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Abstract

Per- and polyfluoroalkyl substances (PFAS) are a large group of manmade chemicals that impose 

emerging environmental concerns. Among them, short-chain per- and polyfluorinated carboxylic 

acids represent an important subgroup used as building blocks of biologically active chemicals and 

functional materials. Some are also considered PFAS alternatives, and some could be byproducts 

of the physicochemical treatment of PFAS. However, little is known about the environmental 

fate of short-chain fluorinated carboxylic acids (FCAs) and their defluorination/transformation by 

microorganisms. To fill the knowledge gap, we investigated the structure–reactivity relationships 
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in the aerobic defluorination of C3–C5 FCAs by activated sludge communities. Four structures 

exhibited greater than 20% defluorination, with 3,3,3-trifluoropropionic acid being almost 

completely defluorinated. We further analyzed the defluorination/transformation pathways and 

inferred the structures susceptible to aerobic microbial defluorination. We also demonstrated that 

the defluorination was via cometabolism. The findings advance the fundamental understanding 

of aerobic microbial defluorination and help assess the environmental fate of PFAS. Since 

some short-chain PFAS, such as 3,3,3-trifluoropropionic acid, are the incomplete defluorination 

byproducts of advanced reduction processes, their defluorination by activated sludge communities 

sheds light on the development of cost-effective chemical–biological PFAS treatment train 

systems.

Graphical Abstract

INTRODUCTION

Organofluorines, particularly per- and polyfluoroalkyl substances (PFAS), have caused 

a rapidly growing concern in public health and ecosystems.1–6 Short-chain PFAS 

are synthesized as important building blocks and intermediates of biologically active 

compounds and functional materials.7–9 Also, as long-chain legacy PFAS have led to 

increasing regulatory attention, structurally similar short-chain PFAS have been adopted 

as alternatives for commercial manufacturing.1 Meanwhile, some short-chain PFAS may 

be formed as the incomplete defluorination byproducts during physicochemical treatment 

of PFAS10–12 and the biotransformation products of other synthetic organofluorines.13 The 

environmental fate, transport, and biotransformation of ≥ C7 PFAS have been extensively 

studied.14–18 Compared to those long-chain ones, shorter-chain PFAS possess higher 

motility in water and lower adsorption potential to particles, which enable them to easily 

transport through water bodies and soil in long distance and be detected in increasing 

presence in aquatic environments.19,20 However, their biodegradability by environmental 

microorganisms and activated sludge communities in wastewater treatment plants (WWTPs) 

is largely unknown.

Given the broad applications and increasing occurrence of short-chain PFAS, we aimed 

to explore the defluorination of select short-chain fluorinated carboxylic acids (FCAs) 

by activated sludge communities and determine the structure–reactivity relationship in 

the aerobic microbial defluorination, hence providing critical fundamental knowledge to 

assess the environmental fate of short-chain PFAS and guide the design of cost-effective 

treatment strategies. We investigated 14 commercially available C3–C5 FCAs and identified 

the defluorination pathways of the transformed ones. We further summarized the specific 

PFAS structures susceptible to aerobic microbial defluorination and discussed the critical 
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implications of our findings to the understanding of the environmental fate of PFAS and the 

application of biological approaches in treating PFAS.

MATERIALS AND METHODS

Chemicals.

The 14 short-chain FCAs (Figure 1A and details in Table S1 and Figure S1) were purchased 

from SynQuest Laboratories (Alachua, FL).

Biotransformation/Biodefluorination Batch Experiments.

Activated sludge samples (~4400 mg/L as mixed liquor suspended solids) were obtained 

in the aeration tank of a local municipal WWTP the same day of the experiment. The 

biotransformation experiments were conducted in batch reactors (150 mL, loosely capped) 

for 3–14 days, with the dissolved oxygen (DO) above 3 mg/L (Figure S2) over 14 days. 

Each biotransformation reactor contained 50 mL of fresh activated sludge and 50 μM 

individual FCAs. Heat-inactivated controls were prepared using autoclaved (121 °C, 40 min) 

sludge filtrate (0.22 μm filter). A no-FCA sludge control reactor was also performed to 

obtain the sludge matrix and correct the fluoride measurement. Details of the cosubstrate 

experiment and the activated sludge treatment of the effluent from a photochemical reactor 

treating perfluoropropionic acid (PFPrA) are described in the Supporting Information.

Triplicated reactors were set up for all the above experiments. The reactors were shaken on 

an open-air shaker at 150 rpm at room temperature. The culture suspension was sampled 

(~3 mL) up to 14 days. Sampling after an extended incubation of 14 days was done for 

structures that did not show significant removal after 72 h (methanol and ammonium were 

supplied to maintain the sludge activity after 3 days). Samples were centrifuged at 13,000 

rpm for 10 min. The supernatant (~2.5 mL) was collected for fluoride quantification and 

analysis of the parent compound and transformation products. The cell pellets were subject 

to methanol extraction for analysis of adsorbed and intracellular parent compounds and 

transformation products (see the detailed procedure in the Supporting Information).

Fluoride Measurement.

Fluoride ions were measured using an ion-selective electrode (ISE) (HACH). The 

quantification limit was 0.01 mg/L (c.a. 0.53 μM). The ISE results were cross-validated 

using ion chromatography (IC). Details of the two methods are provided in the Supporting 

Information. The differences between the two were within 10% (Figure S3). The 

defluorination degree for the removed portion of PFAS was determined using the formula 

below

Defluorinationdegree (%) = Max. fluoride formed
RemovedPFASconc.×number of F inonemolecule × 100%

Analytical Methods.

The parent FCAs and transformation product suspects were analyzed by an ultrahigh 

performance liquid chromatography coupled to a high-resolution quadrupole orbitrap mass 
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spectrometer (UHPLC-HRMS/MS, Q Exactive, Thermo Fisher Scientific, Waltham, MA). 

Here, a 2 μL sample was injected into a Hypersil Gold column (particle size 1.9 μm, 2.1 

mm × 100 mm, Thermo Fisher Scientific) and eluted at 0.30 mL/min with water (A) and 

methanol (B), each containing 10 mM ammonium acetate. The analytical method details and 

transformation product analysis are described in the Supporting Information.

RESULTS AND DISCUSSION

Biodefluorination of Short-Chain PFAS by Activated Sludge Communities Was Structure 
Dependent.

We investigated a series of commercially available C3–C5 FCAs (14 total), which have 

various fluorine substitution degrees, linear and branched, and saturated and unsaturated 

structures. Six compounds showed a significant removal (>20%) after 14 days compared to 

the heat-inactivated abiotic controls (Figure 1A and Figure S4). Slight adsorption or uptake 

of those compounds was observed on day 0, which was further accumulated and accounted 

for less than 10% of the total amount after 3 days (Figure S5). For C3a, C3b, and C5a, the 

bioaccumulated portion was depleted after 3 days, consistent with their complete removal. 

Two C3 structures (C3a and C3b) and two C5 structures (C5a and C5b) showed significant 

microbial defluorination with a maximum fluoride formation of greater than 10 μM after 

a 3-day incubation, compared to a nearly zero fluoride formation in the heat-inactivated 

control (Figure 1B–E). The other structures did not exhibit defluorination (<6%) even after 

14 days. Although not being defluorinated, C4b and C4c were biotransformed (Figure 1A).

According to Figure 1A, the C–H bonds at the α-carbon seemed to facilitate the initial 

microbial attack. C3a with −CH2– at the α-position achieved a much higher defluorination 

degree than C3b with one fluorine substitution at the α-position. C3d and C3e with 

two α-fluorine substitutions did not show any defluorination activity. The defluorination 

inefficiency of C4d and C4e also likely resulted from the lack of C–H bonds at the 

α-position. Interestingly, different from C3a and C5a, the C4 structure with −CH2– at 

the α-position (C4a) did not show any defluorination activity. The slight 72 h removal 

(~14%) was largely due to the adsorption (~10%) and evaporation (~6%) (Figure S4). The 

removal increased to 20% after 14 days, which could be due to continuing adsorption/cell 

uptake. Even if a small amount of C4a could undergo β-oxidation, trifluoroacetate will be 

the product, which cannot be defluorinated.21 In contrast, the β-oxidation of C5a could 

form C3a, which could be defluorinated. This implies that microbial aerobic defluorination 

was more likely to occur for odd-chain structures similar to C5a (CF3(CH2)n-2COOH) than 

even-chain ones. Neither the C=C double bond in C4c nor the single H substitution at the 

−CF3 in C4b changed the defluorination inefficiency of C4a. However, the two structures 

did exhibit significantly higher removal via nondefluorinating pathways.

Additionally, the degree of fluorine substitution affected the microbial defluorination at 

the α-position. For instance, C3b and C3c both have one α-fluorine substitution, but 

C3c with −CF3 in place of −CH3 in C3b was not microbially defluorinated (Figure 

1A). It seems that the 2-haloacid C3b underwent hydrolytic defluorination, which can 

be catalyzed by 2-haloacid dehalogenases.22 If so, the additional fluorine substitutions in 
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C3c might negatively affect the substrate affinity of 2-haloacid dehalogenases, rendering 

no defluorinating activity. Perfluorinated compounds (C4–C8) are known to be recalcitrant 

to aerobic biotransformation;23–25 thus, it was within our expectation that C3f was not 

defluorinated. Significant biotransformation/biodefluorination was observed for C5a and 

C5b but not for C5c with two more fluorine substitutions.

Defluorination/Transformation Pathways.

We further examined the defluorination pathways of the four defluorinated structures. 

On the basis of the defluorination degree and identified β-oxidation intermediates, we 

proposed β-oxidation-like pathways for C3a, C5a, and C5b, using the initial step of typical 

β-oxidation (HS–CoA activation) (Figure 2). Since no intermediates containing −S−CoA 

were identified, further evidence will be needed in future studies to validate the proposed 

pathway. The 3,3,3-trifluoropropionic acid (C3a) exhibited the highest defluorination degree 

(84% ± 10%), suggesting that the three C–F bonds were almost all cleaved. As the fluoride 

formation and C3a decay showed an approximately 3:1 molar ratio (Figure 1B) and the 

defluorination ceased upon C3a depletion, the cleavage of the three C–F bonds likely 

occurred simultaneously or very rapidly stepwise. A defluorination pathway was proposed 

in Figure 2A. After the activation of C3a (reaction ①), an HF elimination (reaction ②) 

occurred at the α-carbon, similar to the first step proposed for the 6:2 and 8:2 fluorotelomer 

carboxylic acids (FTCAs).16,26 Then, hydration (reaction ③) occurred at the C=C bond, 

forming a difluoroalcohol, which was unstable27 and quickly defluorinated into malonyl-

CoA via spontaneous HF elimination (reaction ④) followed by hydrolysis (reaction ⑤). No 

transformation products were detected in the culture suspension or the cells, probably due 

to quick uptake, defluorination, and utilization of the formed small fatty acids by the cells 

or due to the small size and volatile property of the products that cannot be detected by the 

LC-HRMS.

The defluorination degree of the unsaturated structure (C5b) and the detection of the β-

oxidation intermediate (3-hydroxyl acid) (Figures S6 and S7) support the proposed pathway 

of C3a. C5b could first undergo β-oxidation, forming a two-carbon-shortened structure with 

unsaturated α- and β-carbons (Figure 2B). It was then subject to a similar hydration reaction 

as reaction ③ in Figure 2A, followed by spontaneous cleavage of two C–F bonds at the 

end carbon, ending up with monofluoromalonyl-CoA (Figure 2B). A defluorination degree 

of ~70% was observed for C5b (Figure 1A and D), consistent with the proposed pathway 

where two out of the three C–F bonds are cleaved. The incomplete transformation of C5b 
suggests that monofluoromalonyl-CoA could be toxic to cells and cause a halt of substrate 

uptake and turnover,28 similar to the toxic fluoroacetate/fluoroacetyl-CoA.29

Trifluoropentanoic acid (C5a) was removed completely with some fluoride formation within 

3 h. Then, the defluorination continued to a significant level (Figure 1C), indicating 

that it occurred to the primary transformation product of C5a, which could be 3,3,3-

trifluoropropionic acid (C3a) via β-oxidation (Figure 2C) given the detection of 3-hydroxyl 

acid (Figures S6 and S7). However, the defluorination degree of C5a was only 37%, 

instead of nearly 100% for C3a. The reason could be a partial transformation of C5a 
via β-oxidation, and the rest was transformed via unclear nondefluorinating pathways. C5a 
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could undergo α-oxidation similar to that previously reported, forming C4a that cannot be 

defluorinated.18 However, no intermediates of α-oxidation of C5a or the product C4a were 

detected.

As a 2-haloacid, 2-fluoropropionic acid (C3b) is like monofluoroacetate and may also 

undergo hydrolytic defluorination (forming lactate), which can be catalyzed by 2-haloacid 

dehalogenases in aerobic bacteria.22,30,31 C3b was completely transformed but only 

showed ~20% defluorination after 72 h (Figure 1A). It indicates that 80% of C3b 
underwent nondefluorinating transformation pathways, which remain elusive as no plausible 

transformation products were identified. C3b could undergo decarboxylation, forming the 

volatile fluorinated alkane, which cannot be detected by LC-MS. Decarboxylation without 

defluorination could also occur to C4b and c that were biotransformed but not defluorinated, 

as well as C3a, which exhibited less than 100% defluorination.

Thus far, tremendous efforts have been invested in understanding the environmental fate 

and transport of FCAs using microcosms and microbial isolates.16,33,34,36–39,42–51 In 

Table 1, we summarized the aerobic defluorination reported in the literature and this 

study for C2–C10 FCAs and the alcohol precursors oxidizable to carboxylic acids. In the 

table, all defluorinated structures share a common feature: a functional group subject to 

enzymatic defluorination or nondefluorinating reactions that form unstable intermediates 

with fluoroalcohol moieties causing spontaneous C–F cleavage. Such functional groups 

include (i) C–H bonds at the α-position and (ii) sp2 C–F bonds at the β-position. The n:2 

fluorotelomer alcohols (FTOHs) and carboxylic acids (FTCAs) have α-C–H bonds. Their 

initial defluorination steps (n = 4, 6, 8) (Figure S8)32,35 were similar to those proposed for 

C3a (1:2 FTCA) (Figure 2A). After the cleavage of two C–F bonds, n:2 FTCAs (n ≥ 2) 

are turned into the two-carbon shorter perfluorinated acids, which are resistant to microbial 

oxidation. The reported maximum aerobic defluorination degrees for 6:2 (16%, 2 out of 

13 F) and 8:2 (12%, 2 out of 17 F) FTOH/FTCA (Table 1) agree with the two C–F bond 

cleavage pathways. It also implies that defluorination via the other deeper defluorination 

pathways, such as forming three-carbon shorter perfluorinated acid and the “one-carbon 

removal” pathway,18,40 were minor (Figure S8). Defluorination via the minor pathways 

could increase for shorter chain structures, as 4:2 FTOH had a 37% aerobic defluorination 

degree (3 out of 9 F), higher than that for two F removal (22%).32 Besides the microbially 

attackable C–H bonds at the α-position, unsaturated α- and β-carbons tend to be subject to 

enzymatic hydration, which leads to spontaneous cleavage of the β-C–F bond(s) from the 

formed fluoroalcohol moiety.

Defluorination of C3a by Activated Sludge Was via Cometabolism.

A cometabolic process is referred to as the degradation of nongrowth substrates with 

the obligate presence of a growth substrate.52 We demonstrated that the nearly complete 

defluorination of C3a was cometabolic using biodefluorination experiments with C3a as the 

sole external substrate and with a growth substrate. When providing C3a (2 mM) as the 

sole external substrate in the fresh activated sludge, only 10% C3a was removed with ~0.3 

mM fluoride released after 72 h (Figure S9). It suggests that C3a was not able to sustain 

metabolic activities and support cell growth as the sole energy and carbon source. Since 
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the first three steps of the C3a defluorination pathway (Figure 2A) were enzyme mediated, 

without growth substrates to conserve energy and synthesize new enzymes, the activities of 

the existing enzymes would decrease over time, rendering incomplete defluorination (50%). 

Also, the high concentration of C3a could be toxic and inhibit enzyme activities.

We further investigated the defluorination of C3a in 2% (v/v) sludge subcultures with and 

without a growth substrate. With C3a (50 μM) as the sole substrate, no defluorination or 

transformation of C3a was observed, whereas both propionate and glucose induced C3a 
defluorination (Figure S10), indicating cometabolism. Propionate led to a higher fluoride 

formation (41 vs 28 μM for glucose) (Figure S10), suggesting it is a better growth substrate 

to induce the propionate-utilizing enzymes, which seemed to cometabolize the structurally 

similar C3a. However, the defluorination degree was less than 30% after 18 days, which 

was much lower than that in the original activated sludge community (>80% after 3 days). It 

could be due to the reduced initial biomass, and the added growth substrate did not activate 

and maintain the cometabolic defluorination enzymes at a similar level as in the original 

activated sludge community. Cometabolic defluorination of FTOHs (n = 4, 6, 8) was also 

reported in Pseudomonas strains supplied with alkanes as the growth substrate.32

Environmental Implications.

This study expands our fundamental knowledge of aerobic microbial defluorination of short-

chain FCAs by activated sludge communities. The first implication of our findings is to the 

environmental fate of PFAS; the microbial aerobic defluorination, if any, is only to a limited 

degree for many PFAS structures. Only C–F bonds in specific structures are vulnerable 

to microbial cleavage, for example, β-C–F bonds with α-C–H bond(s) in carboxylic acids 

(or alcohols). To date, the reported aerobic defluorination of polyfluorinated structures was 

via either enzymatic HF elimination likely by acyl-CoA dehydrogenases41 or spontaneous 

defluorination of unstable fluorinated intermediates, which are typically formed from 

enzymatic reactions at other functional moieties than C–F bonds.16,17,26,41 Unless novel 

biocatalysts capable of cleaving C–F bonds at other positions could be discovered, aerobic 

microbial transformation of PFAS by activated sludge would end up with the accumulation 

of more persistent products from partial defluorination of the weak C–F bonds. Extensive 

screening of PFAS structures and biocatalysts is needed. The understanding of microbially 

susceptible C–F bonds can help predict the environmental fate of PFAS structures, thus 

guiding environmental risk assessment and regulations.

The second implication is to the treatment strategies of PFAS; although it may not 

be a stand-alone approach, microbial treatment could be integrated with physiochemical 

treatment for cost-effective performance. Perfluorinated structures can be defluorinated via 

advanced reduction by UV-generated hydrated electrons.11 However, the unintended H/F 

exchange pathway forms more recalcitrant polyfluorinated byproducts, rendering incomplete 

defluorination.11 Thus, microbial defluorination may be an economical post-treatment step 

to enhance the overall defluorination. C3a has been reported as the major byproduct of 

PFPrA after the advanced reduction treatment by a UV reactor.12 We employed activated 

sludge to treat the PFPrA treatment effluent. Over 80% of organofluorine byproducts in 

the effluent were removed, mostly due to C3a defluorination (Figure S11). It achieved 
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an additional 10%–15% defluorination (80%–85% defluorination combined). This result 

provides initial proof for the cost-effective chemical–biological PFAS treatment train 

system. Various polyfluorinated byproducts may be formed from incomplete chemical 

destruction of PFAS, many of which were not structurally elucidated.11,12,53,54 Further 

demonstrations of the integrated chemical–biological treatment is needed via systematic 

investigation of the structures and biodefluorination efficacy of chemical treatment 

byproducts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Parent compound removal and defluorination degree of all tested short-chain FCAs after 72 

h (A) and temporal parent compound decay and fluoride formation for the four structures 

with defluorination activities (B, C3a; C, C3b; D, C5a; E, C5b; n = 3).
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Figure 2. 
Proposed defluorination pathway of C3a (A), C5b (B), and C5a (C). Note: In the boxes are 

the proposed intermediates whose hydrolyzed products (the 3-hydroxyl acids) were detected; 

in brackets are unstable intermediates.
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