
UC Berkeley
UC Berkeley Previously Published Works

Title
Physical bioenergetics: Energy fluxes, budgets, and constraints in cells

Permalink
https://escholarship.org/uc/item/2kw16780

Journal
Proceedings of the National Academy of Sciences of the United States of America, 
118(26)

ISSN
0027-8424

Authors
Yang, Xingbo
Heinemann, Matthias
Howard, Jonathon
et al.

Publication Date
2021-06-29

DOI
10.1073/pnas.2026786118
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2kw16780
https://escholarship.org/uc/item/2kw16780#author
https://escholarship.org
http://www.cdlib.org/


PERSPECTIVE

Physical bioenergetics: Energy fluxes, budgets, and
constraints in cells
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Cells are the basic units of all living matter which harness the flow of energy to drive the processes of life.
While the biochemical networks involved in energy transduction are well-characterized, the energetic
costs and constraints for specific cellular processes remain largely unknown. In particular, what are the
energy budgets of cells? What are the constraints and limits energy flows impose on cellular processes? Do
cells operate near these limits, and if so how do energetic constraints impact cellular functions? Physics has
provided many tools to study nonequilibrium systems and to define physical limits, but applying these tools
to cell biology remains a challenge. Physical bioenergetics, which resides at the interface of nonequilibrium
physics, energy metabolism, and cell biology, seeks to understand how much energy cells are using, how
they partition this energy between different cellular processes, and the associated energetic constraints.
Here we review recent advances and discuss open questions and challenges in physical bioenergetics.

physical bioenergetics | energy fluxes | energetic costs | energetic constraints

Cells function out of thermodynamic equilibrium: They
use metabolic pathways to transform matter and en-
ergy into the building blocks of cellular components
and consume Gibbs energy to power cellular pro-
cesses. Despite detailed knowledge about the bio-
chemistry and cell biology of biosynthesis and energy
metabolism (1–3), much less is known about the ener-
getic costs and constraints of cellular processes.

The flow of energy through cells arises from the
conversion ofGibbs energyderived from the environment.

Rates of energy flows are characterized by energy
fluxes, which can be used to quantify energetic costs.
These energy fluxes can also impose constraints on
cellular processes ranging from growth (4) to activities
of molecular motors (5–7) to cellular information pro-
cessing (8–10). Physical bioenergetics sits at the interface
between nonequilibrium physics, energy metabolism,
and cell biology. It seeks to understand how much en-
ergy cells are using, how they partition this energy into
different cellular processes, and the associated energetic
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constraints (Fig. 1). In contrast to traditional bioenergetic research
(11), physical bioenergetics studies energetic costs and constraints
in cells by leveraging tools from nonequilibrium physics. Applying
these tools to cell biology is associated with many challenges. En-
ergy fluxes, such as the flux of adenosine 5′-triphosphate (ATP),
couple many cellular processes, making it difficult to account for
all the biochemical reactions involved in ATP production and con-
sumption. While this difficulty could potentially be addressed with a
coarse-grained model of ATP turnover, it is unclear how to perform
coarse graining of complex biochemical networks in a systematic
way. Active-matter physics has provided insights into the emergent
dynamics of cellular structures, but energy fluxes that power these
dynamics are rarely considered explicitly (12–16). Stochastic ther-
modynamics has provided lower bounds on entropy production
and energy dissipation of cellular processes, but it is unknown
how close to these limits cells operate (17–21). Thus, physical bio-
energetics presents a challenge to extend theories and approaches
developed in nonequilibrium physics to cell biology.

In this paper, we will review and discuss three important open
questions in physical bioenergetics and demonstrate the recent
progress and emerging challenges. First, what are the energy
fluxes in cells, and how can they be measured? Second, what are
the energetic costs of key cellular processes? Finally, to what
extent do energy fluxes constrain cellular processes? We will
address these questions with illustrative examples and highlight
how the addition of physics and physical approaches could help
answer these questions (Fig. 1).

Open Question: What Are the Energy Fluxes in Cells?
One of the defining features of life is the exchange of energy with
the environment, characterized by a net flow of energy. In cells,
these energy flows arise from the conversion of Gibbs energy
derived from the environment. This energy is transformed into an
intermediate form (e.g., ATP) before being converted to biomass,

heat, or wastes (Fig. 2). The energetic costs of cellular processes
can be quantified by the rates of energy flows, or energy fluxes,
through these processes (22). Energy fluxes can also impose
constraints on cellular processes, for example by limiting the
growth rate of the cell (4) or inducing speed–accuracy trade-offs
on cellular information processing (8–10). To reveal energetic
costs and constraints in cells, it is crucial to measure energy fluxes
and their variations. In this section, we will review techniques to
measure energy fluxes both at the global level and through spe-
cific metabolic pathways and will discuss the strengths, limitations,
and associated challenges of these techniques.

The global energy flux can be quantified by measuring net
fluxes through the cell, e.g. through measurements of the rate of
oxygen consumption or heat production. Intracellular energy fluxes
through specific pathways, including those that produce and con-
sume ATP, can be quantified by measuring the fluxes of metabo-
lites. Energy fluxes can be dynamic, e.g. for cells progressing
through the cell cycle (23, 24) or during development (25–29), or
constant, e.g. for cells at steady state such as oocytes arrested at
meiosis II (30). Spatial effects, such as the diffusion and transport of
metabolites or energy-producing organelles, also shape energy
fluxes through the cell (31–34). Because the dynamics of energy
fluxes are sensitive to changes in cellular energy usage, they pro-
vide an important readout of the energy expenditures of the cell
(23, 24, 27, 29).

Decades of research have provided a remarkable body of
detailed information about the metabolic pathways which convert
energy from the environment to forms usable for cellular pro-
cesses (1, 2). Although the enzymology of these pathways has
been well characterized, it is often unclear how much energy cells
use and how this energy is partitioned into different cellular pro-
cesses. One component of the global energy flux is the heat flux.
A significant number of studies have measured the heat flux
through cells, namely the rate at which cells dissipate energy in
the form of heat generated through all cellular activities. Heat
generation, which can be expressed in units of power in watts or
joules per second, contains contributions from all of the bio-
chemical reactions happening in the cell. This global heat flux
represents the enthalpic part of the global energy flux and can be
measured using calorimetry (23, 24, 27, 35–40). For aerobic or-
ganisms, another component of the global energy flux is the

Fig. 1. Physical bioenergetics resides at the interface of cell biology,
energy metabolism, and nonequilibrium physics and seeks to reveal
the energetic costs and constraints in cells. It combines insights from
each field to understand how much energy cells use, how they
partition this energy into different cellular processes, and the
associated energetic constraints.

Fig. 2. Schematic of typical cellular chemical and energy fluxes.
Energy fluxes represent the conversion rate of Gibbs energy derived
from the environment, e.g. from nutrients, through cellular activities
to waste products, biomass, or heat. Gray arrows represent the
global energy flux through the cell. The enthalpic part of the global
energy flux can be measured as the heat production rate of the cell.
For aerobic organisms, measurements of the OCR can be related to
the rate of heat production through Thornton’s rule (46). Intracellular
energy fluxes are represented by the fluxes through specific
metabolic pathways, such as those that produce and consume ATP.
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oxygen consumption rate (OCR), measured using respirometry
(41–43). OCRmeasurements can be interpreted as the global heat
flux under conditions where all energy is derived through respi-
ration, and when nonrespiration-related oxygen consumption is
negligible (44, 45). Because the net chemical reaction for respi-
ration is equivalent to combustion, when the above conditions are
met the OCR is proportional to the amount of heat released,
known as Thornton’s rule (46). For this reason, OCR measure-
ments are sometimes referred to as indirect calorimetry.

A limitation of both calorimetry and OCR is that they are both
global measurements with contributions from many metabolic
pathways, making it challenging to measure the energy flux
through a particular cellular process. These global measurements
provide only an indirect readout of intracellular energy fluxes. To
understand intracellular energy fluxes, it is crucial to measure the
metabolic fluxes through specific pathways. Biochemical tech-
niques such as radioactive isotope 14C labeling have been applied
to measure such fluxes, for example the carbon flux during pho-
tosynthesis (47). 13C metabolic flux analysis using mass spec-
trometry is the predominant technique used to measure intracellular
fluxes (48). However, these techniques involve destructive sampling,
limiting live-cell measurements. It therefore remains a challenge to
measure intracellular fluxes in living cells.

Additionally, almost all measurements of metabolic fluxes are
done on populations of cells, providing a measure of the average
metabolic fluxes, obscuring the inherent variations at the indi-
vidual cell level. Microscopy-based single-cell measurements
have led to insights into the mechanisms of stochastic cellular
growth (49, 50) and revealed oscillatory metabolic dynamics (51),
demonstrating the importance of single-cell measurements in
revealing metabolic heterogeneity hidden on a population level.

Spatial effects may also play a role in shaping intracellular en-
ergy fluxes. In developing embryos, gradients of glycolytic activity
have been linked to cell differentiation (52, 53). Mitochondria, key
energy-generating organelles, have been observed to be associ-
ated with the cytoskeleton (31) and endoplasmic reticulum (32) and
display intracellular heterogeneities inmembrane potential (54) and
mitochondrial DNA sequence (55), implying the potential existence
of complex intracellular patterning of energy flows. Glycolytic en-
zymes also associate with the actin cytoskeleton, allowing cells to
couple glycolytic flux with changes in the mechanical environment
of the cell (56). While the subcellular distributions of metabolite
concentrations including ATP (57), reduced nicotinamide adenine
dinucleotide (NADH) (58), and glucose (59) have been character-
izedwith fluorescencemicroscopy (57–64), it remains a challenge to
measure the fluxes of these metabolites with subcellular resolution.
Consequently, the spatial patterning of energy fluxes in cells is
largely unknown. Mammalian oocytes provide model systems
where subcellular spatial patterning of energy fluxes may be pre-
sent (30, 33, 34). Due to their relatively large sizes, a substantial
intracellular gradient of adenosine 5′-diphosphate (ADP) could
develop due to localized ATP consumption, for example by the
spindle (Fig. 3A). Mitochondria have been observed to surround
the meiotic spindle, suggesting ATP production could be spatially
distributed (33, 34). ATP (57) and ATP:ADP (60) biosensors provide
powerful tools that can be used to measure the spatial gradients of
these metabolites. The relative rates of localized ATP production
and consumption could be inferred by combining such measure-
ments with theoretical reaction–diffusion modeling of ATP and
ADP. Such an approach could also potentially be used to estimate
how much energy the localized process is using.

Developing new techniques capable of measuring metabolic
fluxes of specific pathways with single-cell or even subcellular
resolution would help reveal the dynamics of energy fluxes in
cells. Substantial recent progress has been made in this direction.
An assay based on the coarsening of emulsion droplets has been
developed to monitor the glucose uptake rate of single yeast cells
(65). Raman spectroscopy is a potential candidate that can allow
for spatiotemporal inhomogeneities in nutrient uptake rate to be
measured with single-cell resolution (66). This can be done, for
example, using glucose analogs displaying spectral peaks in the
silent region of the cell (67). Empirical or model-based inference
approaches are potential methods to obtain metabolic fluxes with
subcellular resolution from fluorescence imaging of metabolite
concentrations (30, 64, 68). A model based on NADH redox re-
actions has been used to infer mitochondrial metabolic fluxes
from fluorescence lifetime imaging of NADH with subcellular
resolution (30).

Taken together, while powerful techniques have been devel-
oped to measure energy fluxes, limitations exist for measuring the
dynamic changes and spatial heterogeneity of energy fluxes. As a
result, the spatiotemporal dynamics of energy fluxes, both be-
tween and within cells, remain largely unknown. To bridge this
gap, techniques to measure energy fluxes with high spatiotem-
poral resolution are needed.

Open Question: What Are the Energetic Costs of Key
Cellular Processes?
A myriad of cellular processes require energy, frequently in the
form of ATP. While we have a reasonably good understanding of
how cells generate energy through central metabolism (1, 2), the
energetic costs of specific cellular processes are less known
(69–71). Specific cellular processes carry associated energetic
costs. These costs can be quantified by the rate of Gibbs energy
change. One useful way to quantify Gibbs energy change is to
count the ATP equivalents, i.e., the Gibbs energy change per ATP
hydrolysis, consumed per unit time by the cellular process. Al-
ternatively, since the energy fluxes through all cellular processes
sum up to the global energy flux of the cell, energic cost of a
specific cellular process can be quantified by the fraction of the
global energy flux associated with that process. Cellular energetic
costs include biosynthesis (72), signaling (23, 24, 73, 74), main-
taining chemical gradients (75), error correction (8, 9), motility (75),
gene regulation (76, 77), and building of cellular structures, such
as the cytoskeleton (22). Fig. 3 provides three examples of cellular
processes that contribute to the energy budget of cells: spindle
self-organization and chromosome segregation in a mammalian
oocyte, protein synthesis in growing cells, and sensory adaptation
in chemotactic Escherichia coli. An open challenge is to measure
the energetic costs of such cellular processes. An accounting of
cellular energy tells us not only about the known processes but
also about the processes that we could be overlooking. For ex-
ample, the KaiABC system serves as a cyanobacteria circadian os-
cillator, which keeps time through a sequence of phosphorylation
reactions on hexameric KaiC. While each phosphorylation–
dephosphorylation cycle is known to take 2 ATP per monomer, the
experimentally measured ATP consumption rate is significantly
higher at 16 ATP per monomer. A recent theoretical study suggests
that this excess energy is not simply wasted—it may be responsible
for synchronizing the state between KaiABC complexes, allowing
for a global synchronization between the clocks (78).

The energetic costs of cellular processes can be estimated
through counting of ATP equivalents consumed per unit time by
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each of the intermediate steps associated with the process. This
approach has been used for estimating building costs by analyz-
ing biosynthetic pathways, summing up the number of ATP
equivalents required for each intermediate step (27, 69, 70). The
counting of ATP equivalents for each step can then be combined
with measurements of the step’s rate to estimate the overall rate
of energy consumption for building the component. As an example,
counting of ATP equivalents has been applied to estimate the en-
ergetic cost of protein synthesis in growing cells by summing up the
number of ATP equivalents required for each intermediate step,
including amino acid synthesis, transcription, and translation (69–72,
79) (Fig. 3B). This counting of ATP equivalents can then be com-
bined withmeasurements of the rate of protein synthesis to estimate
the rate of energy consumption associated with protein synthesis.
This rate can further be compared with the global energy flux of the
cell to infer the relative energetic cost of protein synthesis. These
estimates heavily rely on knowing all the steps involved in the pro-
cess, their rates, and the corresponding number of ATP equivalents
required. For some less-characterized cellular processes it can be
challenging to know all of the coupled steps. For example, a full
determination of the energetic costs of chromosome segregation in
eukaryotic cells would need to include the energetic costs of as-
sembling the spindle, moving chromosomes, signaling, and error
correction, among others (Fig. 3A). In the absence of detailed
knowledge about all of the coupled processes underlying the pro-
cess of interest, it is difficult to estimate the energetic costs of the
process. Therefore, to test if estimates from ATP counting fully ac-
count for the energetic costs, direct measurements are needed.

One approach to directly measure the energetic cost of a
process is through process inhibition. Assuming that inhibiting

one target process does not affect the activities of other cellular
processes, the energetic cost of the target process can be mea-
sured as the change of the global energy flux using respirometry
or calorimetry when the targeted process is inhibited (22). How-
ever, inhibition experiments always carry the potential for off-
target effects and can change the activity of other processes
coupled to the targeted one (80). As a change in the global en-
ergy flux reflects changes in all the processes affected, a coupling
between the targeted process and other cellular processes could
potentially complicate the interpretation of such measurements.
For example, inhibiting a process that represents a significant
fraction of the cell’s ATP consumption rate could change the ATP
concentration, which could in turn change the activities of other
ATP-consuming pathways. In this case, the measured change in
the global energy flux could include additional contributions from
these downstream effects in addition to the contribution from the
inhibited process. Moreover, global energy flux may not be
uniquely determined by the energetic demand imposed by ATP
users but also depends on the rates of ATP synthesis and proton
leak in mitochondria (81). Hence, understanding how ATP synthesis
and proton leak are modulated by the inhibition is required to es-
timate energetic costs from such experiments. Models of metabolic
control are required to understand the coupling of ATP synthesis,
proton leak, and ATPases (45). To determine the true energetic cost
associated with a given cellular process, a combined approach is
required, where the energetic cost is measured using both the
counting of ATP equivalents and measuring change of global en-
ergy flux following specific process inhibition (80).

Measuring how global energy fluxes change during develop-
ment also provides information on the energetic costs of cellular

A

B

C

Fig. 3. Examples of cellular processes that contribute to the cellular energy budget. (A) Spindle self-organization and chromosome segregation in
a mammalian oocyte. (B) Protein synthesis with transcription and translation in growing cells. (C) Sensory adaptation in chemotactic E. coli. s, a,
and m represent input, output, and controller, respectively, in the adaptive feedback network (10).
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processes. For example, calorimetry has been used to observe
that heat production by embryos contains a component which
oscillates in synchrony with the cell cycle as a result of cell-cycle
signaling during the development of zebrafish (24) and Xenopus
embryos (23). It remains a challenge to understand what physio-
logical changes during embryo development contribute to the
dynamics of energy fluxes (27, 29, 82–84).

The energetic costs considered above represent direct cost,
defined as the number of ATP equivalents used by a given cellular
process. In some situations, e.g. for processes that generate bio-
mass, indirect opportunity costs may be relevant. Opportunity costs
represent the ATP that could have been generated from metabolic
precursors or reducing intermediates had they been used to gen-
erate ATP instead of biomass (70). While opportunity costs are not
direct energetic costs they could have consequences for evolu-
tionary fitness, particularly in situations where carbon is limiting, and
thus the consequences for diverting carbon to biomass are more
acute. Understanding how to relate energetic costs with fitness
costs is an important open question connecting physical bioener-
getics with evolutionary cell biology (69, 70, 85–88).

Overall, while there is promising work in estimating the ener-
getic costs of cellular processes (22, 69, 70, 78), the energy
budget of cells remains largely unexplored. There are challenges
associated with estimating energetic costs from ATP counting and
process inhibition. Overcoming these challenges requires un-
derstanding the intermediate steps associated with the process of
interest, and the coupling between ATP production and ATP
consumption.

Open Question: To What Extent Do Energy Fluxes
Constrain Cellular Processes?
Cellular processes are powered by the dissipation of Gibbs en-
ergy, and the rate of energy dissipation can impose constraints on
cellular processes. These constraints manifest in the limit of cell
growth rate (4) (Fig. 4A), the efficiency of molecular motors (5–7)
(Fig. 4B), and the trade-off between speed and accuracy in cellular
information processing (8–10) (Fig. 4C). In this section, we will
discuss these examples in detail and demonstrate how tools
from nonequilibrium physics have been applied to understand
energetic constraints.

Intrinsic limits on the Gibbs energy dissipation rate could im-
pose constraints on cell growth rate. It has recently been sug-
gested that the transition from respiration to fermentation at high
glucose uptake rates is caused by an upper limit in the cellular
Gibbs energy dissipation rate and that the maximal cellular

growth rate is determined by this limit (4) (Fig. 4A). Alternative
explanations for this phenomenon include electron-transport-
chain enzymes reaching saturating concentrations in the cell
membrane (89, 90) and efficient proteome allocation (91). It re-
mains a challenge to reconcile these different explanations.

Stochastic thermodynamics theories have been used to pre-
dict limits on the thermodynamic efficiency of molecular motors.
Thermodynamic efficiency is defined as the useful energy dissi-
pation rate, such as mechanical power, divided by the total
energy dissipation rate, such as that from ATP hydrolysis. Ther-
modynamic uncertainty relations reveal that energy dissipations
constrain current fluctuations at steady state for nonequilibrium
systems (19, 92–94). Applying this relation to molecular motors
working against an external force or torque, such as moving cargo
in a viscous environment, results in the prediction of a universal
upper bound to thermodynamic efficiency (95) (Fig. 4B). The
Harada–Sasa equality, which relates the energy dissipation rate to
the extent of the violation of the fluctuation–response relation, has
been used to estimate the efficiency of single kinesin motors as
∼20% (5). In contrast, the rotary motor F1-ATPase has been sug-
gested to operate near 100% efficiency (6, 7). A candidate ex-
planation for the stark contrast between the efficiencies of these
two motors invokes reversibility of their kinetics (5). While both
motors consume ATP when taking a forward step, F1-ATPase can
synthesize ATP during backward rotations. As such, and in con-
trast to kinesin, the energy for these backward steps can be
conserved. Understanding the evolutionary pressures on motor
efficiencies is an active area of research (96).

Nonequilibrium physics theories have also predicted trade-offs
in biochemical circuits constrained by the energy dissipation rate.
In the context of processes such as DNA replication, the amount
of Gibbs energy provided by nucleotides sets a trade-off between
replication speed, accuracy of copies, and energy dissipation (9).
Kinetic proofreading is a mechanism for error correction in bio-
chemical reactions at the cost of energy expenditure and is im-
portant for quality control and accuracy in many cellular processes
(8, 97). Keeping track of energy expenditure and understanding
how energy dissipation contributes to enhance sensitivity and
increase speed and/or accuracy of information processing in cells
is both an experimental and a theoretical challenge (8, 10, 74, 76,
77, 98–103). New insights on the energy–performance trade-off in
biochemical networks have enabled identification of useful design
principles for biological networks to achieve their targeted func-
tions efficiently (78, 104, 105). For example, Gibbs energy dissi-
pation is necessary during chemosensory adaptation in E. coli,

CBA

Fig. 4. Examples of limits and constraints imposed on cellular processes by energy fluxes. (A) A limit of Gibbs energy dissipation rate has been
proposed for growing E. coli and yeast. In this model, cells switch from respiration to fermentation when the rate of Gibbs energy dissipation
nears this limit and the maximal cell growth rate is determined by this limit (4). (B) Thermodynamic uncertainty relations predict an upper limit for
the energetic efficiency of molecular motors (95). v, f, D, kB, and T represent velocity, force, diffusion constant, Boltzmann constant, and
temperature, respectively. (C), A coarse-grained adaptive feedback model predicts an energy–speed–accuracy trade-off during sensory
adaptation, including during bacterial chemotaxis, yeast osmosensing, olfactory adaptation, and rhodopsin adaptation (10). c0 and e0 are
system-dependent constants, σa

2 is the variance of the activity “a” fluctuation, ωm is the adaptation speed, and e is the adaptation error.
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where energy must be spent in order to adapt to changing con-
centrations of chemoattractants while maintaining sensitivity of the
chemoreceptors (Fig. 3C). Coarse-grained models of the feedback
network predict a general energy–speed–accuracy trade-off relation
in sensory adaptation. This model predicts a decrease of adaptation
speed without compromising adaptation accuracy in starving E. coli,
which has been confirmed experimentally (10) (Fig. 4C).

These examples highlight the role energetic constraints can
play in understanding the limits of cellular growth rates, the effi-
ciency of molecular motors, and the speed–accuracy trade-off in
cellular information processing while opening further questions.
To what extent do energetic constraints exist for other cellular
processes? If an energetic constraint exists for a given process, do
cells operate near this limit? Addressing these questions will re-
quire the pairing of quantitative measurements and the devel-
opment of new theories based on nonequilibrium physics. Recent
advances in nonequilibrium dynamics (106–109) and stochastic
thermodynamics (17–21) have provided tools to study nonequi-
librium processes and define physical limits. Such tools have
helped quantify entropy production (110–115), energy dissipation
(18, 19, 92, 116, 117), work (118, 119), and free energy trans-
duction in nonequilibrium systems (120). Applying thermody-
namic principles to metabolic networks has resulted in the discovery
of energetic constraints on metabolic fluxes (4, 121–123). New
experimental and theoretical approaches have been developed to
identify nonequilibrium dynamics in biological systems by quanti-
fying the breaking of detailed balance (124–126) and irreversibility
(127, 128). The violation of the fluctuation–dissipation relation has
also been used to quantify energy dissipation at the single-
molecular level (5). It remains a challenge to apply these theories
to cell biology to understand the reciprocal relationship between
energy dissipation and cellular functions (129–136).

Conclusions and Outlook: How Nonequilibrium Physics
Can Shed Light on These Questions
Physical bioenergetics aims to reveal energetic costs and con-
straints in cells, leveraging tools from nonequilibrium physics and
applying them to open questions in cell biology and energy
metabolism. The central themes of physical bioenergetics are to
understand how much energy cells use, how they partition this
energy into different cellular processes, and the associated en-
ergetic constraints. New technologies are being developed to
study energy fluxes with single-cell and subcellular resolution (30,
57, 59–64, 67, 137), which make it possible to study the correlation
between energy fluxes and subcellular processes. Nonequilibrium
physics provides new tools to interpret these measurements in
terms of dynamics (106–108), entropy production (21, 111, 112, 115),
energy dissipation (18, 19, 92, 116, 117) and their correlation with
emergent dynamics of cellular structures (13, 14, 124, 126, 128).

Despite these recent advances, challenges and opportunities
remain in physical bioenergetics. Experimentalists and theorists
face the challenge to understand how cells use energy to build
cellular structures and drive cellular processes. How do we most
usefully define and measure spatiotemporal energy fluxes and
connect it to physical quantities such as efficiency, enthalpy, en-
tropy, and Gibbs energy dissipation on the cellular and subcellular
scale? Do we have sufficient quantitative knowledge about the
biochemistry and rates of cellular processes in order to make
calculations about their energy usage and their magnitude within
a cellular energy budget? What are the constraints and trade-offs
imposed by the energy dissipation rate on cellular processes and
what are the resulting consequences on cellular functions?

Nonequilibrium physics, in combination with approaches from
biochemistry and cell biology, provides additional tools that hold
the promise of addressing these questions. Applying these tools
to cellular systems is an open challenge for both experimentalists
and theorists which will require the extension of existing physical
theories and development of new experimental approaches.
Physical bioenergetics provides a testing ground for these theo-
ries and will inform the development of nonequilibrium physics.
For example, applying stochastic thermodynamics to molecular
motors has revealed constraints on their efficiencies (5–7) (Fig.
4B), but it is unclear if motors operate near this predicted limit in
cells. Active-matter physics has helped provide a quantitative
framework for the rich spatiotemporal dynamics of cellular struc-
tures which arise from energy fluxes, but the energy fluxes
themselves are rarely studied directly. Since energy fluxes in cells
are not always constant, it is hence important to consider the in-
terplay between the dynamics of energy fluxes and the dynamics
of cellular structures. (Fig. 3A) (12, 138–140).

Another fundamental challenge to modeling cellular systems
lies in systematically developing phenomenological and coarse-
grained models for complex metabolic networks. Computational
models are frequently constructed to study metabolic networks by
incorporating all known relevantmetabolic pathways (141–143).While
these models have provided many important insights into metabo-
lism, they are usually dependent on a large number of parameters that
can be highly context-dependent and are difficult to measure in vivo.
Coarse-grained and phenomenological models are potentially useful
tools to model metabolic networks with few effective parameters. This
approach has proven useful in many fields. For example, in active-
matter physics, cytoskeletal dynamics can be well-described by field
theories using few phenomenological parameters and without de-
tailed knowledge of the system’s microscopic properties (12, 13, 15,
16, 144, 145). Techniques have also been developed to coarse-grain
detailed microscopic models to obtain hydrodynamic models for
these systems (146–149). This coarse-grained modeling approach has
started seeing applications in modeling cellular energy flows (30, 89,
91, 150–154). Such coarse-grained, phenomenological laws can po-
tentially be used to interpret the changes of global energy fluxes as
measured by OCR (28, 43) and heat production rate (23, 24) and
provide insights into the energy usage of cells.

How do we know if we have satisfactorily answered the open
questions proposed in this perspective? It boils down to making
quantitative predictions using theoretical models and testing
them experimentally in cells. For example, can we predict the
energetic cost of specific cellular processes? Can we predict
the dynamical behaviors of cellular structures? Can we predict the
relevant energetic limits of cellular processes? Canwe integrate this
information to make testable predictions about the evolution of
cellular features? Overall, physical bioenergetics provides an op-
portunity for scientists across disciplines to bring together recent
experimental and theoretical advances and address new questions
and challenges arising from this new perspective.

Glossary

• Active-matter physics: Subfield of physics studying systems of
interacting entities that are out of equilibrium due to the dissi-
pation of energy at the scale of the system’s constituents.
Active-matter systems frequently display emergent phenomena,
including collective motion and self-organization. In cell biology,
one well-studied example of active matter is the cytoskeleton.
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• Coarse-grained models: Theoretical or computational models
that simulate the behaviors of complex systems using a simpli-
fied representation by decreasing the degrees of freedom of
the system.

• Efficiency: A fraction between 0 and 1 that describes howmuch
of a total quantity is spent usefully for a given process. Depend-
ing on the context, efficiencies can have numerous definitions
(5, 6, 42, 99, 120, 155–158). For example, in the context of
energy efficiency, one may define an efficiency as the fraction
of Gibbs energy per glucose that is used to generate ATP from
glycolysis, which is ∼50% (155).

• Energetic cost: The amount of energy required by a process. In
the cellular context, energetic costs are typically considered
in the equivalent number of ATP hydrolyses required to release
the same amount of Gibbs energy per unit time or measured
as the fraction of global energy flux associated with a certain
cellular process.

• Energetic constraints: Limits and trade-offs on the perfor-
mances of cellular processes induced by the Gibbs energy dis-
sipation rate or other energetic factors. Examples include the
limitation on the cell growth rate, the efficiencies of molecular
motors, and the energy–speed–accuracy trade-off of cellular
information processing.

• Energy dissipation: A process in which energy is transformed
from an initial form to a final form, and the capacity of the final
form to do work is less than that of the initial form.

• Energy flow: The conversion of energy from one form to an-
other. In cells, the global energy flow frequently represents the
conversion of Gibbs energy from the nutrients through cellular
activities to biomass or heat, through intermediate metabolic
steps such as the production and consumption of ATP.

• Energy flux: The rate of energy flow. For cells, measurements of
energy fluxes include global fluxes such as the rates of oxygen
consumption and heat production and fluxes through specific
metabolic pathways.

• Energy metabolism: The sum of the processes used by cells to
convert energy from one form to another, such as ATP, that is
more available for cellular machinery to use. Examples of such
processes include glycolysis, respiration, and photosynthesis.

• Enthalpy: Thermodynamic state function characterized by the
sum of a system’s internal energy and the product of pressure
and volume. For a system at constant pressure that is not ex-
changing mass, changes in the system’s enthalpy correspond
with the quantity of heat released (ΔH > 0) or absorbed (ΔH <
0) by the system.

• Entropy: Thermodynamic quantity associated with the irrevers-
ibility of a process. For an isothermal system, the entropy pro-
duction is related to the decrease of free energy of the system.

• Gibbs energy: Thermodynamic potential that constrains the
maximum amount of reversible work that can be extracted from
a process at a constant temperature and pressure and charac-
terizes how far away a system is from equilibrium. Gibbs energy
is also referred to as Gibbs free energy. Changes in Gibbs en-
ergy can be related to changes in enthalpy (H) and entropy (S)
through the relationΔG =ΔH − TΔS. In the context of chemical
reactions, the difference in Gibbs energy between states char-
acterizes if the reaction is favorable or spontaneous to proceed.

• Global energy flux: The rate at which cells convert energy
through all cellular activities.

• Intracellular metabolic fluxes: The rates of turnover of mole-
cules through specific metabolic pathways inside the cell.

• Nonequilibrium physics: Subfield of physics studying systems
that are not in thermodynamic equilibrium. At thermodynamic
equilibrium, there are no net macroscopic flows of energy and
matter within the system or between systems.

• Stochastic thermodynamics: Subfield of physics studying the
fluctuations and distributions of thermodynamic quantities, in-
cluding work, entropy production, and energy dissipation, in
small systems such as biopolymers, enzymes, and molecular
motors. One of its applications in physical bioenergetics is to
study the dynamics of molecular motors.

Data Availability. There are no data underlying this work.
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116 É. Fodor et al., Nonequilibrium dissipation in living oocytes. EPL 116, 30008 (2016).
117 T. Harada, S. Sasa, Equality connecting energy dissipation with a violation of the fluctuation-response relation. Phys. Rev. Lett. 95, 130602–130604 (2005).
118 C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997).
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