Thus, in order to densify a simple cubic array of spheres, ~P 1 must be 

greater than 109° or y /y must be less than 1.161~ If these con­ss sv 

ditions are met, there is no thermodynamic barrier to densification 

although kinetic barriers may arise since the system must shrink by some 

other mechanism, after second neighbors contact, than that described in 

the present model. 

For FCC packing of spheres, (fractional void volume of 0.26), 12 

nearest neighbor spheres interpenetrate as shown in Fig. SA, until the 

(111) face of the unit cell has densified completely. Equation (13) 

described the sintering along segment a-b''' of Fig. 4. At b''' P = 
' 0 

0.084, the solid vapor dihedral angle, ~P1 = 59.6°, andy /y = 1.734. 
• SS SV 

When the (111) plane has densified, a solid-solid triple point forms with 

grains intersecting at 120° angles. Second nearest neighbors have not 

yet touched. However, as for the simple cubic case, in order for the 

volume of the FCC unit cell to continue to decrease, the area of the (111) 
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Figure 8. Interpenetration of a face;...centered cubic array of spheres. 
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planes must be reduced. Again, it. is evident that Eq. (13) is not valid 

beyond this point. 

If densification ·is to proceed further, sintering must occur by 

some other mechanism which allows for the redistribution of some of the 

material from the (111) planes. Shrinkage may then continue until con-

tacts form with second nearest neighbors of (100) faces, Fig. 8C. Just 

prior to contact, the nearest neighbor dihedral angle on the (100) face 

is ¢1 = 89.6°. After contact, the (100) plane is densified and four 

solid-solid interfaces intersect forming 90° angies, Fig. SC. (100) and 

(111) faces have now densified but residual closed porosity remains on 

the (110) faces. 

As further shrinkage occurs, again by some other mechanism than that 

described in the present model, the second nearest neighbor dihedral 

angle, ¢2 , on the (110) face increases from 0°, while the nearest neigh­

bor dihedral angle, ¢1 , increases past 90°. 

When the porosity on the (110) face is eliminated, the unit cell is 

completely densified. Just prior to the elimination of the last traces 

of porosity, graphical methods indicate that the nearest neighbor di-

hedral angle, on the (110) face, is ¢
1 

= 109°, the second nearest neigh­

bor dihedral angle, ¢2 = 68°, and P0 = 0.095. 

Therefore, if ¢1 is greater than 109°, or y /y is less than 1.161, 
SS SV 

there is no thermodynamic barrier to complete densification of an FCC 

array of spheres, (cG t) is always less than zero. However, as for sys 

simple cubic packing, kinetic barriers may exist. Results for all co-

ordinations of spheres are given in Table I. 
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Analysis of the four sintering geometries presented here reveals 

that in the early stages of densification, when only nearest neighbors 

are in contact, the larger the coordination of spheres, the larger is 

y /y critical. Thus, the thermodynamic barriers to densification are 
SS SV . 

least for FCC packing (coordination = 12) and greatest for diamond cubic 

packing (coordination= 4). For DC and SC arrays when second nearest 

neighbors come in contact, the mathematical model described by Eqs. (13) 

and (26) breaks down. Some of the material from circular solid-solid 

contact areas which formed during the interpenetration of nearest neigh-

bor spheres must redistribute itself laterally in order that further 

densification may occur since the contact area loses its circularity. 

For FCC packing, the (111) face of the unit cell densifies prior to the 

formation of second nearest neighbor contacts. At this point, the model 

also breaks down and redistribution of material mtist occur by some other 

mechanism to cause complete densification. On the other hand, the model 

for BCC packing continues to describe sintering past the point where 

second nearest neighbor contacts form and is valid until theoretical 

density is attained. For this packing array, the model sinters uniformly 

throughout the densification process, forming a 14 sided polygonal solid 

(tetrakaidecahedron) which fills space. 

Referring to Table I, at theoretical density for each packing 

array, y /y . critical is the largest for BCC (1.625), and much smaller 
SS SV 

for all other coordinations of spheres, i.e., 1.074 for DC and 1.161 for 

SC and FCC. .Each of the latter three packing arrays forms closed 

porosity prior to complete densification while BCC is characterized by 

open porosity throughout the entire densification process. Additionally, 
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the fractional void volume is proportionately greater for BCC than for 

other packings when second nearest neighbors form contacts, Table I. 

At second nearest neighbor contact points for BCC, P
0 

= 0.102 and 

the fractional void volume is 0.062, while for simple cubic packing at 

P
0 

= 0.184 (second nearest neighbors form contacts) the fractional void 

volume is 0.036. The larger fraction of porosity for BCC allows continua-

tion of uniform sintering while for other packing arrays some of the 

crystallographic faces in the unit cells must lose some material in 

order to achieve complete densification for the compact. 

This nonuniformity in sintering results in large values of the 

nearest neighbor dihedral angle, ~1 , relative to the second nearest 

neighbor dihedral angle, ~2 . Since a large dihedral angle causes y /y 
. ss sv 

critical to be small, the thermodynamic barriers to complete densification 

are increased by nonuniform sintering. This effect is evident by com-

parison of SC and FCC packings, Table I. The initial fractional void 

volume for SC is 0.48 while that for FCC is 0.26. At second nearest 

neighbor contact points for SC, P
0 

= 0.184 andy ./y = 1.416, while 
SS SV 

for FCC when the (111) face has densified P
0 

= 0.084 andy /y = 1.734. ss sv 

In both cases uniform sintering has occurred up to these points and 

Yss/ysv is larger for FCC than for SC. However, any further densifica­

tion must proceed by nonuniform sintering of the spheres. This non-
l 

uniformity causes both ratios of y /y critical to attain the same ss sv 

value, 1.161, when the unit cells have densified even though the original 

fractional void volume for SC is almost twice as large as that for FCC. 

In real powder compacts, nonuniformity can arise in several ways 

and can lead to kinetic as well as thermodynamic barriers to sintering. 
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Inhomogeneous packing due to poor mixing or agglomeration can cause non­

uniform porosity distributions throughout a powder compact. During the 

sintering anneal, regions of higher density of packing densify prior to 

regions of lower density. Further shrinkage of the coropact w:i.ll cause 

tensile stresses to arise in the less dense regions which in turn will 

decrease the sintering rate or produce endpoint densities. Such a 

phenomenon is analogous to the nonuniform densification which occurs in 

the models for DC, SC, and FCC packing arrays. 

Even if a compact has a homogeneous density distribution, a wide 

particle size distribution can cause nonuniform sintering. Coble
17 

has 

shown that stresses, which retard the densification kinetics, arise dur­

ing sintering of nonuniform sized spherical particles. Therefore, if a 

powder compact is to be densified completely' the equilibrium dihedral 

angle should be large as determined by control of interfacial energies, 

the particle size distribution should be as narroW as possible, in order 

that uniform sintering (interpenetration of particles) will occur at all 

particle-particle contacts, and the packing should be homogeneous and 

such that open porosity is present for as much of the sintering anneal · 

as possible. If these conditions are met, uniform sintering at all con­

tact points will occur throughout the sintering process and the thermo~ 

dynamic and kinetic barriers to complete densification will be a minimum. 

B. Thermodynamics of Dihedral Angles 

1. Vacancy Concentrations and Gradients 

Thus far the interpenetration of the spherical particles presented 

in the model has been discussed from a purely thermodynamic approach. 

Since such an analysis considers only the initial and final states of the 
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system, the path of densification or the mechanism by which actual mass 

transfer leading to densification occurs has not been considered. There-

fore, it is of interest to examine, on an atomistic scale, the process 

by which mass transfer occurs and an equilibrium configuration is attained 

for a two sphere model forming no bridging neck. The analysis is based 

on differences in vacancy concentrations at the Jsolid-solid and solid-

vapor interfaces which are caused by stresses arising from interfacial 

tensions and surface curvatures. Before discussing the model directly, 

it is necessary to establish some general relationships concerning the 

formation of vacancies in a crystalline material. 

The equilibrium concentration of lattice vacancies in the bulk of 

a pure one component crystalline material is given by 

N 
0 

(30) 

where N is the vacancy concentration, N is the concentration of occupied 
0 

lattice sites, Qf is the work associated with the creation of a lattice 

vacancy. In a homogeneous single crystal material at thermal equilibrium, 

N is constant throughout the bulk phase. However, in regions adjacent 
0 

to planar solid.:...vapor interfaces, the equilibrium vacancy concentration, 

Nsv' is not equal to N
0

• 

Consider the two dimensional simple square array of atoms shpwn in 

Fig. 9a. Three different locations, .labeled 1, 2, and 3, where vacancies 

can be created are indicated. Figure 9b shows the same lattice array 

with atoms 1, 2, and 3 removed revealing the three possible types of 

vacancies. In order to determine the most favorable site for vacancy 
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Figure 9. (A) A simple square array of atoms showing atomic 
. lattice sites located in the bulk (1), just below 

the surface (2), and at the surface (3). 
(B) Vacancies formed at sites ( 1), (2) and (3). 
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formation, it is necessary to calculate the internai energy associated 

with the creation of each type of lattice vacancy. 

Examining first the atom labeled 1 in Fig. 9a, one sees that there 

is no net stress on this atom or on the surrounding atoms labeled A, B, 

C, and D. When a vacant lattice site is created at position 1, as in 

Fig. 9b, the four nearest neighbor atoms, (A, B, C and D), are placed in 

a state of tension assoc~ated with the breaking of four bonds with atom 1. 

The next case to examine is atom 2, Fig. 9a, which is in an identical 

location as atom 1 with respect to nearest neighbors except that atom G, 

a surface atom located directly above atom 2, is in a state of tension. 

When a vacant lattice site is created in position. 2, Fig. 9b, four bonds 

are broken, and atoms E, F, and H are placed in a state of tension. On 

the other hand, the tension on atom G is reduced since this tension is 

now created by atom E instead of atom 2. Thus in creating a vacancy at 

position 2, the internal energy of the system is increased by the break-

ing of four bonds, but it is also decreased due to the reduction in the 

tension on atom G. Therefore, less energy is necessary to create a 

vacancy at position 2 than at position 1. 

Finally; consider atom 3 which is at the surface of the simple 

square array in Fig. 9a. This atom is in a state of tension due to the 

inward pull of atom 1. When a vacancy is created at position 3, Fig. 9b, 

three bonds are broken and atoms I, J, and K are placed in a state of 
-\lOp 

tension. The tension which was associated with atom 3, however, is 

reduced. It is evident that the internal energy associated with the 

creation of a vacancy at position 3 is less than that associated with 
( 

positions 2 or .. 1. Neglecting any entropy effects and using Eq. (30), it 
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can be shown that 

N 
0 

where N(i) indicates the location of the vacancy. 

(31) 

At a specific temperature, there are equilibrium concentrations of 

vacancies associated with the bulk and surface regions of a material. 

These concentrations are given by Eq. (30) and although they are not 

equal, there is no net flow of vacancies since no chemical potential 

gradient exists. The excess concentration of vacancies in the surface 

region may then be considered as analagous to positive adsorption of 

solute atoms under equilibrium conditions. In effect the stresses intro""' 

duced by the surface tension cause the establishment of a vacancy con-

centration gradient which leads to vacancy flow until equilibrium vacancy 

compositions and a constant chemical potential are reached. 

In polycrystalline materials internal surfaces (grain boundaries) 

are present as well as external surfaces. The nature of the structure of 

grain boundaries is not well understood, but when two crystallographic 

orientations intersect forming a grain boundary, there will be a somewhat 

smaller coordination of atoms in this region than in the bulk. There-

fore, fewer bonds will be broken in creating a vacancy at a grain boundary 

than in the bulk and a somewhat higher concentration of vacancies is ex-

pected. It should be noted, however, that since the coordination of 

atoms in the grain boundary is probably very close t() that in the bulk, 

the excess vacancy concentration Ngb over that in the bulk, N
0

, is small 

and is less ,than the concentration at the solid-vapor interface, N • 
SV 
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Furthermore, a tensile stress field acting on the grain boundary would 
' 

be expected to increase the vacancy concentration at the grain boundary . 

. Now consider a configuration similar to Fig. 10, which shows the 

intersection of two solid-vapor interfaces with a solid-solid interface 

forming ·a dihedral angle, ~' between the two. The horizontal component 

of the solid-vapor surface tension causes atoms in the grain boundary to 

be in a state of tension. The well known analysis of Nabarro3 indicates 

that vacancies form preferentially in a region of tension. Thus, it is 

expected that the presence of a solid-solid/solid-vapor dihedral angle 

will cause an enhanced vacancy concentration at the grain boundary over 

a stress free grain boundary with a maximum at the root of the dihedral 

angle which increases as the dihedral angle increases. When the di-

hedral angle reaches equilibrium, the vacancy chemical potential gradient 

between the solid-vapor and solid-solid interfaces becomes zero. 

Now, consider the application of these arguments to· the sintering 

of a two sphere model which does not form a neck of concave curvature 

but rather is described by the intersection of 'two spheres as discussed 

in Section II-A, forming a dihedral angle, ~l' which is less than the 

equilibLium value, ~ , as in Fig. lla. The vacancy concentration at eq 

the solid-vapor interface will also be a function of the convex curvature 

and therefore will be less than that for a planar interface, but still 

greater than that for the bulk. Thus 

N (~) > N (R1 ,~1 ) > N
0

' 
SV SV 

(32) 
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Figure 10. A solid/solid-solid/vapor triple point indicating how 
the horizontal component of the solid/vapor interfacial 
tension increases as the dihedral angle increases, 
creating tensile stresses at the grain boundary. 
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Figure 11. · Path of vacancy flow for systems not forming bridging 
necks. Flow proceeds from the solid/vapor interface 
to the solid/solid interface as interpenetration of 
the spheres occurs (A) to (B). When the equilibrium 
dihedral angle forms, vacancy flow ceases (C). 
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Also, the concentration of vacancies at the solid-vapor interface is 

greater than that at the grain boundary, 

(33) 

This concentration gradient of vacancies is a function of the chemical 

potential gradient which creates a flow of vacancies from the solid-vapor 

surface to the solid-solid interface and a counter flow of materials. 

As interpenetration of the particles proceeds, material is deposited on 

the outer surface of the spheres; the radius of the spheres, R1 , increases 

to R2, and the dihedral angle increases to ~2 , Fig. llb. Since the 

radius of the spheres increases from R1 to R2, the vacancy concentration 

at the solid-vapor interface, Nsv(R2 ,~2 ) will increase as interpenetration 

of the spheres proceeds. Simultaneously, the dihedral angle increases 

from ~l to ~2 and the tensile stresses on the grain boundary increase; 

therefore, the vacancy concentration at the solid-solid interface, 

l.I(N ) = l.I(N ) 
SS SV 

(34) 

The vacancy chemical potential gradient between the solid-vapor and 

solid-solid interfaces then vanishes and sintering ceases. A schematic 

representation of the manner in which the vacancy concentration gradient 

changes with dihedral angles is shown in Figs. 12, 13, and 14 for 1, l01 
' . !;' 

and 100 micron size spherical particles forming an equilibrium dihedral 

angles of 68.4°, assuming that the activity of the .vacancies is equal to · 

• 

.. 
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Figure 12~ Vacancy concentrations at the solid/solid and solid/vapor inter­
faces versus P or h/R for interpenetration of 1 micron spheres 
forming no bridging neck. (See Appendix 1.) 
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Figure 13. Vacancy concentrations at the solid/solid and solid/vapor 
interfaces versus P or h/R, for interpenetration of 10 micron 
spheres forming no bridging neck. (See Appendix 1.) 
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Figure 14. Vacancy concentrations at the solid/solid and solid/vapor 
interfaces versus P or h/R, for interpenetration of 100 micron 
spheres forming no bridging neck. (See Appendix 1.) 
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their mole fraction, (ideal solution approximation). As can be seen from 

the figures, the vacancy concentrations at the solid-vapor and solid-

solid interfaces both increase as interpenetration of the spheres pro-

ceeds, but the concentration of vacancies at the solid-solid interfaces 

increases at a faster rate and becomes equal to the concentration at the 

solid-vapor interface when the equilibrium dihedral angle forms (see 

Appendix 1 ror details of the calculations used in obtaining Figs. 12, 

13 and 14). Figure 15 shows a schematic diagram of how the chemical 

potentials of vacancies change at each interface as ¢ increases from 0° 

to·¢ 
eq 

2. Thermodynamic Driving Force 

At any instance during sintering, if the experimental or dynamic 

dihedral angle is less than the equilibrium value, there is a thermo-

dynamic driving force· for continued mass transport and sintering. As 

was shown in the thermodynamic analysis of endpoint densities, (Section 

II-A), the further the experimental dihedral angle.is from the equilib-

rium value, the more negative is the differential free energy in going 

from the nonequilibrium to the equilibrium configuration, and the greater 

is the thermodynamic driving force for further densification. 

This overall driving force for sintering may be expressed as 

¢ - ¢ 
eq dyn (35) 

where ¢ is the value based on y for a planar grain boundary and on 
eq ss 

ysv for surfaces in equilibrium with their own vapor; and <Pdyn is the 

instantaneous value in a sintering compact which is dependent on 

.. 
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.atmospheric conditions, chemical effects, and geometry. Mathematically, 

. when q,d becomes equal to q> sintering ceases since the thermodynamic 
yn eq 

driving force for sintering is eliminated. 

Under static conditions where the vapor phase is in equilibrium 

with the solid, an equilibrium dihedral angle is attained. However, 

under dynamic conditions, the vapor species above a specimen can be 

swept away, and in an attempt to restore the equilil:>rium vapor pressure 

for the system, material will vaporize more from the higher energy curved 

surface at the groove root. If vaporization is rapid compared to other 

mass transport mechanisms which attempt to restore the equilibrium shape 

of the dihedral angle, a nonequilibrium or experimental dihedral angle 

which is smaller than the equilibrium angle will result. This decrease 

in dihedral angle can be referred to as a "corrosion" effect. 

q, is also dependent on chemical effects since adsorption or de-
dyn 

sorption of material from solid-vapor surfaces will vary depending on 

the curvature of the surface. For instance, a solute atom which posi-

tively adsorbs but is somewhat larger in atomic size than the solvent 

atom will generate compressive stresses in the atomic lattice. Such an 

atom will therefore preferentially adsrob in the concave surface of the 

neck region of a two sphere model which is in radial tension as opposed 

to the convex surfaces of the sphe.res which are in radial compression • 

. Correspondingly, changes in y occur during sintering and q, is 
sv dyn 

affected. 

The third parameter, geometry represents the effect of purely 

geometric conditions changing during sintering. Interpenetration of 

spheres in the absence of neck formation has already been discussed. A 
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more common condition that should be discussed further is associated 

with the formation of bridging necks between particles. Nichols 2 has 

shown mathematically that for a two sphere model having a briding neck 

between the spheres, (actually infinite cylinders), surface diffusion 

alone will lead to an "undercut" region adjacent to the neck, Fig. 16. 

Similar undercutting has been predicted when volume diffusion mechanisms 

are operative. 11 These derivations assumed no contribution from the 

grain boundary energy to the shape of the surfaces, i.e., a 180° dihedral 

angle. However, for any dihedral angle less than 180° it can be shown 

by inspection that the degree of undercutting must decrease as the 

equilibrium dihedral angle decreases and that as equilibrium conditions 

are approached all surface inflections (undercuts) must disappear. 

Therefore, when bulk and surface diffusion flux~s are similar, material 

diffusing from the bulk and depositing at the surface of the neck region 

will continue. to diffuse by surface diffusion mechanisms from the concave 

surface (neck region) to the undercut region thus reducing or flattening 

out the degree of undercutting and in turn reducing the dihedral angle. 

In an attempt to attain a minimum free energy configuration, further 

material transport will occur via bulk or grain boundary diffusion 

mechanisms from the grain boundary towards the neck region. The deposi­

tion of material from this ~ource w~ll tend to restore the equilibrium 

dihedral angle. The two processes will continue on an atomistic scale 

until surface inflection points disappear and the equilibrium configura­

tion is reached. During this interval, if geometric effects provide the 

principal contribution to 6~, there will be a small incremental value of 

6~ during sintering which will decrease with increasing neck radius and 
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become zero at equilibrium. 

In the absence of corrosion or chemical effects, this ~¢ will be the 

only thermodynamic driving force for densification. If the surface diffu-

sion flux is rapid compared to the bulk or grain boundary diffusion flux, 

the surface topography created by the ratio of y /y will tend to 
SS SV 

eliminate the undercut region as the neck radius increases. Equilibrium 

conditions will then be approached without any measurable densification. 

Therefore, when geometry is the dominant parameter contributing to 

the driving force for densification, surface diffusion fluxes and bulk 

diffusion fluxes must be similar in order that a situation will exist 

whereby the contribution of surface diffusion will be to reduce the cur-

vature of the neck region (decrease the dihedral angle); while that of 

bulk or grain boundary diffusion will be to restore tbe equilibrium 

value of the dihedral angle. This incremental or stepwise process will 

result in shrinkage and continue on an atomistic scale until all surface 

inflections are eliminated and a configuration approaching equilibrium 

conditions is attained. 

Thus for models forming bridging necks, the equilibrium dihedral 

angle is approached in the initial stage of sintering during neck forma-

tion and the small incremental change in ~¢ is the thermodynamic drj_ving 

force for densification. On the other hand, as discussed earlier, models 

which form no bridging neck are characterized by a dynamic, or ~~eri-

mental, dihedral angle which increases continuously from ¢ = 0 toward 

the equilibrium value, ¢ , during the entire sintering process as the 
eq 

interpenetration of the spherical ~articles proceeds. At any instance 

during sintering, the thermodynamic driving force is ¢ -¢ and when 
eq dyn 
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the equilibrium dihedral angle is attained, sintering ceases. 

The general form of Eq. (35) will therefore be valid throughout the 

entire sequence of sintering of a powder compact with one, two or all 

three parameters contributing to ~~. But it should be noted that ~~ 

will generally change during each stage of sintering as the relative 

contributions of the parameters change. When a sinte:i:"ing compact is 

still in the open porosity stage, the value of ~~, if determined by a 

corrosion effect due to a flowing ambient atmosphere above the surface 

of the compact, will remain relatively constant during sintering. When 

sintering has proceeded to the point where closed porosity forms, the 

int;emal dihedral angles will change toward ~ either with or without 
eq 

additional sintering since a grain boundary intersecting an internal 

pore will no longer be in contact with the ambient atmosphere. Under 

isolated condftions the vapor phase within a pore will determine the 

value of ~ which will then become the determining factor in estab-
·dyn. 

lishing the magnitude of the thermodynamic driving force for sintering~ 

On the other hand, if only the effect of geometric changes is con-

sidered in a system of spherical particles that maintains the lowest 

free energy configuration at each instant during si~tering, <I>dyn at the 

start of sintering is zero and increases as sintering proceeds. When 

~d becomes equal to <I> sintering ceases. Therefore, if ~ is 
yn eq' eq 

greater than <I> for a certain initial packing array (Fig. 4 in 
crit 

Section IIA), no thermodynamic barriers to the att~inment of theoretical 

density exist. If ~eq is less than <I>crit' an endpoint density as deter­

mined by the intersection of the value of ~ with the appropriate curve 
eq 

of Fig. 4 will result. 

\ 
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C. Thermodynamics of Grain Growth 

It has long been realized that if the pores stay at the grain 

boundaries during sintering, they have a much better chance of being 

annihilated than if they are trapped as isolated spherical pores at large 

d .ff i di f . b d . 13- 15 1. us on stances rom gral.n oun ar1.es. It has thus been argued 

that in order to achieve theoretical density, the grain boundaries must 

be prohibited from sweeping out past pores thus leaving them isolated. 

Therefore, in numerous sintering studies, additives are introduced to 

compacts for the stated purpose of pinning grain boundaries to pores. In 

some cases, the additive acts as a sparingly soluble second phase which 

segregates at grain boundaries; the analysis is then modified from that 

being discussed in this report. 

1. Lenticular Pore at a Planar Grain Boundary 

It is of interest to examine the thermodynamics of a planar grain 

boundary breaking away from a lenticular shaped pore. The geometry to 

be examined in detail is shown in Fig. 17 in which the isolated pore 

attains the low free energy sp!Erical form as the grain boundary moves 

away. This process, however, contributes to an increase of the free 

energy of the system because solid/solid interfacial area is created. 

Therefore, the net free energy of the system will be a function of the 

relative interfacial areas and energies. The analysis proceeds as 

follows. 

From Fig. 17, half the dihedral angle is given by 

cos cf>/2 = (36) 
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VIEW PERPENDICULAR TO THE 
PLANE OF THE GRAIN BOUNDARY 

m 

VIEW IN PLANE OF THE 
GRAIN BOUNDARY 

XBL 733-5896 

Figure 17. A planar grain boundary sweeping past a lenticular pore. 
¢/2 = e = solid/vapor-solid/solid dihedral angle of the 
enclosed pore. q = the radius of the spherical pore formed 
after the planar grain boundary has swept through the 
lenticular pore leaving it isolated. 
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where r is the radius of the lenticular pore. From (3) and by setting 

y /2y equal to A, we get 
SS SV 

Algebraic maniupulation leads to 

2 
h2 = r (1-A) 

(l+A) 

r(l-A) 112 
h = -->.--...;~__,..,... 

(l+A)l/2 

Referring to Fig. 17, the change in free energy of the system is 

b.G . = G G 
syst II - I 

where 

and 

GI = AI 
ssyss + AI 

SVYSV 

Therefore, 

b.G = (All - AI ) + (Ail _ AI ) 
syst yss ss ss ysv sv SV 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

\• 

(43) 
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!1G = y !1A A + · y M · 
syst ss ss ss sv sv (44) 

If we consider the overall area of the grain boundary to be fixed and 

circular, then 

and 

·z 
7Tr 

where £ is the radius of the planar grain boundary. Thus 

M ss 
2 

7Tr 

The solid-vapor area of the lenticular pore is given by 

If we substitute 

AI = 2(27TRh) 
SV 

obtained from geometry (Fig. 17) into (49), then 
.· 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 
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AI 2(2Tih)(r
2 + h

2
) 

sv 2h (51) 

(52) 

When the grain boundary moves, the volume of the resulting pore remains 

constant. The volume of the lenticular pore is 

and the volume of the spherical pore is 

3 
VII-~ 
sv - 3 

where q is the radius of the spherical pore. 

results in 

Substituting this value for q2 into 

(53) 

(54) 

Equating (53) and (54) 

(55) 

., (56) 

gives the value of the resulting spherical pore in terms of r and h 
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(57) 

(58) 

Then, combining (52) and (58) 

(59) 

Substituting (48) and (59) into (44), we get 

Further substitution of (39) into (61) gives 

!:J.G l [ ) 1/2 syst = y r2 + y 41/3 ·( 1-A 
1T · .. ss SV 1+A . 

( 
2 2 (1-A))l 

-2 r + r 1+A J 
(62) 
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!:.G 
syst = 

7T l l/3 [(1-A)l/
2 

(4+2A)]Z/
3 
__ 4 l 4 

l+A · l+A · l+A 

Then, substituting 2Ay . for y we get 
SV SS 

!:.G . 
syst = 2Ay + 

2 SV l l/3 [(1-A)l/
2 

(4+2A)]
2
/

3 
_ _!!___ l 

YSV 
4 l+A . l+A l+A 

. 7Tr 

!:.G sys-t 
2 

7Tr y 
sv 

1/3 [( 1-A)l/
2 

I 4+2A ))
213 

= 2A + 4 l+A { l+A 
4 ---l+A 

(63) 

(64) 

(65) 

A plot of the net integral normalized free energy change vs cos ¢/2, 

which is equal to A in (65), is shown in Fig. 18. The graph also shows 

the integral free energy,changes due to the solid/solid and solid/vapor 

area changes individually. Since solid/solid area is always created by 

movement of the grain boundary, this factor always makes a positive con-

tribution to the free energy of the system. On the other hand, the 

solid/vapor area is always reduced and makes a negative contribution; the 

small contribution at small values of cos ¢/2 is a reflection of the small 

area change because the lenticular pores, with a large dihedral angle, 

are almost spherical. The net free energy change for the system, however, 

is always positive throughout the entire range of dihedral angles from 

180° to 0° (cos ¢/2 = 0 to 1.0). 
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An effort has not been made here to analyze cases of elongated pores 

on two or three grain junctions and pores at four grain junctions. 

Observations have been reported, however, that three grain junctions do 

18 
not break away from pores. Also, it can be deduced by inspection that 

the breaking away of the grain boUndaries from the pore would be ener-

getically even less favorable than the breaking away of a grain boundary 

from a lenticular pore because the increase of the solid/solid area 

relative to the decrease in the solid/vapor area would be much larger. 

From an energetic viewpoint it would be expected that the geometry would 

change progressively by grain boundary motions to the configuration 

treated here. 

This thermodynamic analysis indicates that the presence of a len-

ticular pore with any dihedral angle on a planar grain boundary will 

always pin the grain boundary or the pore will move with the boundary. 

Thus, for grain boundary movement away from a pore to occur, there must 

be another negative contribution to the free energy. of the system. 

2. Lenticular Pore at a Curved Grain Boundary · 

The geometry to be examined in detail is shown in Fig. 19 which 

represents a circular sector of width m, arc length L, and angle in terms 

of ~ which is the angle of curvature of the grain boundary as determined 

by two grain boundary triple points. Then, for a pore-free sector of 

boundary Lf = pf~' the area is Lfm or pf~m and the free energy is G = 

pf~uryss· A differential change in pf with a constant~ leads to 

dG = ~ury dpf ss 
(66) 
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LENTICULAR. PORE 

AT A CURVED GRAIN BOUNDARY 

XBL 733-5899 

Figure 19. 'l'. = the angle of curvature of the grain boundary as determined 
by the intersection of two grain boundary triple points in the 
plane of the diagram. 
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If dpf is positive, so is dG and vice versa. Therefore, a grain boundary 

will always have a tendency to move toward its center of curvature with a 

constant curvature of If' because the incremental free· energy change is 

then negative. Likewise, a movement toward the center of curvature will 

tend to occur even with a constant chord length if tpe curvature is 

decreased in movement because the length of the boundary will then 

decrease. 

The next step is to analyze the free energy changes when a boundary 

with a pore (Li) moves to position Lf leaving the pore behind with the 

geometry of Fig. 19. The sum of the free energy changes due to the 

creation of the grain boundary and the change in the shape of the pore 

is positive for all dihedral angles as has been shown in the previous 

section. There is, however, an additional effect due to the reduction 

in grain boundary area as the boundary moves toward its center which is 

always negative. For grai~ growth or boundary movement to occur, the 

latter term must have a large enough negative value to make the net free 

energy change for the system negative. A detailed analysis for movement 

with constant curvature and within a given sector follows. 

The initial area of the grain boundary, making m equal to 2r and 

neglecting the slight curvature of the boundary through the pore region, 

is 

2 
= Li (2r) - nr 

2 
p .'1'2r - 'ITr 

1 
(6 7) 

and the final solid/solid interfacial area after movement, where q is 

equal to the radius of the resulting spherical pore with volume equal to 
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the original lenticular pore, is 

. II 
A = Lf(2r) = p ~2r ss f 

The change in area is 

M ss 
2 

2r~p. - 2r~q- p.~2r + Tir 
l. l. 

M ss 
2 = Tir - 2r~q 

Substituting (39) into .(55) and solving, we get 

q = _r j(l-A) 
112 

(' 4+2A) I ~/J 
41/3 l+A . 1-A I 

The substituting (71) into (70) results in 

M ss 
2 

= Tir _ 1-r I (1-A)l/Z (4+2A)j]l/
3 

2~r 
4
1/3 l+A . l+A 

The change in solid/vapor interfacial area obtained from the planar 

grain b_oundary by substituting (71) into (57) is 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 
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2 
rrr 

( 74) 

The free energy change of the sys tern, substituting y 2A for y , 
SV SS 

then becomes 

!J.G syst 
y (2A !J.A + !J.A ) 

SV SS SV 

On substituting (73) and (74) into (75) and solving, we obtain 

!J.G I ?st = 2A 1 -
rrr y sv 

[ ( i~!) 1/2 ( 41!! ) ]1/31 

1/3 [ ( 1-A) l/
2 

+ 4 l+A · 
4 

l+A 

(75) 

(76) 

This equation gives the normalized free energy change as a function 

of angle of curvature(~) for various dihedral angles (represented by A). 

Solutions for dihedral angles from 168.4° to 106° are plotted in Fig. 20 

and for angles from 73.6° to 16.2° in Fig. 21. The integrated free 

energy curves are positive for low angles of curvature ~' and become 

negative as the angle of curvature increases due to the continuing re-

duction of the grain boundary length as the cu~vature becomes larger. 

Inspection of the graphs indicates that for dihedral. angles (¢) above 

about 73° boundary movement can occur at boundary curvatures above about 
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0.62 radians or about 36°. With the decrease of dihedral angles below 

73° boundary movement can occur at decreasing values of curvature; with 

4> at 16°, grain growth can occur at curvatures above about 26°. 

Another informative relationship is indicated in Fig. 22 whi h is a 

plot of ':l' versus half the dihedral angle ~/2. The locus of points which 

fall below the curve yield positive values of the free energy for pore 

isolation, b..G t• Whereas, points lying above the curve yield negative sys 

b..G's. Inspection of the graph reveals that the critical angle of 

curvature is relatively independent of the dihedral angle for large 

values of 4>/2. While at 4>/2 less than about 36°, the value of ':l' critical 

decreases sharply as 4>/2 decreases. This result indicates that control 

of the curvature of the grain boundary is the·critical factor in pre-

ventingpore isolation and that the introduction of additives to a 

system causing the y /y ratio to be reduced beyond the critical value - . ss sv 

has little effect on pinning grain boundaries. 

3. Effect of a Mixture of Particle Sizes 

A prope:rly-oriented planar cross-section of a model microstructure 

of a .crystalline material with uniform grain size and with grain boundary 

energy independent of orientation would show hexagonal grains with three 

grain junctions of 120° and straight line boundaries; the system would. 

then be in metastable equilibrium since there would be no driving force 

for boundary .movement. A variation in grain size would result in grain 

boundary curvatures because the three grain junctions will always attempt 

to maintain equilibrium angles of 120°. Grains with less than six sides 

would have their boundaries curve outward since the polygon angles with 

straight sides would be less than 120° while grains with more than six 
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sides would have boundaries curving inward since the polygon angles would 

be greater than 120° •. Thus, thermodynamically there would be an addi-

tio~al driving force for a grain with less than six sides to shrink and 
•. 

with more than six sides to grow since the grain boundaries would have a 

tendency to move toward their centers of curvature as described above. 

With grains of two sizes the length and number of grain boundaries 

relative to the large grain will be dependent on the size of the small 

grain. The curvature between two adjacent triple points in all cases 

according to geometry would be spherical and the angle of curvature ~ 

would be 60°; therefore, the boundaries would not be pinned by any pores 

that may be present on the boundaries. The greater the length of the 

grain boundary, however, particularly on an atomistic scale, the greater 

will be the probability that the center portion of the boundary will 

acquire a smaller angle of curvature because of the driving force to 

flatten out the boundary, i.e. the grain boundary would become elliptical 

or a flattened circle since the angles at the triple points would be 

maintained at 120°. If the curvature through the central portion de­

creases below about 36° the pore can then pin the grain boundary. It 

thus appears that from a thermodynamic viewpoint a starting powder with 

a single particle size or the smallest particle size range possible is 

desirable for sintering; the actual sizes of the particles become im-

portant only from a kinetic viewpoint. 
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III. EXPERIMENTAL STUDIES 

A. Experimental Procedure 

The ultimate purpose of all mathematical sintering models is to 

describe the sintering behavior of r~al powder compacts. The success or 

accuracy of a model is determined by the closeness with which it matches 

real systems. Most kinetic models for sintering predict densification 

rates, or some parameter of densification as a function of time, for a 

given set of initial conditions. Experimental verification of a model 

is then obtained by measurement of similar parameters for real compacts 

and comparison of the two sets of data. The extent to which a model 

deviates from actual sintering behavior can then be attributed to ideali-

zations or approximations used in formulating the model. If the dis-

crepancy between real and predicted sintering behavior is too great, the 

model must be modified. Therefore, experimental evidence provides an 

estimate of the confidence level of a model. 

The thermodynamic model for solid phase sintering developed here 

predicts that when all conditions and packing densities are identical, 

the larger the equilibrium dihedral angle determined by relative values 

of y and y , the greater will be the endpoint density, and that if the 
SS SV 

equilibrium dihedral angle is greater than the critical angle for a given 

packing, the system should reach theoretical density from a thermodynamic 

viewpoint. Also, the model indicates that when the experimental or 

dynamic dihedral angle at any poirit in sintering is less than the 

equilibrium value, there exists a thermodynamic driving force for con-

tinued densification. This driving force is increased when the dif-

ference between the actual angle and the equilibrium angle is increased. 
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This effect can be seen from the slope of the P
0 

versus y /y ' curve, 
SS SV 

Fig. 4 (Section IIA) or from Eq. (20). 

A simple experimental verification of the model could consist of 

choosing several single phas~ isotropic materials having different 

equilibrium dihedral angles, cold pressing them to the same green density, 

and sintering them under identical conditions. If the model is correct, 

the materials forming the largest equilibrium dihedral angles should have 

the highest endpoint densities; on the other hand, if all the angles are 

larger than the critical angle, ali the materials would reach theoretical 

density from a thermodynamic viewpoint but at different rates. The major 

problem in performing such a series of experiments is that the geometry 

of all the compacts must be very similar and therefore, aside from cold 

pressing the powders to a constant green density, they must also have 

similar particle shapes and the same size distributions. If the shapes 

of the particulates vary from materials to material, nearest neighbor 

contacts of particles will be different for each material. That is, a 

material which has particulates very similar in shape to spheres will 

yield a different packing distribution than a material which has irregular 

shaped particles. Therefore, a compact pressed from spherical material 

may approximate a simple cubic array while a compact pressed from 

irregular shaped material may form a combination of packings, e.g. 

diamond cubic and body-centered cubic. Although both such compacts would 

have the same green density, the differences in packing distributions 

between the two could cause attempted correlations between densities and 

dihedral angles for the two materials to lead to erroneous results, i.e. 

the compacts would be characterized by different curves in Fig. 4 
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(Section IIA), instead of one curve. Of still greater concern from a 

processing viewpoint is that a non-homogeneous distribution of several 

types of packings in a given compact could1 lead to a non-homogeneous dis-

tribution of entrapped closed pores. 

Another approach is to fabricate compacts from one single phase 

material. Such compacts could then be sintered at the same temperature 

but in different atmospheres. If the gases in the atmosphere affect 

y and/or y , or create corrosive effects, the experimental dihedral sv ss 

angles will vary; these differences can then be correlated to the den-

sities and/or rates of densification of the sintering powder compacts. 

The major advantage of this approach is that all the green compacts will 

have a similar structure. Even though there may be a wide density dis-

tribution in a compact, such a distribution would be expected to be the 

same in every compact. Thus, the only parameter which will vary, and 

can therefore cause differences in sintering, is the experimental or 

dynamic dihedral angle. For this reason, the latter approach was chosen 

for the experimental study. 

1. Preparation of Powder Compacts 

MgO was selected as the material for the experimentation. In order 

to obtain a uniform starting material, Mallinckrodt MgC03 was calcined 

at 1000°C to yield MgO. The powder was calcined in a heavy duty type 

furnace. for 24 hours in air and furnace-cooled. The powder was then 

ground in an alumina mortar with pestle to break up the calcined cake. 

After grinding, the powder was dispersed in ethyl alcohol and immediately 

dried at l10°C. 
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Compacts were then cold pressed in a steel die using no b'inders to 

a green density of 45% of theoretical. Fifteen compacts were prepared 

for each sintering run. 

2. Sintering and Density Measurements 

A quench type furnace, Fig. 23A, was used for the sintering anneals 

with three different atmospheric conditions: static air, flowing air, 

and flowing water vapor. For the static air experiments, the s·pecimens 

were arranged on a ceramic pedestal that was raised into the furnace 

which was maintained at a temperature of 1200°C. The furnace was then 

heated as quickly as possible to 1510°C, (30 minutes). The specimens were 

annealed for three different times: 100, 700, and 1440 minutes. After 

annealing, they were cooled to 1200°C and removed from the furnace. All 

sintering runs regardless of the atmosphere used during the experiment 

had the same heating and cooling cycles. 

For the series of experiments with flowing air, compressed air was 

passed into the furnace by means of a tube running along the axis of the 

pedestal, Fig. 23B. This setup permitted the air to flow directly over 

the specimens. A similar setup was used for the flowing water vapor 

atmosphere. Distilled water was boiled in a sealed vessel and carried 

through heated glass tubing directly into the furnace. The flow rate 

for both flowing air and flowing water vapor experiments was approxi­

mately 2.0 cu. ft/hr. 

After each sintering run the bulk density was determined for each 

specimen. The standard deviation and variance were calculated for the 

distribution of 15, and for a reduced distribution of 13 specimens after. 

the specimens with the largest positive and negative deviation were 
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Figure 23. (A) Furnace used for the sintering studies. 
(B) Pedestal arrangement for flowing gas into the furnace and 

supporting the sintered specimens. 



-74-

eliminated .. Fracture surfaces of selected specimens were also prepared 

for SEM examination. 

3. Dihedral Angle Measurements 

Direct measurements of the dihedral angles of sintered specimens 

could not be performed since the densities of the sintered compacts were 

low, less than 90% of theoretical, and the grain sizes were too small. 

Bicrystals of MgO were rejected for investigationsince it was expected 

that the grain boundary of a bicrystal is more defect-free than that 

formed by sintering. In order to approximate sintering conditions as 

closely as possible, specimens for dihedral angle measurements were hot 

pressed from calcined Mgco3 which was prepared in an identical manner as 

the powder used for sintering. The calcined powder was packed in a 

graphite die and hot pressed at 1200°C. for 30 minutes in a vacuum of 

-4 5xl0 torr to a density of 98.5% of theoretical. After hot pressing, 

the specimens were annealed at 1700°C. for 24 hours (1440 minutes) in 

order to realize sufficient grain growth for dihedral angle measurements. 

The grain size after the anneal was approximately 100 microns. 

The annealed polycrystalline material was cut into 0.5 em cubes and 

one surface of each cube was polished on a succession of diamond wheels 

and cloths to a finish of 0.25 microns.' A final polish with Linde B 

alumina was performed just prior to experimentation. A polished specimen 

was then annealed for 24 hours at 1510°C in each of the atmospheres used 

in the sintering study. Twenty-four hours was chosen as an annealing 

time since it allowed sufficient diffusion so that grain boundaries 

intersecting the polished surface were thermally grooved to a width and 

a depth to permit measurement of the dihedral angles. After annealing, 
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the specimens were prepared for SEM investigation; dihedral angle 

measurements were performed according to the method of Achutaramayya and 

19 Scott. The technique consisted of orienting the surface of the speci-

men perpendicular to the beam of the SEM. A contamination line of carbon 

was deposited perpendicular to the grain boundary groove. The specimen 

was then tilted 47° around the axis of the contamination line and the 

profile of the groove was photographed. 

The true dihedral angle, ~' was calculated from the measured groove 

angles e1 and ~2 according to Eqs. ( 77) , (78) , and (79) . 

Tan a 1 = sin(tilt angle) tan e1 (77) 

sin(tilt angle) tan 82 ( 78) 

(79) 

Since 81 and 82 are measured separately, the true dihedral angle is 

obtained even if the grain boundary is not perpendicular to the surface 

of the specimen. 

B. Results and Discussion 

1. Sintering 

Density values of sintered specimens which were annealed at the 

test temperature of 1510°C for several different times and in different 

atmospheres are given in Table II and are plotted in Fig. 24 as density 

versus time. The fastest densification rate was observed in flowing 

water vapor; a rapid increase in density occurred during the first 

50 minutes of sintering with little further increase in density with 
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Table II. Sintering data for MgO specimens annealed in 
static air, flowing air, and flowing water vapor 
at 1510°C 

Time in Minutes 50 100 700 1440 2880 

Static Air 
Density (15 specimens) 1.923 2.551 3.044 3.266 
Std. Deviation 0.031 0.148 0.026 0.049 

Density (13 specimens) 1.921 2.550 3.043 3.270 
Std. Deviation 0.024 0.131 0.018 0.038 

Flowing Air 
Density (15 specimens) 2.039 3.016 3.280 
Std. Deviation 0.049 0.041 0.047 

Density (13 specimens) 2.039 3.017 3.280 
Std. Deviation 0.042 o .. o3s 0.038 

Flowing Water 
Vapor 
Density (15 specimens) 3.166 3.200 3.324 3. 330 
Std. Deviation 0.040 0.045 0.023 0.021 

Density (13 specimens) 3.165 3.200 3. 324 3.299 
Std. Deviation 0.033 0.040 0.019 0.019 

~ 
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continued heating at temperature. Similar results have been observed 

. 20-23 by others · for sintering of MgO in water vapor. 

Slower sintering rates were observed in flowing air and static air 

atmospheres but if the time at temperature was extended sufficiently, all 

sintered specimens approached the same endpoint density. The effect of 

flowing gases did not reduce the measured temperature in the furnace 

since the greatest densification rates were observed under flowing con-

ditions. Specimens sintered in water vapor were at their maximum density 

( 3. 3 g/ cc) at 700 minutes; in flowing air by about 1440 minutes, and in 

static air, at about 2880 minutes. This density corresponds to about 

93% of theoretical; it was considered that non-homogenity was at least 

partially responsible for this endpoint density. 

Figures 25, 26, and 27 are fracture surfaces of specimens sintered 

in flowing water vapor for 100, 700, and 1440 minutes, respectively. No 

significant grain growth occurred during the first 100 minutes of sinter-

ing although most of the densification took place in this interval. 

Approximately a five fold increase in grain size occurred between 100 and 

1440 minutes. 

Fracture surfaces of specimens sintered in static air and flowing 

air for 24 hours at 1510°C are shown in Figs. 28 and 29, respectively. 

Both have similar grain sizes which are about as large as the grain size 

of specimens sintered in flowing water vapor for 700 minutes, Fig. 26. 

It should be noted in comparing Figs. 25, 26, and 27 that as the grain 

size increases, the pore size also increases because the densities were 

essentially the same and the pores remained essentially. on grain 

boundaries. Since the latter two compacts fractured transgranularly, 

. .. 



-79-

XBB 747-4566 

Fi g. 25. Fracture surface of HgO sintered at 1510°C for 100 min in flowin g 
water vapor. 
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XBB 747-4567 

Fig. 26. Fracture surface of HgO sintered at 1510°C for 700 min in flowing 
water vapor. 
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XBB 747-4564 

Fig . 27. Fracture surface of MgO sintered at 1510°C for 1440 min in flowing 
water vapor. 
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XBB 747-4565 

Fig. 28. Fracture surface of MgO sintered a t 15l0°C for 1440 min in statis air. 
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XBB 747-4563 

Fig. 29. Fracture surface of MgO sintered at 1510°C f or 1440 min in flowing 
compressed air. 
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pores are also visible on the cleavage planes which indicates that some 

of the pores are trapped within the grains and are not associated with 

grain boundaries; these pores may in some way be associated with non-

homogeneity in the green compact. It is a well established experimental 

fact that as the volume fraction of inclusions or porosity decreases the 

. . 13-15 
mobility of grain boundaries 1ncreases . Therefore, in comparing 

Figs. 26, 27, 28, and 29 it can be assumed that the larger grain size in 

Fig. 27 than in Figs. 28 and 29 is due to the faster initial densification 

rate of the compacts sintered in flowing water vapor as compared to flow-

ing air or static air. This rapid densification during the first 50 

minutes of sintering reduced the volume fraction of porosity which per-

mitted a greater mobility of the grain boundaries and more rapid grain 

growth during the rest of the anneal. 

2. Dihedral Angles 

Table III gives the results for dihedral angle measurements of grain 

boundary grooves of hot pressed polycrystalline MgO in atmospheres of 

static air, flowing air, flowing water vapor, slowly flowing water vapor, 

and flowing water vapor followed by static air. Actual grain boundary 

grooves for each atmosphere are shown in Figs. 30-34, respectively, at a 

magnification of 20,000X. Static air atmospheres yielded the largest 

dihedral angle, 96°, while flowing water vapor resulted in the smallest 

value, 32°. Figure 35 shows a low magnification (2000X) of a surface of 

a hot pressed specimen of MgO which was annealed in static air. Figure 

30 shows a high magnification (20000X) of a grain boundary groove of 

this specimen tilted relative to the axis of the contamination line 

(dark line) permitting measurement of the dihedral angle. Figure 31 
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T~ble III. Data for dihedral angle measurements of MgO 
annealed under five different atmospheric 
conditions 

Experimental Dihedral I 
Conditions Angle 

yss Ysv 

Static Air 96° 1. 33 . 

Flowing Air 56° 1.81 

Flowing Water 
Vapor 32° 1.92 

Slow · Flowing Water 
Vapor 79° 1.53 

Flowing Water 
Vapor Followed by 96° 1.33 
Static Air 

!J.iP 

0.0° 

40° 

64° 

16° 

0.0° 
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X:BB 747-4558 

Fig. 30. A grain boundary groove of an HgO specimen annealed at 1510 °C 
for 1440 min in static air. The grain boundary is tilted 47 ° relative 
to the axis of the electron beam of the SEM. The horizontal line is 
a contamination line of carbon which reveals the contour of the 
groove. 
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XBB 749-6236 

Fig. 31. A grain boundary groove of an MgO specinen annealeJ at 
15l0°C for 1440 min in flowing compress ed air. The grai~ 
boundary is tilted 47 ° relative to the axis of the electron 
beam of the SEM. The horizontal line is a contamination line 
of carbon which reveals the contour '1f the groove . 

(2Q,QQQX) 
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XBB 747-4559 

Fig. 32. A grain boundary ~roove of an MgO specimen annealed at 1510°C 
for 1440 min in flowing water vapor. The grain boundary groove is 
tilted 47° relative to the axis of the electron beam of the SEM. 
The horizontal line is a contamination line of carbon which reveals the 
contour of the groove. 
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XBB 747-4557 

Fig. 33. A grain boundary groove of an MgO specimen annealed at 1510°C for 
1440 min in slowly flowing water vapor. The grain boundary is 
tilted 47° relative to the axis of the electron beam of the SEM. 
The horizontal line is a contamination line of carbon which 
reveals the contour of the groove. 
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XBB 747-4556 

Fig. 34. A grain boundary groove of an MgO specimen annealed at 1510°C 
for 700 min in flowing water vapor followed by an additional 
700 min in static air. The grain boundary is tilted 47° 
relative to the axis of the electron beam of the SEM. The 
horizo~tol line is a comtamination line of carbon which 
reveals the contour of the groove. 
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XBB 747-4568 

Fig. 35. A lmv magnification of an MgO specimen annealed at 1510°C for 
1440 min in static air. A high magnification of this specimen is 
shmvn in Fig. 30. 
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shows a grain boundary groove of a specimen which was annealed in flow-

ing air. A low magnification of this surface looks similar to that of 

Fig. 35, but upon comparison of Figs. 30 and 31, one sees that the groove 

is deeper in the latter and therefore the dihedral angle is smaller 

(96° compared to 56°). Figure 36 shows the surface of a specimen annealed 

in flowing water vapor with angular precipitates on the surface which 

formed during the anneal. Figure 32 shows a grain boundary groove from 

this surface which is more irregular than grain boundary grooves of 

specimens sintered in other atmospheres, and has a much deeper groove 

angle than the other specimens (32°). Due to the precipitation on the 

surface of this specimen and the highly irregular grain boundaries, 

measurement of the dihedral angle was difficult and the value of 32° is 

reported with some uncertainty. However, on comparison of the three 

grain boundary grooves in Figs. 30, 31, and 32, it is evident that there 

is a definite and continuing decrease in the values of the dihedral 

angles. 

The static air experiment in the absence of water vapor and flow 

would be expected to most closely approach equilibrium conditions, and 

exhibits the largest dihedral angle. The equilibrium dihedral angle for 

a system at the lowest energy state would be formed when a defect free 

planar grain boundary intersecting a surface, such as a bicrystal, is in 

equilibrium with its own vapor. Such a system is expected to have a 

larger dihedral angle than 96°. 

The specimen sintered in flowing air, Fig. 31, which has a dihedral 

angle of 56° shows the effect of dynamic conditions on the dihedral angle 

which is '- 96° in static air. Since the groove root of a grain boundary 

I 
~ I 
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XBB 747-4562 

Fig. 36. A low magnification of an MgO specimen annealed at 1510°C for 1440 min 
in flowing water vapor. A high magnification of this specimen is 
shown in Fig. 32. 
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intersecting a surface has a positive curvature and a stress concentra-

tion exists in the grain boundary at the root, there exists a higher 

vapor pressure above the groove root than above a planar surface. Under 

static conditions where the vapor phase is in equilibrium with the solid, 

an equilibrium dihedral angle is attained. However, under dynamic con-

ditions, the vapor species above a specimen can be swept away, and in an 

attempt to restore the equilibrium vapor pressure for the system material 

will vaporize more from the higher energy curved surface at the groove 

root. If vaporization is rapid compared to other mass transport mechan-

isms which attempt to restore the equilibrium shape of the dihedral 

angle, a nonequilibrium or experimental dihedral angle which is smaller 

than the equilibrium angle will result. This decrease has been described 

previously as a "corrosion" effect. It is believed that this phenomenon 

occurs in flowing air and in flowing water vapor. 

The measured dihedral angle for a specimen annealed in slowly flow-

ing water vapor was 79° (Fig. 33). It is not known what effect water 

vapor may have on relative interfacial energies, but it has been reported 

that negligible water vapor exists on the surface of MgO at 1000°C. 24- 26 

In the presence of water vapor, however, a transient molecular adsorption 

or chemiso~tion of water vapor on MgO may occur with a reduction of 

27 
ysv· If the grain boundary energy is essentially unaffected, then the 

dihedral angle is reduced over that in static air as observed. A more 

likely explanation is that under flowing conditions a molecular layer of 

adsorbed hydroxide does not form, but a vapor complex of H20 and MgO can 

22 
form which has a higher vapor pressure than MgO gas. This condition 

would then result in a corrosion effect and a smaller nonequilibrium 
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dihedral angle on the basis of a y that remains the same as that for 
SV 

the static air value, as described previously for flowing air. The 

larger angle was due to the slower flow rate of the atmosphere containing 

Figure 32 shows a groove formation for the flowing water vapor ex-

periment, the. grain boundary groove being deeper or more corroded with a 

dihedral angle of 32°. The "corrosion" effect is more severe in this 

case because of the higher flow rate. This behavior is indicated by the 

formation of MgO precipitates on the previously smooth surface, Fig. 36. 

Another experiment was performed to determine the effect on the 

dihedral angle if nonequilibrium conditions were introduced and then 

essentially removed. Figure 34 shows the grain boundary groove of a 

specimen that was annealed for the first 700 minutes in flowing water 

vapor and then for an additional 700 minutes in static air. The measured 

dihedral angle for this specimen was 96° which is identical to the static 

air value. Therefore, the dihedral angle which is 32° under nonequilib-

rium conditions of flowing water vapor, increased towards its equilibrium 

value of 96° when static conditions were subst'ituted. The presence of 

flowing gases with or without water vapor thus ca'uses a smaller non-

equilibrium or dynamic dihedral angle to form in comparison with static 

air conditions. 

3. Correlation of Densification with Driving Forces for Sintering 

The purpose of the experimental work was to correlate endpoint den-

sity and relative rates of densification with the thermodynamic driving 

force for sintering. At any instance during sintering, if the experi-

mental or dynamic dihedral angle is less than.the equilibrium value, 
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there is a thermodynamic driving force for continued mass transport and 

sintering. The further the experimental dihedral angle is from the 

equilibrium value, the more negative is the differential free energy in 

going from the nonequilibrium to the equilibrium configuration and the 

greater is the thermodynamic driving force for densification, ~¢. Thus, 

although the absolute values of the dihedral angles are not directly 

useful for correlation with compact densities, the differences between 

the dynamic values and the equilibrium values of the dihedral angles are 

a valid measure of the thermodynamic driving force for sintering. The 

value of ¢ measured in static air was used as the equilibrium dihedral 

angle. Table II gives the differences, ~¢, between the dihedral angles 

in static air and other atmospheres. Figure 37 is a plot density versus 

these values of ~¢ at three different times. The larger is the value of 

~¢, the greater is the density at any constant time. As the time and 

densities increase, the curves flatten out and the effect of the dynamic 

dihedral angle on density becomes reduced. It is felt that similar in­

homogeneous density distributions in all of the green compacts were 

responsible for large voids and some enclosed pores in grains to form as 

sintering proceeded. Therefore, the final densities of about 3.3 g/cc of 

the sintered specimens were determined by such voids as well as by the 

relatively low equilibrium ¢ measured in static air. 

The results of this experimental work show that normal dynamic con­

ditions modified by atmospheric conditions enhance densification rates 

by increasing the difference between the static and dynamic dihedral 

angles. The model for the thermodynamics of solid phase sintering pre­

dicts that the thermodynamic driving force for sintering is greatest the 
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further the value. of the dynamic dihedral angle is from the equilibrium 

value assuming that it is retained during the initial stage ~f sintering. 

It is felt that a large value of 6¢ was maintained during the first 100 

minutes of sintering in flowing water vapor during which time most of 

the densification occurred. The results of the experimental work per-

formed here indicate that the dependence of the value of 6¢ on atmo-

spheric conditions can be quite large, (64° for flowing water vapor). 

The growth of grains and pores with essentially no increase in density 

·during the sintering of compacts in n2o vapor beyond 100 minutes of sin­

tering suggests that ¢ increased as closed porosity developed and the 
dyn 

corrosion effect of a flowing ambient atmosphere was eliminated. cp 
dyn 

thus approached ¢ (probably due to neck formation in closed pores), eq 

and therefore, the thermodynamic driving force for densification was 

reduced. 

For MgO compacts used in this study, the maximum measured value of 

¢was 96°. Although the particle packing was inhomogeneous, the total 

or average green density approached that of simple cubic packing which 

has a value of ¢ . of 90° when second nearest neighbors touch and of 
. cn.t 

109° for complete densification. Therefore, no thermodynamic barrier 

exists for densification to the point where second nearest neighbors 

touch, but there may be one for complete densification resulting in an 

endpoint density. The 93% theoretical density realized in this study 

could be partially due to this factor and to the inhomogeneity of the 

compacts. 

The slow densification rate for the sintering experiments in static 

air suggests that "necks" formed at particle-particle contacts resulting 
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in equilibrium dihedral angles. The driving force then is due to a re­

duction of ~ occurring because of mass transport due to reverse curvatures 

in the surfaces of the particles attempting to reach a minimum energy 

configuration. Under these conditions, ~~ remains small. In flowing 

air the corrosion effect tends to increase ~~' above the value for static 

air, and thus, the sintering rates. 
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IV. SUMMARY AND CONCLUSIONS 

A. Theoretical Considerations 

The thermodynamic analysis of solid state sintering indicates that a 

decrease in the y /y ratio and an increase in the density of the un­ss SV 

fired compact favor densification. When second nearest neighbor spheres 

form contacts, or a crystallographic face in the unit cell has densified, 

however, nonuniform redistribution of material must occur in order to 

achieve complete densification for DC, SC, and FCC models. BCC packing 

arrays sinter uniformly to theoretical density. The effect of nonuniform 

sintering is to reduce the critical value for y /y . In order to 
ss sv 

achieve con~lete densification, the critical ratio must be less than 

1. 625 for BCC packing of t1niform spherical particles, 1.161 for SC and 

FCC, and 1.074 for DC: correspondingly, the dihedral angle has to be 

greater than 71.5°, 109°, and 115°, respectively. Therefore, any addi-

tives that would tend to reduce y relative to y would enhance sinter-, ss . sv 

ing, or make sintering possible if the y /y ratib for a given material ss sv 

is above the critical value. 

Additionally, the thermodynamic driving force for sintering, ~~. is 

given by 

~~ = ~ - ~ eq dyn 
(80) 

where ~ eq is the equilibrium dihedral angle and ~d- is the experimental yn 

or dynamic dihedral angle. ~d is determined by three parameters: yn 

corrosion, chemical effects, and geometry; and is mathematically always 

less than or equal to ~ eq 

• 

-· 
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During the initial stages of sintering, ¢d. can be affected by all 
yn 

three parameters but upon formation of closed porosity in a sintering 

specimen, the corrosion effect is generally eliminated and only chemical 

effects and geometry contribute to ¢d • Therefore, ¢d will increase · yn yn 

and approach ¢ as pore closure occurs, thus reducing the magnitude of eq 

~¢. Since ~¢ is a measure of the thermodynamic driving force for sinter-

ing, as ~¢ is reduced, so is the sintering rate. 

A pore on a planar grain boundary effectively pins the boundary for 

all values of the y /y ratio and thus the dihedral angle. A curved 
SS SV 

grain boundary, however, can move away from a pore if the curvature is 

above the critical value. As the dihedral angle increases above about 

73°, although the magnitude of the driving force decreases, movement in 

all cases will occur toward the center of curvature at curvatures above 

about 36°; as the dihedral angle decreases from 73° to about 16°, the 

critical curvature value decreases to about 26°. Grain bounQaries with 

lesser curvature tend to be pinned by pores. Additives which reduce the 

y /y ratio beyond that necessary for dense sintering, therefore, have 
SS SV 

essentially no effect on the pinning of a grain boundary by a pore. 

It thus is evident that the most critical factor in the pinning of 

grain boundaries by pores is the degree of curvature of the boundaries 

and not the magnitude of the dihedral angle. Factors that lead to cur-

vature should be controlled. A uniform packing of spheres of a given 

size should densify to a microstructure with uniform grain size with 

planar grain boundaries. Compacts with a range of particle sizes, how-

ever, will tend to form curved grain boundaries. If this curvature is 

above about 36°, the boundaries will be able to move away from pores. 
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Narrow particle size ranges will tend to form relatively longer grain 

boundaries which will tend to flatten and thus develop smaller curva­

tures. 

Another factor that has not been discussed or analyzed is the effect 

of anisotropy of interfacial energies. Irregular movement of grain 

boundaries and different angles at three grain junctions due to aniso­

tropy could lead to boundary curvatures that would allow them to break 

away from pores. Additives in this case could be beneficial if their 

effect would be to reduce any existing anisotropy. 

All of the discussions have been based on a uniform and homogeneous 

distribution of particles. Poor processing that would introduce varying 

packing densities or introduce agglomerates of higher or lower density 

than the matrix would result in a range of grain sizes in the early 

stages of sintering as well as introduce other factors that would inter­

fere with realizing theoretical density in the entire compact. An addi­

tive in this case could have a beneficial effect if it played some role 

in reducing agglomeration or increasing uniformity of particle distribu­

tion during the preparation of the compacts. 

B. Experimental Considerations 

Sintering studies of MgO compacts annealed in three different 

atmospheres at 1510°C reveal that the fastest sintering rate occurs in 

flowing water vapor. The slowest sintering rate is observed in static 

air and an intermediate rate is observed in flowing air. All specimens 

yield approximately the same endpoint density of 93% of theoretical 

although they attain this density at different sintering rates. 
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Corresponding dihedral angle measurements indicate that the smallest 

value (32°) occurs in flowing water vapor; the largest value is observed 

in static air (96°); and an intermediate value (56°) is observed in flow-

ing air. Taking the static air value as <I> , l1<I> was calculated for each 
eq 

case. Results indicate that the larger is the magnitude of l1<I> the 

greater is the densification rate, a conclusion, which is in agreement 

with theoretical considerations. It is believed .that in flowing water 

vapor atmospheres corrosive effects lead to a small dynamic dihedral 

angle (l1<I> = 64°) with essentially no neck formation between particles. 

In static air, (l1<I> = 0), no corrosive effects occur; a bridging neck 

probably forms between particles and the sintering rates are reduced. 

It is not known whether the 93° of theoretical density which was 

attained is a true endpoint density or is due to inhomogeneities inherent 

in the cold pressed compacts. The thermodynamic model for simple cubic 

packing arrays predicts that sintering should proceed uniformly to the 

point where second nearest neighbors touch (<I> = 90°). Since the static 

air value of <I> (96°) is greater than <I>critical (90°), sintering should 

proceed up to this point. The critical value of <I> for complete densifi-

cation is 109°. Therefore, if 96° is the true equilibrium dihedral angle 

for MgO at the temperature of experimentation, then the endpoint den-

sities observed here are not due to inhomogeneities but rather are 

characteristic endpoints for simple cubic packing of MgO particles. 
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PART B: THERMODYNAMICS AND KINETICS OF LIQUID PHASE SINTERING 

I. INTRODUCTION 

Many of the sintering characteristics of a multiphase system are 

' similar to those of a single phase system; however, formation of inter-

mediate phases or solid solutions complicates kinetic and thermodynamic 

analyses. Generally, two phases have dissimilar melting points and show 

a eutectic reaction. If sintering of a multiphase compact occurs below 

the temperature at which a liquid phase appears, solid phase sintering 

mechanisms are operative. However, if the sintering temperature is 

raised above this point, sintering proceeds by liquid phase sintering 

28-35 mechanisms. Intermediate cases can result at the sintering tempera-

ture such as: solid phases reacting to form a liquid, solid and liqui~ 

phases reacting to form an intermediate solid phase,and solid solution 

formation from solid and liquid phases. 

Experimental investigation of liquid phase sintering.has led to a 

general classification of sintering kinetics into three separate stages; 

viscous flow, rearrangement of solution-precipitation, and coalescen~g= 33 

A sintering compact may undergo one, two, or all three stages depending 

on the physical and environmental parameters of the system. Each of these 

stages will be discussed below in terms of idealized models based on 

thermodynamic and kinetic considerations. 

A. Rearrangement 

The formation of a liquid at sintering temperature in a two or more 

phase powder compact, causes the creation of liquid-vapor interfaces .• 

These interfaces, which are usually curved in shape, give rise to capil-

lary forces Within the powder compact. If the liquid wets the solid, 
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i.e., the contact angle is le-ss than 90°, the resulting forces in turn 

in the initial stages of.sintering can cause relative motion of solid 

particles and corresponding flow of liquid. The rearrangement continues 

until the compact attains a configuration corresponding to a minimum 

packing volume. The interfacial free energy decrease caused by this 

28 
process has been equated to the energy of viscous flow by Frenkel. 

For pure viscous flow, e.g., glass spheres, 

~L/L a t( 3/ 2) (1) 
0 

where ~L/10 is the densification parameter, and t is the time. When this 

equation is applied to liquid phase sintering of multiphase powder com-

pacts, experimental results indicate that 

~L/L a t(l+y) 
0 

where (l+y) is greater than unity. 33 

(2) 

The exponent (l+y) varies from compact to compact depending on the 

environmental and physical parameters of the system. Flow rates tend to 

increase as pore size decreases, while particle-particle interactions 

cause frictional effects which in turn reduce flow rates. The volume 

fraction of liquid phase, wetting angle, dihedral angle and particle 

shape determine the configuration of the solid and liquid in the compact, 

the capillary forces acting on the system, and in turn the exponent of 

time in Eq. (2). 
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If sufficient liquid is present, viscous flow alone can cause com-

plete densification or zero porosity of a particulate system. With 

normal compact green densities, between 35 and 40% by volume of liquid 

phase, (volume of liquid divided by the volume of solid plus liquid), is 

j3 
required to attain theoretical density. If less liquid is present, 

flow continues until a configuration of minimum liquid-vapor interfacial 

area and a corresponding minimum of free energy is achieved. 

The dihedral angle formed between the solid and liquid phase is very 

important in determining the extent of viscous flow in powder compacts. 

The solid-solid interfacial energy and the solid-liquid interfacial energy 

31 are related through the dihedral angle equation 

(3) 

where Yss is the solid-solid interfacial energy, Ysi is the solid-liquid 

interfacial eriergy, and ~ is the dihedral angle measured in the liquid. 

Systems with zero dihedral angles have complete penetration of the solid 

31 
by the liquid, and thus no solid~solid contacts. On the other hand, in 

systems forming finite equilibrium dihedral angles, the liquid does not 

separate of flow between solid-solid contacts. 

Therefore, viscous flow is enhanced by a zero dihedral angle, and 

retarded by a finite dihedral angle. Compacts that contain small amounts 

of liquid phase which form finite dihedral angles and whose phases have a 

small difference in melting points, can sinter sufficiently to form rigid 

solid skeletons before the liquid appears. Under such conditions the 

liquid will not cause any particle flow but rather will form bridges 
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around the contacts between particles. 

As a result, two extreme cases are possible: one is viscous flow 

leading to complete densification (zero dihedral angle and large liquid 

volumes), and the other is the creation of a solid skeleton before the 

liquid forms resulting in no viscous flow at all (nonzero dihedral angle, 

similar melting points, and small volumes of liquid phase). There­

arrangement or viscous flow stage thus does not necessarily lead to sig­

nificant shrinkages. 

B. Solution-Precipitation 

When the rearrangement stage is completed and residual porosity 

remains, densification must proceed by another mechanism. Therefore, a 

different model is necessary. The earliest investigations proposed a 

mechanism based on solubility differences between small and large par­

ticles in liquids, called the heavy alloy theory. 37 This theory was 

based on the concept that particles of small radii were dissolving in 

the liquid and larger particles were growing at their expense. The 

basis for this argument is that a higher solubility exists over a sur­

face with a small radius of curvature than over one with a large radius 

of curvat~re.3S-4l In order for the mechanism to be operative, the 

'formulators of the heavy alloy theory stipulated that: (1) there must 

be an appreciable difference in melting point between the high and low 

melting phases, (2) the high melting phase should be soluble in the low 

melting phase, and (3) the low melting phase should be insoluble or only 

slightly soluble in the high melting phase. The theory makes no stipu­

lations concerning the magnitude of dihedral angles or the volume frac­

tion of liquid phase. However, it is apparent that for the mechanism to 
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·be operative, sufficient liquid must be present to form a continuous 

liquid film in the compact in order to allow a diffusion path for 

material. Additionally, the dihedral angle must be equal to zero, since 

if the dihedral angle were finite, solid-solid contacts and a framework 

would form. These contacts would restrict the shape of the curvature of 

the solid-liquid interface. Small particles would lose material from 

their surfaces and large particles would gain material, but particle cen­

ters would not move together. Therefore, no densification could occur. 

This process is analogous to vaporization-condendsation and surface 

diffusion in solid-vapor systems. However, if the dihedral angle is 

zero, particles can completely dissolve and the redistribution of 

material may occur. 

The heavy alloy theory was criticized by Kingery33 on the basis 

that large volumes of liquid were necessary for the above mechanism to 

be feasible, yet experimental results indicated that densification was 

often achieved with extremely small amounts of liquid phase. He pro­

posed an alternate mechanism based on the fact that if the partial molar 

volume of a solid dissolving in a liquid is positive, then the solubility 

of that component is increased by pressure. He argued that compressive 

stresses were created between particles by capillary forces arising from· 

liquid bridges ~onnecting the particles. Therefore, a higher solubility 

of the solid would exist in the region between the particles where 

capillary forces cause compressive stresses than at surfaces away from 

the stressed region. Thus, material would dissolve between the par­

ticles, diffuse through the liquid under a concentration gradient, and 

precipitate at surfaces of lower solubility. Particle centers would 

,. 
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move together and densification would occur .. 

In order for this mechanism to be operative, there must be some 

solubility of the· solid in the liquid, and a film of liquid between the 

particles, i.e., a zero dihedral angle. No stipulation was made by 

Kingery concerning the volume of liquid necessary, although it is evident 

that the mechanism may proceed at low or high liquid contents providng 

that some porosity is present. Kirigery derived a kinetic relationship 

for spherical particles 

~/Lo = KR(-4/3) t(l/3) (4) 

where ~/Lo is the densification parameter, K is a constant for the 

particular system, R is the initial particle radius, and t is the time. 

No directly comparable kinetic equations are available for models 

based on the heavy alloy theory, although Greenwood29 did investigate 

the growth of coarse particles and the dissolution of fine particles in 

solvent liquids. He derived the following equation for the growth of 

large particles, 

6DM lsJI, t 

NkTR2 
(5) 

where af is the final particle size, ai is the original particle size, 

D is the diffusivity in the liquid, M is the molecular weight, lsi is 

the solid-liquid interfacial energy, Nk is the gas constant, R is the 

radius of curvature of the particle, and t is the time. 
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Neglecting the initial particle size, the growth rate is propor-

tiona! to the l/3rd power of time. The above equation is not specifically 

valid for liquid phase sintering since it assumes that the particles are 

widely dispersed in the liquid, under which conditions no porosity could 

exist. The time dependency, however, is identical to that derived by 

33 
Kingery. 

C. Coalescence 

Kingery recognized that a liquid film is now always present between 

solid particles, i.e., a finite solid-liquid dihedral angle ·forms. He 

argued that orientation effects can cause certain grains to form solid- · 

solid contacts. 33 
Therefore, these grains could not sinter by solution-

precipitation. In a sintering compact such grains would sinter by solid 

cliff . h i b . lid h ; ' . ki . 32,42-4 7 state us1on mec an sms, o ey1ng so p ase s.1nter1ng netl.cs. . 

He called this stage of liquid phase sintering coalescence and implied 

that it would follow the solution-precipitation stage, i~e., that in a 

sintering compact, the dihedral angle would increase from zero to a 

finite value with time. 

Consider a solid-liquid-vapor system which forms a nonzero dihedral 

angle which is independent of time. The liquid exists as bridges between 

the solid particles, and the vapor phase is above the liquid phase. A 

situation analogous to vaporization-condensation occurs except that 

material transport is through the liquid phase instead of through the 

vapor. Material is deposited in the neck region forming a curved inter-

face as in solid phase sintering. Sintering then proceeds by vacancy 

diffusion mechanisms in the solid phase as discussed in Part A. However, 

the presence of a liquid phase provides additional interfaces, i.e., the 
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liquid-vapor and solid-liquid interfaces. For solid-vapor systems, the 

curvature of the solid-vapor interface creates tensile stresses in the 

neck region as 3 was shown by Nabarro. The presence of solid-liquid and 

liquid-vapor interfaces also creates tensile stresses in the neck, due 

to capillary pressure. These stresses enhance the vacancy concentration 

in the neck region relative to the vacancy concentration created by a 

solid-vapor interface only. As will be shown later, the vacancy concen-

tration gradient is greater than in the solid-vapor case, and therefore 

results in somewhat different sintering kinetics. 

As discussed earlier for the sintering of solid-vapor syste~, 

knowledge of thermodynamic as well as kinetic factors are of fu~.damental 

importance in understanding the entire sintering process. Therefore, in 

the next section, a thermodynamic analysis of sintering of a solid-liquid-

vapor system will be presented based on an idealized geometric model. 

This section will be followed by a section on kinetics in which solutions 

to kinetic equations will be formulated for solid-liquid systems based on 

models which are different from those now appearing in the literature. 
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II. THERMODYNAMICS OF DENSIFICATION IN THE 
PRESENCE OF A LIQUID PHASE 

As discussed in Part A, the basic driving fo~ce 'for sintering a 

powder compact is the reduction in free energy fqr the system resulting 

from the decrease in interfacial area. As long as the differential free 

energy oG is negative, densification is thermodyncimically favored. If 

oG becomes zero or positive, densification ceases and endpoint densities 

result. It is of interest to determine the critical interfacial energy 

ratios which yield endpoint densities for ideal systems undergoing sin-

tering in the presence of a liquid phase. The driving force for the 

initial stage of liquid phase sintering, rearrangement, is the reduction 

in liquid-vapor interfacial area. oG is therefore negative until a steady 

state configuration is reached. No further decrease in the free energy 

or increase in density of the compact can then result without mass trans-

fer of the solid phase. The following arguments assume that rearrange-

ment has taken place and a steady state configuration has been attained. 

The model assumes 8 unifqrm sized crystalline spherical particles 

with an isotropic surface energy in a simple cubic array with a wetting 

liquid that forms toroidal bridges between the spheres. It is further 

assumed that the solid is solublein the liquid and the liquid is in-

soluble in the solid. The volume of a unit cell' formed by such a con-

3 
figuration is 8RO where RO is the initial radius of the particles. Each 

cell contains an equivalent of one spheri~al particle occupying a volume 

of 4.16~. The remaining volume in such a cell is 3.84R~ or 48% of the 

total, which can be occupied by liquid and/or vapor. If less than 16% 

of the initial volume of the cell (i.e., 16% of 8R~) is occupied by 
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liquid, residual solid-vapor area remains with ,the shape of the liquid-

vapor interface being toroidal. In compacts containing between 16 and 

27.6% liquid, the spheres are completely coated (i.e., no solid-vapor 

area remains) and the shape of the liquid-vapor interface changes from 

toroidal to spherical. Above 27.6% liquid, spherical porosity begins to 

form at the center of the cell. Sintering for zero dihedral angles, 

proceeds by solution-precipitation with material being removed from 

spherical caps at particle contacts and deposited at particle surfaces 

away from the contact points in an identical manner as for the model for 

solid phase sintering (Part A). Particle centers then move together with 

shrinkage of the cell and reduction of the pore space, as shown in ~ig. 1. 

For nonzero dihedral angles, sintering proceeds by solid state diffusion 

mechanisms discussed in Part A, with the removal and deposition of cap 

material and shrinkage being identical to the zero dihedral angle case. 

A. Zero Dihedral Angle 

1. Acute Contact Angle 

When the rearrangement stage is completed for the model system with 

less than 16 vol% of liquid, the compact is characterized by solid-vapor, 

solid-liquid, and liquid-vapor interfaces. As sintering proceeds due to 

the reduction in interfacial energy, the differential of free energy, oG, 

at constant T, P, and ni, may be expressed as 

oG = oA y + oA o Y o + oAo Yo 
SV SV SN SN NV NV 

(6) 

where y' and oA' are respectively the interfacial energy and differential 
s s 
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(100) (II 0) 

---- ORIGINAL CELL DIMENSIONS 

CELL DIMENSIONS AFTER SOME DENSIACATION 

XBL 7310-1964 

Figure 1. (Top) Two sphere model for liquid phase sintering with wetting 
liquid bridge between the spheres. 
(Bottom) Densification model for simple cubic packing of 
spheres which forms after the rearrangement stage is completed. 
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areas. From Young's equation, 

(7) 

where 8 is the contact angle. Substituting (7) into (6) 

oG = (oA + oA 0 ) y n + (oA0 + oA cos 8) Yn (8) 
SV SJV SJV JVV SV · JVV 

As the compact sinters, oA n increases while oA decreases. The 
SJV SV 

former term provides a positive contribution to the free energy of the 

system while the latter provides a negative contribution. oAJ/,v increases 

as long as the liquid forms a contact angle with the solid surface. How-

ever, when the solid surface is completely covered with liquid, i.e., 

oA becomes zero, oA0 begins to decrease. The liquid becomes continu-
sv JVV 

ous in the (100) plane of the simple c.ubic cell before the solid-vapor 

interface is eliminated completely in the (110) plane. Thus, in the 

(100) plane, the liquid provides a negative contribution to the free 

energy of the system while in the (110) plane it provides a positive 

term. This implies that although oAJ/,v is positive until all the solid-

vapor interfacial area is destroyed, it increases in magnitude at a 

decreasing rate as the compact sinters. 

When the compact has sintered to the point where the liquid com-

pletely coats the solid surface, 

(9) 



-116-

On further densification oAs~ remains positive but oA~v becomes negative 

and becomes the driving force for sintering until endpoint density or 

theoretical density is attained. 

2. Zero Contact Angle 

The model is identical to case A-1 except that Young's equation may 

now be written as 

(10) 

substituting (10) into (6) 

(oA + oA 0 ) Y n + (oA + oAn ) Yo 
SV SN SN SV NV NV 

(11) 

Again oAs~ and oA~v provide positive contributions to the free energy 

while that of oA is negative. Since cos 8 < 1 in Eq. (8), comparison 
SV 

of Eqs. (9) and (11) indicates that OG is more negative for compacts 

having zero contact angles than those having nonzero contact angles. 

Sintering continues until the solid-vapor interface is eliminated. At 

this point, 

(12) 

which is identical to Eq. (9). The contact angle no longer affects the 

free energyof the system. Therefore, when the solid-vapor area is 

eliminated, the free energy of the compact becomes independent of the 

contact angle. 
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B. Nonzero Dihedral Angle 

1. Acute Contact Angle 

This model assumes that the solid and liquid form a nonzero dihedral 

angle, which implies that material transport is through the solid phase 

instead of through the liquid phase since the liquid does not penetrate 

between the solid-solid contacts. As discussed in thermodynamics of solid 

phase sintering in Part A, this model assumes that necks do not form 

between the particles but rather that materiaL is distributed uniformly 

over the entire surface of the spheres. Although such a model does not 

42-44 comply with most kinetic observations during sintering, it does 

represent the lowest free energy configuration for the system, as dis-

cussed earlier. 

In the initi&stage of densification, the differential free energy 

for the system may be written as 

(13) 

Using Eq. (7) 

oG = oA y + (oA + oA n> y n + (oAn + oA cos 6) Ynv (14) 
SS SS SV SN SN NV SV N 

The dihedral angles relates y to y n• 
SS SN 

(15) 
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Substituting (15) into (14) 

cG = (2cos 8/2 cA + cA + cA 0 )y 0 + (cA0 + cA cos 8) Yo (16) 
SS SV SN SN NV SV NV 

As in cases Al and A2, cAst and cAtv provide positive contributions 

to cG, while that of cA is negative. In this case, however, there is sv 

an additional positive contribution to the free energy of the system from 

cA , which results from the formation of solid-solid interfaces. When ss 

the compact has sintered to the point where the solid-vapor interfacial 

area is eliminated, cG may be written as 

OG = oA y + cA 0 y 0 + cAo Yo 
SS SS SN SN NV NV 

(17) 

Using Eq. (15) 

(18) 

Here the contributions of cAst and cAtv become negative while the con­

tribution of cA remains positive. Sintering continues until spherical ss 

pores form. At this point, cA 0 becomes the differential area for a 
NV · 

spherical pore. In comparing Eqs. (9) and (8), it should be noted that 

in the zero dihedral angle case, cAst contributes positively to the free 

energy of the system while cAtv contributes negatively. For nonzero 

dihedral angles, cAst and cAtv are both negative while cAss is positive. 

This fact arises since a zero dihedral angle causes the liquid to 

penetrate between the particle contacts. Therefore, cAst describes the' 
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differential area of the sphere minus cap$, plus the area of the contact 

region, all of which increase as sintering proceeds. While for nonzero 

dihedral angles, solid-solid contacts form, and oAsR- is the differential 

area of the sphere minus caps, which decreases during sintering. 

2. Zero Contact Angle 

Proceeding in a similar manner as above, oG may be represented as 

(19) 

Using Eq. (10) 

oG = y oA + (oA + oA 0 ) y n + (oA + cAn ) Yo 
SS 58 SV SN SN SV NV NV 

(20) 

and with Eq. (15) 

oG = (2oA cos 8/2 + oA + oA 0 ) y n + (6An + oA ) Yn 
SS SV SN SN NV SV NV 

(21) 

When sufficient sintering has occurred, the solid-vapor interfacial area 

is eliminated and 

(22) 

or 

(23) 
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As in the zero dihedral angle cases, (A-1 and A...:.2), the contac~ angle no 

longer affects the system, and Eq. (23) is identical to Eq. (18). 

C. Critical Ratios of Interfacial Energies 
for Theoretical Density 

Although the above equations are useful in understanding the con-

tributions of interfacial areas to the free energy for liquid phase sin-

tering systems, it is extremely important to be able to obtain quantita-

tive values of yss' yst' and ytv at which the above equations yield 

oG = 0, because sintering then ceases since any further interpenetration 

of spheres would cause oG to become positive. Theoretically, one could 

obtain critical values of ysv' yst' yss' and Ytv for each corresponding 

equation that would correspond to no further shrinkage. However, the 

surfaces are extremely difficult to describe in many of these cases. In 

lieu of taking such an approach, one should note that a spherical pore 

forms in the center of the unit cell after a specified degree of densi-

fication. The geometry of such a configuration, although still somewhat 

complicated, is much simpler to describe than the.geometry for the 

earlier stages of sintering. Additionally, this configuration corre-

sponds to the final step in the densification process. Therefore, 

critical ratios of interfacial tensions will be obtained starting from 

the point at which a spherical pore forms in the unit cell and continuing 

until the pore is eliminated and theoretical density is attained. 

1. Critical Interfacial Energy Ratios for a Zero Dihedral Angle 

The model is identical to cases A-1 and A-2, and is described 

Eqs. (9) and (12). The original volume of the simple cubic cell is 

and consists of 8 spherical crystalline particles-at the corners of a 
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unit cell. A wetting liquid phase forms toroidal shaped bridges between 

the particles, and pore space fills the remainder of the cell. As sin-

tering proceeds, material is removed from contacts between particles, 

diffuses through the liquid, and is deposited on surfaces away from the 

contact points. The volume of the cell shrinks and the liquid is squeezed 

into the void space with the porosity being decreased. Figure la shows 

caps of height h removed from two spherical contacts and figure lb reveals 

the manner in which the cell shrinks. 

The volume of the cell at any degree of densification is 

3 
V cell = 8(R-h) 

Let P = h/2., and substitute into (24) 

For simple cubic packing, 

thus 

(24) 

(25) 

(26) 

(27) 

The volume of the spherical particle remains constant and is given by 
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471R3 
v 0 
sphere= -3- (28) 

The volume of liquid phase in the cell is designated v
1

. . 1q Therefore, 

the volume of porosity at any degree of densification is 

v . poros1ty = vcell - v h - vl. sp ere 1q 

Substituting (27) and (28) into (29) 

32R3(1-P) 3 
0 v = ----~~--~-

porosity (4_18P2 + 6P3) 

4'1TR3 
0 

- -3- - vliq 

(29) 

(30) 

When sufficient sintering has occurred, a spherical pore forms in the 

center of the unit cell. Its volume is 

r being the radius of the pore. Substituting (31) into .(30), 
p 

Solving for r 
p 

~ = I 24(1-P) 3 . fl + 3V liq )jl/3 
R~ (4-18P2 + 6P3)'1T - \ 4'1T 

(31) 

(32) 

(33) 
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This equation is only true above the particular value of P at which a 

spherical pore forms. The method of obtaining the value at which the 

equation becomes valid will be discussed later. 

The area of the pore is 

A pore 

or substituting (33) into (34) 

A pore 
R2 

0 

2 
4nr 

p 

The solid-liquid interfacial area is given by the area of the 

(34) 

(35) 

effective spherical particle minus the area of the caps removed plus the 

area created between the spheres. The area of the spherical particle at 

any value of P is 

(36) 

The area of the caps is 

A = 6n(2Rh) 
caps 

(37) 

and the area created between the particles is 

Ainterface = 61Th(2R-h) (38) 
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Combining 

. 2 
A

8
R, = 4R rr - 6rr(2Rh) + 6rrh(2R-h) (39) 

Rearranging and substituting P = h/R, and R0 for R 

(40) 

Recalling Eq. (24) of Part A, the change in free energy from a degree of 

densification PA to-a degree of densification PB is 

At equilibrium, b.G = 0, and therefo'J?e, from Eq. (25); of Part A 

(42) 

Substituting (35) and (40) into (42) 

- 4rrll 24(1-PB)3 - (1+3Vliq) 12/3 - / 24(1-P.A)3 

y
8

R, = rr(4-18Pi+6Pi) 
4

rr rr(4-18P!+6P!) 

( 1 + 3V ) 1
2 
I 

3
] liq . 

4rr 

y R.v 2rr(4) Z/3 ( (2-3P~) - (2-3P!) J 

(4-18~+6P~) 2 / 3 (4-18P!+6P~) 2 / 3 
(43) 
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Equation (43) yields critical values of Ysg/Y ~v at any degree of 

densification after spherical porosity has formed. If the critical ratio 

is smaller than the actual ratio for a real compact, the model predicts 

that densities less than theoretical will result as will be discussed 

later. 

2. Critical Ratios of Interfacial Energies for Nonzero Dihedral Angles 

The model is identical to cases B-1 and B-2, and is described by 

Eqs. (18) and (23) 

The solid-solid interfacial area is the area of the grain boundary 

created between the sintering spheres. 

A = 6TI(2Rh-h2)/2 ss 

Substituting P and Ru into (5) 

A ss 
~ = 

3TI(4) 2/ 3(2P-P2) 

(4-18P2+6P3) 2/ 3 

The solid~liquid interfacial area is given by 

and on substitution, 

(44) 

(45) 

(46) 

(47) 
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(48) .. 

The liquid-vapor interfacial area is identical to Eq. (35), and at 

equilibrium, ~G = 0, and Eq. (42) becomes 

(49) 

Substituting Eqs. (46), (48) and (35) into (49) 

See next page for Eq. (50). 



.. 

I 24(1-P ) 
3 

- (+3V . ) )
213 

- r 24(1-P ) 
3 

- (1+3V )) 
2
13

] 
------':B:---"""7""" · hq A · . liq 

Y8~ _ 
4

TI TI(4-18Pi+6Pi) 
4

TI f TI(4-18P!+6P!) 
4

TI 

- = 
2 

cos<¢1
2> [ 3n(4)

2
13(2P -P

2
) - ~3n(4) 213 (2P -P

2
> + <4> 513ni(1-3P > -

----.,..-~B::-;-::B- · · A A B 

(4-18P2+6P3) 2 / 3 (4-18P2+6P3) 2/ 3 . (4-18P2+6P3) 2/ 3 
B B A A B B 

y~v 

"'":: 

(1-3P ) ] 

(4-18~~+6P!)2/3 

(SO) 

I 
1-' 
N 
....... 
I 
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Equation (50) yields critical ratios for ysi/yR-v at any degree of densi­

fication. 

Equations (43) and (50) are only valid above the particular value 

of P at which a spherical pore forms in the cell. Equation (35) was 

derived assuming the void space was spherical in shape. If Eq. (35) is 

used at void volumes which do not correspond to spherical porosity, the 

calculated value of r is too large. Therefore, Eq. (35) is not valid 
p 

until sufficient densification has occurred to form a spherical pore. 

The amount of densification necessary for such a configuration depends 

on the volume of liquid phase present. A method for calculating the 

value of P at which Eq. (35) becomes valid is given below. 

Figure 1 shows the (100) and (110) planes of the simple cubic unit 

cell for a sintering compact. An imaginary pore is inscribed in the 

center of the cell. The original radius of such a pore is 

At any degree of densification, 

r = /3 (R-h) - R 
p 

Substituting P and R0 , 

(51) 

(52) 

(53) 

.. 

•. 
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The volume of such a pore is 

4nr3 

v =____.£. 
pore 3 (54) 

Since Eq. (29) gives the volume of the porosity at any particular liquid 

content and at any particular value of P, when 

v . = v poros1ty pore (55) 

sufficient densification has occurred to form a spherical pore within the 

liquid. The value of P at which this relationship becomes valid, called 

P, is the minimum value of P for which Eq. (35),becomes valid. Using 
s 

an electronic computer, values of P were obtained for various liquid 
s 

contents. The results are given in F~g. 2. Equations (43) and (50) were 

also solved in a similar manner at several liquid volumes and several 

dihedral ·angles from P s to the value of P at which theoretical density 

occurred, Pth• 

The results of these equations yielded critical values of ys~/y~v 

for the particular sets of conditions. ys~/y~v ratios were then plotted 

versus P 0 , (h0 /R
0), which is a measure of linear shrinkage, to give 

critical ratios of interfacial energies as a function of densification. 

Results for Eq. (43), the zero dihedral angle case, are shown in 

Fig. 3 for volumes of liquid phase from 2.33% to 10.6%. Each of these 

curves has a different value of Ps and Pth corresponding to the particular 

volume of liquid phase in the unit cell. Between Ps and Pth' the curves 

decrease, go through a minimum, and then asymptotically approach Pth• 
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0~--~--~----~--_.----~--~--~----~~-J 
0 4 8 12 16 20 24 28 32 36 

VOLUME LIQUID PHASE AS A PERCENTAGE OF 
THE VOLUME OF A THEORETICALLY DENSE COMPACT 

XBL 7310-1953 

Figure 2. P or h/R, at which a spherical pore fonns in the simple cubic 
array versus the volume percentage of liquid phase in a 
theoretically dense compact. For a given volume of Jiquid phase, 
this plot determines the value of P above which Eq. (50) becomes 
valid. 
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The critical ratio of yst/y~v' as far as attaining theoretical density is 

concerned, is the minimum value of ys~/Y~v for any particular curve. 

I 

Thus for 3.45% liquid phase (Fig. 3), spherical porosity forms as P
0 

= 

Ps = 0.177; at P0 = 0.180, the minimum value of ys~/y~v = 2.205 occurs; 

and at P 0 = P th 0.184, the unit cell has completely densified. The 

model therefore predicts that in order to completely densify an array o.f 

simple cubic packing of spherical particles, containing 3. 45% liquid 

phase and forming a zero solid-solid solid-liquid dihedral angle, the 

ratio of Yst/y tv must be less than 2.205. If the ratio is greater, end-. 

point densities less than theoretical will result. 

For compacts containing 2. 33% liquid phase, somewhat different re-

sults occur. Spherical porosity forms at P0 = Ps = 0.182; at P0 = 0.1842, 

the (100) face of the unit cell is completely densified. At this point, 

· the model breaks down as did the model for simple cubic packing of 

spheres in the solid phase sintering model, and Y st/y tv = 1. 590; but 

since the unit cell has not yet densified completely, sintering must 

proceed by some other mechanism than that described by the present model. 

The dashed line in Fig. 5 indicates the value y st/y ~v would have if the 

present model is carried past the point where the (100) face has com-

pletely densified. The minimum value of Yst/y~v occurs at P0 = 0.186 

and theoretical density occurs at P0 = Pth = 0.1875. Although the value 

of Y st/Y tv = 1. 543 at P 0 = 0.186 is not correct, the shape of the curve 

indicates that the critical ratio of y st/y tv for 2. 3~% liquid p~ase must 

be somewhat less than the value of 1.590 which is predicted at the maxi-

mum value of P0 for which the model is still valid. 



-133-

Figure 3 also indicates that for a system.forming a zero dihedral 

angle, the critical ratio of Yst/Ytv increases as the volume fraction of 

liquid phase increases. For wetting systems, ys£ has a value between 

Ysv and Ytv' and therefore, ys£/ytv is greater than unity. Since this 

ratio for a real system must be less than the minimum predicted by the 

model, as the volume fraction of liquid phase decreases, the critical 

ratio will approach unity. The reason for this fact is that as the liquid 

volume decreases, cSAs£ becomes large relative to cSAR,v and therefore, Ytv 

must be large relative to ys£ in order for cSG to remain negative. Only 

in the final increments of densification does oAR-v become large relative 

to cSA n since the pore shrinks very rapidly near theoretical density. 
Si~. . 

Therefore, the barriers to complete densification are greatest for small 

liquid volumes and least for large liquid volumes. 

Figures 4-7 are plots of ys£/ytv versus P0 , (Eq. (50) the nonzero 

dihedral case), at different volume fractions of liquid phase and several 
' 

dihedral angles. In each figure, as for the zero dihedral angle case, 

the greater the volume of liquid phase, the larger is ··the value of 

ys£/yR,v critical. Additionally, by comparing Figs. 8-10 which are plots 

of Yst/yR,v versus P0 at constant liquid contents and several different 

dihedral angles, it is evident that as the dihedral angle increases, the 

critical ratio also increases, and therefore, the thermodynamic barriers 

are reduced. 

The reason for this trend is that in systems forming nonzero dihedral 

angles, as described by Eqs. (18) and (23), the solid-solid interfacial 

area provides a positive contribution to the free energy of the system 

while the solid-liquid and liquid-vapor interfaces provide negative 
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contributions to the free energy. Since the dihedral angle relates 

solid-solid and solid-liquid interfacial energies and the smaller the 

dihedral angle, the larger is y relative toy 0 , systems forming small 
SS SN 

dihedral arigles will have a proportionately larger positive contribution 

from y oA than systems forming large dihedral angles. For wetting 
ss ss 

systems, (ysR./yR.v greater than unity), in order to overcome the large 

positive contribution to the free energy of the system of y oA , the ss ss 

ratio of ysR./yR.v(critical) must decrease as the dihedral angle decreases 

so that yR. oAR. can provide a larger fraction of the negative contribu-
v v 

tion to the free energy of the system. 

One point of comparison is necessary between the analyses for solid 

phase sintering, (Part A), and liquid phase sintering. The model for 

solid phase sintering required that densification continued for any 

system until the interpenetration of spheres was sufficient to form the 

equilibrium dihedral angle at the solid-solid/solid-vapor triple point. 

When this configuration was attained, the compact had reached its minimum 

free energy configuration relative to the geometry of the surfaces, and 

therefore, sintering ceased. 

Applying the same criterion to liquid phase sintering and neglecting 

the contribution to the free energy of the system of the liquid-vapor 

interfacial area, would yield the prediction that systems forming an 

equilibrium zero dihedral angle would have no interpenetration of spheres, 

and thus no densification. While in systems forming equilibrium non-

zero dihedral angles, interpenetration and therefore densification would 

increase as the equilibrium dihedral angle increased. Such a thermo­

dynamic analysis was presented by Stephenson and White16 although these 
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authors did realize that the liquid-vapor interface must be considered in 

the analysis in order to be consistent with theory and with experimental 

evidence. 

When the contribution of the liquid-vapor interface is considered in 

the analysis as in the present model, interpenetration of spheres occurs 

past the equilibrium dihedral angle for all systems. The free energy of 

the solid-solid interface plus the solid-liquid interface passes through 

a m.inimumat an interpenetration corresponding to the equilibrium di-

hedral angle and begins to increase. However, the liquid-vapor interface 

provides a negative contribution to oG during further interpenetration 

which counterbalances this positive contribution and continues to main-

tairi a negative free energy for the entire system. For the most un-

favorable case, ¢ = 0, the contribution of Yo oA 0 is great enough to eq NV NV . 

cause sufficient interpenetration of the spheres to attain· theoretical 

density for the model. 

It should be noted for the zero dihedral angle case, that the 

liquid phase sintering model assumes that a film of liquid exists between 

the spheres although the macro-shape of the solid-liquid triple point 

defines a finite dihedral angle much larger than zero. The micro-shape 

of the triple point, however, would indicate a zero dihedral angle. 

For all these models, once the porosity and thus the liquid-vapor 

interface is eliminated, the ·solid-solid and solid-liquid interfaces may 

be in a nonequilibrium state, since the macro-dihedral angle is &reater 

than ¢ 
eq 

Thus a driving force exists for the motion of internal sur-

faces to attain a lower free energy configuration, i.e., the equilibrium 

dihedral angle. This driving force is largest for an equilibrium zero 

... 
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dihedral angle and decreases as the dihedral angle increases. Since the 

motion of internal surfaces is associated with grain growth, the model 

then predicts that when porosity in a certain region of a compact is 

eliminated, the driving force for grain growth increases with decreasing 

dihedral angles. This postulate is consistent with experimental results 

for real systems which show a similar relationship between the magnitude 

16 of the dihedral angle and the degree of grain growth. 

D. Discussion 

The analysis for the thermodynamics of liquid phase sintering 

indicates that the critical ratios of ys~/y~v for the attainment of 

theoretically dense compacts are dependent on two parameters: the volume 

fraction of liquid phase, and the magnitude of the solid-liquid dihedral 

angle. For a constant value of the dihedral angle, as the volume frac-

tion of liquid phase increases, the critical ratio of ys~/y~v also in­

creases as shown in Figs. 3-7. Therefore, as the volume fraction of 

liquid increases, the thermodynamic barriers to the attainment of a 

theoretically dense compact decrease. 

The effect: of increasing values of the dihedral angle, at constant 

volume fractions of liquid phase, on the critical ratio of y 0 /y 0 is 
Sx. x.V. 

shown in Figs. 8-10. As the solid-liquid dihedral angle increases, so 

does the critical ratio, and therefore, the thermodynamic barriers to 

the attainment of a theoretically dense compact are reduced. 

The most unfavorable case for the attainment of theoretical density 

involves a system which forms a zero solid-liquid dihedral angle and has 

a small volume fraction of liquid phase. In order to obtain more favor-

able thermodynamic conditions for the sintering of such a system, two 
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approaches are possible. One method involves the use of additives which 

reduce the value of yss relative to ys~ and y~v· By decreasing y , the 
ss 

equilibrium solid-liquid dihedral angle increases. As the dihedral 

angle increases, the critical ratio of ys~/y~v must also increase. As 

an example, assume that for a sintering system the ratio of ys~/y~v is 

2.230, and that the equilibrium dihedral angle is zero. This value of 

the dihedral angle corresponds to curve A of Fig. 9. The critical ratio 

of ys~/y~v for this curve is 2.205 which indicates that an endpoint den­

sity less than theoretical will result. However, if the introduction of 

an additive causes the equilibrium dihedral angle to increase from 0° to 

11.46°, curve B will govern the sintering of the compact instead of 

curve A. The critical ratio of ys~/y~v therefore increases from 2.205 

to 2.244 and the model predicts that theoretical density will be attained 

since no thermodynamic barriers exist. 

For systems where it is undesirable to introduce impurities, thea-

retical density can still be attained by increasing the volume fraction 

of liquid phase. For systems forming a zero solid-liquid dihedral angle 

and having a ratio of ys~/y~v of 2.230, Fig. 3 indicates that if less 

than 3.45% liquid phase is present in a sintering compact, endpoint 

densities less than theoretical will result. However, if the volume 

fraction of liquid phase is increased to 4.55%, no barriers to the attain-

ment of theoretical density will arise. 

Therefore, by increasing the volume fraction of liquid phase in a 

sintering compact and/or increasing the magnitude of the solid-liquid 

dihedral angle, most solid-liquid-vapor systems ca:n in principle be sin-

tered to theoretical density. 

.. 
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III. KINETICS OF LIQUID ~RASE SJNTERING 

A. Introduction 

Liquid phase sintering kinetics are governed by the magnitudes of 

capillary forces which arise in sintering compacts due to the formation 

of toroidal shaped liquid bridges connecting solid particles. The 

geometry of the solid particles, the volume fraction of liquid phase, and 

the relative values of the interfacial energies determine the magnitudes 

of these capillary forces. 

In order to accurately describe sintering kinetics, models must be 

formulated based on each of these parameters. As yet, little work has 

been performed in this area. Therefore, models are presented here for 

solution-precipitation mechanisms and bulk diffusion mechanisms of liquid 

phase sintering systems. Cases treated here for solution-precipitation 

mechanisms include: (1) small volumes of liquid, (2) large volumes of 

liquid, and (3) dissimilar sized particles. For bulk diffusion mechanisms 

the small volume fraction of liquid case is treated for different values 

of the solid-liquid dihedral angle. 

Prior to the development of these models, a short discussion of 

capillary phenomena is presented. 

B. Capillary Forces 

When a curved interface is formed between a liquid and a vapor, 

there exists a pressure difference across that interface. In order to 

determine the pressure difference, two principal radii of curvature 

describing the curved interface must be known. Consider the surface in 
.I 

Fig. 11, which has area A = xy and is extended outward by a small incre-

ment, dz. The area of the extended surface is 
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A' = (x + dx) (y + dy) (56) 

or 

A' = xdy + ydx + xy + dxdy (57) 

The work done in forming the new surface area (A' - A) is y(xdy + ydx) 

where y is the interfacial tension. The work done in extending the 

surface from A to A' is ~pxydz where ~p is the pressure difference across 

the interface. Using the relationship for similar triangles, 

x + dx X yielding dx = xdz (58) =-
R1 + dz Rl Rl 

and 

y + dy =L yielding dy =~ (59) 
R2 + dz R2 R2 

Equating the two work terms, 

y(xdy + ydx) = ~xydz (60) 

and 

1~+~)-y\ydz xdz - (61) 

Substituting Eqs. (58) and (59) into (61) 

(62) 



-148-

48: 
This equation was first derived by Young. The derivation given 

49 here is due to Adamson, and indicates that the pressure difference 

across a curved interface is a function of y the interfacial tension, and 

the two principal radii of curvature, R1 and R2 • 

Now consider ·two isotropic spheres which are brought together with 

a torodial liquid bridge forming a zero contact angle between them, 

Fig. 12. Let the plane of the figure be described by the x-axis along 

0-0 and the y-axis perpendicular to 0-0. An analogous pressure difference 

exists across the liquid-vapor interface. In this case, the pressure in 

the liquid is less· than in the vapor. Therefore, a net compressive force 

results at the particle-particle contacts. This force was shown by 

.. 50 51 52 
Heady and Cahn et al. ' to be equal to 

F = 2rry Ytv cos 8 + rry
2 ~p (63) 

where 

Many previous authors neglected the first term in discussing such force 

relationships, arguing that since both cpmponents of the force are due 

to Ytv' only the latter term is necessary. However, Heady and Cahn50 

showed that Eq. (63) is the integral form of Eq. (62) with F being a 

constant of integration, and that only differentation of Eq. (63) will 

yield Eq. ( 62) • 

Using the relationship 
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Figure 12. Two sphere model for liquid phase sintering with a wetting liquid forming a bridge 
between the spheres. 
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and substituting into Eq. (62) 

21TY Y R,v 2 
F = [ 211/2 + 1lY b.p 

1+(-~) 

since y = f(x) 

2] 1/2 . 2] -1/2 
1+(~) ~ - y 1+(~) 

dx . dx dx dF 
dx 
-= 

[1+(~) 21 dx · 

Setting dF/dx = 0 

~ 
dx - y 

f 
2]1/2 

1+("*) 

=- yb.p ~ 
dx 

The radius of curvature in the xy plane is 

2 ~( 2)3/2 ·.,.!..._ = .£...y . 1 + (~) 
R 2 · dx 
.. 2 dx 

and the radius of curvature perpendicular to l/R2 is 

(64) 

(65) 

(66) 

(67) 

. 

(68) 
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1 1 - = ~---=:.......,.........,......,.,... 

Rl I d 2]1/2 
Y' 1+(*) 

(69) 

The minus sign occurs in Eq. (69) since R
1 

and R2 are of opposite cur-

vatures. 

Substituting Eqs. (68) and (69) into (67) yields 

(70) 

which is identical to Eq. (62). The above derivation is due to Heady 

and Cahn. 50 

35 Eremenko has derived a general equation for the force between two 

identical spheres as a function of radii of curvature, contact angle 6, 

and the degree of coverage of the spheres by the liquid, ~0 . Although 

. 51 
the shape of the liquid-vapor interface, called the Noidoid of Plateau, 

is not circular using the approximation of a circular arc introduces 

only slight errors into the analysis and circuvents much mathematical 

difficulty. Thus the force is given by50 

where 

2 1 1 2 . . . 
F = Yn [nR0 sin ~O (-- --) + 2nR0 sin ~0 ] 

~v P2 pl 

( 
1 - sin (~0 + 6)) p1 = R0 sin ~O - <Ra (1-cos ~0)) 

cos <~o + 6) 

(71) 

(72) 
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R
0 

(1 - cos ¢
0

) 

cos (¢0 + 8) 
(73) 

Increasing amounts of liquid cause the forces between the particles 

to decrease as do increasing values of the contact angle35 at values of 

8 > 90°, the particles begin to repel since tensile forces result. 

For the case where the particles in a compact are completely coated 

with liquid, spherical pores tend to develop in the liquid as discussed 

in the previous section. In such configurations, there is no solid,-

liquid-vapor triple point and the force is given by 

F 
2 

TIR llp (74) 

The formation of spherical pores containing vapor can lead to entrap-

ment of gases and thus back 'pressures can build up in the pores. If one 

assumes that the pressure difference between the pore and the liquid is 

proportional to the volume of the pore at any time, divided by the 

original pore volume, 

(75) 

then the pressure difference may be approximated as 

b.p = ~ . R (76) 

r 
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and therefore Eq. (74) would become 

(77) 

As the pore radius shrinks, the pressure difference approaches zero. 

C. Kinetics of Liquid Phase Sintering: Solution-Precipitation 

1. Small Volumes of Liquid; Similar Sized Particles 

Upon completion of the rearrangement stage of liquid phase sinter-

ing, the liquid content, the solid-liquid-vapor contact angle, and the 

liquid-vapor interfacial energy control the shape of the porosity in the 

16 
sintering compact. The shape of the porosity in turn determines the 

capillary forces acting on the system. Figure 12 shows a two sphere 

model having a liquid bridge between the spheres. The curvature of the 

liquid-vapor interface causes a lower pressure in the liquid than in the 

pore, and a corresponding increased pressure in the region between the 

50 33 35 spheres. , , · The pressure difference between the liquid and the 

region between the spheres may be expressed as 

(78) 

where p1 and p2 are.the principal radii of curvature and Ro is the 

radius of the particle. The first term in this equation is the Laplace 

pressure difference due to the curvature of the liquid-vapor interface 

and the second term is due to the surface tension force around the 

perimeter of the liquid-vapor interface. 
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If sufficient liquid is present to form a spherical pore directly 

after rearrangement, the pressure difference is given by 

= y (.!_ + .!_) 
iv r r 

p p 

2Ytv 
=--

r p 
(79) 

where r is the radius of the spherical pore. The fugacity of a com­
p 

ponent in a liquid increases with increasing pressure if the partial 

1 1 f h i . i 53 d h 1 i h. mo ar vo ume o t at component s pos1t ve, an t e re at ons 1p 

between the fugacity and the pressure is then given by 

p f I ;;2 dp= 
I (p) 

dinf (80) 
NkT 

Pr f 
(pr) 

where v2 is the partial molar volume of the solute, called component 2; 

p is the pressure in the liquid; p is the pressure between the spheres 
r 

which is caused by stresses created by the curvature of the liquid-vapor 

interface; and f is the fugacity of the Solute (component 2). If 

Amagat's law is assumed to hold, 53 the partial molar volume of component 

i in the liquid, vi is equal to the molar volume, v~, that is 

v E E 0 = xi v. = x. v. 
i 1 i 1 1 (81) 

since 

o~J -0 
vi = vi 

T,P,n. 
J 

(82) 
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0 vi the molar volume, which is constant at a particular temperature and 

pressure can then be substituted into Eq. (80) and can be removed from 

the integral. Thus Eq. (80) may be integrated directly to yield 

(83) 

Using the ideal solution approximation, 

(84) 

where x is the mole fraction of component 2. Equation (84) is similar 

in form to the equation used by Kingery33 in his derivation of a densi-

fication versus time equation for the solution-precipitation stage of 

liquid phase sintering for systems forming zero dihedral angles. In his 

derivation, the pressure difference, (p-p ), corresponded to that deter­r 

mined by Eq. (80). That is, spherical shaped porosity which occurs after 

the rearrangement stage in compacts having large vol~me fractions of 

liquid phase. Additionally, he did not differentiate between the 

geometry of Fig. 12, toroidal shaped porosity (small volume fraction of 

liquid case), and spherical shaped porosity. 

If one defines a stage in sin tering as an interval during which the 

pore shape remains constant, as well as an interval during which the 

sintering mechanism remains constant, there are clearly two stages of 

solution-precipitation in compacts having small volume fractions of. 

liquid phase and therefore, two models are necessary to describe the 

sintering kinetics. 
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The first stage is characterized by toroidal shaped porosity, as 

shown in Fig. 12, and the second stage is characterized by the formation 

of spherical porosity. Compacts containing small volume fractions of 

liquid phase are subjected to both stages during densification. If suf­

ficient liquid is present to form spherical porosity directly after the 

rearrangement stage, the first stage (toroidal shaped porosity), does 

not occur and the kinetics correspond to Kingery's solution which will 

be designated the second stage or the final stage of solution-precipita­

tion. Since the first stage has not previously been treated, kinetic 

solutions will be presented here for several sintering geometries using 

numerical integration techniques which allow more precise geometric 

description~ of the sintering models than the method of analytical inte­

gration used by Kingery. 

Consider a model system consisting of two identically sized spherical 

particles with a small toroidal shaped liquid bridge between the spheres, 

Fig. 12. Mechanistically it is assumed that: (1) the rearrangement 

stage has been completed; (2) only solution-precipitation occurs; (3) 

the volume of the liquid remains constant; (4) the dihedral angle and 

contact angle are bot.h equal to zero; (5) the solid is soluble in the 

liquid but the liquid is insoluble in the solid; (6) material from the 

region between the spheres is deposited uniformly on the free surfaces 

of the spheres; and (7) the solicl-liquid and liq~id-vapor interfacial 

energies are isotropic. 

Referring to Fig. 12, R0 is the initial radius of the particles, 

~O is the angle formed by the intersection of the R0 vector at the solid-

" 
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liquid-vapor triple point and the line 0-0', ~O is determined by the 

volume of liquid and by R0 • 0 0 
p1 and p2 are the initial radii of curva-

ture which determine the magnitude of the compressive stresses acting 

between the two particles. 

As sintering proceeds, the particle centers move together along the 
·,. 

line 0-0' due to solution of material in the region between the spheres. 

This material then diffuses through the liquid and i~ reprecipitated 

uniformly on the surfaces away from the solution region. Therefore, as 

sintering proceeds, R0 increases R· ~O increases to ~· 
0 to , , and p
1 

and 

0 to p1 and p2 increase p2' Fig. 13, and a spherical cap of material of 

height h and radius u is removed .from each sphere at the "contact" 

region and is assumed to be uniformly distributed on the surface of the 

spheres. 

The force between the particles is given by Eq. (71) 

(85) 

In order to convert Eq. (85) to a pressure, it must be divided by an 

area term. The area chosen will be the projection of the radius of the 

. ~. particles at the solid-liquid-vapor interface onto a plane normal to the 

line 0-0'. This area increases as the interpenetration of the spherical 

particles increases, and is given by 

(86) 

dividing Eq. (85) by Eq. (86), 
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(87) 

It is necessary to relate the pressure at the contact region to the 

pressure exerted by the liquid, and one can reasonably assume that the 

pressure in the contact or neck region will be inversely proportional to 

the ratio of the area of the contact region divided by the area of the 

projection of the particle radius. 34 

F nR
2 

A a--2 
1Tu 

substituting Eq. (88) into (87) 

The remainder of the kinetic analysis will be similar to that 

(88) 

(89) 

employed by Kingery for the kinetics of solution-precipitation. The 

diffusion flux of material from the contact region may be approximated 

by the radial heat flow from a cylindrical solid that is electrically 

heated, 

J 
- = 47TDL'1C 
A 

where J is the diffusion flux, A is a characteristic area, D is the 

(90) 
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diffusivity of the solid in the liquid, and 6C is the difference 

between the concentration of the solid in the liquid in the contact 

region and the concentration of the solid in the liquid in regions away 

from the contact region. If t is the radial diffusion length in the 

liquid and o = A/t then 

dv Jo = - = 4rrn6co dt 
(91) 

where dv is the differential of volume and dt is the differential of 

time. Rewritting Eq. (84) 

·{ (6pv~) x - x . = x exp NkT 
p Pr Pr 

(92) 

and substituting Eq. (92) into Eq. (91) 

( 0) d 6pv2 
_:!_ = 4rrDox fexp -· - - 1J dt p NkT 

r 
(93) 

Since the expansion of an exponential function is given by 

(94) 

by using the first two terms of the expansion of Eq. (94), and substitut-

ing the right side of Eq. (93) for w, 

0 4rro Dx 6pv2 ·dv pr 
- = ------,---
dt NkT 

(95) 
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Then substituting Eq. (89) into (95) 

dv 
dt = 

4mSDx y 11 p A-V r 
NkT 

The volume of material removed from the spherical caps between the 

spheres is 

v cap 
2 

= mrRh 
3 nrrh 

--3-

(96) 

(97) 

where n is the nearest neighbor coordination number of spheres around 

each particle. The dummy variable P = h/R is then inserted into Eq. (97) 

(98) 

From a volume balance R is related to R0 , 

4R3 

R 3 = -----=-0-=-----~ 
(4-3nP

2 + nP 3) 
(99) 

Substituting .Eq. (99) into (98) yields 

4n (p2 .~f) 
2 3 

(4-3nP + nP ) 
(100) 

On differentiating Eq. (100) 
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The differential with respect to time is 

dv 16rrrtR~P(2-P) 
-= 
dt (4-3nP2 + nP 3) 2 

dP 
dt 

dP 

The radii of curvature in Eq. (96) can be written in terms of the 

variables, R, h, and ~' as follows 

and 

p
2 

= R(l - cos 
cos 

~) - h 
cp 

P1 = (r-h) tan ~ - (R-h) sec ~ + R 

(101) 

(102) 

(103) 

(104) 

R, h, and ~ cannot be related directly but may be related by use of the 

following approximation which is very accurate for small volume fractions 

of liquid phase. 

Therefore, 

cos cp R-2h =--

Rh 
P2 = R-2h 

R 
(105) 

(106) 

.. 
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Combining Eqs. (89), (106) and (107), 

2 

!_ = y tv R 1·· (R-2h) + ~ _ (R-2h) l 
A 2 Rh R ~ 

u 2(R-h) VRh-h2 - Rh 

rearranging 

2 
!_ = ~y tv R 
A 2 

u 

[ (R-h) .VRh-h
2 

- h) 

h{2(R-h) VRh-h'i. - Rh} 

substituting 

2 2 
u = 2Rh-h and h = PR 

into Eq. (109) 

F 2y tv {(1-P) .V<1-P)P - P} 

A= RP2 (2-P){2(1-P) V<1-P)P- p} 

combining Eqs. (73) and (111) 

8mSDX(p) V~ Ytv {(1-P).V(l-P)P- P} 

_dV = -~-;;-· ~r=-------;;::::=..----
dt NkTRP2 (2-P) {2(1-P) .J<1-P)P ...: P} 

(107) 

(108) 

(109) 

(110) 

(111) 

(112) 
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dv' 
dt = 

NkTR (4) 1/ 3 
0 

-164-

X [(1-P) ~1-P)P - P]} 

{P2(2-P) [2(1-P) "(1-P)P - P]} 

Equating Eqs. (113) and (102) 

16nnP(2-P)R~ dP 

(4-3nP2 + nP 3) 2 dt = 

X {(4-3nP
2 + nP3) 113 [(1-P) Y(l-P)P - P]} 

.. {p2(2-P) [2(1-P) V<l-P)P - p]} 

rearranging 

0 oDX v2 Yn dt p· JVV 
r 

2nKTR4(4)l/J 
0 . 

. X [2(l:..P)'Y(l-P)P- P] dP 

[(1-P) .J<l-P)P - P] 

X 

X 

Equatjng (115) is the differential equation for the kinetics of the 

initial stage of solution-precipitation. Now let 

(113) 

(114) 

(115) 



I .. 

-165-

(116) 

and 

f(P) = P\2-P) [2(1-P) Y(l-P)P - P] 

(4-3nP
2 + nP3) 713 [(1-P) ~(1-P)P - P] 

(117) 

Then 

p 

=I f(P)dP (118) 

0 0 

Mi is a constant for a particular sintering system and can be removed 

from the integral. Therefore, 

.(119) 

On the other hand, 
p 

I f(P)dP 

0 

cannot be integrated analyt_ically, but it may be integrated using 

numerical techniques. The area under the f(P) versus P curve gives the 

integral of Eq. (118) up to any value of P. Dividing the integral area 

term by M1 yields a value of time, t, corresponding to a particular value 

of P. Therefore, evaluating Eq. (118) up to a certain value of P, and 

dividing by M1 yields the corresponding value of t. Using an electronic 
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computer, the areas under the f(P) versus P curves were obtained. These 

areas were then divided by an appropriate value of M
1 

to yield values of 

time. Since the change in volume of a compact is related to h, and its 

initial volume is related to R0 , h/R
0 

may then be plotted versus t to 

give shrinkage as a function of time. The slope of the curve that is 

generated gives the exponent of time. From such curves, h/R0 may be 

replotted versus R0 at constant times to give the exponent of particle 

size. Therefore, one obtains a proportionality of the form 

(120) 

This proportionality is independent of the value of M1 and there­

fore, the values of y and z are constants for the initial stage of 

solution-precipitation. They are valid as long as the parameters of 

the model are not violated. By choosing a particular sintering system, 

a value of M1 can be calculated from estimated values of the diffusivity, 

o = A/l, liquid-vapor interfacial energy, particle size, solubility, and 

temperature. Figure 14 gives the results of densification versus time 

for a hypothetical solid-liquid system from P = 0.00 toP= 0.25, (h/R0 = 

0.276), assuming initial particle sizes of 5 microns. The slope of the 

curves obtained from a log linear least squares analysis yields a value 

of y = 0.24297. If the least squares analysis is performed from P = 0.00 

to P = 0.17, the value of y is 0.24482 indicating that the log (h/R
0

) 

versus log(t) curves are not quite linear. Therefore, the results of the 

least squares analysis will depend on the upper value of P that is 

chosen. 

,., 



-. 

0~~--~~--~~--~~~--~~----~--~~----~ 

0 

~ -1 
<( 
co 
(!) 
0 
_J 

rf-2 
~ 

DENSIFICATION VS. TIME 
INITIAL STAGE SOL.-PRECIP. PARTICLE SIZE= 5 MICRONS 

DIHEDRAL ANGLE, $ =0 
h/R oC(TIME)0.243 

-3 - I - 2 3 4 5 -2 _, 0 

TIME (sec) LOG BASE 10 XBL7310-1965 

Figure 14. Densification versus time for the initial stage of solution-precipi-tation. The slope __ , 
of the curve yields the exponent of time, y. 

I ,__. 
0\ 
'-I 
I 



-168-

Figure 15 is a plot of h/R0 versus the initial particle size of the 

spheres, R0 , (for P = 0.25). The slope of this curve, determined by 

using a similar least squares analysis, is z = -0.97186. Substituting 

these results into Eq. (120) 

(121) 

Similar results can be obtained 'for other coordinations of particles. 

When the upper limit of P 'is 0.17, the values of y range from 0.24522 to 

0.244156 for nearest neighbor particle coordinations from 2 to 12. 

Corresponding values of z range from -0.98088 for two-fold coordination 

to -0.97670 for twelve-fold coordination. These result~ indicate that 

the values of y and z are relatively independent of the nearest neighbor 

coordination of spheres. 

The initial stage of solution-precipitation is completed upon forma­

tion of spherical porosity. At this point, the radii of curvature of 

the liquid-vapor interface both have the same sign, i.e., the radius of 

the pore. Since the pressure difference between the pore and the liquid 

is the described by Eq. (79) instead of Eq. (78), different kinetic 

conditions apply upon completion of the initial stage of solution­

precipitation. 

2. Large Volumes of Liquids 

As discussed in Section III-C-1, for liquid phase sintering compacts, 

the initial stage of solution-precipitation is terminated in systems 

containing less than 27.6% liquid phase (27.6% of the original volume of 

the simple cubic cell, or 34.3% of the volume of atheoretically dense 
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t 

compact), upon formation of spherical porosity. At this point? both 

principal radii of curvature of the liquid-vapor interface have the same 

sign and magnitude, i~e., the radius of the pore, r. The kinetic 
p 

equation derived in Section III-C-1 corresponds to the initial stage of 

solution-precipitation and breaks down at this point. The equations 

derived below are valid for the final stage or for compacts having more 

than 27.6% liquid phase. The geometry of these systems is characterized 

by spherical pores and it is assumed that sintering has proceeded through 

the initial stage, or that the compact contains sufficient liquid to 

form spherical porosity directly upon completion of the rearrangement 

stage. Since the initial stage of solution-precipitation is characterized 

by open porosity, there is no effect of the ambient atmosphere above the 

compact on sintering kinetics. However, since the final stage is 

characterized by a closed pore phase, two cases must be considered: the 

first neglecting the effect of atmosphere and the second, taking into 

account the effect of the buildup of a back pressure in the pores. 

As was shown in Section III-C-1, the coordination of uniform sized 

spherical particles has only a slight effect on sintering kinetics. 

Therefore, without loss of generality, it is possible to treat the 

simplest geometric model and to expect that similar sintering kinetics 

would apply to more complex geometric assemblages. 

The model described here is identical to the thermodynamic model of 

Section II, (for a zero dihedral angle), and assumes that the rearrange-

ment stage is completed and has resulted in an array of eight uniform 

sized, isotropic, spherical particles in a simple cubic array. The 

3 
volume of a unit cell formed by such a configuration is 8R0 , where R0 is 
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the initial radius of the particles. Each cell contains the volume of 

·.· 3 
one spherical particle occupying a volume of 4.16R

0
• The remaining void 

space in the cell is 3.84R6 which can contain liquid and pore phases. ' 

If less than 16.3% of the original cell volume is liquid phase, insuf-

51 ficient liquid is present to completely coat the spheres. Between 

16.3% and 27.6%, the spheres are completely coated but the shape of the 

liquid-vapor interface is toroidal. At liquid volumes larger than 27.6%, 

spherical porosity forms at the center of the simple cubic cell. 

For any volume fraction of pore phase, as sintering proceeds, 

material is removed from spherical caps at particle-particle contacts, 

and is deposited at particle surfaces away from the contact region in a 

mechanistically identical manner as described for the initial stage of 

solution-precipitation. Particle centers thus move together, shrinking 

the volume of the cell and squeezing liquid into the remaining void 

space, causing densification. 

Compacts containing less than 27.6% liquid phase follow the sinter-

ing kinetics characterized by the initial stage of solution-precipitation 

(Section III-C-1) until spherical porosity forms. Upon formation of 

spherical pores, the sintering kinetics change and the value of P at 

which the model breaks down is then determined by the volume fraction of 

liquid phase in the compact. 

Proceeding with the analysis, all conditions of Section III-C-1 

apply except that the shape of the porosity is spherical. The volume of 

the sintering cell (Fig. 1 of Section II), at any degree of densification 

is 
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V = 8(R-h) 3' 
! .cell 

(122) 

Substituting h = PR into Eq. (122) 

(123) 

For simple cubic packing, R and R0 are related by 

(124) 

Substituting Eq. (124) into Eq. (123) 

vcell = (125) 

The volume of the spherical particle remains constant, and is given by 
I 

3 
4TIRO 

V sphere = -3-
(126) 

3 . 
The volume of liquid in the cell is called VliqR

0
, and therefore, the 

volume of the porosity at any degree of densification is 

V V V V R3 
pore cell - sphere - liq 0 (127) . 

Substituting Eqs. (125) and (126) into (127) 
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4TIR
3 

___ o . R3 
3 - vliq o (128) 

When sufficient sintering has occurred, a spherical pore forms in the 

center of the simple .cubic cell. Its volume is given by 

47Tr3 

v = ___£_ 
pore 3 

(129) 

Substituting Eq. (129) into (128) 

47Tr3 32R3 (l-P) 3 
__..:2. = __.;.._..;:.o...,.---~-

3 (4-18P2 + 6P3) 

4TIR
3 
0 R3 

- -3- - vliq o (130) 

and rearranging, 

(131) 

The p~essure difference between the pore and the liquid.is given by 

Eq. (79) of Section III-C, Part B. 

(132) 

Substituting Eq. (131) into Eq. (132) 
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2 YR.v 
b.p = 

R 
0 

41T(4-18P2 + 6P3) I( l/3) 

96(1-P) 3 - (41T + 3V1 . )(4-18P
2 + 6P 3) 1q 

assuming that 

R2 . 1 
b.p a Z = -P..,..:( 2:;;..._-P.,...) 

]1 

and substituting Eq. (134) into Eq. (133) 

Substituting Eq. (134) into Eq. (95) of Section III-C, Part B, 

dV -= 
dt 

X 

1/3 
X 4~(4-18P2 + 6P

3
) 

96(1-P) 3 - (41T + 3V1 . )(4-18P
2 + 6P

3
) 

1q . 

(133) 

(134) 

(135) 

(136) 

For a nearest neighbor particle coordination of n = 6, Eq. (102) of · 

Section III-C becomes 

dV 967T~ P(2-P) 

dt = (4-18P2 + 6P3) 
dP 
dt (137) 
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Equating Eqs. (136) and (137) 

12NKT R
4 
0 

X 196(1-P) 3 - (4~ + 
47T 

3V
1

. ) (4-18P
2 + 6P

3
) 

1q 

X 

[-1/3] 

dP (138) 

Equation (138) is the differential equation for the kinetics of 

densification for the final stage of solution-precipitation, or for com-

pacts containing large liquid volumes, neglecting the effect of back 

pressure in the pores. If sintering occurs under conditions where the 

gas phase affects kinetics, the back pressure in the pores must be con-

sidered, and it is reasonable to assume that the pressure difference 

between the pore andthe liquid, b.p is proportional to the cube of the 

radius of the pore at any particular value of P divided by the cube of 

the radius of the pore when spherical porosity first forms, r 
Po 

(139) 

Using this relationship, a similar equation to Eq. (138) can be derived, 
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DOX(P ) y tv 
vo dt P

2
(2-P)

2 3 
2 rp 

r 0 X 
12NKT R4 (4-18P

2 + 6P3) 4/ 3 
0 

3 (4'1T 3Vli ) (4-18P2 + 6P 3) 
1-{2/3) 

96(1-P) - (140) X 
4'1f 

This equationis the differential equation for the kinetics of the final 

stage of solution-precipitation with the effect of back pressure in-

eluded. 

For sintering systems containing more than 27.6% liquid, (34.3% of 

the volume of a theoretically dense compact), Eqs. (138) and (140) are 

valid at any value of P. In systems containing less than this volume 

of liquid, Eqs. (138) and (140) are only applicable at values of P 

greater than the particular value of P at which spherical porosity forms 

in the cell. Equation (131) was derived a~suming that the void volume 

was in the shape of a sphere. If Eq. (131) is used at void volumes which 

do not correspond to spherical porosity, the calculated value of r is 
p 

too large. Therefore, Eq. (131) is not valid until sufficient densi-

fication has occurred to form spherical porosity at the center of the 

sintering simple_ cubic cell. The amount of -densification necessary for 

such a configuration depends on the volume of liquid phase present in 

the compact. The method for calculating the value of P at which Eq. (131) 

becomes valid was presented in Section II of Part B. This value~ called 

p , corresponds to the completion of the initial stage of solution-s . 

precipitation and the start of the final stage, and is shown as a 
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function of the volume fraction of liquid phase in Fig. 2 of Section II, 

Part B. 

Using an analysis similar to that used in Section III-C, of Part B, 

numerical integration of Eq. (138) and (140) yields the areas under the 

f(P) versus Pcurves. From these curves, log(h/R0) vs log(time plots) 

are obtained yielding, from their slopes, the exponent of time, y. 

Corresponding plots of log(h/R0) vs log (R0) at constant time, yield 

the exponent of particle size, z. 

Figure 16 is a fourth order fit of log(h/R0) vs log(time) for a 

liquid content of 34.-3% assuming no back pressure effects in the pores 

and Fig. 17 is·a similar plot for 34.3% liquid assuming a back pressure 

in the pores. For this volume fraction of liquid, the initial stage 

does not occur and sintering proceeds directly from the rearrangement 

stage to the final stage of solution-precipitation. The exponent of 

time, y, in Figs. 16 and 17, which was obtained using a linear least 

squares analysis, is given in Table I. 

Table I 

Final Stage of Solution-Precipitation 

Volume of liquid as 
percent of a theoretically 

dense compact 

4.4% 

20.0% 

34.3% (no back pressure) 

34.3% (with back pressure). 

Exponent of time, y 

0.540 

0.465 

0.362 

0.282 
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Tne value of y is 0.36 when the back pressure is neglected, Fig. 16, 

and is 0.28 when the back pressure is included, Fig. 17. Therefore, the 

effect of back pressure in the pores is to retard the sintering kinetics. 

Additionally, the densification versus time curve in Fig. 17 approaches 

theoretical density for the model asymptotically, thus theoretical den-

sity is never attained. Also included in Table I are the values of the 

exponent, y, for the final stage of solution-precipitation for compacts 

containing 4.4% liquid and 20% liquid. In such systems, after rearrange-

ment, the kinetics are characterized by the initial stage of solution-

precipitation until spherical porosity forms. The e~ponent of time for 

the final stage in compacts containing 4.4% liquid phase then becomes 

equal to 0.54 and for compacts containing 20% liquid phase it becomes 

0.465. By comparing the volume fraction of liquid phase with the magni-
' 

tude of the exponent, y, for the final stage of solution-precipitation 

one sees that as the volume fraction of liquid decreases, the value of y 

increases. The reason for this increase in the magnitude of the ex,ponent 

y, is that the spherical pore shrinks at a nonuniform increasing rate 

as the radius of the pore decreases. In systems containing small volume 

fractions of liquid phase, spherical porosity does not form until the 

cubic cell is practically densified. Therefore, the radius of the 

spherical pore that forms is small and shrinks rapidly as P increases. 

The corresponding pressure difference between the pore and the liquid 

thus becomes large and the kinetics are enhanced. 

Since the final stage of solution-precipitation occurs in conjunc-

tion with the initial stage for compacts with less than 34.3% liqui~, 

log linear combinations have been made for liquid contents corresponding 
. ~ 
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to 4.4% and 20% liquid phase, Figs. 18 and 19. The resulting combina-

tions were then refitted to a log linear least squares fit, yielding 

from the slopes of the curves, y = 0.25 for 4.4% liquid and y = 0.305 

for 20% liquid. Therefore, as the volume fraction of liquid phase in-

creases, the exponent of time increases for the combination of the 

initial and final stages of solution-precipitation and the value of y 

approaches 0.36 which corresponds to the formation of spherical porosity 

directly after the rearrangement stage. 

3. Particles of Dissimilar Sizes 

In a two component system if a semi-infinite planar solid, (called 

component 2), is in contact with a liquid, (called component 1), inter­

diffusion will occur in both phases until53 

and (141) 

where f is the fugacity and S and L refer to the solid and liquid phases 

respectively. If the liquid is insoluble in the solid, but the solid is 

soluble in the liquid and use is made of the ideal solution approximation, 

it can be shown that53 

where XL 
2 

is 

Tt is 

f 
l1h(T ) 

t 

the 

the 

(T - T) 
+ t /::,Cp 

't 

mole fraction of the solid 

triple point temperature 

is the heat of formation at the 

T 
/::,Cp tn (~) 

T 

(component 2) 

triple point 

(142) 

in the liquid 
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~C is the difference in heat capacity between the liquid and the p 

solid. 

If a solid surface is not planar but rather convex, as is the case 

for spherical particles, the solubility of the solid (component 2) in 

the liquid is greater than above, a planar interface as shown by the 

38-41 Kelvin equation 

(143) 

where is the mole fraction of component 2 over a convex surface 

is the molar volume of component 2 

r 1 and r 2 are the principal radii of curvature of the solid surface 

~(oo) is the solubility above a planar surface. 

Consider the geometry of Fig. 20, all the conditions of Section 

III-C apply except that the two spherical particles are of dissimilar 

size. The solubility of the solid in the liquid above the smaller 
. L. 

particle is x2(R ) where 
s 

the solubility above the 

of the larger particle. 

R is the radius of the small particle, and s 

larger particle is X~(~) where ~ is the radius. 

If the dissolution step of component 2 is not rate determining but 

rather diffusion of component 2 in the liquid is rate controlling, the 

concentration of the solid in the liquid in Fig. 20 will approach 

L x2(R )" Therefore, component 2 will tend to dissolve at the surface of 
s 

the smaller particle and to precipitate at the surface of the larger 

particle. In a sintering compact, this type of solution-precipitation 

does not lead to densification since the particle centers do not move 
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DISSIMILAR PARTICLES 

ZERO DIHEDRAL ANGLE 

XBL 7310-1963 

Figure 20. Two sphere model for liquid phase sintering by solution­
precipitation for dissimilar sized sphetical particles, (top). 
Configuration when particles just touch.· 
(bottom) Configuration after some degree of densification. 
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together even though there is a redistribution of material from the 

smaller particle to the larger particle. However, densification can 

occur by the same solution-precipitation mechanism discussed in Section 

III-C-1 due to the pressure difference created by the curvature of the 

liquid-vapor interface, assuming that the solid-liquid dihedral angle 

is zero. Equation (84) of Section III-C-1 relates the solubility of the 

solid in the liquid in the "contact" region between the spheres to the 

solubility in the liquid at the free surfaces, 

(144) 

For particles of similar size XL the solubility of the solid in 

L 
P (r) 

the liquid, (equal to x2 (R))' is the same near the surface of e·ach 

spherical particle. Precipitation of material diffusing from the "con-

tact" region occurs equally on the surfaces of both particles. However, 

in compacts containing different size particles ~ .. is determined by 
·. . (r) 

the solubility of the smaller particle which has a higher solubility. 

Material dissolving in the contact. region and diffusing toward the free 

surfaces of the particles thus can deposit on the larger or the smaller 

particle but since the solubility is less above the surface of the 

larger particle than above the surface of the smaller particle, there 

will be a preferential precipitation of material on the larger particle. 

In real systems it is not known what fraction of material diffusing 

from the contact region will deposit on either surface but it will 

definitely depend on the particle size difference since the concentra-

tion gradient between the contact region and the region above the surface 
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of the larger particle will increase as the particle size difference 

increases. 

Therefore to simplify the analysis somewhat, it is assumed here that 

all the material removed from the contact region between the spheres will 

precipitate ori the surface of the larger particle. Therefore, all the 

material removed from the spherical caps between the particles is assumed 

to depositon the surface of the larger particle. 

Proceeding with the analysis, the same conditions will apply as for 

the model in Section III-C-1 except that the particles have different 

radii. The radius of the larger particle increases during solution-

precipitation, while the radius of the smaller particle stays constant. 

although the volume of the smaller particle decreases due to the loss of 

cap material from the "contact" region. 

After some degree of densification, the partie!~ geometry is similar 

to that of Fig. 20b. A contact region of radius u forms between the 

particles, (actually there is a thin film of liquid between the particles 

as dictated by the criterion of a zero dihedral angle). A cap of material 

of height hs is removed from the small sphere and one of height hL is 

removed from the large sphere. Let P = h /R and PL = hL/~ · s s so -L Since 

all material removed frpm the caps is assumed to be deposited on the 

large particle, the radius of the large particle increases from ~O to 

but.the radius of the small particle remains constant at R 
so 

The volume of the large and small caps are respectively 

v large cap 
'(145) 



-189-

where n
1 

is the coordination of the smaller particles around the larger 

particle. 

v small cap 

2 3 . 
n TIP R (3-P ) 

s s so s 
= 

3 
(146) 

and n is the coordination of large particles around the small particle. 
s 

Balancing the volumes, the effective volume of the large sphere is 

41fr n
1

TIP
1
2
J2(3-P

1
) n TIP

2
R3 (3-P ) 

-1. __;;;;;__;:;;..---::;_L-_.;:;:._ + s s so s 
-3-= 3 3 

rearranging, 

cap of large 
particle 

cap of small 
particle 

The area of the contact region is given by 

2 
7TU = R

2 
P (2-P ) 

so s s 

solving for ·~ 

4 ~0 
+ 3 

original 
volume of 
large particle 

(147) 

(148) 

(149) 

(150) 
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Substituting for ~ in Eq. (148) and rearranging 

2 
n P (3-P ) 

s s s 
4 

~0 
= R3 = W (151) 

so 

Using an electronic computer, values of P
1 

corresponding to incremental 

changes in P of 0.01 were obtained for several different ratios of s 

~0/R;0 = w.· These P1 and Ps values were then fitted to a third order 

polynomial equation 'using a least squares analysis. Equations of the 

form P1 = f(P ) = A + B(P ) + C(P ) + D(P ) were obtained for a two 
s s s s'---

sphere model (n1 = ns = 1). Results are given in Table II. 

ratio 

Table II. Third order fit of P1 as a 

function of P 
s 

2:1 PL = 0.000125 + 0.2635(P ) - 0.2062(P ) 2 + 0.22297(P ) 3 
s s s 3 

5:1 PL = 0.000474 + 0.040414(P ) s 

20:1 PL = 0.001 

Substituting f(P ) into Eq. (148), 
s 

~= 
··~a 

0.022398(P ) 2 + 0.00169(Ps) 
s 

(152) 

L . 
The concentration of component 2 in the liquid, x2 is determined by 

X~(R )' the concentration above the surface of the small particle, and 
so 
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the concentration difference between the surface of the larger sphere 

and the liquid is 

0 
2V Yo 2 ;vV 

NkT 
1 1 

[---] 
Rso 1\ 

(153) 

Using Eqs. (144) and (153), the concentration difference between the 

contact region and the large sphere is given by 

1 1 [---] 
Rso 1\ 

The pressure difference, ~p, is described by the two principal 

(154) 

radii of curvature of the liquid-vapor interface. As can be seen from 

Fig. 20b, these radii cannot be uniquely determined. Therefore, as an 

additional approximation, the pressure difference corresponding to two 

similar sized particles will be used, (this approximation actually 

underestimates.the pressure difference between the liquid and the pore). 

From Eq. (111) of Section III-C-1 

2 Ytv [1-PL) 1(1-PL)PL- PL] 
~p = __ ..;.._ _ _:;; ___ ..;....;.._.......;.;. _____ _ 

1\(2-:-PL)P~ [2(1-PL)f(l-PL)PL- PL] 
(155) 

Substituting Eq. (155) into Eq. (154) 



0 
+ 2V2yR-v 

NkT.~ 
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wl/3 1 
----
11.o 11.o l-4W + n P

2 
(3-P ) J s s . s 

L L L L (1-P ) 1(1-P )P - p I 

-1/31 

now substituting ~O for ~ 

_1_ + 
~0 

(156) 

(157) 

+ 1 

~ 

•. 2 . J -1/3 
4W + n P (3-P ) . . s s s [W[4-nLP~(3--PL)] [ 

(1-P ) 1(1-P. )P - p J I · L L L . L 

Using Eqs. (90) through (95) of Section III-C (Part B) 

(158) 

The volume of material removed from the spheres is 

. ,.. 



: .~ 

i 
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v = v + v total small cap large cap 

Using Eqs. (14~ and (146) 

n TIR 3 (3-P ) P
2 

n17TI2P2 
( 3-P

1
) 

V = S so s s + -~ L 
tota~ 3 3 

. I2 3 3 
substituting -~o = R and Eq. (152) for Ri, · -w- so 

V = ns7T~OP:(3-Ps) 7TnL~OP~(3-PL) 
total · W 3 + 3 

s s s 

[ 

4W + n P 
2 

( 3-P ) ] 

on differentiating Eq. (161) 

(159) 

(160) 

X 

(161) 



dVTOTAL 
· 3 fns ( 2 ). . ( 2 ) . [ 4 w + n5 P~(3- Ps) J 
= 7TRLO -.W 2Ps -Ps + nL 2PL -PL dPL . [ 2( - )] 

. , W 4-nLPL 3PL 

+ nL (PC_ !f) [w ( 4- nL P~(3- PL)] (6n5 P5 - 3n5 P~) - (4 W + n5 P~(3 -P5 l) (w ( -6nLPL + 3nLP~) dPL~ ·1 dP 

. W2 [4-nLP~(3-PL)] 2 J S 
. . 

XBL 7412-7684 

" 

. I 
...... 
\0 
~ 
I 
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3 
dVtota1 = TIRI,o 

n 
s 

w 

l 2 ]' 
4W + n P ( 3-P ) · 

+ 
' • s s s ' 

nL 2 . 
. W[4-n1P1 (3-P1 )] 
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dP 
L 

2 2 W[4-n
1

P
1

(3-P
1
)][6n P ~3n P ] 

' s s s s 
2 2 ' ' 2 

W (4-n
1

P
1

(3-P
1
)] 

(162) 

After differentiating both sides of Eq. (162) with respect to time, it 

may be equated to Eq. (158) and upon substitution of f(Ps) for P1 , 



(

8. osv~x~(RL)r~~ .. [ns ..... 2 .. ·[·· 4W+n5P~(3-Ps> . ] (·· .. ·. ·· .. ·. 2) (P.) 
· dt= -· (2Ps- Ps) + nL [ 2( )] 2HPs)- HP5) df S 

NkTR~o W W 4-nlf(P5) 3-f(P5). 

+ n f (R ) - --"'--[ 
·. f(PsJ3] ~[4-nLf(P5>2 (3-f(P5>)](sn5P5-3n5P52)-[4W+n5P~(3-P5l] 

L S 3 . . w2 ( 4- nlf(P5l2(3- f (P5l))2 

(3WnLf(P5) df(Ps) (HPs)-2)))~ y· { l/3 ·[ 4W-n5P~(3-PsJ ]-lj3 

X dPs W + [ . ] 
I w 4-nLf<Ps> (3-f(~>) 

[ 

(1-f(Ps>)J(I-f(Ps))f(Ps)- f(Ps). 

x f(Psf( 2- f <Ps>H 2 (1- f<P5>) J(1-f(P5>) f(P5> J] -r} XBL 7310- 1960 

(163) 

I 
I-' 
\0 
0\ 
I 
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Equation (163) is the differential equation for the kinetics of the 

initial stage of solution-precipitation for particles of dissimilar size. 

The right side of this equation cannot be solved analytically; however, 

the integral areas may be found using numerical techniques similar to 

those used in Section III-C. The shrinkage may be expressed as h/R
0

, 

and for the case of dissimilar sized particles, 

(164) 

Plots of log P0 versus log time are shown in Fig. 21 for initial p~rticle 

size ratios of 2:1, 5:1, and 20:1 assuming a nearest neighbor coordina­

tion of 1, (two sphere model). The locus of points of these curves is 

not linear on a log-log scale. However, by fitting the curves to a 

linear least squares plot, the exponents of time, y, were obtained, as 

were the exponents of particle size, z. Results for the three particle 

size ratios are given in Table III, which indicate that the exponent of 

time increases as the particle size ratio increases. Sintering kinetics 

are therefore enhanced with large particle size differences. The reason 

for this enhancement is that the larger the particle size difference, the 

larger is the solubility difference between the contact region and the 

surface of the larger sphere. Therefore, the magnitude of the diffusion 

flux of solid diffusing in the liquid becomes greater which in turn in­

creases the corresponding densification rate. 
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Table III.· Exponents of time, y, and particle size, z, 
for sintering by solution-precipitation of 
dissimilar sized particles 

Initial particle Exponent of Exponent of 
size ratio time, y particle size, 

2:1 0.255 -1.019 

5:1 0. 304 -1.215 

20:1 0.372 -1.488 

D~ Bulk Diffusion: Nonzero Solid-Liquid Dihedral Angle 

z 

In a solid-liquid system which does not form an equilibrium dihedral 

angle of zero degrees, solid-solid contacts are thermodynamically 

favored. When solid-liquid interfaces are formed, solution-precipitation 

(Section III-C) can cause surface rearrangement but does not lead to 

densification. Sintering kinetics are therefore characterized by solid 

phase diffusion mechanisms, either volume or grainboundary. 

Consider a two sphere model (Fig. 2b, Part A: Section II-A) for 

solid phase sintering. After some degree of densification, solid-solid 

contacts have formed between the spheres along with a small circular 

shaped neck ·region connecting the spheres. Nabarro3 has shown that the 

pressure exerted on a solid surface affects the concentration of 

vacancies in the regions adjacent to that surface. For surfaces exposed 

to a compressive stress, the vacancy concentration is less than the 

thermal equilibrium vacancy concentration under a surface free of normal 

stresses, while surfaces in tension have a greater vacancy concentration. 

For a two sphere model forming a neck, the region under the convex 
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surface is in compression and has a deficiency of vacancies, while the 

region under· the concave surface is in tension and has an excess con-

centration of vacancies. Neglecting the effect of the tensile stresses 

created by the dihedral angle at the grain boundary, it is assumed that 

the grain boundary region is stress free. Diffusion of vacancies thus 

occurs from the neck region to the grain boundary with a corresponding 

counter flux of atoms .toward the neck which leads to interpenetration 

of the spheres and to densification. 

Now consider the case where a smali amount of wetting liquid is 

present between the spheres and solid-solid contacts have formed between 

the spheres, (nonzero solid-liquid dihedral angle). The pressure dif-

ference between the pore, i.e., vapor, and the liquid is 

= £.!...:- .!_1 
Ytv Pz Pl 

(165) 

where p
1 

andp2 are the radii of curvature of the liquid-vapor interface. 

Equation (165) indicates that the pressure is less it:t the liquid than in 

the vapor. Additionally, the pressure difference between the liquid and 

the region just under the solid surface is 

(166) 

where p
3 

is the radius of the neck, which is assumed to be circular, and 

w is half the length of the grain boundary.. The pressure difference 

between the pore and the region just under the surface of the solid is 

• 
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obtained by combining Eqs. (165) and (166) 

1 1 1 1 
= y R-v [- - -. ] + ysR- [- - -] 

p2 pl p3 w 
(167) 

The curvatures of the two interfaces cause an effective tensile stress 

on the solid surface and the vacancy concentration under such a surface 

3 is given by Nabarro as 

3 
N = N (oo) exp (~) 

v c kT 

where N (eo) is the equilibrium thermal vacancy concentration at the 
v 

(168) 

temperature, T, corresponding to no external normal stress at the sur­

face. p is the pressure at the surface and a3 is the atomic volume. 

If the vacancy concentration at the grain boundary is assumed to 

beN (oo), there is a concentration difference of vacancies between the 
v 

neck and the solid-solid contact region. 

b.C = N - N (oo) 
v v 

(169) 

Substituting Eq. (168) into (169) 

3 
b.C = N {00) exp (~) - 1 

v · KT (170) 

Following an analysis similar to that of Coble,6 , 42 the diffusion flux 

of vacancies per unit length is given by 
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J(A) = b.C D 4TI 
R- vac (171) 

where <!> is a characteristic area divided by a length and D is the 
N vac 

vacancy diffusion coefficient, which is related to the volume self diffu-

sian coefficient by 

Substituting Eqs. (170) and (172) into (171) 

3 
~ [exp(KT ) 

3 a 

- 1] 

(172) 

(173) 

Using p
3 

as the length of the vacancy source, the volume of material 

diffused per second is 

(174) 

or 

(175)' 

The first two terms of the expansion of ef are 

exp(f) = 1 + f/1! (176) 

.. 
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Therefore, 

Substituting Eq. (167) for p, 

y (- - -) + y (- - -) 
[ 

1 1 . 1 . 1 ] 
tv Pz p1 s t p

3 
w 

From Section III-C Eqs. (106) and (107) 

and 

R - 2h 0 

Pz = R ·- 2h 0 

-Rh 

(177) 

(178) 

(179) 

(180) 

where R0 is the radius of the particle, (which remains constant during 

interpenetration of the spheres), ancl his the height of the cap material 

removed from between the spheres. Following the same convention as in 

Sections III-C to E, let 

P = h/R0 or· h = PRo (181) 

Substituting Eq. (181) into (179) and (180) 



..;.204-

_ · [2(1-P) /(1-P)P - P] 
pl - RO l-2P 

and 

Substituting Eqs. (182) and (183) into Eq. (178), 

I ~i 1 1 (-- -) + 
p3 . w 

y iv /0-2P) [2 (1-P) {(l~P)P - 2P] ) I 
RO \ P[2(1-P) {(1-P)P - P] · 

(182) 

(183) 

(184) 

p3 is given by Coble as approximately equal to h. Thus, p
3 

= PR
0 . Also, 

4R0p3 = w2 or w = 2R0 IP. Substituting these equations into Eq. (184), 

+ y iv .·[ (l-2P) [2(1-P) /(1-P)P -. 2P] 1· 
P[2(1-P) l(l-P)P ~ P] 

(185) 

(186) 
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+ [ (l-2P)[2(1-P) 1(1-P)P - 2P]_ll , 

P[2(1-P) 1(1-P)P - P] . 
(187) 

·, The volume flux of material removed ·from the region between the spheres 

6 42 
and deposited in the neck is approximately given by ' 

Equating (187) and (188) 

l 
3 . 

_n_v_o_l __ a~-y~i_v-r_d~t--
KT R3 

0 

_ l· A[2YP - P 
2P IP 

+ [(1-2P) (2(1-'P) /(1-P)P - 2P~ ~-l 
P[2(l~P) /(1-P)P - P] J 

Equation (189) is the kinetic d-ifferential equation for the initial 

(188) 

(189) 

stage of liquid phase sintering for systems forming nonzero dihedral 

angles, derived from Coble's model for solid phase sintering. 

Following techniques similar to Sections III-C to E, log (P
0

) 

versus log(time) plots yield the exponent of time, y, and log (P
0

) versus 

log(R
0

) plots yield the exponent of particle size, z. These results are 
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given in Table IV for several ratios of and are shown in Fig. 22. 

47 Johnson has used graphical techniques to more accurately describe 

the geometry of the neck region between the two spheres. His results 

for the area of the neck, the radius of the neck and the radius of curva-

ture of the solid neck surface are 

A = 7TIR~PJ/2 (190) neck 

W' = (5TI /9) R PO • 46 (191) 0 

p3 = (7TI/8)RcJP6/S (192) 

Using the same flux equation as that used by Coble, and employing 

Fick's first law, Johnson obtained 

126 D /1C 
dV · vol [R_pl.04] 
dt = 5 N (oo) -u 

v 
(193) 

Applying these equations to liquid phase sintering, the concentra;... 

tion difference of vacancies between the neck and the grain boundary is 

I y R,v (l,-2P) [2(l,...p) /(1-P)P - 2P] 

RO P[2(1-P) /(1-P)P - P] 
(194) 

1 1 I (p3 .... w] 
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Figure 22. Densification versus time for liquid phase sintering systems 
forming nonzero equilibrium solid/liquid dihedral angles 
using Coble's geometry. 
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Table IV. Exponents of time using 
Coble's geometry 

Ratio of A y Exponent of time 

1.00 0.464 

1.50 0.468 

2.00 0.471 

2.50 0.473 

3.00 0.475 

Substituting Eq. (191) and (192) and (194) 

3 
a -Yn N (co) . x,V. V 

b.G = ~----­
KTRO { 

(1-2P) [2(1-P) /(1-P)P - 2P] 

P[2(1-P) /(1-P)P - P] 

Substituting Eq. (195) into (1'93) 

z Exponent of 
particle size 

-1.390 

-1.405 

:-1.414 

,;_1.420 

-1.425 

(195) 

3 . 1.04 
dV 126 0vol a. Ytv RaP 
-dt = --~-:5~K:=T~...;..,;_----'-'--- l [8(P)-6/5 

!. . 7 
·7T 

'J(P)~0.46] 

+ [ (1-2P) [2 (1-P) /(1-P)P - 2P l] I 
P[2(1-P) /(1-P)P - P] · 

(196) 
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The volume of material removed from the caps between the spheres 

and deposited in the neck region was approximated by Johnson as 

V = 7TR03p2 
cap 

. (197) 

the exact volume is 

(198) 

Using Eq. (198) and differentiating with respect to time, 

(199) 

Equating (196) and (199) 

l_l_26_D_vo.,...l_· _a_l_Y_R-_v ,. d t = 

57TKTR~ 
21! [8(P)6/5 - 9(P) -0.46] 

P) 7T 7 . 5 

+ ·[ (r-2P) [2(1-P) · v'(l-P)P ~ 2P~ I (-l) dP 

P[2(1-P) /(1-P)P - P] . J (200) 

Kinetic results for densification versus time are shown in Fig. 23 

and in Table V for Eq. (200)., The differences between Johnson's and 

Coble's solutions, when applied to liquid phase sintering, result from 

the differences in the relationships used to describe the geometry of the 
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Table V. Exponents of time using Johnson's geometry 

Ratio of A y Exponent of time z Exponent of 
· particle size 

0.01 0.437 * 
3.00 0.448 * 

* not determined 

neck region and the volumes of material removed from between the spheres. 

Figure 24 is a comparison of kinetic curves for solid phase sinter-

ing, (solid-vapor), of uniform sized spherical particles based on 

numerical integration of differential kinetic equations which were 

derived analytically and in a more approximate form by Kingery, 4 Coble6 ' 42 

and J h 47 o nson. 

Table VI shows the exponents of time for each model obtained by 

numerical integration techniques and by analytical integration. The 

differences in ·the exponents of time are due only to the fact that two 

radii of curvature were used for the numerically integrated kinetics, 

whereas only one radius of curvature is used in the analytical method. 

Since the two radii of curvature describing the neck region are of 

opposite sign, the capillary pressure is less for the numerical method. 

Comparison of the numerical results for solid phase sintering and liquid 

phase sintering for each model indicates that the sintering kinetics are 

enhanced by the presence of the liquid phase. The increased vacancy 

concentration gradient resulting from the presence of a liquid-vapor 

interface causes sintering rates to be greater for liquid phase sintering 



• -~ 
~r ... 

0~--------r-~------~--------~--------~--------~ 

0 --1 
w 
(f) 
<( 
CD 

<.!) 

0 
.....J 

0 a: -2 
......... 
..c:: 

/ 
/ .,., 

/ 
/ 

/ 
/ 

YsL/YLv =3.0~ .,.,-. ,.. 
SLOPE= 0.437 ..,., ,.,. _ 

..,., 
/ 

/ YSL/YLV -0.01 
/"" SLOPE =0.448 .,...,.. 

JOHNSON GEO. LIQUID PHASE SINTERING 

NONZERO DIHEDRAL ANGLE 

-3--------~~------------------~--------~-----------
4• 

Figure 24. 

5 .6 7 8 9 
TIME (sec) LOG BASE 10 

XBL 7310-5471 

-Densification versus time for liquid phase sintering systems forming nonzero equilibrium 
solid/liquid dihedral angles using Johnson's geometry. 

I 
N .... 
w 
I 



-214-

Table ·vr. Exponents of time for solid-phase sintering 

Kingery's model 

0.390 

0.400 

Johnson's model 

0.427 

0.460 

Coble's model 

0. 485 numerical 
method 

0.500 analytical 
method 

systems than for solid phase sintering systems, as shown in Fig. 25 for 

a solid-liquid-vapor contact angle of 75°. 

E. Discussion 

The solutions of the kinetic equations derived in Sections III-C 

and III-D indicate that the time dependency, y, and the particle size 

dependency, z, of densification, b.L/L
0

, for idealized models of spherical 

particles are governed by the magnitude of the dihedral angle, i.e. zero 

or nonzero, the volume of liquid phase, and the particle size distribu-

tion. Table VII gives a summary of the values of y and z for different 

stages .and conditions of liquid phase sintering of these models. 

Referring to the Table VII, and assuming first the case of a zero 

dihedral angle and uniform particle size throughout the sintering co~ 

pact, one sees that the exponent of time, y, is smaller for the initial 

stage of solution-precipitation than for the final stage. Thus, the 

compact sinters more slowly during the initial stage than during the 

final stage. The reason for the slower kinetics is mainly due to the 

capi,llary forces acting on the system. During the initial stage; the 

radii of curvature of the liquid-vapor interface are of opposite sign 



,., 
1.004 

1.003 

Nv 
Nv (oo) 

1.002 

tOOl 

-215-

VACANCY CONCENTRATION 

UNDER CURVED NECK 

VERSUS 

DENSIFICATION PARAMETER 

COBLE's MODEL 

LIQUID PHASE SINTERING 

= 2.00 

SOLID -LIQUID-VAPOR 
CONTACT ANGLE= 75° 

SOLID PHASE SINTERING _...,......._ 

rsv =2.50 
rLv 

1.000 L_ __ __L ___ =-'=--=----:---'----=:-':-::-__;_---:;::-"7::-----;:~ 
0 0.04 0.08 0.12 0.16 0.20 

P OR hJR 
XBL 7311- 6612 

Figure 25. Comparison of the vacancy concentrations under concave necks 
for solid phase sintering and for liquid phase sintering 
systems forming nonzero equilibrium solid/liquid dihedral 
angles. 
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Table VII. Table of exponents 

h 
... 

-a tyRz y z 
Ro 0 

(• • 
Zero Dihedral Angle 

Initial stage 0.243 -0.977 

Combination of initial and 
final stage 
4.4% liquid 0.246 * 
20% liquid 0.268 * 

· Final stage large 
liquid volume 34.3% 
No back pressure 0.362 -1.45 
With back pressure 0.282 -1.13 

Dissimilar particles 
Ratio 2:1 0.255 -1.019 

5:1 0.304 ~1.215 

20:1 0.372 ~1.488 

Nonzero Dihedral Angle 

Johnson's model Ys'l/y'lv = 0.01 0.437 * 

Ys'l/y'lv = 3.00 0.448 * 

Coble's model y s'l/y 'lv = 1.00 .0.464 -1.390 

Y s'l/y 'lv = 3.00 0.475 -1.425 

:-~~:· 

*Not determined 



.. 

-217-

while during the final stage, the capillary forces have the same sign. 

Since the magnitude of the capillary force affects the pressure in the 

region between the particles, and therefore, the solubility of the com­

ponent of the solid phase in the liquid phase, it is evident that the 

sintering rate is enhanced by large capillary forces. 

The second comparison to be discussed is the time dependency of the 

densification parameter on different particle size ratios. As seen in 

Table VII, the greater the particle size difference, the larger is the 

exponent of time, y, and therefore, the sintering rate. 

The physical reason for this increase is that when a small and a 

large particle are in contact, the smaller particle· determines the solu­

bility of the solid in the liquid between the two particles and in the 

liquid in regions away from the "contact" area. Since all material is 

assumed to condense on the larger sphere, the solubility difference used 

in kinetic equations must be the difference between the solubility in 

the "contact" region and the solubility above the surface of the larger 

particle. This difference increases as the particle size difference 

increases. Thus, the sintering kinetics are enhanced by a large particle 

size difference. 

In real compacts, where a particle size distribution is always 

present, inhomogeneties due to agglomeration or poor mixing will lead to 

variations in sintering rates within the compact. Regions containing 

particles of widely differing size will sinter faster than regions con­

taining homogeneous sized particles. Since the model shows that all 

material condenses on the larger particles, smaller particles are 

eventually consumed. Thus, a wide particle size distribution in a green 
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compact results in regions in the compact containing grains which are 

much larger than the average grain size for the homogeneous r~gions. 

The third case to be discussed is that of a nonzero dihedral angle. 

As was shown in Section III-D, sintering proceeds by a solid phase 

vacancy mechanism, but the presence of a wetting liquid enhances the 

vacancy concentration gradient between the neck region and the solid-' 

solid contact region. The effect is not large, however, and the expon­

ents of time are very similar to those for solid-vapor sintering systems, 

although densification kinetics are always more rapid with a liquid phase 

present. 

It should be noted that in comparing zero and nonzero dihedral 

angle cases,. sintering kinetics are more rapid for the former than for 

the latter, even though the exponents of time are larger for solid phase 

sintering. The reason is that the diffusion coefficients, which appear 

in each densification equation are orders of magnitude smaller for the 

nonzero dihedral angle case, (bulk or grain boundary diffusion), thari 

for the zero dihecral angle case, (diffusion through the liquid phase). 

This fact can be seen by comparison of the log densification versus log 

time curves for the initial stage of solution-precipitation (Fig. 14, 

Section III-C), with the curves for sintering with a nonzero dihedral 

angle (Fig. 22, Section III-D). 

The dependency of densification on particle size is derived from 

the log densification versus log time curve by choosing a particular 

sintering time, t, and then obtaining h/Ra for different initial 

particle sizes from the curves. It is seen from Table VII, that the 

absolute value of the exponent of particle size, z, increases as the 

'1. 
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exponent of time, y, increases. This is to be expected since z was 

obtained from y, and therefore, is functionally similar to y. 

Although there has been much experimental work in the measurement of 

liquid phase sintering kinetics, most investigations have not considered 

the possibility of an initial and a final stage of solution-precipitation 

nor has the effect of the magnitude of the dihedral been considered for 

comparison of experimentally measured densification versus time curves 

with curves predicted from idealized models. Experimental verification 

of a particular sintering model thus requires that the parameters of the 

sintering compact closely approach those of the model. 

In any system where there is a solubility of the solid in the 

liquid, the composition of the liquid changes until it is saturated with 

the solid phase. . This process is generally rapid especially when the 

compact has substantial solid-liquid interfacial area. This change in 

composition of the liquj d causes the magnitude of y s£ to change until 

saturation is approached, and y n attains a static value. 
SJV -

In systems where there is mutual solubility, interfacial reactions 

55 
can occur which give a dynamic dihedral angle of zero degrees. This 

dihedral angle may then change to some finite value as the phases 

equilibrate. Thus, situations can arise where fotmatio~ of a liquid 

leads to particle rearrangement and interdiffusion of components of each 

phase. These reactions at the solid-liquid interfaces can cause a 

dynamic zero dihedral angle, (ys£ decreases relative to Yss due to inter­

facial reactions at the solid-liquid interface), leading to penetration 

of the solid by the liquid and subsequent solution-precipitation mech-

anisms. Upon equilibration of the bulk liquid and bulk solid, finite 



-220-

dihedral angl~s can form, or the zero dihedral angle can be maintained 

throughout the entire densification process. If the former occurs, 

liquid is squeezed from between grains, and solid-solid contacts begin 

to form. The sintering mechanisms then change from solution-precipitation 

to bulk or grain boundary diffusion. 

The most well known kinetic data for liquid phase sintering was 

obtained by Kingery and Narasimhan34 using the Fe-Cu system. Their 

results appeared to be in good agreement with Kingery's kinetic model 

for solution-precipitation. ·Unfortunately, the system chosen did not 

simulate the parameters of his model very closely. Smith31 has reported 

that the equilibrium dihedral angle between solid Fe and liquid Cu at 

1100 degrees centigrade is 20°. Although Kingery and Narasimhan did not 

report a value for the dihedral angle in their system, the equilibrium 

dihedral angle was undoubtedly finite at the temperatures used in their 

sintering experiments. Since solution-precipitation requires a zero 

dihedral angle to achieve densification of a compact, this mechanism 

could only be operative in the Fe-Cu system under the conditions of a 

dynamic zero dihedral angle which would result from interfacial reactions 

between the two phases. The mutual solubility of both components can 

lead to such reactions. However, upon equilibration of the phases, the 

equilibrium dihedral angle must form and solid-solid contacts will 

appear. Kingery referred to the formation of solid;....solid contacts as 

the coalescence stage of sintering but he did not discuss coalescence 

with respect to a changing dihedral angle. 

For the Fe~Cu system, log densification versus log time plots should 

reveal three or four linear regions (at least approximately linear 
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regions), corresponding to rearrangement, the initial and/or the final 

stage of solution-precipitation (depending on the volume of liquid in 

the compact), and solid phase sintering. In their Fig. 3, 34 only the 

compact containing 22% liquid Cu and 9.4 micron Fe powder showed three 

separate regions. Additionally, none of their compacts contained less 

than 11.3% liquid (Cu) which indicates that the initial stage of solution-

precipitation would be of short duration. Spherical porosity would 

therefore form soon after the rearrangement stage and the final stage 

would become operative. It. should be noted that the derivation for the 

kinetics of liquid phase sintering for systems having large volume 

fractions of liquid phase, yields an exponent of time of 0.362 while 

Kingery's derivation yields a value of 0.333. Therefore, the kinetic 

data obtained by Kingery and Narasimhan seems to correspond to the 

kinetics corresponding to the case of large volume fractions of liquid 

phase. The Fe-Cu system is not appropriate for verifying the kinetics 

of liquid phase sintering for systems containing small volume fractions 

of liquid phase. 56 Recent work by Froschauer in this laboratory with 

the Fe-Cu system using hot stage scanning electron microscopy, has shown 

that compacts containing small volume fractions of Cu exhibit little or 

no rearrangement. Since the melting point of Cu (1083) and Fe (1535) 

are similar, appreciable sintering of Fe-Fe particles can occur before 

liquid Cu forms. In compacts containing small volume fractions of liquid 

phase, equilibration of the solid and liquid phases can occur rapidly, 

forming a finite dihedral angle between the solid and the liquid. Thus, 

the liquid Cu will merely wet the solid Fe skeleton but will not pene-

trate between the grains. The failure of Kingery and Narasimhan to 



-222-

observe the initial stage of solution-precipitation therefore becomes 

unders tandabl~ • 

. 35 
Eremenko has reported time exponents for cermet systems between 

1.45 and 2.3 for the rearrangement stage and values of 0.11 to 0.40 for 

the succeeding stage, (solution-precipitation and/or solid phase sinter~ 

ing). No attempts were made in these experiments to form compacts having 

parameters approaching those of idealized models nor were dihedral angles 

reported. However, the range of values of the exponents of time are 

similar to those shown in Table VII indicating that, after rearrangement, 

several different sintering mechanisms are operative. 

It is hoped that experimental verification of the models presented 

here can be performed in future work using real compacts which closely 

simulate the parameters of the models. 

-~· 
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APPENDIX 

Calculations of the vacancy concentrations at a solid-vapor and 

solid-solid interface for two spherical particles, Fig. 13, are made as 

follows: 

Assume that the spherical particles have radii of 10 microns, and 

that the concentration of vacancies at a stress-free planar solid-vapor 

interface is 

NSV = exp(-10) 

~ = 4.539993 X 10-5 
SV 

(1) 

(2) 

The vacancy concentration at a solid-solid interface is then given by 

N = N /vac ss sv 
(3), 

The value of vac is dependent on two parameters: the radius of the 

particle and the value of the equilibrium dihedral angle. For a 10 

micron particle, vac = 1.000062 and corresponds to an equilibrium di_-

hedral angle of 68.4°. Other values of va:c would correspond to different· 

equilibrium dihedral angles. Therefore, 

N = 4.539712 X 10-5 
ss· -

(4) 

As the interpenetration of the spheres proceeds, the dihedral angle 

increases fromzero toward the equilibrium value and the radii of the 

(. 
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spheres increases. The pressure change between the planar and the convex 

(spherical) surface is given by 

6p = 2 y /R 
SV 

(5) 

where y is the solid-vapor interfacial energy (assumed to be 1000 
sv 

ergs/cm
2

) and R is the increasing radius of the sphere. From Eq. (6) 

of Part A for 2 spheres the radius at any value of P is related to the 

original radius, Ra by 

(6) 

ail.d 

(7) 

At the solid-solid interface there is a tensile stress which is 

created by. the horizontal component of the solid-vapor interfacial 

energy. This stress increases from zero as the spheres interpenetrate 

and the pressure difference between the stress free and the stressed 

case is 

- y sin(I/2)/R 
SV . 

(8) 

(9) 
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Substituting Eqs. (9) and (6) into Eq. (8) 

(10) 

Therefore, at any value of P 

N (R) = N exp (~p a3/kT) sa ss ss (11) 

and 

(12) 

3 . -24 . 
where a ~s the atomic volume which is equal to 3.375 x 10 ; k is the 

Boltzmann constant; andT is the temperature which is 1000 degrees kelvin. 

Using Eqs. (11) and (12) the vacancy concentrations were calculated at 

each int~rface for Figs. 12, 13, and 14. 
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r------------------LEGALNOTICE--------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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