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ABSTRACT

Most Al systems model and represent natural concepts and categories using uniform taxo-
nomies, in which no level in the taxonomy is distinguished. We present a representation of
natural taxonomies based on the theory that human category systems are non-uniform.
That is, not all levels of abstraction are equally important or useful; there is a basic level
which forms the core of a taxonomy. Empirical evidence for this theory is discussed, as are
the linguistic and processing implications of this theory for an artificial
intelligence/natural language processing system. We present our implementation of this
theory in SNePS, a semantic network processing system which includes an ATN parser-
generator, demonstrating how this design allows our system to model human performance
in the natural language generation of the most appropriate category name for an object.
The internal structure of categories is also discussed, and a representation for natural con-
cepts using a prototype model is presented and discussed.

1. INTRODUCTION.

Knowledge-base systems typically model and represent natural concepts and categories using uni-
form inheritance networks [Quillian 1967, 1968, 1969; Collins & Quillian 1970; Fahlman 1979] or
frame systems [rachman 1983; Brachman & Schmolze 1984). We will present a representation of
natural taxonomies based on the theory that human category svstems are non-uniform, i.e,, that not all
levels of abstraction are equally important or useful. This theory is supported by a substantial bodyv of
empirical evidence from the fields of psychology, anthropology, and linguistics [Rosch et al. 1976,
1978; Mervis & Rosch 1981; Berlin 1978; C. H. Brown et al. 1976; Tversky 1978; Hunn 1976; Cantor
et al. 1979; Smith & Medin 1981]. We will discuss some of the evidence for this theory, as well as
some of the linguistic and processing implications of this theory for an Al system modeling human
cognitive behavior.

The need for a non-uniform representation will be extended as we consider the internal structure
of natural concepts. We will present and discuss some of the empirical evidence that supports the use
of a prototype model for these concepts, and present a representation using this model. We will argue,
however, that certain levels of abstraction exhibit more of a prototypicality structure than others, and
that, therefore, distinct representations are again needed in modeling the internal structure of concepts
at difterent levels of abstraction in a taxonomy.

Our implementation uses the SNePS semantic network processing system which includes an ATN
parser-generator [Shapiro, 1978, 1979, 1982, 1986).

2. THEORY THE VERTICAL DIMENSION OF CATEGORY SYSTEMS - A BASIC LEVEL.

Qur representation is based on the following principles of human categorization set forth by
Eleanor Rosch. Categories within taxonomies are structured such that there is one level of abstraction
at which the most basic category cuts can be made. This level of abstraction forms the “core” [Berlin
1978, p. 24] of a taxonomy, and is called the basic level. Basic categories are: (1) those which carry the
most information; (2) those whose members have the most attributes in common; and (3) the categories
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most differentiated from one another. Basic level categories are, in fact, disjoint. Chair, car, and dog
are examples of basic level objects.

Levels of a taxonomy above the basic level are called superordinate categories (e.g., furniture,
vehicle, mammal). Fewer attributes are shared among members of superordinate categories, i.e., there
is less category resemblance. Categories below the basic level are called subordinate categories (e.g.,
kitchen chair, station wagon, collie). Subordinate categories contain many attributes which overlap
with those of other subordinate categories, i.e., there is less contrast between categories across a subordi-
nate level.

2.1. Empirical Evidence.

The following summarizes some of Rosch’s empirical evidence supporting the existence of a basic
level which forms the core of a taxonomy. [Rosch et al. 1976, 1978; Mervis & Rosch 1981].

2.1.1. Attributes of Objects.

When subjects were asked to list attributes of basic, superordinate, and subordinate level objects,
very few attributes were listed for superordinate categories, a great number of attributes were listed
for basic categories, and an insignificant number of additional attributes were listed for subordinate
level categories. This result supports the theory that the basic level is the most inclusive or general
Jevel at which the objects of a category possess a large number of attributes in common. Attributes
appear to be clustered at the basic level.

2.1.2. Object Recognition.

Experiments using averaged shapes, obtained by superimposing outlines of objects to form nor-
malized shapes, showed that the basic level is the most inclusive level at which the averaged shape of
an object can be recognized. That is, basic objects (e.g., chairs, dogs) were the most general objects that
could be identified from these shapes; superordinate objects (e.g., furniture, animals) could not be
identified from averaged shapes. This suggests that basic level objects, are the most inclusive categories
for which a concrete mental image of the category as a whole can be formed. We can form an image
of a cat or dog which reflects the average members of the class, however, we cannot form an image of
a mammal that reflects the appearance of the class as a whole.

2.1.3. Object Names Categorization.

Studies of picture verification have demonstrated that objects are first recognized as members of
their basic level category. When subjects were shown pictures of objects, the basic level name was the
name chosen for an object. With additional processing time, subjects were able to categorize objects at
their subordinate and superordinate levels. Thus, subjects knew the subordinate and superordinate
names of objects, but categorized objects first at the basic level. Rosch further states that basic level
objects are the first categorizations made during perception of the environment, as well as the
categories most named, and most necessary in language.

2.1.4. Development of Categories.

Basic level objects are not only the first categories learned by children, they appear to be formed
differently from categories at other levels. That is, basic categories are not learned explicitly by
acquiring a definition or deductive rule, but rather are learned implicitly by exposure to multiple
instances of the category; i.e., they are formed inductively. This is often called the acquisition of types
through ostensive definitions [Jackendoff 1983]. Categories subordinate and superordinate to this level
are often formed by the acquisition of a deductive rule [Berlin 1978]. For example, the concept mam-
mal might be learned in terms of a rule which lists attributes such as: warm-blooded; body usually
covered with hair; female gives milk to young.

380



proper-name object member class

2. d ¢ B
\@ ey

Figure 1a Figure 1b

2.15. Summary of Empirical Evidence.

Thus, recent categorization research provides a great deal of empirical evidence supporting the
importance of basic level categories in a taxonomy, and the non-uniformity of human category sys-
tems. Basic level categories are the first categories developed, they are formed differently than non-
basic categories, they are the most used and useful categories, and therefore, they must be distinguished
from non-basic categories in some way.

3. REPRESENTATION AND USE OF CATEGORIES IN AN AI/NLP SYSTEM.

If an artificial intelligence/natural language processing (AI/NLP) system modeling human
category systems must be able to distinguish basic level categories from non-basic categories, an impor-
tant issue to be considered is how and where to make the distinction. Basic level objects are used in
two kinds of categorization: “ordinary" categorization, i.e., the classification of an individual in a class,
and generic categorization, i.e., categorization involving two classes or types. It seems clear that since
basic level categories are formed early in life, they are formed via ordinary categorization. The teach-
ing of these names 1s limited to the presentation of examples and counter-examples. Thus, a child may
learn the basic level name 'dog', as someone points to Rover and says 'dog’. Therefore, our system
makes the distinction between basic and non-basic levels in the representations for ordinary categoriza-
tion, i.e, in the individual/class relations.

Figure 1a shows the case frame used for ordinary categorization of a basic level object. Here m1
represents the proposition that the individual represented by i is a member of the basic level category
represented by j. Figure 1b shows the representation for "Rover is a dog". [See Shapiro & Rapaport
1986 for the syntax and semantics of other constructs.]

Since non-basic categories are formed later than basic categories, and are formed in the course of
the investigation of underlying principles rather than ostensive features, we use a slightly more com-
plex case frame to represent membership in a non-basic level category. Thus, in Figure 2a ml
represents the proposition that the individual represented by i is a member of the non-basic categorv
represented by j. The representation of "“"Rover is a mammal’ is shown in Figure 2b.
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Figure 2a Figure 2b
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These case frames in SNePS are the built-in syntactic structures of our modeled minds. The use
of the member’class case frame reflects the basic or primitive nature of categorization in basic
categories, whereas the use of the argl/rel/arg2 case frame treats membership in non-basic categories
as an ordinary binary relation. Thus, our system distinguishes two cases of ordinary categorization:
one representation is used when the class membership involves a basic level category, another represen-
tation, when the class membership involves a non-basic category.

In addition to this ordinary categorization, a system must, of course, be able to represent generic
categorization, 1.e., class/class relations, such as "Dogs are mammals". These relations are represented
using a subclass/superclass case frame. See Figure 3a. Here m1 represents the proposition that the class
of i’s are a subclass of the class of j’'s. The representations of "Dogs are mammals” and "Collies are
dogs’ are shown in Figures 3b and 3c respectively.

Thus, we build a traditional uniform type hierarchy of class/class relations. We see no reason 1o
distinguish any relations in the hierarchy, since we find no evidence that generic categorization sen-
tences such as "collies are dogs'’, "dogs are mammals”, "mammals are vertebrates”, require different
underlying representations. (It is noteworthy that there are no class/class relations between two basic
level categories.)

Since an ability to form abstract concepts is required for generic categorization, this categorization
occurs at a later stage of development than does ordinary categorization of basic level objects. There-
fore, the type hierarchy, which is formed after basic level concepts are formed, is not the appropriate
place 1o make the distinction between basic and non-basic categories. In summary, a single representa-
tion is used for class/class relations, but two distinct representations are used for individual/class rela-
tions.

KRL-0 [Bobrow & Winograd 1977a, 1977b, 1979] is, to our knowledge, the only other Al system
to distinguish basic and non-basic levels in the representation of taxonomies. KRL-O used units to
represent both classes and individuals. Three distinct levels of abstraction were used in the representa-
tion of classes or types in units: a basic level, an abstract level, and a specialization level. Bobrow and
Winograd stated that they did not, however, find an appropriate way to use these unit categorization
levels for classes, and removed unit categorization from KRL-1 [Bobrow & Winograd 1979, p. 41].
Although not precisely specified in their papers, Bobrow and Winograd appear to have made distinc-
tions among the levels of abstraction in the type hierarchy of frames only, not in the individual/class
relationships. We could not find any evidence that distinctions were made in the units representing
individuals [Bobrow & Winograd 1977a p. 23]

3.1. INHERITANCE AND LINGUISTIC IMPLICATIONS.

3.1.1. Inheritance.

One of the organizational principles to which most semantic networks and frame systems adhere
is that of storing properties in the hierarchy at the place covering the maximal subset of nodes sharing
them. This is an efficient organizational scheme in which properties do not have to be replicated at
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different places in the network, for they are inherited by nodes below the ones in which they are
stored. This principle fits in well with the theory of cognitive economy, for one can gain a great deal
of information from a category system organized in this way, while conserving resources.

Categorization research studies, however, do not support this principle of organization. As stated
above, properties appear to be clustered at the basic level, not at the level covering the maximal subset
of nodes. This means that there is not a great deal of inheritance of properties taking place in the type
hierarchy. Instead most inheritance occurs at the individual level, i.e., from the basic level category to
the individual. Thus, Rover inherits attributes from the basic level category dog.

3.1.2. Linguistic Implications.

Perhaps the most dramatic enhancement to our system resulting from our distinguishing basic
and non-basic level categories is our ability to model human performance by choosing the most
appropriate category name for an object. Systems using uniform taxonomies have to make arbitrary
word choice decisions. For example, the NIGEL generator [Sondheimer et al. 1986] generates as specific
a term as possible. However, we know from human categorization research that in the absence of a
specific context that would lead one to use a non-basic level name for an object, the basic level name
should be used.

The dialog shown in Figure 4 illustrates our system’s ability to model human performance in
this respect. Since the basic level name is the most useful and most used name, the most appropriate
answer to the question "What did Lucy pet?" is not the specialization "collie’ or the superordinate
level name "mammal, but the basic level name "dog".

The additional dialog shown in Figure 5 demonstrates that the basic level name is chosen regard-
less of the order in which categories are mentioned, and also demonstrates the natural language input
of classificational information.

4. THEORY - THE INTERNAL STRUCTURE OF CATEGORIES.

Although categories have been viewed traditionally as concepts established by necessary and
sufficient criteria, and many Al systems have modeled natural concepts in this way [Brachman 1983;
Brachman & Schmolze 1984; Fahlman 1979), recent categorization research on naturally occurring con-
cepts does not support this view [Rosch 1976, 1978; Mervis & Rosch 1981; Smith & Medin, 1981].
Rosch has suggested that another way to achieve separateness and clarity of categories is by "‘conceiv-
ing of each category in terms of its clear cases’ [Rosch 1978, p. 36), that is, in terms of prototypes.
Thus, all members of a category are not equally representative of the category, but, rather, some exem-
plars are more representative than others. Prototypical category members are those members which
have the most attributes in common with other members of the category and the fewest attributes in
common with members of contrasting categories.

4.1. Empirical Evidence Supporting Prototype Theory. A large body of empirical evidence
exists which supports the theory that categories are conceived of in terms of prototypes, and that,
therefore, category members vary in representativeness [Rosch 1978; Mervis & Rosch 1981; Smith &
Medin 1981). A brief overview of some supporting evidence follows.

4.1.1. Production of Exemplars. When subjects are asked to list exemplars of superordinate
categories, they list the most representative exemplars. Similarly, when subjects are asked to sketch an
exemplar for a particular category, they sketch the most representative exemplars [Mervis & Rosch,
1981].

4.1.2. Categorization: Speed of Processing. Reaction times studies show that the verification of a
robin as a bird is performed faster than the verification of an ostrich or penguin as a bird. Thus, sub-
Jects are able to verify category membership faster for those objects rated as being prototypical, i.e., for
representative exemplars, than for those rated as non-prototypical [Mervis & Rosch, 1981]. In addition,
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atn parser initialization

: Lucy petted a yellow animal
I understand that Lucy petted a yellow animal

: The animal was a dog
I understand that the yellow animal is a dog

: The dog was a collie
[ understand that the yellow dog is a collie

: What did Lucy pet
Lucy petted a yellow dog

: “end
(end atn parser)

Figure 4

atn parser initialization
: Mary petted a dog
I understand that Mary petted a dog

: The dog is 2 mammal
I understand that the dog is a mammal

: The dog was a labrador
I understand that the dog is a labrador

: What did Mary pet
Mary petted a dog

: Jane petted a manx
I understand that Jane petted a manx

: The manx is a cat
I understand that the manx is a cat

t A cat is a mammal
I understand that cats are mammals

: Mammals are animals

I understand that mammals are animals
: Who petted an animal

Mary petted a dog

and

Jane petted a cat

: “end
(end atn parser)

Figure §
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when a prime, i, the prior mention of the category name, is provided, the response time to verify
category membership of representative exemplars decreases. Priming, however, increases the response
time necessary to verify the membership of non-representative exemplars [Mervis & Rosch, 1981].

4.1.3. Learning and Development of Categories.

Category membership is established first for those exemplars that are most representative of the
category; membership for non-representative exemplars vacillates for some time. Thus, the formation
of category prototypes is related to the initial formation of categories: the most representative members
of categories are the ones first established as category members. In addition, categories are learned more
easily if initial exposure is confined to representative exemplars [Mervis & Rosch 1981].

4.1.4. Categorization: Indeterminacy of Category Membership. Category boundaries are not
well defined. Many experiments have revealed that subjects disagree concerning the category to which
poor exemplars belong [Berlin & Kay 1969; Labov 1973; McCloskey & Glucksberg 1978]. Both Sokal
[1974] and Rosch & Mervis [1975] have demonstrated that poor exemplars contain attributes that over-
lap with those of contrast categories.

4.1.5. Perception of Typicality Differences. There is general agreement among subjects when
they are asked to rate how good an example is of its category, or to choose the exemplar most represen-
tative of its category. [Rosch 1978; Mervis & Rosch 1981].

4.2. Summary of Empirical Evidence. If natural categories are determined by necessary and
sufficient criteria, then category members should be equivalent, i.e., any member of the category should
be as good an example of the concept as any other one. The empirical evidence outlined above does not
support this view. Reaction time studies showing the speed of categorization, studies of the learning
and development of categories, studies of typicality ratings, and studies involving the production of
exemplars, demonstrate that all members are not equally good examples of their category, but rather
that some members of a category are more representative than others.

We are not proposing that a prototype model is an appropriate one for all concepts, but are con-
sidering®only natural concepts in this paper. Some classes of entities may indeed be determined by
necessary and sufficient criteria.

4.3. Representation.

As Rosch points out, use of a prototype model does not specify a representation of categories, it
merely constrains our choice of representation [Rosch 1978]. Different theories of semantic memory
can accomodate this view. However, it seems clear that a representation based on the classical model,
l.e., on necessary and sufficient criteria, cannot accomodate the evidence discussed above.

4.3.1. Additional Constraints.

We agree with the proposal [Rosch 1978] that any representation for a natural concept should
satis(y the requirements of (1) mirroring the structure in the perceived world and (2) cognitive econ-
omy. Cognitive economy dictates that a representation for the concept dog should include only the
essential information for the categorization of novel instances of this concept, i.e., information about
how dogs resemble one another and differ from other concepts. In addition, we believe that cognitive
economy further dictates that we mentally represent categories in terms of an abstraction which is an
amalgamation of the most salient and most modal features of category members. An alternative to
this featural model is the mental image model of prototypes. However, as Johnson-Laird [1983] points
out, images are highly specific. Thus, we do not form an image of trees in general or of fruit in gen-
eral, rather we form an image of a specific tree or a specific fruit. We cannot form an image that is
isomorphic to the class as a whole for these categories. The image model would require mental images
for each of the clear-cut cases or typical category members, rather than a composite of the features of
these typical members, and yet seems no more useful in categorizing novel instances. Thus, the
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featural model is a more economical one. The featural model is also able to capture functional attri-
butes which cannot easily be captured in a mental image or holistic model.

Our representation makes use of one further constraint: our belief that types or categories are
non-projectable or non-referring, i, types do not exist. As Jackendoff [1983] points out, we cannot
point to a type, but only to instances of tvpes. We do not consider a prototype to be an additional
member of its category, but rather consider it to be an abstraction: a list of features. Therefore,
although our representation for the prototypical dog may contain the feature four-leggedness, we do
not concern ourselves with structural information such as this prototypical dog’s typical left front leg.
We are only interested in the abstract feature or property four-leggedness, for its facilitation of
categorization. This constraint allows us to avoid some of the inheritance problems with which
Fahlman’s NETL [1979] must deal, since he must concern himself that an individual elephant does not
inherit the typical elephant’s typical left front leg. (See also Shapiro [1980] for a review of NETL.)

4.4. Implementation of Prototype Model in SNePS.

Our implementation represents a categorv as a collection of abstract features or properties. A
separate proposition is used to capture each abstract feature. Thus, the category bird is represented in
terms of the most salient and modal features of the members of the concept bird, e.g., flies, feathered,
winged. has a beak, sings. etc. Each of these properties is represented with a default generalization,
e.g., flies is represented with a default generalization that may be paraphrased as: For all x if x isa
bird, then presumably x flies. Figure 6 shows a partial representation for the prototype bird, using
two of the features mentioned above. Thus, a prototype in our system consists of a bundle of default
generalizations, all of which share the same antecedent, x is a bird, in our example, and the same vari-
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4.5. Effect of the Level of Abstraction on the Representation.

While superordinate level categories are formed in the course of the investigation of underlying
principles, basic level categories are formed by exposure to multiple instances, on the basis of ostensive
features. Therefore, it seems that basic level level categories should exhibit more of a protypicality
structure than superordinate level categories. The basic level is also the level of abstraction at which
attributes are clustered; very few attributes cluster at higher levels in the taxonomy. Thus, it seems
appropriate to use distinct representations for the internal representation of basic and non-basic level
categories: a prototype representation for basic level categories and perhaps, 2 mixed representation
that combines deductive rules which are true universals, e.g., mammals are warm-blooded, with an
exemplar component, that is, with a listing of prominent exemplars, for superordinate level concepts.

4.6. Understanding Generic Sentences.

This work grew out of an interest in understanding generic sentences, i.., sentences containing
generic concepts. We are now considering whether the prototype model is of use in understanding
these sentences when they involve basic level or subordinate level concepts. One of the problems these
sentences pose for an AI/NLU system is that a multiplicity of quantifiers can be posited for sentences
of this type. Consider the following sentences:

(1) Cardinals are red. (The mature males are red.)

(2) Mosquitos carry malaria. (Very few actually carry malaria.)
(3) Dogs are four-legged. (Most are four-legged.)

(4) Shamrocks are green. (Most are green.)

(5) Men are mortal. (Mortality is a necessary criterion in this case.)

It may be more appropriate to examine the properties or features expressed in terms of saliency, rather
than to try to determine the sense of quantification in these sentences. FFeatures which we consider to
be especially salient, such as (ransmits dangerous disease, may be part of the abstraction that form the
prototypical mosquito, regardless of the sense of quantification in the sentence or utterance.

4.7. PROCESSING IMPLICATIONS.

The non-uniformity of human category systems also has implications for a processing model for
categorization. Category research has established that objects can be identified as members of their
basic level category more rapidly than as members of their superordinate or subordinate categories. A
possible processing model for our implementation, compatible with Rosch’s empirical evidence and the
current general processing assumptions about categorization involving featural models [Smith & Medin
1981] such as ours is the following. An object is first identified or recognized as a member of its basic
class, since properties or attributes are clustered at the basic level. Because of this bundling of attri-
butes at the basic level, this processing involving feature matching can be performed quickly. Categori-
zation of an object as a member of its subordinate classes requires additional processing time, because
additional features must be matched, some of which are much less salient than the features for
categorizing an object at the basic level. Categorization of an object as a member of its superordinate
classes requires inferencing using the type hierarchy. We use path-based inference to accomplish this
[Shapiro 1986, 1978). Performing this inferencing, of course, requires additional processing time.

5. CONCLUSIONS.

We have incorporated principles of categorization derived from several years of research in our
AI/NLP system. Principles of categorization, taken seriously, affect the design and representation of
taxonomies for natural concepts. We distinguish one level, the basic level, as the core of our
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taxonomies, using a representation for membership in basic categories distinct from that used for
membership in non-basic categories. This representation allows our system to model human perfor-
mance in the generation of appropriate names for objects: when there is no context effect, the basic
level name is used.

The use of a prototype representation and storing of attributes at the basic level will allow us to
model human performance in categorization tasks involving basic and non-basic level objects.
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