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THERMODYNAMICS AND KINETICS OF SINTERING
Carl Edward Hoge
Inorganic Materials Research Division, Lawrence Berkeley Laboratory
and Department of Materials Science and Engineering,
College of Engineering; University of California,
Berkeley, California 94720
ABSTRACT |
Thermodynamic approaches to sintering‘have as yet receivéd little
theoretical or experimental investigation although a thorough under-
standing of thermodynamic factors is required to accurately predict'sin—
tering phenomené. Since the basic driving force for sintering is the
reduction in interfacial energy associated with changes‘iﬁ interfaéiél'
areas of pqwder compacts, the differential of the free energy, 0G, muéf

remain negative for sintering to proceed. If 8G becomes equal to zero, -

sintering ceases and possible endpoint densities less than theoretical

will result.

In Part‘Avof this report, a thermodynamic analyéis of solid phase -
sinteriﬂg for several geometric assemblages is pérformed. In this
analysis, the solid-vapor dihedral -angle is related td critical ratios
of Yss/stvthat determine endpoint'densities.for egcﬁvpacking array.

The experimenﬁal dihedral in a sintering compact is also shown to in-
fluence the vacancy concentrations near internal and external inter-
faces, anq.to:determine tﬁe thermodynamic driving fbrce for densifica-
tion. - ' ' _ . -

Thermodyﬁamic analyses of grain boundary motion'indicate that
pores pin ﬁlahaf_grain boundaries and that a critical grain boundary

curvature is necessary for grain boundaries to sweep past pores leaving
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them isolated and that this curvature is relatively independent of the
dihedral angle fof most solid phase éintering sySteﬁs.

"In order.to compare theory with experiment, the Sintering of MgOV. -
compacts is investigatéd. Results indicate that siﬁtefiﬁg rates are
dependent ﬁéon the therﬁodynamic driving force for densification and
thatvpossiblé endpoint densities less than theoretical méy be an inherent
characte;iétic of MgO for certain packing arrays.'. .

In Part B, ‘a thermodynamic analysis is perforﬁed”for liquid phase
sintering systems forming zero and nonzero éolid-liquid dihedral angles.‘
Results indicate that éritical ratios of YSQ/Yiv'eXist which ére‘def
pendent on the magnitude of the dihedral for the éystem and on the
volume fractioﬁ of liquid phase. ..

vAdditionally, kinetic analyses are performed uéing nﬁméricai-inte-
gration.techniqﬁes which enable a mofe accurate descfiﬁtion of liquid
phase sintering rates than have previously been discﬁé;ed. These models 
are described in termé of particle size differences, in terms of mag-
nitudés of dihedral angles; and in terms of volume'bf liquid phase in
sintering compécts. From these analyses, densificg;ibn parameters are
’related to time and td the initial pafticle sizes. The models are then

discussed in terms of existing experimental data.

W
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PART A: THERMODYNAMICS OF SOLID PHASE SINTERING
I. INTRODUCTION

If an array of particles of eduilibrium single phase composition is

. subjected to sufficient temperature such that mass transfer mechanisms

become operative, the areas of solid/vapor interfacés'begin to decrease
as solid/solid interfaces form. This process is defined as sintering,v
and the basic driving force for sintering is the reéﬁ;ting reduétion'in
free energy of the system..

In ordéf to fully characterize sintering, knowledge of thérmodynamié
and kinefié facﬁors is necessary. From thermodynémic analyses, inter-
facial energybrelationships can be obtained'which-corrgspond to minimum

free energy configurations for specific geometric assemblages of par-

ticulates. However, since these relationships yield only free energy -

states independent of time, they do not reveal the path of densification
of a compact. From kinetic consideratiomns, which‘encoﬁpass mechanistic
approaches, the sintering path may be traced as a fantion of time.

| Generally, idealized models are formulated to simulate the kinetics'
of a sintering compact. Since no one model can accurately describe the
entire sintering process, several are needed. When éne model becomes

. ¢ .

inoperative, a "stage" of sintering is said to be completed, and a dif-
ferent modei must then be applied to describe further sintering.

The initial stage of sintering of a solid-vapor system has been

associated with the formation of a "neck" at particle contact points and

" was described by Kuczynskil in terms of a two-sphere model for several

mechanisms of mass transport. The vaporization-condensation mechanism

is based on the fact that the equilibrium vapor pressure of the solid is
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“higher above a.convex or spherical surface than ébqvefa planaf surface,
and higher above a planar surface thaﬁ above a cdn?ave surface. When
two sphereé are in contact, as in the model, a concéVg surface forms .
- between thém."Then a vapor pressure gradient exiéts between the cénvex
and.concave éu:faces, and material transport‘oécufS'through’the vapor
phase formiﬁg_a circular "neck" region and a grain bQundary between the
éfheres, A:similar model based on a sﬁrface diffusiqﬁ mechanism_leédé
to the same géometric configu‘r:ation.l"2 Neither ﬁodél leads to densifi-
cation qfva cémpact. |

A modél'ﬁhich does lead to densification is based on Nabarro's3>;
analysis tha§, f§r a cfysfalline solid, there éxiété:é greater concentra-
tion of vacancies under a concave surface than undé? a stress—-free planaf
surfacé or a convex surface. Such a coﬁcentratioﬁ difference‘gives rise.

to a vacancy concentration gradient between the "nec region of a two-

sphere model and the planar grain boundary or the convex surface. Since
material flows counter to vacancy flow, mass transfer occurs. This
mechanism is the basis for numerous kinetic solutions for densification

during various stages of solid phase sintering.

"Kingery,4 Johns_on,5 Coble,6 and others7-12’l héVe derived kinetic

equations for volume and grain boundary diffusion models for densifica—

tion of solid-vapor systems of the form

3
é&.= Kst a’Dly
Lg kTR™

ty o (1)

where y, m, and K are numerical constants, D is the volume or grain
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boundary diffusion coefficient, al

is the atomic volume, st is the
solid-vapor ihterfacial tension, T is the absolute témperature,‘k is
Bbltzmann's‘qonstant, and R is the particle radius.

For volume diffusion mechanisms, thé exponent of time, y, ranges
from 0.40 to 0.50, depending on ﬁhe geometry of the sintering model
employed; and for grain boundary diffusion, y ranges from 0.31 to 0.33.
The exponent,Am,’of particle size is 3 for volumevdifoSion mechanisms
and 4 for grain boundary diffusion mechanisms.

If an'idéal one component crystalliné compact is subjected to suf-
ficient température such that the various mass transfer mechanisms.ﬁen—
tioned above become operative, solid-solid contactsvbegin to form or
increése between particles. After a sufficient time, the compact is
characterize& by a solid network and an interconhecting pore phase.

Up&ﬁ fﬁrthéf sintering, thé pore pﬁase becomes discontinuous, and even-
tually is eliminated. At this point, all of the solid-vapor intérfaciai
area has also been eliminated and the compact has attained theoretiéal.
density. THis point, however, in most cases doesvnot constitute a mini-
mum free energy configuration since internal surfaces (grain boundaries)
can generally continue to migrate and decrease in aréé until a minimum
free energy configuration, corresponding to planér grain boundaries,n-15
is attained. Ideally, grain boﬁndary motion wouid gontinue until all
internal surfaces were eliminated and a single crystal would form.

In practice, densities less than theoretical‘are often obtéined
during sintering when pores become disassociated froﬁ gfain boundaries

and isolated in ﬁhe grains due to grain boundary motion. Removal of

isolated pofes depends on long vacancy diffusion paths between the pore
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surface andlfhe grain boundary. Aithough the frée'énergy of such a
system is not at its minimum value, fhe change in:ffee énergy withvtime
becomes so small that for all practical purposes sintering ceaées, i.e.,
the siope'of the free energy versus time curve app;oaches zero, Fig{ 1.
The effect of thermodynamic factors on endpoint densities and densi- -
ficaﬁion rates in real compacts has as yet recéived little attention.
Therefore, ééVeral idealized geometric models will be‘investigated‘in.
. order to détermine thermodynamic constraints.on denéification and oﬁ

grain boundary motion away from pores.
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II. THERMODYNAMIC CONSIDERATIONS

A Thermodynamics of-Endpoint Densities
In a'sin;eripg'powder compact as the sélid/vapbf interfacial area
decreases, fhé?sdlid/solid interfacial area increagés. The.change in
free energy'of the system at constant temperature;'pressure and mole
fraction can then be expressed as

6(Gsyst:) = stdAsv + YssdAss | ) - @

where
st = solid/vapor interfacial energy
vv,Yss = solid/solid interfacial energy
dASv = differential sélid/vapor interfacial a#ea'
dASS = differential solid/solid interfacial area

As"long>és S(G) remains less tﬁan zZero, éintering.wili continue. The
first term on_the right of the equation is alwayshnéégtiye and.the.
' second, positive. TherefOfe, §(G) will be a function of tﬁe relative
ihferfacial areas (geometry of the system) énd inte?facial energies.;
four sin;ering gedmetries were analyzed fbr ﬁniform sized éphefical
particles: . ﬁiamond cubic, simple cﬁbic, body-cenﬁefed‘cubic, and.faée—'
centered cubic (corresponding to_particle coordinatiph humbers of 4, 6,
8 and 12). The particles are assumed to be single ﬁhase, crystalline,
and their interfacial energies isotropic. The intérfécial energies are

related as:

o)-e-

Ygs = gy €05 3 - : (3)
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where ¢ is'tﬁe dihedral angle.

The densification model used is baSed on the cbncept that the cap
material removed at a contact, or graiﬁ boundary;vﬁetween two spheres is
uniformly diétributed on the free surfaces; the ?apticle centers then
move toward éach other and the radii of the spherés.increase, keeping the
total solid‘?olume constaﬁt.16 This model differs from the bridging neck
at model contacts normally employed for predlctlng kinetics. of solld
phase sintering. Although neck formation is often experimentally

observed during sintering, such a geometry is dot'correct for predicting

equilibrium conditions for thermodynamic analysis siﬁce it does not

- correspond to the minimum free energy configuration for the system.

v‘If two-sbheres are just in contact, Fig. 2A,’the-free energyiof the
sySﬁem is a maximum. Now, if the spheres intérpgnetrate until a certain
cap height, hO’ is removed and deposited in the néck region, Fig. éB,
thebradius of éach sphere is unchanged. At this point, if no further

densification as determined by h0 or by keeping the centers of the

spheres fixed occurs, but the solid/solid, and thé'solid/vapdr inter—'.

faces equilibrate, as shown in Fig. 2C, material from the neck region is

" then deposited uniformly on the surfaces of the spheres and R0 increases

to R and ho‘to h1 so that R0 h0 —hl._ This geomeﬁry corresponds to
the minimum_free energy éonflguratlon for that parﬁiéular degree of
densification and becomes the model used in this énalysis. It is the
quilibrium géomgtry when §G in Eq. (2) becomes eQual to éero. The
Yés/st can then be determined for this equilibrium.confiéuration.

Proceeding with the thermodynamic analysis, let'us consider the -

densification mechanism represented by the two—sphefe model shown in



~ Figure 2,

XBL 749-7297

Change in free energy of a two sphere model during inter-
penetration at particle-particle contact. Spheres just touch -
(top); neck forms (middle); and equilibrium dihedral angle
forms (bottom). ’




Fig. 2C. The solid-vapor interfacial area is given by

| 2 B | |
Asv = 4mMR° - 2anrRh1 | : o (4)
where R is the radius of the sphere and hl is the height of the spherical
segment at any degree of densification, and ng is the coordination of
nearest neighbors around each sphere. Setting Pl“as.a'variable'equal to

hl/R: (similar to Stevenson and Whitelé),

sv _ .2 2 o ’
7 = 4R - 2n.P.R ) | (S}
Equating the original volume of the sphere, radiuszo; with the volume B

of the sphere minus caps, radius R, yields the relationship between R.0

and_vaor any value of Pl.

3 |
3 4Ro :
R™ = ) 3 | - ®
4-3anl + anl

Substituting (6) into (5),

4 - 2n1Pl : ." . N
3)2/3
1

sv
2/3

2 2
WRO (4—3an1

(4) + an

and on differentiating,
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d A | 23 A 3 "1/3
SV 2 2 v 2
22;573-—5- {(4 - 3n P1 + n, l) (—2nl) - 3-(4‘ 3n Pl + n P )
0 o ~
' 2 2 3. 4/3 | )
(-6n1Pl + 3anl)(4 2n P ) : (4 - 3n P + n: P ) _ (8)

Since each solid-solid contact is shared by two spheres, the solid-
solid area per sphere is eipressed as

A, = Th (2R - h})/2 '. " S O

where

2
(2Rhl - hl)n

is half the boundary area per contact for a single‘sphere.
By substituting (6) into (9), and PlR for hl;
AL 2/3 - |
ss 2 3 o
— 57— = n P (2 P ) 2(4-3n,P7 + n P7) ‘ (10) ; 5
(4)2/3 ﬂR 11 117 v g o

and on differentiating, K
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dAss 2 3,2/3 | 2 3, 71/3
EZ;E7§———— = (4-3n Pl +n Pl) (2—2Pl)nl - (4 3n P +n Pl)
x[-6n.2. + 3022122, -20n. | ap. / 2¢4-3n.5% + P3)4/3 (11)
TR TR N T P ¢ 5 L I e |
Substituting (11) and (8) into (2),
8(G ) '
——systt_ _ | () Y o+ L) Y dp (12)
N213 2 « ) ss () 'sv 1
(4) TR, _ ,
and setting S(Gsyst) =0,
R . 2 2/3 ,_ 2 3,-1/3
Yss ) -2((4=3n Pl + ny ) ( 2n1) (4 3n lPl) <
st (4- 3n P2 +n P )2/3 (nl(2-2Pl)) (4 3n P +n P ) -1/3

] - )
(—6n1Pl + 3n1Pl)(4—2anl)) S
(=6n.P, + 3an1)(2Pl—Pl)n1 :

As the interpenetratioﬁ of pearest neighbor.sﬁheres and densification
occur for each packing array, second nearest neighbors approach each other
and planar faces in the sintering unit cell (such'as_(llo) in BCC pack-
ing.Of spheres) densify. For a given sized.particlevﬁhe rate at which
any planar face‘densifies remains essentially constant but the total
amount of shrinkage at this rate depends on the coordination number of

spheres in the plane or the degree of packing. At the point when second
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‘nearest néighbors touch, or when one planar face in thg unit cell has
completely densified, however, Eq. (13) no longer apblies. Each of the
packiné arrays sinters differently after Eq. (l3)-becomes invalid and,
therefore, must bevdiscussed separately. -

For BCC backing of spheres (fractional void*?olume of 0.32), densi-
fication pfoceeds according to the model until coﬁ;acts form with second
nearest neighbors along <100$ directions and the @oordination incréases
from 8 to 14,'as_séen in Fig. 3. At this point hi'éontinues to increaée?
but new contacts formed with second nearest neighbofsﬁresult in remoyal
of additioﬂal;cap material of heigﬁt h, and the‘crgétion of new solid-

"solid interfaées.‘ It is evident that Eq. (13) no loﬂger deScribes.tﬁé.”
sinteripg of‘Bcé packing correctly since the effect of second ﬁearest
neighbof ¢6htacts is not included in the analysis. v'

Prbceeding.in a mannervsimilar to the analysis fér nearest neighbbr '
cOntacté;

A>=41rR2—21mRh - 2n,mRh, ‘ as)

sV R S ¢ 2772 . _

where n, is the coordination of second néarest neighbors, and h2 is  the
height of fhe éap material removed from second néarést neighbor contacts.

‘Substituting h1,= PlR an‘d'h2 = P2R into Eq. (14),(

2
ASv = TR (.4-2anl - 2n2P2) (15)

Byﬁéquatiﬁg the original volume of the spherical particle with the volume

of the sphere, at some value of P, minus both setstf caps, (similar to
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 XBL 749-7199

Figure 3. Interpénetration of spheres in a body-centered cubic array.
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Eq. (6)), R méy be determined in terms of R, Pl,véhd‘P

0 2°
3 Rg
R = - 5 5 — (16)
L n Pr(3-P)) - 0P (3-P,) l -
Substituting Eq. (16) into (15)
: ﬂRz (4-2n_.P, - 2n,P,) .~
 A - 0 1"1 22 - . )
sV 2 52 - 12/3 :
| | mP G - 0Py (32 ' i
| G
The solid-solid area is given by
A - nnlhl(ZR-hl) . nn2h2(2R—h2).  (18)
ss 2 2 N
By substituting PlR for hl’ and P2R for h2, and Eq..(16) into (18),
‘ nnz{ P.(2-P.) + n,P,(2-P )}_,
A = R i R U 3 A

IE (19

- 88 2
n,P;(3-P,) -
‘ 2 , 1 - 1 1» 1

2 ]
n2P2(3-P2),
4 i B

The free energy change from the original configuration of spheres

just touching;to the configuration at any value of;P'is

b6 = AAss Yes AAsv Yov S . (20)

Since initially A _ is equal to zero, and A = 4NR2
i ss . sv 0 -
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) 2
AG(PR) = Ass Yes T Yav (Asv 4“30)

For two particular values of P, P,

MR = v, (A _(B)) + 7Y (A (P) - 4TRD)
and )
AG(PB) = YSS» (ASS(PB)) + YSV (ASV(PB) — ZHTR(Z))

And the chahge_in free energy from state A to state B is

AG = AG(PR) - AG(P,)
or
26 =¥ (A (B - A _(B)) + Y, (A (B) - & (P))

~

(21)

and PB, the free energy change is

(22)

(23)

(28)

(25)

Setting AG = 0, gives the critical ratio of Ysé/st for the incremental

densification from A to B. That is,

Yas - . (Asv(PB) " Asv(PA{)
| st (Ass(PB) - Ass(PA))

(26)

This ratio is identical to that determined in Eq. (13) for the increment

A to B.
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Since'Eqs. (17) and (19) are somewhat lengthy, it is more convenient
to use Eq. (26) than to differentiate Eqs. (17) and -(19) and ;ubstitute
them in Eq. (2).to determine the critical ratiosﬁofwysslysv for a given
degree of densificétion. Therefore, by using the:prbper values of n,
n,, and P, fq# Eq. (26), the critical ratios of Yss/ysv for the entire
system of sintering spheres can be determined for_BCC packings where

=6, and P, = (/3 - 2)/V/3 + 2p/V3.

= 8, n,

When an' array of spheres sinter, densification will generally:be

ny

described by tﬁo dihedral angles; the nearest neighbor dihedral angle,
Ql? and the second nearest neighbor dihedral angle,\@z. As second
neighbors inférpehetrate, @l continues to decrease while @2 beginé at
0°. Therefg;e; @l"will be larger than @2 at any valﬁé of P.

.Since fhéviargest dihedral angle for a partiéUlér system détéfmiﬁes
the critical ratio of Yéé/st’ it is necessary thdetermine values 6f
@i after setoﬁd nearest neighbor interpenetration has begun. .The_critical
ratio for the entire system is determined by-subsituﬁion of Eqs. (17)
and (19) iﬁtb Eé. (26) . But when Eqs. (16), (5), and.(9) are sﬁbstituted
into Eq. (Zéjs the critical ratio of YSS/Ysv for ﬁgﬁfest ngighbor contacts
can be determined at values of P corresponding téQséqond‘heighbor inter—
penetrétion..

Thus, itfis‘necessary to calculate the critic':a'Al_‘ratios'of‘YSS/YSV
for nearest neighbor contacts as well as for the suﬁ;of the contacts of
‘the entire_sysﬁem in order to determine the specifié thermbdynamic
bérriers to deﬁéification for a particular array of spheres.

Referring to Fig. 3 for BCC packing of sphereé, the densification

proceeds from configuration 3A, (nearest neighbors just touching), to

i@
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configuration 3B, (second nearest heighbors just.téuching), and is
describedvby'Eq. (13). Beyond this point, Eq. (i3) is no longer valid;
Configuration 3c corresponds to the point at which seéond nearest.neigh_
bors have interpenetrated sufficiently to cause compiete densification of
the unit cell;‘ The densificatidn path from 3B to 3C is described by
Eqs. (17), (19), and (26).

Since densification is measured as AL/LO (eqﬁiValent to‘hO/RO)
where AL is the linear shrinkage and L0 is the original linear dimension,
it is not strictly valid to use Pl’ i.e., hl/R as aiﬁeasure of densifi-
cation sincg R_according to the model increases ftom R0 as thé spheres
interpenetrate, as seen in Fig. 2.

For two interpenetrating spheres,

R - hl = RO - ho 27
or
R(1-P;) = Ry(1-P() . (28)
where P0 = hO/RO’ thus
1- R(l-Pl)
Py = (29)
0 R, i R

o

Using Eqs. (6) or (16), the ratio of R/RO may be substituted into
(29) to give the true linear shrinkage, PO. Therefore, when Eqs. (13)
and (26) are pidtted as a function of PO’ curves are obtained for

critical ratios of Yss/YSV at any degree of densification for which the
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model holds.

Figure 4'shows the results for BCC packing. Equation (13) describes_
the sintering of the 8 nearest neighbors until secope nearest neighbors
touch represented by segment a-b of -curve a-c. At:this_point, PO = O.l02
~and Yss/st>= 1.734, corresponding to a dihedral engle ®1.= 59.6°.

Beyond point B, the curve, which splits into two segments, is described
by Eq. (26).: The nearest neighbor dihedral angle eentinues'to increase
along the segment b-c of the curve (described by edﬁseitution of Eqs.'(S),
(9), and (16) into (26)), while the'second nearest eeighbor dihedral-
angle begins:to increase from 0°. At point c on‘the>curve; just prier

to complete densificaeion of the unit cell, the'nearest neighﬁer dihedral
angle, determined by graphical methods, is @1 = 71.5°, or Yss/st =
1.625; while the second nearest neighbor d;hedral aﬁgLe is @2 = 42° or
YSS/YSV = 1.814. The value of YSS/Ysv = 1.625 cerrespbnds ﬁo PO = 0.112
on the curve at point c¢. However, at this value bf,Po (linear shrink-
‘age) calculatiqe of the fractional void volume in Ehe unit cell accord-
ing to the maehematical model yieids a value of OgOBi'eQen though the
degfee of linear shrinkage is sufficient to completely densify the cubic
cell. The reason.for the discrepancy is that'alfhpugh'hl and R both
increase during densification, in the early stages.bf eintering hl in-
creases faster than R and therefore (Rrhl) decreases while at large

values of P., R begins to increase faster than hlf Thus (R—hl) actually

l’
goes through a minimum and then begins to increase.” For all the packing
arrays treated here, the model breaks down before the minimum of (R—hl)

is reached and therefore, the values of YSS/YSV critical obtained from
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Figure 4. Densification versus critical ratio of YSS/YSV for four sintering geometries.

_6"[_



-20-

Eq. (26) are still valid. However, calculaﬁion of the fractional void

volume in the unit cell from P0 leads to erroneous :esults at large

values of P., Eq. (29).

1°

By assuming that the initial edge leﬁgﬁh ofetﬁe-unit celi is 1, aﬁdv
that at theofetical density the ‘edge length is the cﬁbe root of the.. |
fractional final volume (fer BCC, 3/0.68), one cen'bbtain the true value
of AL/Lg, calied Pg in Table I, at theoretical deneity for the model.
The value for BCC packing is P = 0.121.

0

The solidjvapor dihedral angle then becomes e sQlid—so1id triple -
point with grain boundaries forming angles of 109°;'125.5°, and 125.5°.
The combined free energy contribution of first and:seeond neighbors |
(Egs. (17) aea,(19)-substituted into Eq. (26)), feseles in the curve‘
shown along'feth d-e. .A; second ﬁeighbor contacfs; ﬁhe curve breaks
discontinuousli.from a-b to d-e because the dihedfal'engle for second
neighbor interpenetration begins at 0°. Therefore;nthe sum of the con-
tributioniof.the nearest,'and second nearest neigﬁbbrefree energies -
yields the total for the system, and results in the cerve d-e.

The critical dihedral angle for sintering ofrthe5BCC array is 71.5°
which is thejvelue of the nearest neighbor dihedrallaﬁgle, @l, just prior.
to cempietevdensification of the unit cel;.'.At any @alue of PO, one:caﬁ

determine the critical ratio'of Yss/st for that ﬁef;icular degree of

densification, By finding the ratio of YSS/YSV on fhe abscissa of Fig. 4 | ’ 'u _

corresponding to the point at which PO intersectsfthe curve. If the
ratio of Y /Y, 18 larger, or if the dihedral angle,? ;, is smaller
than the value obtained from the eurve, that particular value of P,

and therefore, that degree of densification cannot be obtained for the
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Table I. Parameters for solid phase siritering models

DC sc BCC FCC
" Fractional initial void volume: 0.68 0.48" 0.32 - 0.26
At point of Second neighbor
contacts: .-
P (Linear shrinkage based : 3
on Eq. (28)) 0.277  0.184 0.102 -
¢ , 104.4 89.6  59.6 -
Yoo/ Yoy - 1.226  1.416-  1.734 - -
Fractional void volume 0.101 0.036 0.062 - -
At endpoint of the mathematical -
model:
P0 (Linearbshrinkage from » ' o \
Eq. (28)) ‘ 0.280 0;184_ 0.112 0.084
- | 115 89.6 71.5 59.6
YSS/YSv o 1.074 l:4l§H 1.625 ‘1.734.
Fractional void volume , 0.088 0.036 - 0.031 0.035
At theoretical density:
"~ P! (Linear shrinkage of cube
-with original edge length ’ ‘
of 1) 0.316  0.196  0.121 0.095
< @ 109 71.5 109
Yoo/ Yay | - 1';6l, 1.625 1.161

Fractional void volume 0.0 0.0 0.0 0.0
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real system;'TTherefore, to densify a BCC arfay ¢f spheres, the equilib-.
rium dihedral angle must be greater than 7l.5°_anq,the'ratio of YSS/YSV
must be less than 1.625. If these values are fulfilled in a real system
which approachés the'configuration of the model, theﬁ no thermodynamic
barrier to densification exists. |

For diaménd cubic packing, (fractional void ‘volume of 0.68), Figs. 5
and 6A, four.héarest neigﬁbors interpenetrate ﬁntil contacts form ﬁith
second nearest‘neighbors, Fig. 6B. ' The ratio of Yss/ysv as a function

of P, is described by Eq. (13), and segment a-b' of Fig. 4. At b', ?0 =

0

0.277, Yy /Yy, = 1.226, and ® = 104.4°. Beyond b', Eq. (13) becomes.

invalid since interpenetration of second nearest neighbor contacts

begins. Equatidns (17) and (19) may not be applied”tq the analysis sinée_

interpenetration of nearest neighbor spheres creates'é lihe of inter-
section betweehiSeCOnd neighbor spheres instead of gléecond hearest'
neighbor soiid—solid planar boundary. However,.EqS: (16), (5) and (9)
may be substituted into Eq. (26) to yield dihedral.angiés’for siﬁteriﬁg
of nearest neigﬂbors sinée @1 continues to increasé af;er second ﬁeigh—.
bors have con;acted,‘and the shape of the.nearest,héighbor solid-solid
interface réméiﬁs circular.

When iﬁterpenetration of second nearest neighbors is such that a
120° solid—solid triple point forms, Fig. 6C, the model is assumed to
have reached its endpoint since the spherical chafactef of the partiéles
is lost. However, the unit cell hés not densified completely at this
point,.and a rgéidual fractional porosity of 0.088,reﬁains, (based on a

cube of unit edge length and a fractional porosity of 0.68). The value

b‘;



UNIT CELL OF DIAMOND CUBIC STRUCTURE
| | © XBL 749-7295

Figure 5. Diamond cubic array of spheres.
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Figure 6. vInferpenetration of a diamond cubic array of spheres.'
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of P0 is 0.280, YSS/YSv =1.074, and-@l = 115°. The curve for this step

in densification corresponds to segment b'-c' of Fig. 4. For the model,

theoretical density occurs at Pé = 0.316; however, in order to reach a

densification corresponding to P0 0.280; @l must be greater than 115°
or Yss/st must be less than 1.074.

For simple cubic packing of Spheres,.(fracﬁional void volume of
0.48), Fig.‘7A, six nearest neighbors interpenetraté according to

Eq. (13), the densification is described by ségment a-b'' of Fig. 4

‘until contacts form with second nearest neighbors along <110> directions.

At this point, P, = 0.184, the solid-vapor dihedrai angle is 89.6°, and

0
Yss/st = 1.416. As the coordination incregses from 6 to 18, Fig. ?B,
the (100) faces become completelyvdensified, and‘foﬁr sélid—solid inter-
faces (grain boundaries) intersect at 90°. However, residual porosity
remains on the (110) faces, Fig. 7B, and the nearest neighbor dihedral
angle increases past 90°. In order for further densification t§ occur,
the area of the (100) faces must be reduced in order that the volume of
the unit céll can continue to decrease. As densification proceeds, by

some other mechanism than that described in the model, material is re-

moved from first and second nearest neighbor contéctéﬂ However, the

v coordination of solid-solid interfaces does not incréaée as for BCC pack#\

ing, but rather remains at 6. Instead, a line is formed from the inter-

section of the two (1/2 00) grain boundary planes as second neighbor

“interpenetration occurs, Fig. 7C. Equation (13) is no longer valid for

describing the densification of the system since solid-vapor area is
being removed from second neighbors, as well as frbm nearest neighbors.

Also, the description.of the solid-solid interfaces is no longer that of
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v Figuré 7. Interpenetration of a simple cubic array of spheres.
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a circularvsecﬁion for nearest neighbors. Therefére, neither Eqs. (i7)
and (19) nor (16), (5), and (9) may be applied to‘the model..

On (ilO)vplanes, as second neighbor interpenetfapion begihs, the
dihedral anglé increases from @2 = 0°, Fig. 7B énd:7Cf However, the
nearest neighbor dihedral éﬁgle'on these planes continues to incréase
past 90°. vJuSt prior to complete densification of'the (110) face, the
nearest neighbor dihedral angle (determined by gréﬁhical techniques), is
@l = 109°, and Yss/st = 1.161. |

At this‘point, the second nearest neighbor:dihédﬁal angle is @2 =
£9.6°. AsSumiﬁg that the unit cell shrinks to a voiume equal to thét of
the original‘éphere, the value of Pé at theoretical density is 0.196.
Thus, in ofder to densify a simple cubic array 6f?$pheres, ¢l mﬁst'ﬁe
greater thaﬁ.lb9° or YSS/YSV must be less than 1.161; If these con-
ditions are met, there ié no thermodynamic barriet t6 densificatién
although kiﬁetic barriers may arise since the systém must shrink by some
~ other mechanism, after second neighbors contact, thah that described in
the present model.

For FCC packing of spheres, (fractional void volume éf 0.26),‘12
nearest neighbor spheres interpenetrate as shown in.Fig. 8A, until the
(111) face of the unit cell has densified completely; Equation (13)
described the sintering along segment a-b''' of Fig. 4, At b''', Py =
0.084, the solid vapor dihedral angle, o, =’59,.§'_’_, and y_ /Y, = 1.734.
 When the (111) plane has densified, a solid—solid'triple.ﬁoint fzrms with
grains intersecting at 120° angles. Second nearest neighbors have.not‘

yet touched. However, as for the simple cubic case, in order for the

vblume of the FCC unit cell to continue to decrease, the area of the (111)
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Figure 8. Interpenetration of a face-centered cubic array of sphéres.
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planes must ﬁe.réduced. Again, it. is evident ihétiﬁﬁ. (13) is not wvalid
beyond this point. |

If denéification'is to procged further, sintéring must occur by
some other mechanism which allows for the redistribution of some of the
material from the (111) planes. Shrinkage may tﬁén céntinue until con-
tacts form with second nearest neighbors of (100) faces, Fig. 8C. Just
prior to confact, the nearest neighbor dihedral éngle-on the (100) face
is @l = 89;6°;_ After contact, the (100) plane is densified and fouf
solid-solid ihﬁerfaces intersect forming 90° angles, Fig. 8C. (100) and
(1115 faces have now densified but residual closed porosiﬁy remaiﬁs oﬁ 
the (110) facés. |

As furthet shrinkage occurs, again by some othef mechanism than that
described invthe present model, the second neafest'neighbor dihedral
angle, @2, oﬁ thé (110) face increases from 0°, whilé the nearest neigh-

bor dihedral angle, ®., increases past 90°.

1
When the porosity on the (110) face is eliminatéd; the unit celiAis
completely densified. Just prior to the eliminatibn of the iast traces
of porosity, gfaphical methods indicate that the’nearest neighbor di-
hedral angle, on the (110) face, is @l = lO9°,_the Second nearest neigh-
bor dihedral angle, @2 = 68°, and P6 = 0.095. |
Therefore, if @l is greater than 109°, orsts/st is less than 1.161,
there is no thermodynaﬁic barrier to complete densification of ?n FCC
array'of spheres, (GGsyst) is élways less than Ze%o. However, as for

simple cubic packing, kinetic barriers may exist.  Results for all co-

ordinations of spheres are given in Table I.
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Analysis.of the four sintering geomEtries presented here reveals
that.in the.éérly stages of densifiéatioh, when'only,nearest neighbors
are in coniaci, the larger the coordination of spﬁéies, the iarger is
Yss/st critical. Thus, the thermodyhamic barriefé to densification are
least foriFCC“packing (coordination = 12) énd gréétest for diamond cubic
packing (coéfdination = 4). For DC and SC arrays‘When second nearest
neigbbors Come in contact, the mathematical modeljdescriﬁed by Eqs. (13)
and (26) breaks down. Some of the material from circular solid-solid
contact aréaS‘Vhich formed during the interpenettaﬁion of neafest néigh—
bor séheres_mﬁéf redistribute itself laterally in‘ofdér that further
densification may occur since the contact area 1éseé;its ciréularity.
For FCC packing; the (111) face of the unitvcell dénéifies pfior to the_
formation'of second nearest neighbor coniacts; A::thisvpoint; thé model
also breaks’dowh and redistribution of material muétiéccur by some other
mechanism to.éauée complete densification. bn the:bther hand, the model
for BCC packiﬁg continues to describe sintering pasf_the point whére'
second nearest neighbor contacts form and is valid until theoretical
density is attained. For this packing array, théfmddél sinters uniformly
throughout ﬁhé'&ensification proceés; forming a 14 sidéd polygonal solid
(tetrakaidécéhearon) which fills space. |

Referring to Tabie'I, at theoretical density fbfheach packing
array, Yss/YSV critical is the largest fﬁr BCC (1;62§), and much smaller
for all other coordinations of sphereé, i.e., l.0f4 for DC and i.l61 for
SC and FCC. ,Each of the latter thrée packing arrays“forms closed
éorosity prior to complete densification'while BCC is characterized by

open porosity throughout the entire densification process. Additionally,.




‘neighbor dihedral angle, &

T3

¢

the fractional void volume is proportionately gréater for BCC than for

other packihgs when second nearest neighbors form:contacts, Table I.

0

the fractional void volume is 0.062, while for simple cubic packing at

At second nearest neighbor contact points fof-BCC, P, = 0.102 and

P0 = 0.184-(Sécond nearest neighbors-form contacts)'ﬁhe fractional void
volume is 0.036. The larger fraction of porosity_fof BCC‘allows continua-
tion of uniform sintering while for othér packing.afrays some of the
crystallographic faces in the unit cells must lose.§8me material in
ofder to Achiévé complete densification fér the éompéct.

This nonuniformity in siﬁtering results in iérgé values of the: '
nearest neighbor dihedral apgle, @l, relgtive to éhe'sécond nearest
,+ Since a large dihedtalvéngle causes Ysé/YsV
critical to be small, the thermodynamic barriers fo.éomplete densification
are increased by nonuniform sintering. This efféct is e&ident by com-
parison of SC and FCC packings, Table I. The initial:fractional void
volume for SC is 0.48 while that for FCC is 0.26.  At>second nearest
néighbor contact points‘for sc, P0 = 0.184 and Yss/Ys§j= 1.416, while

for FCC when the (111) face has densified P. = 0.084 and Yss/st = 1.734.

0
In both cases uniform sintering has occurred up tbltpese points and
Yss/st is larger for FCC than for SC. However, ény'furthef densifica-
tion must proceéd by nonuniform sintering of t?e spheres. This non-
uniformify causes both ratios of YSS/YSV critical Fo-attain the same
Value; 1.161, when the unit cells have densified eveh4thdugh the original
fractional void volume for SC is almost twice as léréé.as that for FCC.

In real powder compacts, nonuniformity can arise in several ways

and can lead to kinetic as well as thermodynamic barriers to sintering.
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Inhomogenéous packing due to pqor‘mixing or agglomeration can cause non-
uniforﬁ“pbtgsity distributions fhroﬁghqut étpowdér_éompact. Duriﬁg the
sintering énneal, regions of higher density of paéking densify prior.to
regions of lower density. Further shrinkage of the cbmpact will cauée
tensile stressés to arise in the less dense'regionsﬁwhich in turn will
decrease thé'sintering rate or p;odpce endpoint densities. Such a
phenoﬁenoﬁ:is analogous to the-nonuﬁiform densifiéétién which occurs in.
the models for DC, SC, and FCC packing arrays.

Even-if.é‘compact.has a homogéneous density diséribution, a wide
particle size disfributioﬁ can cause nonuhifdrm,éinféring. 'Coblel7 has_'b
“shoﬁn that stxésses, which retard the densificatién”kinetics; arise dur-
ing sintering-of nonuniform éized spherical_partiqlés; Therefore, if a
powdef ébmpaqt.is to be dénsified completely, the équilibrium diﬁedral
angle shouldfbe large as determined by control ofviﬁtéffacial energies,
the particlé size distribution should be as narroﬁ as.possible, in order
that uniforﬁ'sintering (intefpenetration of partiéleé) wili occur at ail
particle-particle contacts, and the packing shduIaibe'homogeneous and
such that opéh_porosity is_preéent for as much of*tﬁé sintering annealf
as possiblé.; If these conditions are>met, uniform siﬁtering at all con-
tact points.will occﬁr throughout the sintering process and the therﬁqé'

dynamic and kinetic barriers to éQmpléte densification will be a minimum.

B. Thermodynamics of Dihedral Angles

1. Vacancy Concentrations and Gradients

Thus far the interpenetration of the spherical‘particles presentéd
in the model has been discussed from a purely thermodynamic approach.

Since such an analysis considers only the initial‘and final states of the
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I

system, the path of densification or the mechanism by which actual mass
transfer leadihg to densification oécurs has notvbeeﬁ considered. There-
fore, it is of interest to examine, on an atomisti¢ écale, the process
by which mass transfer occurs and an equilibrium'configuration is attained
for a two sphére'model forming no bridging neck; Tﬂe analysis is based
on differences in vacancy concentrations at the solid-solid and solid-
vapor interfacés which are caused by stresses arising from interfacial
tensions and Su?face curvatures. Before discussing'the model directly,
it is neceésary to establish some general relatiohéhiés concerning the
formation of.vacancies in a crystalline materia%ﬂ

‘The equilibrium concentration of lattice vacancies in the.bulk of
a pure one component crystalline material is given By

Q B
N =N exp(- £ (30)

RT

whére No is_fﬁe vacancy concentration, N is the concentration of occupied
'1attice sites, Qf is the work associated with the”creation of a lattice
vacancy. In a,homogeneous single crystal material at thermal equilibrium,
No is constant throughout the bulk phase. However, in regions adjacent
to planar solid-vapor interfaces, the equilibrium vacancy concentration,
Nsv’ is not equéi ﬁo No'

Consider the two dimensional simple square array of atoms shown in
Fig. 9a. Three different locations, labeled 1, 2, and 3, where vacancies
can be created are indicated. Figure 9b shows the same lattice array

with atoms 1, 2, and 3 removed révealing the three possible types of

vacancies. 1In order to determine the most favorable site for vacancy
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Figure 9. (A) A simple square ray of atoms showing atomic
- lattice site lo cated in the bulk (1), just below
the surface (2), and at the surface (3). :
(B) Vacancies formed t sites (1), (2) and (3).
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formation, it is necessary to calculate the intérnal energy associated
with the qréétion of each fype of lattice vacancy; .
ExaminiﬁgAfirst the atom labeled 1 in Fig;'9é; one sees that there
is no net_étréss on this atom or on the'surroundiﬁg-atoms.labeled A, B,
C, and D. Wheﬁ a vacant lattice site is created_éﬁ'position 1, as in
Fig. 9b, the four nearest neighbor atoms, (A, B, Qvénd D), are ﬁlaced in
a state of tension associated with the breaking ofifour bonds with atom 1.
The next case to examine is atom 2, Fig. 9a, which is in an identicél
location as a#om 1 with respecf to nearest neighbors except that atom G,
a surface atom located directly above atom 2, is iﬁ é state of tension.
When a vacant iattice site is created in positipﬁ;Z; Fig. 9b, four bonds
are broken,'and atoms E, F, and H are placed in a state of tension. On
;he other hand, the tension on atom G is reduced since this tension is

now created by atom E instead of atom 2. Thus in creating a vacancy at

position 2, the internal energy of the system is increased by the break-

- ing of four bonds, but it is also decreased due to the reduction in the

tension onvatom G. Therefore, less energy is necessary to create a
vacancy at position 2 than at position 1. |

Finally, consider atom 3 which is at the surface of the simple
squére array iﬁ Fig. 9a. This atom is in a state_éf.ténsioh due td the
inward pull of atom 1. When a vacahcy is created af position 3, Fig. 9b,
three bonds ére broken and atoms I, J, and K are placed in a stagg of
tension. The tension which was associated with‘atom 3, however, is

reduced. It*is_evideﬁt that the internal energy:associated with the

creation of a vacancy at position 3 is less than that associated with

. . . N
positions 2 or.1l. Neglecting any entropy effects and using Eg. (30), it
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cén be shown that

Y 7 Yo TNy TN R (D

where N indicates the location of the vacancy.il

(1) -
At a speéific tempéfature, there are equilibrium'concentrations“of

vacancies associated with the bulk and surface rggioné of a material.
These éoncentrations are given by Eq. (30) and alfhdpgh they are not
equal, there is no net flow bf'vaéancies since no CEémicalvpotential
gradient eXiSﬁs. The excess concentration of vacénéies in the surface
region may then be considered as analagous to poéiti&e adsorption of -
solute atqms under equilibrium cénditions. In effect the stresses iﬁtrb~
duced by thé Surfaée tgnsion cause the establishment Qf'a vacancy con;
centration grédient which leads to vacancy flow_uptil equilibrium vacancy
éompositions‘and a constant-chémiqél potential are reéched. |

| In polycrystalline materials inﬁernal surfaéeé (grgin boundaries)
are bresentvés well as external surfaces. The nature‘pf the structure of
grain boundéries is not well understood, buf.when twb crystallographicv
orientations'iﬁtersect forming a grain boundary, the?e will be a somewhat '
smaller éoordination of atoms in thiS'fegion«than in fhe bulk. There-
fore, fewer boﬁds will be broken in creating a vacahcy at a grain béundary
than in the bulk and a somewhat higher concentrationjdf vacancies is'ex;
pected. It should be noted, however, that since the‘coordination of
atoms in the grain boundary is probably very closé-td £hat in the bulk;r
the excess vacagcy concentration Ngb over that invthe‘bulk,-No, is small

and is less than the concentration at the solid-vapor interface, Nsv'
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Furthermore, é_tensile stress field acting on t@e;grain boundéry would
be expected to‘increasevthe vacancy coﬁceﬁtfatiép-at the grain boundary.
-Now consider a configuration similar to Fig. lO;iwhich shows the
intersection.of two solid-vapor interfaces with a solid-solid interface
forming -a dihedral angle, %, between the two. The horizontal component
of the solid—vabor surface tension causes atoms in ﬁhe,grain boundary to
be in a‘state:of tension. The well known analysis of Nabarro3 indicates
that vacanciesfform preferentially in a region pf'ténsion. Thus, it is

expected that fhe presence of a sblid—solid/solid4vépor dihedral angle
will causeian enhanced vacancy concentration at the gféin boundary over

a stress free grain boundary with a maximum at the roéf of the dihedral
angle which iﬁcreases as the dihedral angle indreaées:v When the di-
hedral angle féaches equilibrium, the vacancy éhemical potential.gradient
between the sOiid—vapor and sqlid—solid interféces'5e¢pmes zero.

Now, consider the application of these argumehts_tovthe sintering

_of a two sphere model which does not form a neck of concave curvature

but ratherlis descfibedvby the ‘intersection of "two épheres as discussed
in Section II-A, forming a dihedral angie, ®l, whiCh-is less than the
equilibrium value,_@ed, as in Fig. 1la. The vacancjigoncentratipn é?
the solid—vaﬁor interface will also be a function of the convex curVatufe_.j
and therefore wiil be less than that for’a planar?interfage, buﬁ still

»

greater thanjthét for the bulk. Thus _ ~ .

H

.Nsv () > Nsv (3l’®l)v> No: B (32)
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'AS P INCREASES, THE TENSILE STRESSES
AT THE GRAIN BOUNDARY ALSO INCREASE

. XBL 7497298

'Figufe'10; A solid/solid—solid/vapor triple point indicating how
_ the horizontal component of the solid/vapor interfacial
' tension increases as the dihedral angle increases,

creating tensile stresses at the grain boundary.
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Figure 11. Path of vacancy flow for systems not forming bridging -

necks. Flow proceeds from the solid/vapor interface
" to the solid/solid interfacé as ihterpenetration of
the spheres occurs (A) to (B). When the equilibrium

dihedral angle forms, vacancy flow ceases (C).
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Also, the concentration of vacancies at the solid-vapor interface is

greater than that at the grain boundary,
Nsv(R1’¢1) > Nss(Rlél) o (33)

This conceqﬁration g;adient of vacancies is a functioﬁ of the chemical
potentiai gradient.which creates a flowvof vacandies from the sbiid—vapor
surface to the Solid—éolid interface and a cduntei flow df materials.

As interpenet?#tion of tﬁe particlés proceeds, météfiél is déposiﬁed.on
the outer surface Qf the spheres; the radius of the\gﬁheres; Rl’ incfeases
to R,, and-fheﬁdihgdral angle increases to @2, Fig.v}ib. Since the

radius of the spheres increases from R to_Rz, the'Vacancy concentration

1
at the solid;vapor interface, N;V(Rz’Qz) will incréasé as interpenetration
.of the sphetes_proceeds. Simultaneously, the dihedral angle increases

from @1 to &, and the tensile stresses on the grain boundary increase;

2
therefore, the vacancy concentration at the solid~solid interface,

NSS(RZ,@Z) ipcrgases. When ¢ = Qeq’ Fig. 1llc,
) = HO) (36)

The vécancy cheﬁical potential gradiént between tﬁéfsolid-vépor and

solid-solid ihterfaceé then vanishes and sintering.ceaées. A schematiq
representatioﬁ of the manner in which the vacancy concgntration gradient
chénges with dihedral angles is shown in Figs. 12,_'1_3," and 14 for 1, ’1057,7,
and 100 micron size spherical particles forming an equilibrium dihedrgl

angles of 68.4°, assuming that the activity of the;vacancies is équal to -
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Figure 12. Vacancy concentrations at the solid/solid and solid/vapor inter-
faces versus P or h/R for interpenetration of 1 micronvspheres
forming no bridging neck. (See Appendix 1.) :
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Figure 13. Vacancy concentrations at the solid/solid and solid/vapor
. interfaces versus P or h/R, for interpenetration of 10 micron
- spheres forming no bridging neck. (See Appendix '1.)




43~

, . S <) - .
o) 36.2° - 51.6° .684
l | I T
4.539 971 | . e
|
|
]
i
®eq
4.539 970} _
[Te]
)
o
S 4.539969 -
=
g
o
'__.
P-4
w
(&)
2
(@]
(&)
> 4539968 |— ~
Z .
z _
g RADIUS OF PARTICLE =100 MICRONS
> ! 2
Ysy = 1000 ERGS/ CM
RaTIO OF Ns¥R=®) | 5000062
g @=0)
4539967} -
4539 966L I TR B B E—
0 002 004 006 008 0I0 OI2 04 O0I6 0I8
' P or h/R .
XBL7411-7586

Figure 1l4. Vacancy concentrations at the solid/solid and solid/vapor
' interfaces versus P or h/R, for interpenetration of 100 micron
spheres forming no bridging neck. (See Appendix 1.)
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their moiélffgction, (ideal solution approximatipn).l As can be seen from
the figures, the vacancy concentrations at the sdiid4Vapor and solid-
solid interfaces both increase as interpenétratién of?;he spheres pro-
ceeds, but'thg concentration of vacancies at'the_sqlid—solid'interfaces
increases at:a faster rate and becomes equai to the concentration at the
solid-vapor ipterface when  the equilibrium dihedfal ahgle forms (see
Appendix 1 for details of the calculations used in obtaining Figs. 12,

13 and 14). :Figure 15 shows .a schematic diagram of ﬁbw the chemical
potentials of vacancies change- at each interface és.Q increases from 0°

to ¢ .
eq

2, Thermodynamic Driving Force

At anykiﬁstance during sintering, if the expgrimental or.dynamic
dihedral ang;e is less than the equiiibrium_va;ue; tﬁere_is a thermo-
dynamic driviﬁg_force‘fof continued mass transportién& sintering. As
was shown in the thermodynamic analysis of endpoiﬁt_densities, (Section
II—A);lthg fﬁfiher the experimental dihedral anglé‘is from the equilib-
rium vaiue; the more negative is the differential freé energy in going
from the noneduilibrium to the equilibrium configuréfién, and the greater
is the thermbd&pamic driving force forbfurfher densifiéatiqn.

This overall driving force fpf sintering_may;bé expressed as

AP =& -0 B (35)
- where Qeq is the value.based on Y__ for a planar grain boundary andxon
st for surfaces in equilibrium with their own vapor; and Qdyn is the

instantaneous value in a sintering compact which is dependent on
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Figure 15. Schematic diagram of vacancy chemical potentials at solid/solid and soiid/vapor interfaces

versus dihedral angle.
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:igtmospheric gohditions, chemical effects,’and gééﬁétry. Mathematically,
- when Qdyn becomes equal to Qeq sintering ceases éincg‘the thermodynamic
driving forée for sintering is eliminated.

Under Static conditions where the Vapor”pﬁase ié in equilibrium
with the séiid,»an equilibrium dihedral angle is aﬁfained. However,
under dynamic conditions, the vapor species.abové\é_séépimen can be
swept away, andvin an attempt to restore the equiliﬁrium vapor preésure
for the system, material will vaporize more from the higher energy curved
surface at théigroove root. If vaporization is répid compared to other
mass transport mechanisms which attempt to restore the equilibrium shape
of the dihedral angle, a nonequilibrium or experiﬁeﬁfai dihedral angle
whiéh is smallef than the equilibfium angle will resulfm This decrease
in dihedfal éﬁgle can be-referred to as a."éorrosioﬁ" éfféctf

Qdyn is aiéo dépendent on chemical effects sipqgiadsorptionvor de-
sorption of méterial from solid-vapor surfaces willvﬁgry depending on
the curvature Qf the.surface. For instance, a solhte atom which posi-
tively adsorbé bu£ is somewhat larger in atomic sizé{than the solvent
atom will genefgfe compressiﬁe stresses in the atdﬂié lattice. .Such an

.atom will'thefefore preferentially adsrob in the éon¢aye surface of the
neck region~ofJé two sphere model which is in radiaigﬁension és.opposed
to the convex surfaces of the spheres which are in radial compression.
ACorrespondingly; changes in st occur during sinte;ing.and Qdyn is
affected. |

The third parameter, geometry represents the éffect qf purely

geometric conditions changing during sintering. Interpenetration.of

spheres in thé_absence of neck formation has already'been discussed. A
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more common cdndition that should be discussed further is associated
with the formafion of bridging necks betﬁéen pérpicles. Nichols2 has
shown mathemétically that for a two Sphere model haviﬁg a briding neck
between theispheres, (actually infinité cylinders); surface.diffusion
alone will lead'td an "undercut'" region adjécent.fo‘the neck, Fig. 16.
Similar undeféutting»has been predicted wﬁen volumé diffusion mechanisms
are operative.ll These derivations assumed ﬁé coﬁﬁribUtion from the
grain boundary energy to the shape of the surfaces,-i,e;, a 180° dihedral
angle. However, for any dihedral angle less than 180§ it can be shown
by inspectioﬁ that the degree of undercutting mus#'deérease és the
equilibrium dihedral angle decreases and that as eduilibrium conditions
-are approached all surface inflections (undercuts) mﬁst disappear.
Tﬁérefofe, whén bulk and surface diffusion flukgs,éré similar, material
diffusing from the bulk and dépoéiting at the surfé;é'qf the neck region
will continue . to diffuse by surface diffusion mechénisms‘from the concave
sﬁrface (neck region) to the undercut region thus reauéing or flattening
out the degreé of undercutting ahd in turn rgaucing ;hé dihedral éngle.»
In an attempt to attain a minimum free energy configﬁrétion, further
material transport will‘ogcur via bulk or grain boﬁn&aﬁ& diffusion
mechanisms ffém-the grain boundary towards the ngckv;égion. The deposi-
fion of material from thiéﬂsourCe will tend to rest@ré the equilibrium
dihedral angle{  The tﬁo processes will continue oﬁ:aﬁ atomistic gpale
until surface inflection points disappear and'the éqﬁilibrium configura-
tioﬁ is reached. During this interval, if geometriciéffects provide the
principal conFriBution to A®, there will be a small'iﬁcrementalbvalﬁe‘Of

A% during sintering which will decrease with increasing neck radius and
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become zefo ét equilibrium.

In thebébsence of corrosion or chemical éffécts; this A% will be the
only thermodyﬁémic driving force for densification. If the surface diffu-
sion flux is rapid compared to the bulk or graiﬁvboundary diffusion flux,
the surface ﬁopography created by the ratio of Y;é/ysv will tend to
eliminate the undercut region as the neck radius inéreases. Equilibrium
conditions Will then be approached without any measﬁrable densification.

Therefore, when geometry is the dominant parameter contributing to
the driving force for densification, surface diffusion fluxes and bulk
. diffusion fluxes must be similar in order that a situation will exist
whereby the contribution of surface diffusion.wili_be~to reduce the cur-

vature of the'neck region (decrease the.dihedralrangle), while that of
bulk or grain boundary diffusion will be to restore .the equilibrium
value of the diﬁedral angle. This incremental orvstéﬁwise process will
result in shfinkage and continue on an atomistic scale until all surface
inflections are eliminated and a'configuration apéféaching equilibrium
conditions is attained.

Thus for models forming bridging necks, the éQuilibrium dihe&ral

angle is approached in the initial stage of sintefipg during neck formg-
“tion and the small incremental change in A9 is thé thermodynamic driviﬁg
force for‘denéification. On the other hand, as diécussed earlier, models
. which form nb Bridging neck are characterized by a-dynamic, or experi-
mental, dihedral aﬂgle which incrgases continuously from ¢ = 0 toward
the equilibrium_value, ®eq’ during the entire éinteripg process as the
interpenetration of the spherical Qarticles proceeds. At any instance

during sintering, the thermodynamic driving force is ¢e -0 and when

q . dyn
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tﬂe equilibrium dihedral angle is éttained,_sinteringvceases.

The géﬁeral form of Eq. (35) will thérefore Sé_valid throughout the
entire sequence of sintering of a powder compact with one, two or éll
three paraﬁefers contributing to Ad. But it Should_ﬁe noted that A9
will generally change during each stage of sintering as the relative
contributiqns'of the pérameters chénge. When a éintering compact is
still in the open porosity stage, the value of A®, if_determined by a
corrosion effect due to a flowing ambient atmOSphgre ébove the surface
of the compéét} will remain relatively constant aufing sintering. When
sintering hasiﬁroceéded to the point where closed'éérosity forms, the
in;érnal dihéﬂral angles will Chgnge toward Qeq eftﬁér with or without
additional sintéring since a grain boundary interéeéting an internal
pbre will nd longer be in contact with the ambient atmosphere. Uﬁder

isolated conditions the vapor phase within a pore will determine the

dy

lishing the magnitude of the thermodynamic driving force for sintering.

value of $ n:which will then become the determining:factor in estab-

On the other hand, if only tﬁe effect of geoﬁetric changes is: con-

sidered in avsystem of spherical particles that maintains the lowest

free energy configuration at each instant during;siﬁtering,'¢d§n at the’

start of sintering is zero and increases as sintering proceeds. When -

o becomes-edual to ® , sintering ceases. Therefore, if ¢ is
dyn . . eq , eq

greater than-q’crit for a certain initial packing array (Fig. 4 in-

Section IIA), no thermodynamic barriers to the a;téinment of theoretical

density exist. . If ¢eq is less than ¢ , an endpoint density as deter-

crit

mined by the intersection of the value of ®eq with the appropriate curve

of Fig. 4 will result.
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C. Thermodynamics of Grain Gréwfhu
It hés iong been realized that if the pores sﬁay at the grain
boundaries ‘during sintering, they have a much be;tér_chance of being
annihilated than if they are trapped as.isolated sphérical pores at large
diffusion distances from grain boundalries..ls—15 viijhas thus.been argued

that in order to achieve theoretical density, the grain boundaries must

be prohibited from sweeping out past pores thus leaving them isolated.

- Therefore, in numerous sintering studies, additives:are introduced to

compacts for the stated purpose of pinning grain bQUndaries to pores. In
some cases, the additive acts as.a sparingly solublévsecond phase which
segregates at grain boundaries; the analysis is then modified from that
béing discussed in this report.

1. Lenticular Pore at a Planar Grain Boundary

It isﬂof interest to examine the thermodynamics'of a planar grain
boundary breaking away from a lenticular shaped pore. The geometry to
be examined in detail is shown in Fig. 17 in which»thé isolated pore
attains the low free energy spﬁxical form as the grain bouﬁdary moves
away. This process, however, éontributes to an inérease of the free
energy of the system because solid/solid interfaciai érea is éreaﬁed.
Therefore, the net free energy of the system will.be‘a.functién of the .
relative interfacial areas and energies. The éna;ySis proceeds aé |
follows. |

From Fig. 17, half.the dihedral angle is given‘by

2 .2

_r =h :
cos $/2 = r2+h2 o - (36)
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VIEW IN PLANE OF THE
GRAIN BOUNDARY

VIEW PERPENDICULAR TO THE
" PLANE OF THE GRAIN BOUNDARY

Figﬁre 17.

 XBL73358%

A planar grain boundary sweeping past a lentlcular pore.

7¢/2 = solid/vapor-solid/solid dihedral angle of ‘the

enclosed pore. q = the radius of the spherical pore formed
after the planar grain boundary has swept through the
lentlcular pore leaving it isolated.
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where r is the radius of the lenticular pore. yFrom (3) and by setting

Yss/zst eqﬁal to A, we get

Algebraic maniupulation leads to

2
h2 _rI gl—A).

(1+4)

(1+a)

Referring to Fig. 17, the change in free energy offthe system is

syst II

where
= R II

611 = AssYss

and
I

6; = AssYss

Therefore,

- r(l--A)1

SV sv

(37).

(38)

(39)

(40)

(41)
(42)

(43)
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G Y AA A +y A - (44)

syst 88  sSS 'gs sV sv.

If we consider the overall area of_theigrain‘boundary to be fixed and

circular, then -

_2 »

2
Ass = j(@) - mr (45)
and ‘
11 _ 2 S
AL = L - - (46)
where % is the radius of the planar grain boundary. Thus
pa_ = 1 - w(n? + n
M = e | )
ss ' : o T
The éolid—vapdrvarea of the lenticular pore is giVen‘by.
Al = 2(2mRn) S 9
-8V - : C .
1f we substitute
2 2 .
R=_ull_ . ‘ (50)

2h

obtained from;geometry (Fig. 17) into (49), then
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I _ 2(2mh) (x> + b%)

Asv 2h (1)
I 2 2 e
A, = m2(x + 1) o (52)

Ll

When the grain boundary moves, the volume of the tesulting pore remains

constant. The volume of the lenticular pore is

I T 2. .2
Vo, = 2z hG3r" +n%)) - (53)

and the volumé”of the spherical pore is

VII _ 4mg” o : (54)

where q is the radius of the spherical pore. Equating (53) and (54)-

results in

2 .202/3 o
2 h + h) s
o = [ 1 s (55)
Substituting this value for q2 into

sv

gives the value of the resulting spherical pore in terms of r and h
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T 4w (... 2 .2.]2/3
ASv = 42/3 h(3r‘ + h )]

I _ ,1/3 2/3
Asv = n(h(3r + H ))

Then, combining (52) and (58)

A =43 qmae? + 1ndy)2/3

202
sv - 2n(r” + h7)

Substituting'(48) and (59) into (44), we get

o,
syst -Yss."r + st

4173

AG T(h(3r> + h2))2/3 2n(r

AG

T 'ss

Further substitution of (39) into (61) gives

o - 1/2 . [1-A
__§%§EJ=.yssr2 + Yo, {4;/3[(%:§) ' r(3r2'+‘r2.(l+A

(e 2 (82))]

szst'_tY r2 + ng I41/3 (h(3r + h ))2/3 Z(r o+ h )

(57)

(58)

(59)

+ h )

(61

)

(62)

(60)'
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AG - 1/2 2/3
syst _ ., .2 2 |,1/3 l—A) 4+2A> c 4 ,
m - YesT t Vg™ )4 +A) - \"1#A)] T 1+A (63)
Then, substituting ZAYSV for Vg Ve get
AG ' 1/2 2/3 |
__syst _ 1/3 (1A AP2ANTTT 4
T2 A5y * Yoy l4 1+A TA)| T THA B
Ssyst - 24 + RYE [( 1-A)1/2 [ 4+2A )]2/3 _b (65)
' 1+A 1+A 1+A »
Y, ; R

A plot of_the‘pet integral normalized free ehgfgy change vs cos.¢/2,
whiéh is edual to A in (65), is shown in Fig. l8.IfThé graph also shows
the integral free energy changes due to the.solid/solid and solid/vapor
area changes individualiy. Since solid/solid areé’is a1ways created by
movement of the grain boundary, this factor always’makeé.a positive con-
tribution to the free energy of the system. On théfbther hand, the
-solid/vapor area is always reduée& and makes a negati?e contribution;‘the
small contributibn at small values of cos ¢/2:is a'refiection of the small
aréa change Becéuse the lenticular pores, with a iarge dihedral angle,
are almost spherical. The net free energy change‘fof'the system, however,
is always'pésitive throughout the entire range ofﬂdihedral angles from

180° to 0° (cos ¢/2 = 0 to 1.0).



20r

1.5

-1.0

B ".|;5

-58-~

NORMALIZED FREE ENERGY
CHANGE vs. DIHEDRAL ANGLE

FOR PLANAR GRAIN BOUNDARY
—MOTION PAST A LENTICULA

PORE |

———
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XBL733-590.

Figure 18

A Gss (NORM)
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An effdrﬁ has not been made here to analyzelcaées of elongated‘pores
on two or threg grain junctiops-and ﬁores at f0ufvgrain junctions.
Observations have been reported, howevér, that théée‘grain junctions do
not break away from pores.ls. Also, it can be déaﬁdedvby inspection that
the breaking away of the_grain boundaries from the pore would be ener-
getically eveh less favofable thén the breaking aﬁay of a grain boundary
from a ienticuiar pore because the increase of the soiid/solid area |
relative to_thé decrease in the solid/vapor area w&uia'be much larger.
.from an enefgefic viewpoint it would be expectéd,thaﬁ the geometry would
change progressively by grain boundary motions'té the_configuration_
treated here;

»This thermodynamic analysis indicates that fhe‘presence of a len-
ticular pore with any dihedral angle on a planar graih boundary will
always pin the grain boundary or the pore will moﬁe:with the boundary.
Thus, for gréiﬂ boundary movement away from a poré to occur, there must
be another negative contribution to the free energy of the system.

2. lenticular Pore at a Curved Grain Boundary -

The géometry to be examined in detail is shown in Fig. 19 which
represents a circular sector of width m, arc length L, and angle in terms
of ¥ which is the angle of curvature of the grain,boﬁndary as determinea
by two grain:boundary triple points. Then} fd; é pdfe—free sector of
boundary L

hW, the area is L_m or prm and the free energy is G =

£ £
hWmYSS. A differential change in Pe with a constant Y leads to

_— dG = ¥my__dp, o (66)



-60-

LENTICULAR PORE
AT A CURVED GRAIN BOUNDARY

XBL 733 5899

Figure 19, VY = the angle-of curVature of the grain boundary.as determined
' ‘by the intersection of two grain boundary tr1ple p01nts in the
plane of the diagram. » .
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If dpf is positive, so is dG and vice versa. Iﬁeréfore, a grain boundary
will always have a tendency to move toward its center of curvature with a
constant curvature of Y because the incrementalbffée»energy change is
then negati&e., Likewise, a movement toward fhe center of curvature will
tgnd to occur éven with a constant chord length.if the curvature is
decreased in movement because the length of the boundary wili then
decrease.

The next step is to analyze the free énergy changes when a boundary
with a pore'(Li) moves to position Lf leaving thé'pqre behind with the
geometry of Fig. 19. The sum of the free energy‘changes due to the
creation of the grain boundary and the change in the éhape of the pore
is positivé for all dihedral angles as has been shown in the previous
\ section. There is, however, an additional effect due to the reduction
in grain boundary area as the boundary moves toward its center which is
always negati&e. For grain growth or boundary movement to occur, the
latter term must have a la;ge enough negative value to make the net free
energy change for the system negative. A detailedvanalysis for movement
with constant curvature and within a given sector.follows.

The initial area of the grain boundary, making m equal to 2r and
negiecting the slight curvature of the boundary thrdugh the pore region,

is

Al - 1.@p -1 o= o W2 - 12 67)
dsg T Lyler) - Wro = pgter m A |

and the final solid/solid interfacial area after movement, where q is

equal to the radius of the resulting spherical pore with volume equal to
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the original lenticular pore, is
L IT
ss

The change. in area is

Ss

AT = Lf(2;) = hWZr = (pi—q)YZr |

oy M = Zeri - 2r¥q - piWZr + nrz

A = ﬂrz - 2rY¥q
ss v -

Substituting (39)-in;o (55) and solving, we g

. 1/2 .

173

4

The substituting (71) into (70) results in

: | . 1/2
A T 1-A
DA =TT - 28 [41/3 (1+A)
i 2| 2r Ja=ayt?
s o 4/3 \1+A

et

el

\"1a

4+2A
T+A

)

(22) " (e |73
1+A (1—-A>l 2

|'1/3_'

]

(68)

(69)

(70)

(71)

(12).

(73)

The change in solid/vapor interfacial area obtained from the planar

gfain bpundary by substituting (71) into (57)

is
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. 1/2 2/3 - '
_|,1/3{1-a 4+2A _ 4 2 (74)
bA, T [4 <1+A> ( l+A), A | ™

The free energy change of the system, substituting YSVZA for Yeg?

then becomes

DGy o = Vg (28 8A  +0A ) (75)

On substituting (73) and (74) into (753) and solving, we obtain

AG o\ 1/2

_syst _ oall - 2V 1-A 4+2A
2 1/3 1+A l+A

TT; st 4 kil

1/2 2/3
1/3 1-A 442A 4 _
4 [(1+A) : < 1+A)] T 14A - @8)

Tﬁis equation gives the normalized free energy change as a function
of angle of curvature (¥) for various dihedral angles (*epresented by A).
Solutions for dihedral angles from 168.4° to 106° are plotted in Fig. 20
and for angles from 73.6° to 16.2° in Fig. 21. Théaintegrated free
energy curves are positive for low angles of cdrﬁéture Y, and become
negative as the angle of curvature increases due to the continuing re;
duction of the grain boundary length as the curvatu;é becomes larger. -

Inspection of the graphs indicates that for dihedral angles (¢) above

about 73° boundary movement can occur at boundary curvatures above about
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CHANGE vs. ANGLE OF
CURVATURE FOR PORE
ISOLATION ON A CURVED
GRAIN BOUNDARY
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10 NORMALIZED FREE ENERGY
CHANGE vs. ANGLE OF
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0.62 radions or about 36°. With the decrease ofvdihedral angles belowv
73° boundary movement can occur at decreasing values of curvature with
¢ at 16 ’ grain growth can occur at curvatures above about 26°.

. Another informative relationship is indicated in Fig. 22 whi h is a
plot of Y versus half the dihedral angle /2. The locus of p01nts which
fall below the curve yield positive values of the free energy for pore

-isolation, AG Whereas, points lying above the curve yield negative

St
AG's. Inspection of the graph reveals that the.critiCal angle of
curvatureuis relatively independent of the dihedral angle for large
values of ¢/2.' While at ¢/2 less than about 36?; the value of Y critical
decreases sharply as ¢/2 decreases. This resultiindicates that'controi
of the curvature of the grain boundary is the critical factor in pre-
venting pore isolation and that the introduction of additives to a -

system causing the YSS./YSv ratio to be reduced beyond the critical value

has little effect on pinning grain boundaries.

3. Effect of a Mixture of Particle Siaes

A properly-oriented planar cross-section:of.a model microstructure'
of'a.crystaliine material with uniform grain size'andvvith grain boundary
energy independent of orientation would show hexagonal grains with three
grain junctions of 120° and straight line boundaries§ the system WOuld_i,'
then be in metastable equilibrium since there wouid'be no driving‘force
for boundary movement. A variation in grain size would result in grain
boundary curvatures because the three grain junctions;will aiways.attempt
to maintain equilibrium angles of 120°. Grains with less than six sides
would have their boundaries curve outward since the‘polygon angles with’

straight sides would be less than 120° while grains‘with more than six
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sides wouid héve boundaries curving inward since the pdlygon angles would
be greater tﬁan 120°. Thus, thermodynamically tﬁege would be an addi-
tional driving force for a grain with less thanbfix'éides to shrink and
with more than éix sides to grow since the grainibbundaries would have a
tgndeﬁcy to move toward their centers of curvature as described above.

' With grains of two sizes the length and number of grain boundaries
relétive to the large grainvwill be dependent on the size of the small
grain. The cqfvature between two adjacent triple peints in all cases
according to geometry would‘be spherical and the angie of curvature Y
would be 60°; therefore, the boundaries would not be pinned by any pores
‘that méy‘be present on the boundaries. The greater the length of the
grain bounaary;/however, particularly on an atomistic scale, the greater
will be the prébability that the center portion of the boundary will -
acquire a smaller angle of curvature because of thé;dfiving force to
flatten out the boundary, i.e. the graih boundary would become elliptical
or a flatténed circle since tﬁe.angles at the triﬁle points would be
maintained at 120°. If the curvature through the central portibn‘de—
creases beiow about 36; the pore can then pin the_grgin boundary. It
thus appears that from a thermodynamic viewpoint.; starting powder with-
a single pérticle size or the smallest particle siZe.range possible is

desirable for sintering; the actual sizes of the particles become im-

portant only from a kinétic viewpoint.
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ITI. EXPERIMENTAL STUDIES

A. Experimental Procedure

The . ﬁltimate purpose of all mathematical sintefing models is to
describe the sintering behavior of real powder compééts. The success or
-accuracy of a model is determined by the closeness with which it matches
real systeﬁs. Most kinetic models for sintering predict densification
rates, or some parameter of densification as a fﬁnction of time, for a
given.set of initial conditions. Experimental verification of a model
is then obtained by measurement of similar parameters for real compacts
and comparison of the two sets of data. The extent to which a model
deviates from actual sintefing behavior can then be attributed to ideali-
zations or approximations used in formulating the model. If the dis-
crepancy between real and predicted sintering behaﬁiof is too great, the
model must be modified. Therefore, experimental evidence provides aﬁ
estimate of the confidence level of a model. | |

The thermodynamic model for solid phase sintering developed here
predicts that when all conditions and packing densifies are identical,
the larger fhe eduilibrium dihedral angle determined by relative values
of Ygs and st"the greater will be the endpoint density, and that if the
equilibrium dihedral angle is greater than the critical angle for a given
packing, the‘system should reach theoretical density from a thermodynamic
viewpoint. Aiso, the model indicates that when the e#ﬁerimental or
dynamic dihédral angle at any point in sintering is less than the
equilibrium value, there exists a thermodynamic dri&ing force for con-
tinued densification. This driving force is increased when the dif-

férence between the actual angle and the equilibrium angle is increased.



-70-

This effeéﬁ can be seen from the slope of the P0 versus Yss/Ys; curve,
Fig, 4 (Section IIA) or from Eq. (20).

A simpieiéxperimental verification of the mddél could consist of
choqsihg several single phase isotropic matefials having,différent
equilibrium dihedral angles, cold pressing them fo ﬁhe same green density,
and sintefihgtthem under identical conditions. ‘If the model is correct,
the materials forming the largest equilibrium dihedral angles should have
the highest endpoint densitiés; on the other hand,_if all the angles are
larger fhan tﬁg critical angle, all the materials would reach theoretical
density from a thermodynamic viewpoint but at different rates. The major
préblem in performing such a series of experiments is that the geometry
of all the;compacts must be very similar and theréfore; aside from cold
pressing the ppwders’to a constant green density,ﬁthey must also have
similar particlé shapes and the same size distribﬁtions. If the shapes
of the particulates vary from_materials to maﬁerial, nearest neighbor
contacts of pafticles Qill.be'differenf for each ﬁéééfial. That is, a
material which has particulates very similar in shépe to spheres will
yield a different paéking dist;ibution than a material which has irregular
shaped particles. Therefore, a compact pressed from spherical material
may approximafe a simple cubic array while a compacf-pressed from
irreguiar shaped material may forﬁ a combination of péékings, e.g.‘
diamond cubic aﬁd body-centered cubic. Although both'guch compacts would
have the same green density, the differences in packing distributions
between the two:could cause attempted correlations3be£§een densities and
‘dihedral anglés.for the two materials.to lead to ‘erroneous results, 1i.e.

the compacts would be characterized by different cufves in Fig. &4
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(Section IIA), instead of one curve. Of still gféatef concern from a
processing Viewpoint is that a non~homogeneous distribution of several
types of packings in a given compact could, lead to a non-homogeneous dis-
tribution of entrapped closed pores.

vAnothe; approach is to fabricate compacts frqm one single phase
material. Such compacts could then be sintered at fhe same température
but in different atmospheres. If the gases in thg éfmosphere affect
st and/or Yss’ or create corrosive effects, the experimental dihedral
angles wili,Qary; these differences can then be correlated to the den-
sities and/or rates of densification of the sinteping powder compacts.
The majorbadvantage of this approach is that all the green compacts will
have a similar structure. Even though there may bé a wide density dis-
tribution in a compact, such a distribution would be expected to be the
same in every compact. Thus, the only parameter.which will vary, and
can therefqré cause differences in sintering, is the experimental or
dynamic dihedral angle. For this reason, the latter approach was chosen
for the experimental study. |

1. Preparation‘of Powder Compacts

MgO was selected as the material for the experimentation. In order
to obtain a uniform starting material, Mallinckrodt M_gCO3 was calcined
at 1000°C fo'yield MgO. The powder was calcingd in a heavy auty type
furnace for 24 hours in air and furnace-cooled. The powder was then
ground in an alumina mortar with pestle to break up thé calcined cake.
After grinding, the powder was dispersed in ethyl alcohol and immediately

dried at 110°C.
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Compécts were then cold pressed in a steel die using no binders to
a green density of 45% of theoretical. Fifteen compacts were prepared
for each sintering run.

2. Sinteriﬁg,and Density Measurements

A quench‘typehfurnace, Fig. 23A, was used for tﬁe sintering anneals
withvthfee different atmospheric conditions: stafic éir, flowing air,
and flowing_water vapor. For the static air experiménts;»the specimens -
were arrénged.on a ceramic pedestal that was raised into the furnace
Whicﬁ was maintained at a temperature of 1200°C. The furnace was then
heated as quickly as possible to lSlO;C, (30 minutes). The specimens were
_annealed for three different times: 100, 700, and 1440 minuﬁeé. After
annealing, they were cooled to 1200°C and removed ff9m tHe furnace. Alln
sintering runsiregardless of the atmosphere ﬁsed.&uring the experimeﬁt.
had the same heating and cooling cycles.

For the series of experiments with flowing air, compressed air was
passed into the furnace by means of a tube runningvalong the axis of the_
pedestal, Fig; 23B. This setup permitted the air to flow directly over
the speciméns.,vA similar setup was used for the flowiﬁg watér_vapor
atmOSphére. Distilled water was boiled in a sealédrvessel and carried
through heated glass tubing directly into the furngée. The flow rate
for both floﬁing air and flowing water vapor experiﬁentsvwas approxi-
mately 2.0 cu. ft/hr. | |

After each sintering run the bulk density was'deﬁermined for each
specimen. The standard deviation and variance were calculated for the
distribution of 15, and for a reduced distribution.of 13 specimens after

the specimens with the largest positive and negative deviation were
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Figure 23, (A) Furnace used for the sintering studies.
(B) Pedestal arrangement for flowing gas into the furnace and
supporting the sintered specimens.



-74-

eliminated. Fracture surfaces of selected specimens were also prepared

for SEM exémination.

3. Dihedral Angle Measurements

’Direcf measurements of the dihedral angles Qf sintered speéimens
could not be -performed since the densities of.tﬁe_siﬁtered coﬁpacts were
low, less than 90% of theoretical, and the graiﬂ_sizgs were too smallg
Bicrysﬁals of MgO were rejected for investigation since it was expectedv
that the graiﬁ.boundéry of a bicrystal is more défect—free than that
formedAby sintering. In order to approximate sincéring conditions as
closely as‘poséible, specimens for dihedral anglé:ﬁgasurements were hot
prESséd from calgined MgCO3 which was prepared ih‘an identical manner as
the powder used for sintering. The calcined powder was packed in a
graphite die and hot pressed at 1200°C . for 30 minuﬁés in a vacuum of
5x10-4 torr to a density of 98.5% of theoretical. After hot pressing,
the'specimenS'were annealed at 1700°C for 24 hours (1440 minutes).in
order to reéliZe sufficient grain grdwtﬁ’for dihedrai angle measurements.
.The grain size after the anneal was approximately'iOO microns.

The annealed polycrystalline material-ﬁas cut iﬁto 0.5 cm cubes ‘and
one surface of each cuBé was polished on a succesgioﬁ of diamond wheels
and cloths:to a finish of 0.25 microns. A final polish with Linde B
alumina waszﬁerformed just prior to experimentatioan_A polished specimen
was then aﬁneaied for 24 hours at 1510°C iﬁ each ;f the atmospheres used
in the sintering study. Twenty-four hours was chosen as an annealing |
time since it allowed sufficient diffusion so that'grain boundafies‘
infersecting the polisﬁed surface were thermally grooved to a width and

a depth to permit measurement of the dihedral angles. After annealing,
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the specimené were prepared fof SEM investigation; dihedral angle
measurements were performed according to the method of Achutafamayya and
Scott.19 The fechnique consisted of orienting the surface of the speci-
men perpendiéular to the beam of the SEM. A contémination line of carboﬁ
was deposited perpendicular to the grain boundary groove. The specimen
was then tiited 47° around the axis of the contaﬁinafion line and the
profile'of the groove was photographed.

The true dihédral angle, ®, was calculated from.the measured groove

angles el_and_Q2 éccording to Eqs. (77), (78), and (79).

Tan 0 = sin(tilt angle) tan 91 (77)
~ tan a2 = sin(tilt angle) tan 62 a ' _ (78)
o = oy + 0, ' _ B (79)

Since Gl and 92 are measured separately, the true dihedral angle is

obtained even if the grain boundary is not perpendicular to the surface

of the specimen.

B. Results and Discussion

1. Sintering

Density values of sintered specimens which were annealed at the
test temperature of 1510°C for several different times and in different
atmospheres are given in Table II and are plotted iﬁ Fig. 24 asrdensity
versus time. The fastest densification rate was observed in flowing
watei vapoi; a rapid increase in density occurred_&uring the fifst

50 minutes of sintering with little further increase in density with
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Table II. Sintering data for MgO specimens annealed in
' static air, flowing air, and flowing water vapor

at 1510°C o h
Time in Minutes 50 100 700 1440 2880 -
Static Air = | | :
Density (15 specimens) - 1.923 2.551  3.044 3.266
Std. Deviation - 0.031 0.148 0.026 0.049
Density (13 specimens) - 1.921 2.550  3.043  3.270 -
Std. Deviation - 0.024 0.131  0.018 . 0.038
Flowing Air |
Density (15 specimens) - 2.039 3.016 3.280 . -
Std. Deviation - 0.049 - 0.041 0.047 -
Density (13 specimens) - 2.039 3.017 3.280 -

Std. Deviation - 0.042 0.035 0.038 -

Flowing Water

Vapor ‘
. 324 3.330- -

Density (15 specimens) 3.166 3.200 3

Std. Deviation 0.040 0.045 0.023 0.021 -
Density (13 specimens) 3.165 3.200 3.324 3.299 -
Std. Deviation 0.033 0.040 0.019 0.019 -
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continuéd?ﬂéating at temperature. Similar results have been observed
by othersbz-o-z3 for sintering of MgO in water vapor.

Slower sintering rates were observed in flowing éir and static air
atmospheres but if the time at temperature was extended sufficiently, all
sintered speéi@ens approached the same endpoint density. The effect of
flowing gases did not reduce the measured températuré in fhe fﬁrnace
since the greatest densificatién rates wefe observed under flowing con-
ditions. Specimens sintered in water Qapor were at thei; maximum density
(3.3 g/cc) at 700 minutes; in flowing air by about 1440 minutes, and in
static air, at ébout 2880 minutes. This density é;rresponds to about
93% of theoretical; it was considered that non-homogeﬁity was at least
partially résponsible for this endpoint density.

Figures 25; 26, énd 27 are fracture surfaces 6f SPecimené sintered
in flowing'water vapor for 100, 700, and 1440 minufes, respectively. No
significant ‘grain growth occurred &uring the firstv100 minutes of sinter-
ing although ﬁoéf of the densification took place in_this inter§al.
Approximately a five fold increase in grain size §ccﬁfred between 100 and
1440 minutes.v

Fracture surfaces of specimens sintered in static air and flowing
air for 24 Hqurs at 1510°C are shown in Figs. 28 énd'29, respectivély.
Both have similér grain sizes which are about as lafge as the grain size
of specimens sintered in flowing water vapor for 700 minutes, Fig..26.

It should be noted in comparing Figs. 25, 26, and 27 that as the grain
size increases; the pore size also increases because the densities weré
essehtially the same and the pores remained essentially on grain

boundaries. Since the latter two compacts fractured transgranularly,
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XBB 747-45606

Fig. 25. Fracture surface of MgQ sintered at 1510°C for 100 min in flowing
water vapor.
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XBB 747-4567

Fig. 26. Fracture surface of MgO sintered at 1510°C for 700 min in flowing
water vapor.
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Fig. 27. Fracture surface of Mg0O sintered at 1510°C for 1440 min in flowing
water vapor.
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Fig. 28. Fracture surface of MgO sintered at 1510°C for 1440 min in statis air.
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XBB 747-4563

Fig. 29. Fracture surface of MgO sintered at 1510°C for 1440 min in flowing
compressed air.
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pores are also visible on the cleavage planes which indicates that some
of the pores are trapped within the grains and are not associated with
grain boundaries; these pores may in some way be associated with non-
homogeneity in the green compact. It is a well established experimental
fact that as the volume fraction of inclusions or porosity decreases the
mobility of grain boundaries increases.l3_15 Therefore, in comparing
Figs. 26, 27, 28, and 29 it can be assumed that the larger grain size in
Fig. 27 than in Figs. 28 and 29 is due to the faster initial densification
rate of the compacts sintered in flowing water vapor as compared to flow-
ing air or static air. This rapid densification during the first 50
minutes of sintering reduced the volume fraction of porosity which per-
mitted a greater mobility of the grain boundaries and more rapid grain

growth during the rest of the anneal.

2. Dihedral Angles

Table III gives the results for dihedral angle measurements of grain
boundary grooves of hot pressed polycrystalline MgO in atmospheres of
static air, flowing air, flowing water vapor, slowly flowing water vapor,
and flowing water vapor followed by static air. Actual grain boundary
grooves for each atmosphere are shown in Figs. 30-34, respectively, at a
magnification of 20,000X. Static air atmospheres yielded the largest
dihedral angle, 96°, while flowing water vapor resulted in the smallest
value, 32°. Figure 35 shows a low magnification (2000X) of a surface of
a hot pressed specimen of MgO which was annealed in static air. Figure
30 shows a high magnification (20000X) of a grain boundary groove of
this specimen tilted relative to the axis of the contamination line

(dark line) permitting measurement of the dihedral angle. Figure 31
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Table III. Data for dihedral angle measurements of MgO
annealed under five different atmospheric
conditions

Experimental Dihedral Y Iy " AD

Conditions Angle el

Static Air 96° 1.33 0.0°
Flowing Air 56° 1.81 40°
Flowing Water
Vapor 32° 1.92 64°
Slow Flowing Water
Vapor 79° 153 16°
Flowing Water
Vapor Followed by 96° 1.33 0.0°

Static Air
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XRB 747-4558

A grain boundary groove of an Mg0 specimen annealed at 151C °C
for 1440 min in static air. The grain boundary is tilted 47° relative
to the axis of the electron beam of the SEM. The horizontal line is

a contamination line of carbon which reveals the contour of the
groove.
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XBB 749-6236

A grain boundary groove of an MgO specimen annealed at

1510°C for 1440 min in flowing compressed air. The grain
boundary is tilted 47° relative to the axis of the electron
beam of the SEM. The horizontal line is a contamination line
of carbon which reveals the contour ~f the groove.

(20,000%)
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XBB 747-4559

A grain boundary groove of an MgO specimen annealed at 1510°C
for 1440 min in flowing water vapor. The grain boundary groove is
tilted 47° relative to the axis of the electron beam of the SEM.

The horizontal line is a contamination line of carbon which reveals the
contour of the groove.
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XBB 747-4557

A grain boundary groove of an MgO specimen annealed at 1510°C for
1440 min in slowly flowing water vapor. The grain boundary is
tilted 47° relative to the axis of the electron beam of the SEM.
The horizontal line is a contamination line of carbon which
reveals the contour of the groove.
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XBB 747-4556

A grain boundary groove of an MgO specimen annealed at 1510°C
for 700 min in flowing water vapor followed by an additional
700 min in static air. The grain boundary is tilted 47°
relative to the axis of the electron beam of the SEM. The
horizontal line is a comtamination line of carbon which
reveals the contour of the groove.
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Fig. 35. A low magnification of an MgO specimen annealed at 1510°C for
1440 min in static air. A high magnification of this specimen is
shown in Fig. 30.
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shows a grain boundary groove of a specimen which was annealed in flow-
ing air. A low magnification of this surface looks similar to that of
Fig. 35, but upon comparison of Figs. 30 and 31, one sees that the groove

is deeper in the latter and therefore the dihedral angle is smaller

(96° compared to 56°). Figure 36 shows the surface of a specimen annealed

in flowing water vapor with angular precipitates on the surface which
formed during the anneal. Figure 32 shows a grain boundary groove from
this surface which is more irregular than grain boundary grooves of
specimens sintered in other atmospheres, and has a much deeper groove
angle than the other specimens (32°). Due to the precipitation on the
surface of this specimen and the highly irregular grain boundaries,
measurement of the dihedral angle was difficult and the value of 32° is
reported with some uncertainty. However, on comparison of the three
grain boundary grooves in Figs. 30, 31, and 32, it is evident that there
is a definite and continuing decrease in the values of the dihedral
angles.

The static air experiment in the absence of water vapor and flow
would be expected to most closely approach equilibrium conditions, and
exhibits the largest dihedral angle. The equilibrium dihedral angle for
a system at the lowest energy state would be formed when a defect free
planar grain boundary intersecting a surface, such as a bicrystal, is in
equilibrium with its own vapor. Such a system is expected to have a
larger dihedral angle than 96°.

The specimen sintered in flowing air, Fig. 31, which has a dihedral
angle of 56° shows the effect of dynamic conditions on the dihedral angle

which is'96° in static air. Since the groove root of a grain boundary
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Fig. 36. A low magnification of an MgO specimen annealed at 1510°C for 1440 min
in flowing water vapor. A high magnification of this specimen is
shown in Fig. 32.
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intersecting a surface has a positive curvature and a stress concentra-
tion exists in the grain boundary at the root, there exists a higher
vapor pressure above the groove root than above a planar surface. Under
static conditions where the vapor phase is in equilibrium with the solid,
an equilibrium dihedral angle is attained. However, under dynamic con-
ditions, the vapor species above a specimen can be swept away, and in an
attempt to restore the equilibrium vapor pressure for the system material
will vaporize more from the higher energy curved surface at the groove
root. If vaporization is rapid compared to other mass transport mechan-
isms which attempt to restore the equilibrium shape of the dihedral
angle, a nonequilibrium or experimental dihedral angle which is smaller
than the equilibrium angle will result. This decrease has been described
previously as a "corrosion" effect. It is believed that this phenomenon
occurs in flowing air and in flowing water vapor.

The measured dihedral angle for a specimen annealed in slowly flow-
ing water vapor was 79° (Fig. 33). It is not known what effect water
vapor may have on relative interfacial energies, but it has been reported
that negligible water vapor exists on the surface of Mg0 at 1000°C.24n26
In the presence of water vapor, however, a transient molecular adsorption
or chemisorption of water vapor on MgO may occur with a reduction of

Y .27 If the grain boundary energy is essentially unaffected, then the

sV
dihedral angle is reduced over that in static air as observed. A more

likely explanation is that under flowing conditions a molecular layer of
adsorbed hydroxide does not form, but a vapor complex of H20 and MgO can

form which has a higher vapor pressure than MgO gas.22 This condition

would then result in a corrosion effect and a smaller nonequilibrium
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dihedral angle on the basis of a Yov that remains the same as that for
the static air value, as described previously for flowing air. The
larger angle was due to the slower flow rate of the atmosphere containing
H20° |

Figuré 32 shows a groove formation for the flowing water vapor ex-
periment,'éhe.grain boundary groove being deeper of more corroded &ith a
dihedral angle of 32°. The "corrosion" effect ié more severe in this
case because of the higher flow‘rate. This behavior is indicated by the
formation of MgO precipitates on the previously smooth surface, Fig. 36.

Anbther experiment was performed to determine the effect on the
dihedral angle if nonequilibrium conditions were introduced and then
‘essentially removed. Figure 34 shows the graiﬁ boundary groove of a
specimen thét_was annealed for the first 700 minutes in flowing watér
vapor and thén for an additional 700 minutes in sfatic air. The measufed
dihedral angie for this specimen was 96° which is identical to ﬁhe static
air vélue.v Therefore, ;he dihedral angle which is 32° under nonequilib-
rium condifidns,of flowing water vapor, increased fbwards its equilibrium
value of 96° whén static conditions were substitﬁted;' The presence of
flowing gases with or withoﬁt water vapor thu§ causés a smaller non-
equilibrium or dynamic dihedral angle to form in comparison with static
air conditioms. |

e

3. Correlation of Densification with Driving Forces for Sintering

The purpose of the experimental work was to correlate endpoint den=-
sity and relative rates of densification with the thermodynamic driving
force for sintering. At any instance during sintering, if the experi-

mental or dynamicAdihedral angle is less than .the equilibrium value,
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there is a thermodynamic driving force for continued mass transport and
sintering. The further the experimental dihedral angle is from the
equilibrium value, the more negative is the differential free energy in
going from the nonequilibrium to the equilibriumiéo#figuration and the
greater ié'the thermodynamic driving force for denéification,‘A@. Thus,
although the ébsolute values of the dihedral anglés.are not directly
useful for correlation with compact densities, the differences between
the dynamic values and the equilibrium values of,tﬁe'dihedral angles are
a valid measufe of the thermodynamic driving forée fof sintering. The
value of ¢ measured in static air was used as the equilibrium dihedral
angle, Tablé II gives the differences, Ad, between the dihedral angles
in static air and other atmospheres. Figure 37 is a plot density versus
these values of A® at three different times. The-iarger is the vaiue of
Ad, the greater is the density at any constant time. As the time and
densities increase, the curves flatten out and the effect of the dynamic
dihedfal angle on density becomes reduced. It is:féltvthat similar in-
homogeneous density distributions in all of the green compacts were
responsible fofnlarge voids aﬁd some enclosed pores in grains to form_as
sintering proceeded. Therefore, the final densities of about 3.3 g/cc of.
the sintered specimens were determined by such voids as well as by the
relatively low equilibrium ¢ measuréd in static air.

The results of this experimental work show tha;'normal dynamic con- .
ditions modified by atmospheric conditions enhance densification rates
by increasing the difference between the static and dynamic dihedral
angles. The model for the thermodynamics of solid_phase sintering pre-

dicts that the thermodynamic driving force for sintering is greatest ‘the
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Figure 37. Density versus the difference between the static and the dynamic dihedral angle, A®, for

sintering of MgO at 1510°C in three different atmospheres. A® is the thermodynamic driving
force for densification.
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further the value of the dyﬁamic dihedral angle is from the equilibrium
value assuminé that it is retained during the initial stage of sintering.
It is felt that a large value of A9 was maintained during tﬁe first 100
minutes of sintering in flowing water vapor'during which time most of
the densification occurred. The results of the exﬁerimental work per;
formed here‘iﬁdicate that the dependence of the vaiue of AP on atmo-
spheric conditions can be quite large, (64° for flowing water vapor).
The growth of gréins and pores with eséentially ﬁq increase in density
during the sintering of compacts in H20 vapor beyond 100 minutes of sin-
tering suggests that Qdyn increased.as closed porésity developed and the
_corros?on gffect of a flowing ambient atmosphere;was eliminated. ®dyn
thus épproached Qeq (probably due to neck formation'in closed pores),
and therefore, the thermodynamic driving force fof_dehsification wés
reduced.

For MgO compacts used in this study, the maximum measured value of
® was 96°. Although the particle packing was inhomogeneous, the total
or average greén density approached that of simple cubic packing which

has a value of @c of 90° when second nearest neighbors toucﬁ and of

rit
109° for complete densification. Therefore, no thefmodynamic barrier
exists for dénéification to the point where second nearest neighbors
touch, but there may be one for complete densification resulting in an
endpoint density. The 93% theoretical density realized in this study
could be partially due to this factor and to the inhomogeneity of the
compacts. |

The slow densification rate for the sintering experiments in static

air suggests that "necks" formed at particle-particle contacts resulting
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in equilibrium dihedral angles. The driving forcé_then is due to a re-
duction df ¢ occurring because of mass transport“due to reverse curvatures
in the surfacés of the particles attempting to reach_a minimum energy
configuration.. Under these conditions, A9 remains small. In flowing

air the corrosion effe;t tends to increase AQ, abovg the value for static

air, and thus, the sintering rates.
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IV. SUMMARY AND CONCLUSIONS

A. Theoretical Consideratioﬁs

The thermpdynamic analysis of solid state sintering indicates that a
decrease in thé Yss/st ratio and an ingrease in the density of the ﬁn-
fired compact favor densification. When second ﬁéarest neighbor spheres
form contacts, or a crystallograéhic face in the unit cell has densified,.
however, nonuniform redistribution of material must occur in order to
achieve complete densification for DC, SC, and FCC models. BCC packing
arrays sinfeffunifOrmly to theoretical density. -The effect of nonuniform
sintering is to reduce the critical value for Yééyysv' In order to
,achievevcéumle;e densification, the critical rati§ ﬁﬁstvbe less than
1.625 for BCC packing of uniform spherical partiélés, 1.161 for SC and
FCC, and 1,Q74ifor DC: correspondingly, the dihedral angle has to be
greater than 71.5°, 109;, and 115°, respectively. Thérefore, any addi-
tives that would tend to reduce Yss relative to Yév wou1d enhance sinter-.
ipg, or make sintering possible if the Yss/st ratio for a given maferial
is above the ¢ritical value.

Additiohally, the thermodynamic driving-force'fbr sintering, A®, is

given by
Ao =0 -0 - (80)

where Qeq is the equilibrium dihedral angle and ¢ is the experimental

“dyn
or dynamic dihedral angle. Qdyn is determined by three parameters:
corrosion, chemical effects, and geometry; and is matﬁematically always

less than or équal to & .
. eq
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During the initial stages of sintering, Qd&n can be affected by all
three pafamefers but upon formation of closed porosity in a sintering
specimen, the corrosion effect is generally eliminated and only chemical
effects aqd.geometry contribute to Qdyn' fherefére,-@dyn will increase
and approachl@eq as pore closure occurs, thus reducing the magnitude of
A®. Since A®‘is a measure of the thermodynamic.driﬁing force for sinter-~
ing, as A® is reduced, so is the sintering rate.

A pore on a planar grain boundary effectively.pins the boundary for
all values of the Yss/st ratio and thus the dihedral angle. A curved
grain boundary, however, can move away from a bore if the curvature is
above the critical value. As the dihedral anglelihcreases above about
73°, although the magnitude of the driving force &ecreases, movement in
all cases will occur toward the center of curvaturé at curvatures above
about 36°; as the dihedral angle decreases from 73° to about 16°, the
critical curvature value decreases to about 26°._'Grain boundaries with
lesser curvature tend to be pinned by pores. Additives &hich reduce the
Yss/st ratio beyond that necessary for dense siﬁtering, therefore, have
essentially no effect on the pinning of a graiﬁ bodndary by é pofe.

It thus is:evident that the most critical factor in the pinning of
grain boundaries by pores is the degree of curvature qf the bpundaries
and not the,mégniﬁude of the dihedral angle. Factors that lead to cur;
vature should be controlled. A uniform packing ofvSpheres of a given
 size should densify to a microstructure with unifofm.grain size with
planar grain boundaries. Compacts with a range of ﬁérticle sizes, how~
ever, will tend to form curved grain boundaries. If this curvature is

above about 36°, the boundaries will be able to move away from pores.
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Narrow ﬁafﬁicle size ranges will tend to form réiatively longer grain
boundaries which will tend to flatten and thus develop smaller curva-
tures.

Another factor that has not been discussed or analyzed is the effect
of anisotrop& of interfacial energies. Irregular ﬁqvement of grain
boundaries.and’different angles at three grain junéfions due to aniso-

" tropy could lead to boundary curvatures that would allow them to break
away from pores. Additives in this case could be ﬁeﬁeficiél if their
effect would be to reduce any existing anisotropy.

All of the discussions have been based on a‘uniform and homogeneous
distribution'of particles. Poor processing that would introduce varying
packing densities or introduce agglomerates of h;ghéf or lower density
than the ﬁatrix would result in a range of grain siéés in the early
stages of éintering as well as introduce other féctors that would inter-
fere with realizing theoretical density in the eﬁti;e-compact. An addi-
tive in this case could have a beneficial effect if ;t played sdmé role
in reducing agglomeration or increasing uniformit§ of particle-distribu—
tion during fhe preparation of the compacts.

B. Experimental Considerations

Sintering studies of Mg0 compacts annealed iﬁlfhree different
. atmospheres at 1510°C reveal that the fastest sintering rate occurs in
flowing water vapor. The slowest sintering rate is observed in static
air and an intermediate rate is observed in flowing air. All specimens
yield appro#imately the same endpoint density of 93% of theoretic;l

although they attain this density at different sintering rates.
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Corresponding dihedral angle meésurements ihdicafe that the smallest
value (32°) occurs in flowing water vapor; the lafgest value is observed
in static aif (96°); and an intermediate value (56°) is observed in flow-
ing air. Taking the static air value as'éeq, A@‘wés.calculated for each
case. ReéultsAindicate that the larger is the magnifude of Ad the
greater is the densification rate, a conclusion,‘which is in agreement
with theoreti;al considerations. It is believed thét in flowing water
vapor atmosﬁheres corfosive effects lead to a smali dynamic dihedral
angle (A =‘64°) with essentially no neck formation between particles.

In static air,,(AQ = 0), no corrosive effects occur; a bridging neck
probably‘fofms between particles and the sintering rates are reduced.

It is not known whether the 93° of theoreticél'density which was
attained is avtrue endpoint density or is due to inhomogeneities inherent
in the cold pressed compacts. The'thermodynamiC'modél for simple cubic
packing arrays predicts that sintering should prqcéed:uniformly to the
point where -second nearest neighbors touch (¢ = 90°). Since the statie

air value of ¢ (96°) is greater than ¢ (90°), sintering should

critical

proceed up té this point. The critical value of ¢ for complete densifi-
cation is 109°; Thereforé; if 96° is the true eqﬁilibrium'dihedral'angle
for MgO at the temperature of experimentation, thén fhe endpoint den-
sities observed here are not due to inhomogeneitiéé but rather are

characteristic endpoints for simple cubic packing of MgO particles.
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PART B: ;THERMDDYNAMICS AND KINETICS OF LIQU;D'PHASE SINTERING
| I. INTRODUCTION

Many of the sintering characterisﬁics of a multiphase system are
similar to those of a single phase system; however,zformatibn of’inper—
mediatg phasés or solid solutions complicates kinefic and thermodynamic
analyses. Génerally, two phases havé diésimilar'melfing points and show
a eutectic reacfion. "If sintering of a mﬁltiphése cbmpact occurs below
the temperature at which a liquid phage appears,&éoiid phase sintering
mechanismé are operative. However, if the sintefing temperature is
raised above this point, sintering proceeds by 1i§uid phase sintering
mechanisms.28—3§ Intermediate cases can result ét-ghe sintering tempera-
ture such as: . solid phases reacting to form a liqﬁid, solid and liquid
phases reacting to form an intermediate solid phése;"énd solid solution
formation,ffom so0lid and liquid phases. |

Experiméntal investigation of liquid phase sintering has led té a
generél claSsification of sintering kinetics into three separate stagés;
viscbus flow,’fearrangement of solution—preéipitatiqn, and c0alescén2g333
A sintering compact may undergo one, two, or all th:ée'stages_depending
on the physicalland environmental parameters of the system. Each of these
stages wili be discussed below in terms of idealiZed»ﬁbdels based on |
thermodynamié and kinetic considerations. |

A. Rearrangement

The formation of a liquid at sintering temperature in a two or more
phase powder compact, causes the creation of liquid-vapor interfaces.
These interfaces, which are usually curved in shape, give rise to capil-

lary forces within the powder compact. If the liquid.wets the solid,
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i.e., the contact angle is less than 90°, the resulting forces in turn
in the initial stages of. sintering can cause relative motion of solid
particles and corresponding flow of liquid. The_fgarrangement continues
until the compact attains a configuration correspbndihg to a minimum
packing volume. The interfacial free energy decrease caused by this
process has been equated to the energy of viscous'flow by Frenkel.28

For pure viscous flow, e.g., glass spheres,

AL/L, o £ (3/2) 1)

where AL/L0 is the densification parameter, and t is the time. ~Whén this
equation is applied to liquid phase sintering of multiphase powder com-

pacts, experimental results indicate that

AL/L0 a t(l+y) = (2)

where (l1+y) is greater than unity.33
‘The exponent (l+y) varies frqm compact to compact depending on the

environmental.énd physical parameters of the system. Flow rates tend to
increase as ﬁére size decreases, whilefparticle—pafticle interactions
cause frictional effects whiéh in turn reduce floﬁ‘rates. The volume
fraction of liduid phase, wetting angle, dihedral angle and particle
shape determine the configuration of the solid and liquid in the compact,

the capillary forces acting on the system, and in turn the exponent of

time in Eq. (2).
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If safficient'liquid is present, viscous flow alone can cause com-
plete denéification or zero porosity of a particulate system. With
normal coﬁpact green densities, between 35 and 40% by volume of 1liquid
.phase, (voluﬁe of liquid divided by the volume of solid plus liquid), is
required to atﬁain theoretical density.33 If lesé iiquid is present,
flow continues until a configuration of minimum liquid-vapor interfacial
area and a corfesponding minimum of free energy is-éChieved. |

The dihedral angle formed between the solid and liquid phase is #ery
iﬁportant in détermining the extent of viscous flowiin powder compacts.
The solid—sdlid interfacial energy and the solid—liqﬁid interfacial energy

are related through the dihedral angle equation31
Yeg/Ygs = 2 cos ¢/2 ) | (3)

where.yss is the solid-solid interfacial energy, Ysé is the solid-liquid
. interfacial énergy, and ¢ is the dihedral angle measured in the liquid.
SystémS'wiﬁh Qero dihedral angles have complete pehetration of the solid
by the liquid, and thus no solid-solid contacts.31 On the other hand, in
systems forming finite equilibriuﬁ dihedral angles, the liquid does not
separate of flow between solid-solid contacts.

Therefofe, viscous flow is enhanced by a zero dihedral angle, and
retarded by a finite dihedral angle. Combacts that contain small amounts
of 1liquid phase which form finite dihedral angles ahd whose phases havé a
small differenée.in melting points, can sinter sufficiently to form rigid
solid skeletons before the liquid appears. Under suéh conditions the'

liquid will not cause any particle flow but rather-will-fbrm bridges
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around ;he:contacts bétween particles.

As a reSult, two extreme cases are possiblé:  one is viscous flow
leading to complete densification (zero dihedral angle and large liquid
volumes), and the other is the creation of a solid ékeleton before the
1iquidlforms resulting in no viscous flow at all (nonzero dihedral angle,
similar melting points, and small volumes of liquid phase). ‘The re-
arrangement or viscous flow stage thus does nbt ﬁecessarily lead to sig-

nificant shrinkages.

B. Solution-Precipitation.

When the rearrangément stage is completed and»fesidual porosity
remains, densification must proceed by another mgchanism. Therefore, a
different model is necessary. The earliest investigations proposed a
mechanism based on solubility differences between small and large par-

37 This theory was

ticles in liquids, called the heavy alloy theory,
based on the concept that particles of smali radii were dissolving in
the liquid and larger particles were growing at their expense. The

basis for this argument is that a highef solubility exists over a sur-

face with a small radius of curvature than over one with a large radius

of curvature.?’&'41 In order for the mechanism to be operative, the

"formulators of the heavy alloy theory stipulated that: (1) there must

be an appreciable difference in melting point between the ﬁigh and low
melting phases,.(Z) the high melting phase should 5e soluble in the low
melting phase, and (3) the low melting phase shquld be insoluble or only
slightly soluble in the high melting phase. The theory makes no stipu-
lations concerning the magnitude of dihedral angles or the volumevfrac—

tion of liquid phase. However, it is apparent that for the mechanism to
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. be operative, sufficient liquid must be present to form a continuous
liquid film in the compact 1n order to allow a diffusion path.for
material. Additionally, the dihedral angle must Betequal to zero, since
if the dihedral angle were finite, solid-solid coﬁtacts and a framework
would form. These contacts would restrict the shape of the curvature of
the solid-liquid interface. Small particles wouid"lose mater151 from
their surfaCés and large particles would gain material, but particle éen—
ters would:nét move together. Therefore, no deﬁsification could-occur.
This process 1is analogous to vaporization—condeﬁdsation and surface
diffusion iﬁ éolid-vapor systems. However, if the dihedral angle is
zero, partiéles can completely dissolve and the fedistribution'of
material may occur.

33 on thevbasis

The heavy alloy theory was criticized by Kiﬂgety
that large volumes of liquid were necessary .for the above mechanism to
be feasible, yet experimental results indicated that densification was
often achieved with extremely small amounts of liquid phase. He pro-
pdsed.an éltgrnate mechanism based on the fact that_if the partial molar .
volume of a solid dissolving in a liquid is positive, then the solubility
of that component is increased by pressure. He afgued that compressive
stresses were created between particles by capillary forces arising from
liquid bridges connecting the particles. Therefére, a higher solubility
of‘the éolid would exist invthe region between the‘particles where
capillary forces cause compressive stresses than at:suffaces away from
the stressed region. Thus, material would dissolve between the par-

ticles, diffuse through the liquid under a concentration gradient, and

precipitate at surfaces of lower solubility. Particle centers would
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move together and densification would occur.

In order for this mechénism to be operative, there must be some
solubility of the solid in the liquid, and a film Qf liquid between the
particles, i.e., a zero dihedral anglé. No stiﬁuiation was madé by
Kingery éoncerning the volume of liquid necessary, although it is evidént
that the mechanism may proceed at low or high liquid contents providng
that some ﬁordsity is present. Kingery derived a kinetic relationship

for spherical particles
AL/Lg = (-4/3) /3 (4)

where AL/Ld is’the densification parameter, K is a constant for the
particular system, R is the initial particle radius, and tmis the time.
No directly comparable kinetic equations are avéilabie:for models
based on the heavy alloy theory, although Greenwoéd29 did investigate
the growth'éf coarse particles and the dissolution of fine particlés in-
solvent liquids. He derived the following equation for the growth of

large particles,

6DM Ysz t

NKTR2

3 3

a; - aj (5)

where ag is the final particle size, a, is the original particle size,
D is the diffusivity in the liquid, M is the molecular weight, Ysi is
the solid-liquid interfacial energy, Nk is the gas'constant, R is the

radius of curvature of the particle, and t is the time.
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Neglecting the initial particle size, the gro&th rate is propor-
tional to.ﬁhé-l/Brd power of time. The above eqﬁétion is not specifically
valid for liquid phase sintering since it assumes thét the particles are
widely disperséd in the liquid, under which conditions no porosity could
exist.v The'tipe dependency, however, is identical to that derived by
Kinggry.33

C. Coalescence

Kingery'reéognized that a liquid film is now:always preseﬁt between
solid particles, i.e., a finite solid-liquid dihédral angle ‘forms. He
argued that Afientation effects can cause certaiq grains to form solid-
solid contacts,33 Therefore, these grains could‘not sinter by solution-
precipitatioﬁ. In a sintering compact such grains would sinter by solid
state diffﬁsion.mechanismé, obeying solid phase siﬁtefing kinetics.32’42_47
He called this stage of 1iquid phase sintering céélesqence and implied
that it would follow the solution-precipitation sfége, i;e., that in a
sintering compact, the dihedral angle would inqrease‘from zero to a
finite value with time. |

Considef a solid-liquid-vapor system which fofms.a ﬁonzero dihedral
angle which is'independent of time. The liquid é#isté as bridges betweenf
the solid particles, and the vapor phase is above"fhe>iiquid phasé; A
situation analogous to vaporization-condensation occurs except that
material transport is through the liquid phase instéad of thrbugh the
vapof. Material is deposited in the neck region forﬁing a curved'inter;
face as in solid phase sintering. Sintering then proceeds by vacancy
diffusion mechanisms ih the solid phase as discussed in Part A. However, -

the presence of a liquid phase provides additional interfaces, i.e., the
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liquid-vapor and solid-liquid interfaces. For soii&—vapor systems, the
curvature of the solid-vapor interface creates tensile stresses in the
neck region as was shown by Nabarro.3 The preSepce of solid-liquid and
liquid—yapor interfeces also creates tensile_streeses in the neck, due
to capillary_pressure. These stresses enhance tﬁe:vacancy concentration
in the neck region relative to the vacency concentration created by a
solid-vapor interface only. As will be shcwnm leter, the vacancy concen-
tration gradient is greater than in the solid—vape: case, and therefore
results in somewhat different sintering kinetics;

As discussed earlier for the sintering of solid-vapor systems,

F: knowledge of thermodynamic as well as kinetic factors.are of fundamental

importance in understanding the entire sintering:process. Therefore, in
the next section, a thermodynamic analysis of sintering of a solid-liquid-
Qapor systeﬁ will be presented based on an idealiéed geometric model.

This section will be followed by a section on kineiics in which solutions
to kinetic equations will be formulated for solidfliquid systems based on

models which are different from those now appearing'in'the literature.
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- II. THERMODYNAMICS OF ﬁENSIFICATiON-IN THE
PRESENCE OF A LIQUID PHASE

As discuésed in Part A, tﬁe basic driving forQe’fdr sintering a
powder compact is the reduction in free energy fof ﬁhé system resulting
from the decrease in interfacial area. As long as the differeptial free
energy. G isjﬁégative, densificatiop is,thermodynémically favored. if
8G becomes'zerq or positive, densification ceases.;hd endpoint densities
result. It ié_of interest to determine the criticél interfacial energy
ratios which yield endpoint densities for ideal systems un&ergoing siﬁ—
tering in ;hé pfesence of a liquid phase. The dri?ing force for the
initial stagevbf liquid phase sintering, rearrangément, is the reduction
. in liquid-vapor interfacial area. &G isvthereforé'ﬁégative until a.steady
state configurgtion is reached. No further decreéée in the free energy.
or increase in density of the compact can then result without mass trans- _
fer of the solid phase. The following arguments assume that rearrange-
ment has téken’place and a steady state configurafién haé been attaineaa

The model assumes 8 uniform sized cryStalline‘sfherical partiéles
with an isotrqpic surface energy in a simpie cubic array with a wetfiﬁg
liquid thatvfofms toroidal bridges between the spheres. It is further
assumed thét £he solid is solublein the liquid and ﬁhe-liquid is in-
soluble in the solid. The volume of a unit cell‘fbrmed'by such a con-
figuration ié SRS where R, is the initial radius of the partiéles. Each
cell contains an equivalent of one sphefi¢al partitlé occupying a volume'
of 4.16Rg. The remaining volume in such a cell is 3;84R3

0

total, which can be occupied by liquid and/or vapor. If less than 16%

or 487 of the

of the initial.volume of the cell (i.e., 16% of BRS) is occupied by
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liquid, reéidual solid-vapor area remains with .the shape of the liquid—
vapor inﬁe;face being toroidal. 1In éompacts'containing between 16 and
27.6% 1liquid, the spheres are completely coated (i.e., no solid-vapor
area remains) and the shape of the liéuid—vapdr iﬁterface changes ffom
toroidal to spherical. Above 27.6% liquid, spheriéal.porosity begins to
form at the center of fhe cell. Sintering for zéro dihedral angles,
proceeds by solution-precipitation with material beingrremoved from
éphericalscaps at particle contacts and deposited at particle surfaées
away from the éontact points in an identical mannér és for the model for
solid phase sintering (Part A). Particle centers then move together with
sﬁrinkage of Fhe cell and reduction of the pore space, as shown in Fig. 1.
| For nonzero dihedral angles, sidtering proceeds byvsélid state diffusion
mechanisms discussed in Part A, with the rémovalyénd‘deposition of cap
material and ;hrinkage being identical to the zero.&ihedral angle cése.

A. Zero Dihedral Angle

1. Acute Contact Angle

When-thevréarrangement stage is completed fof the model system with
less than 16 vol’Z of liquid, the compact is characterized by solid-vapor,
solid-1liquid, and liquid-vapor interfaces. As>sintefing proceeds due to.
the reduction in interfacial energy, the differential éf free energy, 6G,
at constant T, P, and n;, may be expressed as .

§6. = 6Asv Yoy T GASQ Yeg t 6A2v You ‘ (6)

where yé and 6A; are respectively the interfacial_eﬁérgy and differential
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- (100) o (110)

~--- ORIGINAL CELL DIMENSIONS
——— CELL DIMENSIONS AFTER SOME DENSIFICATION
-XBL73|0-|964

Figure 1. (Top) Two sphere model for liquid phase 51nter1ng with wettlng

liquid bridge between the spheres.
(Bottom) Densification model for 51mple cubic packlng of

spheres which forms after the rearrangement stage is completed.
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areas. From Young's equation,
st N Ysk + Ylv FOS 6 : M
where 6 is the contact angle. Substituting (7) into (6)
0G = ((SASV + 6Asﬂ) Yeu, + (GA2V + 6Asv 9os-8) Yoy “(8)

As the compact sinters, GAsk increases whileiGAgv decreaées. The
former-;erm provides a positive contribution to the_free energy of fhe
system while.the iatter provides a negative contribution. dsz increases
as long as tﬁe liquid forms a contact angle with‘thé solid surface. How-
ever, when the solid surface is completely covered wiﬁh liquid, i.e.,
GASV becomes iero, Gsz begins to decrease. The liqﬁid becomes continu-
ous in the (lOO) plane of the simple cubic cell before the solid-vapor
interface is eliminated completely iﬁ the (110) plane. Thus, in th¢
(100) plane, the liquid provides a negative contribution to the freé
energy of the system while in the (110) plane it‘brovides a positive
‘term. This implies that although 6A2v is positiyé ﬁntil all the soiid—
vapor interfacial aréa is destroyed, it increases:invmagnitude at a
decreasing fatg as the compact sinters. |

When the‘gompact has sintered to the point where the liquid com-
pletely coats the solid surface,

6G = GASQ Yeu + 6A2v sz : '.(9)-
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