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Abstract

Humans often make accurate inferences given a single
exposure to a novel situation. Some of these
inferences can be achieved by discovering and using
near-deterministic relationships between attributes.
Approaches based on Bayesian networks are good at
discovering and using soft probabilistic relationships
between attributes, but typically fail to identify and
exploit near-deterministic relationships. Here we
develop a Bayesian network approach that overcomes

this limitation by learning a hyperparameter for each
distribution in the network that specifies whether it
is non-deterministic or near-deterministic. We apply
our approach to one-shot learning problems based on
a real-world database of immigration records, and show
that it outperforms a more standard Bayesian network
approach.
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Introduction

Humans are able to discover and exploit relationships
between attributes (e.g. nationality and language) and
between attribute values (e.g. Brazilian and Portuguese)
(Davies & Russell, 1987). Some relationships are near-
deterministic, including the relationship between birth
country and native language. We know, for example,
that two individuals born in the same country are very
likely to have the same mother tongue, and we know in
particular that individuals born in Brazil are very likely
to speak Portuguese. Other relationships are probabilis-
tic, including the relationship between hair color and eye
color. We know that these attributes tend to be related,
and we know about specific relationships between values
of these attributes (blondes often have blue eyes).
Suppose, for example, that after meeting several peo-
ple from various countries, you meet a single person from
Randeria, a country that is completely new to you. You
observe that the person has blonde hair and speaks Ran-
derian. Based on this single example, you may be very
confident that the next Randerian you meet will speak
the same language, but less confident that this second
Randerian will also have blonde hair. Figure 1(a) shows
a schematic representation of the observed data, and
Figure 1(b) shows conditional distributions that capture
our expectations about the language and hair color of
the second Randerian. The Randeria problem just in-
troduced is a special case of the more general problem
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(a)

(b)

Nationality |Language | Hair Language
British English Red 100
British English Brown 50 ‘I
Brazilian Portuguese|Blonde 0
Brazilian Portuguese|Brown Randerian English
Spanish Spanish  |Brown Hair Color
Spanish Basque Black 100
Randerian  |Randerian |Blonde 50
Randerian |7 ? 0

Blonde Brown

Figure 1: Randeria one-shot learning problem. (a) Af-
ter meeting people from several different countries, you
might discover that people from the same country tend
to speak the same language. (b) Discovering the pattern
in (a) supports one-shot learning about people from a
new country. After observing a single Randerian, you
might have strong expectations about the language spo-
ken by a subsequent Randerian, but weak expectations
about her hair color.

of one-shot learning (Fei-Fei, Fergus, & Perona, 2003).
Here we describe and evaluate a probabilistic model that
can handle one-shot learning problems similar to the
Randeria problem.

One-shot learning has been previously considered in
the psychological literature. One prominent line of work
has focused on “fast mapping” in word learning (Carey &
Bartlett, 1978; Smith, Jones, Landau, Gershkoff-Stowe,
& Samuelson, 2002). Empirical studies of word learn-
ing have documented that children are able to learn the
meaning of some new words given a single training exam-
ple and researchers have developed formal models (Col-
unga & Smith, 2005; Kemp, Perfors, & Tenenbaum,
2007) that help to explain this ability. Our approach
grows out of this literature, and the work we describe
builds on the hierarchical Bayesian model presented by
Kemp et al. (2007). Hierarchical Bayesian models (Gel-
man, Carlin, Stern, & Rubin, 2003) can include rep-
resentations at multiple levels of abstraction, and help
to explain how humans acquire abstract knowledge that
supports rapid or one-shot learning given exposure to a
novel situation.

Our hierarchical Bayesian approach is built on top of
a standard method for learning Bayesian networks, also
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Figure 2: Models that capture relations among five at-
tributes: birth country (B), language (L), nationality
(N), eye color (E) and hair color (H). (a) A standard
Bayes net can capture probabilistic relationships be-
tween attributes, shown here as solid arrows. (b) Our
model learns Bayes nets that capture two kinds of re-

lationships: near-deterministic relationships (dashed ar-
rows) and probabilistic relationships (solid arrows).

known as Bayes nets. A Bayes net captures relation-
ships between attributes using probability distributions
that specify how the value of a given attribute is gener-
ated given the values of its parents. Our approach allows
for two kinds of relationships: relationships where an at-
tribute value is a soft probabilistic function of the values
of its parent attributes, and relationships where an at-
tribute value is generated in a near-deterministic way
given the values of its parents (Figure 2b). By learn-
ing which relationships are probabilistic and which are
near-deterministic, a Bayes net approach can account for
one-shot learning while preserving the ability to handle
probabilistic relationships.

After reviewing related work and introducing our ap-
proach, we apply it to an everyday problem that re-
quires one-shot inferences—learning about people and
their characteristics. Using demographic data for immi-
grants who arrived at Ellis island in the early twentieth
century, we introduce two one-shot learning scenarios
which correspond to real-world versions of the Randeria
problem. We show that our model makes more intuitive
inferences and predicts unobserved data better than a
standard Bayesian network approach.

Logical Approaches To One-Shot
Learning

One-shot learning has been previously considered by Al
researchers, and the Randeria example introduced above
is directly inspired by the work of Davies and Russell
(1987). These researchers explore the role of determi-
nations, or abstract logical statements that identify pat-
terns of dependency between attributes. For example,
the statement that “people of the same nationality speak
the same language” is a determination that supports the
conclusion that all citizens of Randeria are likely to speak
the same language. Because this rule is defined over at-
tributes, it is independent of any particular country and
can be used to perform one-shot learning when exposed
to a person from a new country. Russell (1989) discusses
how determinations can be learned given a database such
as the schematic example in Figure 1(a). The basic ap-
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proach is to search through a hypothesis space of possible
determinations and identify hypotheses that are consis-
tent with the entries in the database.

A probabilistic approach to learning determinations
can improve on existing work in several respects. First,
a probabilistic approach can handle near-deterministic
relations that are subject to noise and exceptions. Some
citizens of Randeria may be English speakers who were
born in the USA, and some countries (e.g. Spain) include
different linguistic communities (e.g. Spanish speakers
and Basque speakers). Second, a probabilistic approach
can incorporate soft probabilistic relations, including the
relationship between blonde hair and blue eyes. Russell
(1989) allows for weighted determinations which can help
to deal with uncertainty, but a probabilistic approach
provides a principled treatment of reasoning under un-
certainty. Finally, a probabilistic approach can provide
a unified account of learning and using determinations.
Logical approaches can rely on logical inference to ex-
plain how determinations are used, but must typically
invoke some other principle to explain how these deter-
minations are acquired.

There has traditionally been some tension between
logical and probabilistic approaches to artificial intel-
ligence, but several researchers have recently devel-
oped general-purpose frameworks that combine logic and
probability (Milch et al., 2005; Richardson & Domingos,
2006). Some of these frameworks may be able to ad-
dress the one-shot learning problems described earlier,
but here we take a different approach. General-purpose
frameworks are impressive in their scope, but the flex-
ibility of these approaches often leads to very difficult
learning problems. Here we describe a relatively sim-
ple probabilistic approach that relies on one of the best
known formalisms for capturing relationships between
attributes—Bayesian networks.

Learning Bayesian networks

A Bayesian network includes a graph and a set of dis-
tributions that specify probabilistic relationships be-
tween attributes. This section introduces a standard
approach to learning and using these networks (Heck-
erman, Geiger, & Chickering, 1995).

A Bayes net can be represented as a pair (G, ), where
G is a directed acyclic graph over the attributes of in-
terest and 6; specifies the conditional probability distri-
bution for attribute 4, or the distribution over values of
this attribute given the values of its parent attributes in
graph G (Figure 3). Figure 2a shows a Bayes net graph
structure over some of the attributes in the Randeria
problem.

We assume here that all attributes are categorical, and
represent 6; as a conditional probability table (CPT)
with one row for each setting of the parent attributes.
Each row in 6; specifies a multinomial distribution over
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Figure 3: Graphical model for Bayes net structure learn-
ing. (G,0) is a Bayes net, where G is a directed acyclic
graph, and 6; is a table that specifies the conditional
probability distributions for node ¢ in the graph. Each
row in #; is drawn from a symmetric Dirichlet distribu-
tion with parameter \;.

values of attribute ¢, and we assume that these rows are
independently drawn from a symmetric Dirichlet distri-
bution with concentration parameter \;. A standard ap-
proach to structure learning sets A; = 1 for all attributes
in the graph, which corresponds to a uniform prior over
possible multinomial distributions for the rows in each
CPT.

Suppose that we observe a data matrix D, where the
rows in D represent independent samples from a Bayes
net (G,0). The posterior distribution over the compo-
nents of the Bayes net is

p(G,0|D, A) o p(D|G, 0)p(0|G, N)p(G) (1)
and we assume a uniform prior p(G) over graph struc-
tures G. Since we use conjugate Dirichlet priors on the
rows in each CPT, we can integrate out the parameters
and work with the posterior distribution p(G|D, A) over
graphs (Heckerman et al., 1995). We can sample from
this distribution using standard MCMC techniques for
structure learning (Giudici & Castelo, 2003). If we as-
sume that any missing entries in D are missing at ran-
dom, a bag of samples from P(G|D) can be used to make
predictions about these missing entries.

Bayesian networks have been widely used in the psy-
chological literature to develop formal models of learning
and reasoning (Glymour, 2001; Gopnik et al., 2004) The
standard approach to learning these networks, however,
cannot address one-shot learning problems like the Ran-
deria problem. This limitation depends critically on the
difference between attributes (e.g. nationality) and at-
tribute values (e.g. Brazilian). Given enough data, the
standard approach will be sensitive to near-deterministic
relationships between attribute values. After observ-
ing many Brazilian individuals, for example, the stan-
dard approach will learn parameters for the network in
Figure 2a that specify a near-deterministic relationship
between being Brazilian and speaking Portuguese. No
amount of experience, however, will allow the standard
approach to exploit near-deterministic relationships be-
tween attributes. The standard approach can learn that
Brazilians tend to speak Portuguese, and that Ameri-
cans tend to speak English, and so on, but cannot arrive
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at the generalization that individuals from a given coun-
try tend to speak the same language. The next section
introduces a Bayesian network approach that overcomes
this limitation.

The Type-Learning Model

Our approach relies on the same basic machinery as the
standard approach, except that we no longer assume A
is fixed to a single, known value for all attributes in the
graph. Instead we assume that attributes come in one
of two types: non-deterministic attributes are generated
in a soft probabilistic way by their parents in the graph,
but near-deterministic attributes are generated accord-
ing to a near-deterministic function of their parent at-
tributes. To capture the difference between these types
of attributes, we assume A; will be smaller for near-
deterministic attributes than for non-deterministic at-
tributes. A small value of \; means that each row in
CPT 0, is expected have most of its probability mass
concentrated on a single value of attribute ¢. Setting
A; = 1, which is a standard practice when learning Bayes
nets, means that each row of 8; is drawn from a uniform
prior over multinomial distributions.

A type-based approach could be implemented by as-
suming that each \; is drawn from one of two distri-
butions: a distribution with a small mean for the near-
deterministic attributes, and a distribution with mean
1 for the non-deterministic attributes. Here we take
a simpler approach, and assume that \; = 1 for non-
deterministic attributes but that A\; = 0.01 for near-
deterministic attributes. Note, however, that the type
assignment for each attribute is not known in advance
and must be learned.

A type-based approach can be contrasted with a
type-free approach that assumes that the \; are inde-
pendently generated from a continuous prior distribu-
tion such as an exponential distribution. These two
approaches incorporate different inductive biases and
should lead to slightly different predictions—for exam-
ple, the type-based approach might be quicker to decide
whether a given attribute is near-deterministic (low \;)
or non-deterministic (high A;). Future work can con-
sider whether a type-based or a type-free approach ac-
counts better for human inferences. Note, however, that
both approaches are consistent with our core proposal,
which is that learning different values of \; for differ-
ent attributes can allow a Bayes net approach to handle
one-shot learning problems like the Randeria problem.

Since the type assignments that determine A\ are not
known in advance, we work with a posterior distribution
created by summing over all possible values of :

p(G,8|D) o< p(D|G, 8)p(6]G)p(G) (2)
= > p(DIG,0)p(61G, Np(G)p(Y)  (3)
A



We use a uniform prior over type assignments, which
amounts to a uniform prior over the two possible values
of \; for any attribute 7. Standard MCMC techniques
for structure learning can be extended to sample from
P(G, A|D), but for the small data sets considered here we
compute Equation 3 by enumerating all possible values
of A. As for the standard approach in Equation 1, the
parameters 6 can be integrated out for any given value
of A, and we make inferences about missing values in
D using a bag of samples from the learned distribution
P(G,\D).

Related Work

A special case of our general approach has previously
been discussed in the psychological literature. Kemp et
al. (2007) describe a Bayesian model that can discover,
for example, that objects in the same category tend to
have the same same shape—in other words, that the
relationship between category label and shape is near-
deterministic. Their model, however, works with a re-
stricted class of Bayes nets where there is an arrow from
the category label attribute to each other attribute, and
where no other edges are allowed. The model developed
here can handle Bayes nets with arbitrary structure, in-
cluding networks that specify relationships between at-
tributes (e.g. hair color and eye color) that do not cor-
respond to category labels.

Our emphasis on near-deterministic relationships is
consistent with previous suggestions that humans as-
sume by default that causal relationships will be de-
terministic (Schulz & Sommerville, 2006). Previous re-
searchers have developed probabilistic approaches that
can exploit deterministic relationships when they are
present. Closest to our own approach is the work of
Lucas and Griffiths (2007), who describe a hierarchi-
cal Bayesian model that can learn whether causal ob-
servations are better explained by a deterministic rela-
tionship or a noisy-OR relationship between variables.
Note, however, that this model does not handle settings
where a single network includes both near-deterministic
and non-deterministic relationships, and cannot address
one-shot learning problems like the Randeria problem
considered here.

Our approach to one-shot learning relies critically
on the concentration parameters \; used to define the
Dirichlet priors on the Bayes net parameters 8. We know
of no previous work that explores one-shot learning with
Bayesian networks, but several previous researchers have
emphasized the role of the Dirichlet priors. One line of
work explores structure learning in the standard setting
where there is a single value of A for all nodes in the
network, and has demonstrated that the value of this
parameter plays an important role in determining the
graph structure G that maximizes P(G|D) (Steck, 2008;
Silander, Kontkanen, & Myllyméki, 2007). When X is
very small, the best graph structure will often have very

145

Table 1: Passenger Data Attributes

Attribute Example # Values
Nationality Spain 24
Race Spanish |16
Language Spanish |12
Birth Country | Spain 24
Complexion Dark 2
Hair Black 4
Eyes Brown 7

few edges, and as A increases the number of edges in
the inferred graph will also tend to increase. This re-
sult suggests that the value of A matters, and supports
the idea that predictive accuracy may be improved by
choosing different A; values for near-deterministic and
non-deterministic nodes.

Previous authors have explored the possibility of
learning a single A parameter for the entire network (Giu-
dici & Green, 1999), but there are few attempts to learn
different values of \; for different attributes. One pos-
sible reason is that this approach is inconsistent with
the assumption of likelihood equivalence, or the assump-
tion that networks in the same Markov equivalence class
should receive the same prior probability (Heckerman et
al., 1995). Although likelihood equivalence is often ap-
pealing, it will not always apply in settings where prior
knowledge is available about network parameters. Our
setting is one example, and the knowledge in this case
specifies that some relationships are near-deterministic
but that others are probabilistic.

Experiments

We evaluate our approach in two ways using a real-world
data set. First, we directly model the Randeria problem
to show the practical consequences of modeling near-
deterministic relationships. Second, we use a larger test
set to demonstrate the quantitative differences between
inferences made by our model and a standard Bayes net
approach.

Passenger Data

Our experiments used a real-world version of the data
set shown schematically in Figure 1(a). The data spec-
ify physical and cultural properties of immigrants who
arrived at Ellis Island during the 1920s and 1930s,
and were extracted from passenger manifests available
at ellisisland.org. We took manifests for 4 ships
and created a data set with 85 people and 7 cate-
gorical attributes!. Table 1 shows each attribute, its
number of possible values, and example values for one
person. The relationships between the attributes in-
clude both near-deterministic relationships (country de-
termines language) and soft probabilistic relationships
(hair color predicts eye color). Note, however, that the
near-deterministic relationships are not perfectly clean
(e.g. not everyone from Spain speaks Spanish).

! The data set is available online at www.andrew-maas.net



Language Hair Color

75 75
50 I Type—Learning 50
25 [] Standard 25

0 0

Randerian English Blonde Brown

Figure 4: Conditional distributions on the language and
hair color of a new person given only the information
that she is Randerian. These marginals are analogous
to those in Figure 1(b), but are computed by models

trained on real-world passenger data.

Our first experiment addresses the Randeria problem
schematically described in Figure 1. Our second ex-
periment explores prediction of missing attributes when
these hidden attributes were specifically chosen to create
one-shot learning problems similar to the Randeria ex-
ample. Both experiments rely on learning the structure
of a Bayesian network, and we first present structure-
learning results for the passenger data.

Learning Model Structure

Structure learning for the standard model can be
achieved by drawing a MCMC sample from P(G|D, \),
where each ); is set to 1. For the type-learning model
we drew an MCMC sample from P(G|D, \) for each pos-
sible setting of A\. Given these samples, we constructed
an approximate posterior P(G,\|D) by computing the
relative posterior probabilities of each pair (G, ) then
normalizing.

Both models learned distributions on graph structures
which capture some of the intuitive relationships be-
tween the seven attributes. For example, both mod-
els predict with high confidence that there is an edge
between the birth country and nationality attributes.
The structures assigned high probability by the type-
learning model tend to have more edges than the struc-
tures preferred by the standard model. Adding more
edges allows the model to explain certain attributes as
near-deterministic functions of their parents.

For any training set D, we use the above training
technique to obtain structure distributions P(G|D, \) for
the standard model and P(G, A|D) for the type-learning
model. These distributions serve as the basis for predic-
tions about unobserved attributes.

Meeting a Randerian

Our first test directly corresponds to the Randeria prob-
lem mentioned in the introduction. We took the pas-
senger data already described and added a record for a
single Randerian—an individual with blonde hair, a fair
complexion, and blue eyes, but a new nationality, race,
language and birth country. Using the training technique
described in the previous section, the models infer struc-
ture distributions and network parameters. Both models
were then asked to predict the language and hair color
of a second individual that was known to be Randerian,
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but had no other attributes observed. Figure 4 shows
the marginal distributions over language and hair-color
for both models.

Only the type-learning model was able to confidently
predict that a second Randerian would also speak Ran-
derian based on the single training instance provided.
When predicting hair color, both models produce similar
distributions over the possible values. Despite allowing
for near-deterministic relationships, the type-learning
model correctly realizes that hair color is not a near-
deterministic function of nationality.

One-Shot Learning Tests

Figure 4 suggests that the type-learning model matches
our intuitive notion about correct performance on the
Randeria problem, and our next analysis explores a set-
ting where model success can be assessed more objec-
tively. We took the passenger data and created a series of
one-shot learning problems for each attribute value. For
example, we create a one-shot learning problem for the
case where Language=French by removing all French-
speaking passengers except one from the training set.
The test set contains all of the French speakers that were
removed, and the task is to predict the language of each
individual given all of their other attributes. In other
words, we explore whether the models can confidently
identify French speakers after observing a single exam-
ple of this category. We repeated this process for each
value of each attribute in the passenger data.

To evaluate the models we measure both model ac-
curacy and model confidence. We expect that near-
deterministic relations will allow confident predictions
based on a single training instance, and use Kullback-
Leibler(KL) divergence as a metric of model confi-
dence. We considered the models’ inferred marginals
as approximating distributions to the true marginal,
KL(true||linferred). The true marginal is a point-mass
distribution which assigns all of its probability to the
correct attribute value. In this case, the KL-divergence
simplifies to —log[p(v;)] where p(v;) is the probability a
model assigns to the true attribute value.

Table 2 shows the results of the one-shot learning tests
for both models. As expected, the type-learning model

Table 2: One-shot learning tests. Each model was shown
a single instance with a given attribute value (e.g. a sin-
gle French-speaking passenger) and asked to make infer-
ences about all other instances with this attribute value.

Missing KL Divergence Accuracy (%)
Attribute TL Standard | TL Standard
Nationality 1.46 2.72 73 58

Race 1.74 2.16 63 36
Language 1.38 2.16 60 60
Country 1.23 2.32 82 45
Complexion 1.99 1.96 13 18

Hair 3.22 3.28 0 0

Eyes 3.26 3.33 0 0




made more confident inferences for attributes with near-
deterministic relations given only a single training exam-
ple. Given a single instance of a passenger from a new
country, for example, the model achieves high accuracy
and confidence (as measured by a low KL divergence)
when predicting the country attribute for subsequent
passengers from that country. In contrast, the standard
model was often unable to make confident one-shot in-
ferences. Although this model made inferences from the
single target instance at a rate better than chance, it
had substantially lower confidence and accuracy for at-
tributes with near-deterministic relations. Both models
performed comparably for the three non-deterministic
attributes. We do not expect one-shot learning to be
possible for these attributes, and accuracy was low in all
cases.

Conclusion

Humans often make accurate inferences given a single
example of a novel situation, and we presented a model
that attempts to match this ability. Our model uses
a Bayes net to capture relationships between attributes,
and learns which of these relationships are soft and prob-
abilistic and which are near-deterministic. The ability
to exploit near-deterministic relationships gives our ap-
proach a different inductive bias than a standard Bayes
net approach, and we showed that this inductive bias
supports one-shot learning about novel situations.

Here we focused on a specific one-shot learning
problem—the Randeria problem—that is motivated by
real-world inferences made by human learners. Future
studies can design behavioral experiments to test our ap-
proach, and can explore, for example, how people make
inferences about unobserved entries in the passenger
data that we analyzed. Future experimental studies can
also explore one-shot learning in other settings. Kemp
et al. (2007) describe a special case of our approach that
helps to explain word-learning data collected by Smith
et al. (2002), and our current approach should account
for all of the findings captured by this previous model.
This previous model, however, can only learn Bayesian
networks that belong to a very restricted class. Future
studies of one-shot learning can test our prediction that
people can learn and reason about a much broader class
of relationships.
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