
UCLA
UCLA Electronic Theses and Dissertations

Title
Randomized Decision Making in Stochastic Control and Revenue Management

Permalink
https://escholarship.org/uc/item/2m0237hd

Author
Guan, Xinyi

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2m0237hd
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Randomized Decision Making

in Stochastic Control and Revenue Management

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Management

by

Xinyi Guan

2024

© Copyright by

Xinyi Guan

2024

ABSTRACT OF THE DISSERTATION

Randomized Decision Making

in Stochastic Control and Revenue Management

by

Xinyi Guan

Doctor of Philosophy in Management

University of California, Los Angeles, 2024

Professor Velibor Mǐsić, Chair

Recent studies on randomized decision-making have uncovered the potential advantages of

incorporating randomization into decision-making processes. In this Ph.D. dissertation, we

consider randomized decisions in two specific problems in stochastic control and revenue

management: optimal stopping and robust pricing.

Optimal stopping is the problem of determining when to stop a stochastic system in order

to maximize reward, which is of practical importance in domains such as finance, operations

management and healthcare. Existing methods for high-dimensional optimal stopping that

are popular in practice produce deterministic linear policies – policies that deterministically

stop based on the sign of a weighted sum of basis functions – but are not guaranteed to

find the optimal policy within this policy class given a fixed basis function architecture. In

Chapter 2, we propose a new methodology for optimal stopping based on randomized linear

policies, which choose to stop with a probability that is determined by a weighted sum of

basis functions. We motivate these policies by establishing that under mild conditions, given

a fixed basis function architecture, optimizing over randomized linear policies is equivalent to

ii

optimizing over deterministic linear policies. We formulate the problem of learning random-

ized linear policies from data as a smooth non-convex sample average approximation (SAA)

problem. We theoretically prove the almost sure convergence of our randomized policy SAA

problem and establish bounds on the out-of-sample performance of randomized policies ob-

tained from our SAA problem based on Rademacher complexity. We also show that the SAA

problem is in general NP-Hard, and consequently develop a practical heuristic for solving

our randomized policy problem. Through numerical experiments on a benchmark family of

option pricing problem instances, we show that our approach can substantially outperform

state-of-the-art methods.

In Chapter 3, we consider the robust multi-product pricing problem. It is to determine

the prices of a collection of products so as to maximize the worst-case revenue, where the

worst case is taken over an uncertainty set of demand models that the firm expects could

be realized in practice. A tacit assumption in this approach is that the pricing decision is

a deterministic decision: the prices of the products are fixed and do not vary. In Chapter

3, we consider a randomized approach to robust pricing, where a decision maker specifies

a distribution over potential price vectors so as to maximize its worst-case revenue over

an uncertainty set of demand models. We formally define this problem – the randomized

robust price optimization problem – and analyze when a randomized price scheme performs

as well as a deterministic price vector, and identify cases in which it can yield a benefit.

We also propose two solution methods for obtaining an optimal randomization scheme over

a discrete set of candidate price vectors based on constraint generation and double column

generation, respectively, and show how these methods are applicable for common demand

models, such as the linear, semi-log and log-log demand models. We numerically compare

the randomized approach against the deterministic approach on a variety of synthetic and

real problem instances; on synthetic instances, we show that the improvement in worst-case

revenue can be as much as 1300%, while on real data instances derived from a grocery retail

scanner dataset, the improvement can be as high as 92%.

iii

The dissertation of Xinyi Guan is approved.

Felipe Caro

Auyon Adnan Siddiq

Christopher Siu Tang

Velibor Mǐsić, Committee Chair

University of California, Los Angeles

2024

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Randomized Policy Optimization for Optimal Stopping 2

1.2 Randomized Robust Price Optimization . 3

2 Randomized Policy Optimization for Optimal Stopping 5

2.1 Introduction . 5

2.2 Literature Review . 10

2.3 Problem Definition . 14

2.3.1 Optimal stopping problem . 14

2.3.2 Deterministic linear policies . 15

2.3.3 Data-driven optimization over deterministic linear policies 16

2.3.4 Randomized linear policies . 18

2.3.5 Equivalence of deterministic and randomized policies 19

2.4 Statistical properties . 24

2.4.1 Convergence of randomized policy SAA problem 25

2.4.2 Rademacher Complexity . 27

2.5 Solution Methodology . 30

2.5.1 Complexity of randomized policy SAA problem 30

2.5.2 Backward optimization algorithm . 31

2.5.3 Comparison of backward optimization algorithm with least-squares

Monte Carlo . 34

2.6 Application to option pricing . 36

v

2.6.1 Background . 37

2.6.2 Experiment #1: An illustrative example with n = 1 39

2.6.3 Experiment #2: multiple assets . 42

3 Randomized Robust Price Optimization . 48

3.1 Introduction . 48

3.2 Literature review . 52

3.3 Problem definition . 60

3.3.1 Nominal price optimization problem 60

3.3.2 Deterministic robust price optimization problem 62

3.3.3 Randomized robust price optimization problem 63

3.4 Benefits of randomization . 64

3.4.1 Concave revenue function uncertainty sets 65

3.4.2 Quasiconcavity in p and quasiconvexity in u 70

3.4.3 Finite price set P . 72

3.5 Solution algorithm for finite price set P , convex uncertainty set U 74

3.5.1 General solution approach . 75

3.5.2 Linear demand model . 76

3.5.3 Semi-log demand model . 77

3.5.4 Log-log demand model . 82

3.6 Solution method for finite P , finite U . 83

3.7 Numerical experiments . 84

3.7.1 Experiments with convex U and linear, log-log and semi-log demand

models . 85

vi

3.7.2 Experiments with discrete U and and linear, log-log and semi-log de-

mand models . 90

3.7.3 Results using real data instances . 94

4 Conclusions . 101

A Randomized Policy Optimization for Optimal Stopping 103

A.1 Omitted proofs . 103

A.1.1 Proof of Theorem 1 . 103

A.1.2 Proof of Theorem 2 . 106

A.1.3 Proof of Theorem 3 . 112

A.1.4 Proof of Corollary 1 . 118

A.1.5 Proof of Theorem 4 . 119

A.1.6 Proof of Proposition 1 . 119

A.1.7 Proof of Theorem 5 . 122

A.1.8 Proof of Theorem 6 . 134

A.2 Additional numerical results . 142

A.2.1 Warm starting of RPO method using LSM 142

A.2.2 Additional policy performance results for Section 2.6.3 143

B Randomized Robust Price Optimization . 146

B.1 Omitted proofs . 146

B.1.1 Proof of Theorem 7 . 146

B.1.2 Proof of Theorem 8 . 147

B.1.3 Proof of Theorem 9 . 148

vii

B.1.4 Proof of Corollary 2 . 149

B.1.5 Proof of Corollary 3 . 150

B.1.6 Example of necessity of uniqueness assumption in Corollary 3 152

B.1.7 Proof of Proposition 2 . 154

B.2 Deterministic robust price optimization for finite P , convex U under the semi-

log and log-log demand models . 154

B.2.1 Semi-log model . 155

B.2.2 Log-log model . 157

B.3 Solution method for finite P , finite U . 158

B.3.1 Primal and dual subproblems for linear demand model 165

B.3.2 Primal and dual subproblems for semi-log demand model 166

B.3.3 Primal and dual subproblems for log-log demand model 169

B.4 Additional numerical results . 171

B.4.1 Estimation results for orangeJuice data set 171

B.4.2 Performance results for orangeJuice data set 171

viii

LIST OF FIGURES

2.1 Plot of thresholds for policies in n = 1 experiment. 43

ix

LIST OF TABLES

2.1 Out-of-sample performance of different policies in n = 1 experiment. 42

2.2 Out-of-sample performance for different policies, for n = 8 assets. 45

2.3 Computation time for different policies, for n = 8 assets. 46

3.1 Results for linear instances with convex U . 87

3.2 Results for semi-log instances with convex U . 88

3.3 Results for log-log instances with convex U . 89

3.4 Results for linear instances with discrete U . 97

3.5 Results for semi-log instances with discrete U 98

3.6 Results for log-log instances with discrete U . 99

3.7 Possible price levels for products in orangeJuice experiment instances. 99

3.8 Results for orangeJuice pricing problem with semi-log demand and convex U . 100

3.9 Results for orangeJuice pricing problem with log-log demand and convex U . . 100

A.1 Out-of-sample performance for different policies, for n = 4 assets. 144

A.2 Out-of-sample performance for different policies, for n = 16 assets. 145

B.1 Estimation results for α and β. 171

B.2 Estimation results for γ for orangeJuice data set. 172

B.3 Results for orangeJuice pricing problem with semi-log demand and discrete U . 172

B.4 Results for orangeJuice pricing problem with log-log demand and discrete U . 173

x

ACKNOWLEDGMENTS

First and foremost, I would like to express my heartfelt appreciation and gratitude to my

esteemed advisor Professor Velibor Mǐsić for his unwavering support, guidance, and encour-

agement. Velibor has been guiding me since the very beginning of my research journey in

operations, which traces back to my master’s study at UCLA. He has consistently offered in-

valuable insights, suggestions, and encouragement during our discussions, which have played

a crucial role in shaping my research endeavors and fostering scholarly growth. I learned

from him how to capture insights from literature, identify important research questions, and

develop data-driven methodologies. I am incredibly fortunate to have Velibor as my advisor

and I profoundly appreciate his mentorship over the past five years.

I would like to extend my sincere thanks to Professors Felipe Caro, Auyon Siddiq and

Christopher Tang for being my thesis committee members, providing insightful feedback

on my research during both my practice job talk and oral defense. I am also grateful to

Professors Fernanda Bravo, Francisco Castro and Scott Rodilitz for their invaluable support

during my academic job market season.

I would also like to express my thanks to the fellow students at DOTM. I am thankful to

my senior peers, especially Irem, Jingwei, Mirel, and Yi-Chun, for supporting me during the

pandemic lockdowns and the job market season. In particular, I would like to express my

special gratitude to Jingwei and Yi-Chun for sharing their valuable job market experience

with me. I am also grateful to my cohort, Jian, Jingyuan, and Zach, for their help and

support throughout my Ph.D. study.

Finally, I want to express my deepest gratitude to my parents, Jinhua Yu and Shouping

Guan. Their steadfast love and unwavering support have been my enduring source of confi-

dence and strength, enabling me to overcome setbacks in life. I am grateful for everything

they have done for me from the bottom of my heart.

xi

VITA

2017 B.S. (Chemistry), Peking University

2018 M.S. (Business Analytics), UCLA

2019 Anderson Fellowship, UCLA Anderson School of Management

2023 Finalist, INFORMS Finance Section Best Student Paper Competition

2023 Dissertation Year Fellowship, UCLA

PUBLICATIONS

X. Guan and V. V. Mǐsić. Randomized Policy Optimization for Optimal Stopping. Revise

and Resubmit for Management Science, 2022.

X. Guan and V. V. Mǐsić. Randomized Robust Price Optimization. Major Revision for

Management Science, 2023.

xii

CHAPTER 1

Introduction

Many important problems involve making decisions in the presence of randomness or uncer-

tainty. For example, in the field of stochastic control, a stochastic system evolves randomly

and the goal is to find optimal control policies that optimize certain desired objective. For

another example in revenue management, customer demand patterns are often uncertain and

businesses aim to maximize revenue and improve profitability. Typically in these problems,

one makes deterministic decisions. In the first example of stochastic control, the decision

maker finds optimal policies that deterministically recommend a single best action for a

given system state. In the second example of revenue management, the decision maker

deterministically chooses fixed pricing or invenetory level for each period of the market.

In recent years, there has been a growing research interest in exploring randomized de-

cision making, which involves selecting actions through a probabilistic method rather than

solely relying on deterministic rules or algorithms. Studies have demonstrated that random-

ization can help the decision maker in either finding optimal solutions or achieving better

performance. In this dissertation, motivated by the potential benefits of randomization in

decision making, we explore randomized approaches for two specific problems in stochastic

control and revenue management: optimal stopping and robust pricing.

The dissertation is organized as follows. In Chapter 2, we propose a new methodology

for optimal stopping based on randomized linear policies. We apply our randomized policy

approach to a standard option pricing problem and demonstrate its outperformance relative

to existing state-of-the-art methods. In Chapter 3, we consider a randomized approach to

1

robust multi-product price optimization and propose tractable solution methods to obtain

optimal randomized pricing schemes. We numerically compare our randomized robust pricing

approach against the traditional deterministic robust pricing approach and highlight the

substantial benefit of randomization. In the remainder of this section, we provide a high-

level overview of our work in each chapter.

1.1 Randomized Policy Optimization for Optimal Stopping

Optimal stopping is the problem of deciding at what time to stop a stochastic system in order

to maximize the expected reward. In each period, a decision maker must decide whether to

stop the system, or allow it to continue for one more period. If the decision maker chooses

to stop the system, she obtains a state-dependent reward; otherwise, she obtains no reward,

but she may potentially stop the system at a later period for a higher reward.

In solving high-dimensional optimal stopping problems, existing approximate dynamic

programming (ADP) methods that are popular in practice implement deterministic linear

policies that deterministically stop based on the sign of a weighted sum of basis functions.

The most prevalent method among these approaches is the least squares Monte Carlo (LSM)

method introduced by Longstaff and Schwartz (2001). The LSM method uses least squares

regression at each period to predict the continuation value based on the current state, using

a sample of trajectories. Essentially, the linear weights in LSM policies are selected not with

regard to policy optimization but rather to get better approximation of continuation values.

This, however, is not guaranteed to find the optimal policy given a fixed basis function archi-

tecture. This is similar to the central issue in the growing contextual optimization literature,

where the conventional “predict-then-optimize” approach that involves estimating a predic-

tive model without knowledge of the downstream prescriptive problem is outperformed by

approaches where the predictive model is estimated using a loss function that is tailored to

the prescriptive problem (Elmachtoub and Grigas 2021).

2

This observation motivates us to consider directly maximizing the sample average esti-

mate of the expected reward over the weights that define the deterministic linear policies. But

such a sample average approximation (SAA) problem is a challenging discrete optimization

problem. In view of this, we instead consider randomized linear policies that probabilistically

choose to stop or continue at each period, where the stopping probability is characterized

by a logistic function and the logit is a weighted sum of basis functions.

In Chapter 2, we formulate the problem of learning randomized linear policies from data

as an SAA problem with a smooth non-convex objective function. We prove that under

mild conditions, given a fixed basis function architecture, optimizing over randomized linear

policies is equivalent to optimizing over deterministic linear policies. We theoretically show

the almost sure convergence of our randomized policy SAA problem and establish bounds

on the out-of-sample performance of randomized policies obtained from our SAA problem

based on Rademacher complexity. We also show that our proposed SAA problem is in

general NP-Hard, and consequently develop a practical heuristic for effectively solving our

randomized policy problem. Our contributions are not only theoretical but also numerically

grounded. Through numerical experiments on a benchmark family of option pricing problem

instances, we show that the policies generated by our randomized policy approach in general

are substantially better than policies produced by LSM, and are as good or better than

policies produced by the pathwise optimization method (Desai et al. 2012), a state-of-the-

art method based on martingale duality.

1.2 Randomized Robust Price Optimization

The challenge of demand uncertainty plays a pivotal role in price optimization. A firm sets

the prices of its products by maximizing the revenue given a demand model. The estimation

of the demand model is often not accurate due to limited data, which may lead to suboptimal

revenues. Previous studies adopt robust optimization to handle this issue. The idea of it

3

is to select an uncertainty set of potential demand models and to maximize the worst-case

revenue over all the demand models in the uncertainty set. Typically, robust price optimiza-

tion aims to identify the single best pricing decision that optimizes the worst-case revenue.

However, recent research (Delage et al. 2019) has revealed that with regard to the worst-

case objective, it is possible to achieve better performance than the traditional deterministic

robust optimization approach by randomizing over multiple solutions. Specifically, instead

of optimizing over a single decision in some feasible set, one optimizes over a distribution

supported on the feasible set that informs the decision maker how to randomize.

In Chapter 3, we propose a methodology for robust price optimization that is based on

randomization. In particular, we propose solving a randomized robust price optimization

(RRPO) problem, which outputs a probability distribution that specifies the frequency with

which the firm should use different price vectors. We analyze when a randomized price

scheme performs as well as a deterministic price vector, and identify cases in which it can

yield a benefit. To tackle the RRPO problem over a discrete set of candidate price vec-

tors, we propose tractable algorithms for different settings - whether the uncertainty set

of demand function parameters is convex or finite. We show how these solution methods

are applicable for common demand models, such as the linear, semi-log and log-log demand

models. Notably, for semi-log and log-log demand models, we leverage the reformulation of

nominal pricing problems into tractable mixed-integer exponential cone programs, thereby

enabling efficient solutions to the RRPO problem.

To substantiate the practicality and effectiveness of randomized pricing, we conduct

numerical experiments on different problem instances generated synthetically and problem

instances calibrated with real data. The results from synthetic instances show that ran-

domized pricing can improve worst-case revenues by as much as 1300% over deterministic

pricing, while in our real data instances, the benefit can be as high as 92%. Additionally,

we show that for instances of realistic size (up to 20 products), our algorithm can solve the

RRPO problem in a reasonable amount of time (no more than four minutes on average).

4

CHAPTER 2

Randomized Policy Optimization for Optimal Stopping

2.1 Introduction

Optimal stopping is the problem of deciding at what time to stop a stochastic system in

order to maximize the expected reward. Specifically, we are given a stochastic system, that

starts at an initial state and transitions randomly from one state to another in discrete time,

and a reward function, which maps each state at each time to a real value. In each period,

we must decide whether to stop the system, or allow it to continue for one more period. If

we choose to stop the system, we obtain the reward given by the reward function for the

current state; otherwise, we obtain no reward, but we may potentially stop the system at

a later period for a higher reward. Our goal is to find a policy, which is a mapping from

the state at each period to the decision to stop or continue, so as to maximize the expected

reward.

Optimal stopping problems are found in many application domains, such as finance,

operations and healthcare. For example, in finance, an important application of optimal

stopping is the problem of option pricing. In this problem, an option holder has the right

to buy an asset (if it is a call option) or to sell an asset (if it is a put option) at some strike

price. The stochastic system corresponds to the asset, and the system state corresponds

to the asset’s current price. The option holder’s problem is to decide when to exercise the

option, which is akin to stopping, so as to garner the greatest expected payoff. The price that

an option writer should charge for the option is exactly the highest expected payoff that one

5

can obtain from an optimal exercise policy of the option. As another example, in operations

management, consider a firm that needs to decide when to introduce a new product to a

market. In this problem, the system corresponds to market conditions, and the system state

would correspond to (say) the unit production cost and the predicted market share that the

product would capture, which evolve stochastically over time as more and more competitors

enter this market. At each period, the firm can decide to introduce the product into the

market, which corresponds to stopping the system, and the reward corresponds to the profit

obtained from this market. The problem is then to find a policy that determines whether to

introduce the product or wait, so as to maximize the profit from introducing the product.

High-dimensional optimal stopping problems can in theory be solved exactly by dynamic

programming. This approach involves obtaining the optimal value function, which maps the

state at each period to the highest possible expected reward that can be attained conditional

on starting at that state in that period, or the optimal continuation value function, which

maps the state at each period to the highest possible expected reward that can be attained

conditional on choosing to continue out of that state in that period. An optimal policy can

then be found by considering the greedy policy with respect to the optimal value function

or optimal continuation value function. However, this approach is untenable in practice for

high-dimensional optimal stopping problems due to the curse of dimensionality.

As a result, a number of approaches based on approximate dynamic programming (ADP)

have been proposed to solve high-dimensional optimal stopping problems, wherein one con-

siders a policy that is greedy with respect to an approximate value function or continuation

value function. Of these methods, the most prevalent ADP method is the least squares

Monte Carlo (LSM) approach proposed by Longstaff and Schwartz (2001). This approach

involves simulating a set of sample paths or trajectories of the system, and then iterating

from the last period in the horizon to the first. At each period t, one uses least squares to

obtain a regression model that predicts the continuation value based on the current state,

using the sample of trajectories. One then compares the prediction with the reward from

6

stopping in the current period in each trajectory. If the reward from stopping is higher than

the predicted continuation value, we choose to stop; otherwise, we choose to continue. Based

on this decision, we update the continuation value, and we repeat the process again at period

t − 1. The algorithm continues in this way, until we reach the first period. The resulting

policy is then to take the action that is greedy with respect to the approximate continuation

value function.

From a theoretical standpoint, if one were given an infinite sample of trajectories and

one could solve the least squares problem at each stage of the LSM algorithm over an

unrestricted function class, then the regression model that one would obtain would exactly

coincide with the optimal continuation value function. This is due to the fact that the

conditional expectation function m(x) = E[Y | X = x] minimizes squared error, i.e., it

solves the optimization problem minm E[(Y −m(X))2]. In such an idealized situation, the

policy produced by LSM would indeed be optimal.

In practice, one must work with a finite sample of trajectories, and the regression function

is constrained to be within the span of a finite collection of basis functions that are specified

by the decision maker. Thus, the policy that is produced by LSM is a policy in which one

decides to stop or continue by comparing the reward to a weighted sum of basis functions.

This is significant for two reasons: (i) it is no longer the case that the policy produced by

LSM is an optimal policy; and (ii) even when we restrict our focus to the corresponding

policy class that LSM operates in – policies that stop if and only if the reward is greater

than a weighted combination of basis functions – the policy produced by LSM may not be

optimal within that class. This occurs because in LSM, the approximate continuation value

function is obtained by minimizing squared loss, which does not account for the fact that

this approximation will be used as part of a policy, and ultimately does not guarantee good

out-of-sample policy performance.

This motivates the following question: how can one obtain LSM-like policies that perform

better than LSM ? The policy produced by LSM belongs to a broader family of policies that

7

we refer to as deterministic linear policies : policies that deterministically recommend to

stop or continue at each period depending on whether a weighted sum of basis functions

is positive or negative. (This class subsumes LSM policies if one includes the immediate

reward at each period as a basis function.) Given a sample of trajectories, an immediate

approach to obtaining a good policy from this class would be to formulate a sample average

approximation (SAA) problem: optimize over the weights defining the deterministic linear

policy, so as to maximize the sample average estimate of the expected reward of the policy.

The drawback of this approach is that due to the discrete nature of how this family of

policies works, the SAA problem is a challenging discrete optimization problem. Such a

problem would be infeasible to solve for the sample sizes that are typically found in practical

optimal stopping applications.

As an alternative to deterministic linear policies, one can also consider randomized linear

policies. These are policies that probabilistically choose to stop or continue at each period,

where the probability of stopping is given by a logistic probability and the logit that defines

this probability is a weighted sum of basis functions. Just like the deterministic linear policy

case, one can also formulate an SAA problem to maximize the sample average reward with

respect to the weights that define this randomized policy. Although the resulting SAA

problem is still a challenging non-convex problem, the objective function is now smooth and

from a computational standpoint, one can now at least solve the problem heuristically using

any of a number of practically successful gradient-based methods.

We make the following specific contributions:

1. Model: We propose the class of randomized linear policies for optimal stopping prob-

lems, and formulate the problem of learning such a policy from data as an SAA problem

with a smooth, non-convex objective function. We prove that under mild conditions,

solving the randomized linear policy SAA problem is equivalent to solving the deter-

ministic linear policy SAA problem, in that the optimal objectives of the two problems

are equivalent; under an additional condition, we also show that the true randomized

8

linear policy problem and the true deterministic linear policy problem, where sample

averages are replaced by expectations, are also equivalent in objective value.

2. Statistical guarantees: We provide two statistical guarantees for our randomized

policy SAA problem. First, we show that our learning problem is consistent: as the

number of trajectories in our training sample grows, the optimal objective value and

optimal solution converge almost surely to the optimal objective value and optimal

solution set, respectively, of the true stochastic optimization problem, where sample

averages are replaced with expectations. Second, we develop a generalization bound

on the out-of-sample objective value of a randomized policy obtained from our SAA

problem based on Rademacher complexity, and develop several different bounds on the

Rademacher complexity for different choices of the set of feasible weights.

3. Heuristic: We prove that in general, our randomized policy SAA problem is NP-

Hard, which follows from a reduction from the MAX-3SAT problem. Consequently,

we propose a backward optimization algorithm for solving the problem heuristically,

which optimizes the weights defining the randomized policy in stages, starting with

the weights corresponding to the last period and working its way to the first stage.

4. Numerical experiments: Using a benchmark family of Bermudan max-call option

pricing instances used in the recent literature, we show that our approach yields policies

that in general are substantially better than policies produced by LSM, and are as

good or better than policies produced by the pathwise optimization method (Desai

et al. 2012), a state-of-the-art method based on martingale duality.

The rest of this chapter is organized as follows. In Section 2.2, we review the relevant

literature in optimal stopping, as well as other recent related work. In Section 2.3, we

formally define the optimal stopping problem, define the deterministic linear policy problem

in its sample average and true stochastic forms, define the randomized linear policy problem

in its sample average and true stochastic forms, and prove that the randomized linear policy

9

problem and deterministic linear problem are equivalent. In Section 2.4, we prove that our

randomized policy SAA problem is consistent and develop our generalization guarantees. In

Section 2.5, we show that our randomized policy SAA problem is NP-Hard, and present our

backward optimization algorithm for solving it. In Section 2.6, we present the results of our

numerical study on option pricing instances.

2.2 Literature Review

Our work is closely related to three streams of research: the optimal stopping and ADP

literature; prediction-and-optimization literature; and non-convex optimization literature.

Optimal stopping and approximate dynamic programming (ADP). Optimal stop-

ping problems have been extensively studied in many fields such as statistics, operations

research and mathematical finance. In theory, optimal stopping problems can be solved by

dynamic programming, but in practice, the curse of dimensionality renders this approach in-

feasible for all but the simplest optimal stopping problems. As a result, there has been much

attention towards developing good approximate dynamic programming (ADP) methods for

optimal stopping.

In the context of optimal stopping, the most popular family of ADP methods is that of

simulation-regression. The idea of simulation-regression methods is to simulate a sample of

trajectories of the system state and use least squares regression to approximate the optimal

continuation value function (i.e., the optimal expected reward from choosing to continue for

a given current state) at each step. The paper of Carriere (1996) was the first to introduce

this type of approach for the valuation of American options, using non-parametric regression;

later, Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (2001) independently con-

sidered this approach in the setting where the continuation value function is approximated

as a linear combination of basis functions.

10

Besides simulation-regression, another important stream of ADP methods for optimal

stopping is based on the idea of martingale duality. The main idea in this body of work is to

relax the non-anticipativity of the policy, but to then penalize the use of future information

through a martingale process. In doing so, one obtains an upper bound on the optimal

reward, and in some cases one can also obtain policies that perform well. We refer the

reader to Rogers (2002), Andersen and Broadie (2004), Haugh and Kogan (2004), Chen

and Glasserman (2007), Brown et al. (2010), Desai et al. (2012) for salient examples of this

methodology, and to the recent review paper of Brown and Smith (2022) for a detailed

overview of this technique as it applies to stochastic dynamic programming more broadly.

Lastly, other recent research has considered approaches distinct from the above two

streams. The paper of Ciocan and Mǐsić (2022) considers a method for directly obtaining

optimal stopping policies from a sample of trajectories in the form of a binary tree. In a

different direction, the paper of Sturt (2021a) proposes a method for obtaining threshold

policies for low-dimensional optimal stopping problems using robust optimization.

Our methodology is most closely related to the simulation-regression approach and in par-

ticular, the least-squares Monte Carlo (LSM) approach of Longstaff and Schwartz (2001).

There are several differences between our methodology and LSM. One difference is that our

methodology involves the use of randomized policies, whereas the policy produced by LSM

is deterministic. Aside from this, the key philosophical difference between our work and the

LSM approach is that while LSM produces a policy in an indirect way – by approximating

the continuation value function using least squares – our methodology involves formulating

an SAA problem and obtaining a policy that directly maximizes an estimate of the expected

reward obtained with respect to a sample of trajectories. In terms of algorithms, the back-

ward algorithm for heuristically solving our SAA problem that we present in Section 2.5 is

reminiscent of the LSM algorithm, but instead of solving a least squares problem, one solves

a non-convex problem where the objective function is given by a weighted sum of logistic

response functions.

11

Predict-then-optimize. Outside of optimal stopping, our work relates to the literature

on combining prediction and optimization. In many analytics problems, the “predict-then-

optimize” paradigm is often used: one first builds a predictive model by minimizing a loss

function that measures predictive performance (for example, squared error), and then utilizes

that predictive model in a subsequent optimization problem to obtain a decision. There are

many papers that apply this type of approach (see, for example, Ferreira et al. 2016, Cohen

et al. 2017, Bertsimas and Kallus 2020).

However, as pointed out in the recent paper of Elmachtoub and Grigas (2021), this type of

predict-then-optimize paradigm can lead to suboptimal decisions, since the predictive model

is trained using a loss function that does not account for how the predictive model will be

used in the downstream optimization problem. The paper of Elmachtoub and Grigas (2021)

proposes a Smart Predict-then-Optimize (SPO) framework, where the predictive model is

estimated so as to minimize decision/prescriptive loss rather than predictive loss, and nu-

merically shows that the SPO framework can result in significantly better out-of-sample

performance.

Our work is partially inspired by the observation that the LSM algorithm bears a re-

semblance to the standard predict-then-optimize paradigm. In the LSM approach, one first

predicts the continuation value based on squared error and then uses that prediction within

a greedy policy. However, minimizing squared error does not necessarily translate into good

prescriptive performance of the prediction model. Therefore, in order to find a good policy,

we consider the problem of directly optimizing in-sample reward over the space of random-

ized linear policies.

Non-convex optimization. Lastly, our work is related to the growing literature on non-

convex optimization. In the machine learning community, there has been considerable in-

terest in how to solve non-convex optimization problems, since many learning tasks can be

12

naturally expressed as non-convex optimization problems. Since non-convex optimization

problems are in general NP-Hard, a popular approach for tackling such problems is based

on convex relaxation, where one relaxes the problem in some way to obtain a convex prob-

lem that is more tractable. However, as pointed out by Jain and Kar (2017), such convex

relaxations generally change the problem drastically, and thus the solution of relaxation

can perform poorly for the original problem. Because of this, there has been much recent

work on directly solving the non-convex problems via approximate algorithms. Efficient

techniques used in non-convex optimization approach include generalized projected gradient

descent (Candes et al. 2015), generalized alternating minimization (Netrapalli et al. 2015),

and stochastic optimization techniques (Ge et al. 2015). Although these approaches are not

guaranteed to find the global optimum in general, it has been empirically observed that ap-

proximately optimal solutions to the true non-convex problem are often better than exactly

optimal solutions to a convex relaxation of the problem (Jain and Kar 2017).

In our work, the optimal stopping problem of learning randomized policies from sample

data is formulated as a non-convex optimization problem. We follow the spirit of non-convex

optimization approaches and propose a backward optimization heuristic to directly work with

this non-convex problem, which sequentially optimizes over the weights in each time period.

In our implementation of this method, the weights in each time period are approximately

optimized using the Adam algorithm (Kingma and Ba 2014), a first-order method that is

widely used for non-convex optimization problems, particularly those arising in the training

of deep neural networks. Although our heuristic is not guaranteed to find a globally optimal

solution, we find numerically that the resulting policies can significantly outperform those

obtained by LSM.

13

2.3 Problem Definition

In this section, we begin by defining our optimal stopping problem (Section 2.3.1). We then

define the family of deterministic linear policies, and the problems of optimizing over de-

terministic linear policies given complete knowledge of the stochastic process (Section 2.3.2)

and given a sample of trajectories (Section 2.3.3). In Section 2.3.4, we define the family of

randomized linear policies and analogously to the deterministic linear policy case, we define

the true stochastic optimization problem for this policy class and its finite sample counter-

part. Finally, in Section 2.3.5, we state our main equivalence results, which assert that (i)

the sample average approximation problems over deterministic and randomized linear poli-

cies are equivalent and (ii) the true stochastic optimization problems over deterministic and

randomized linear policies are equivalent.

2.3.1 Optimal stopping problem

We consider a stochastic system that evolves over a discrete time horizon of T periods. Each

period is denoted by t, and ranges in [T], where we use the notation [n] to denote the set

{1, . . . , n} for any integer n. We use x to denote the state of the system, and x(t) to denote

the state of the system in each period, which belongs to a state space X . At each period, we

can choose to stop the system or to continue for one more period. If we choose to stop, we

receive a nonnegative reward g(t,x) that is a function of the period t and the current state

x. If we continue, we do not receive a reward. The action space of the problem is therefore

A = {stop, continue}.

The decision maker has the ability to specify a deterministic policy π : [T] × X → A,

which is a mapping from the current period and state we are in to one of the two actions.

The policy π defines a stopping time τπ, which is a random variable that represents the time

in [T] at which the decision maker stops:

τπ = min{t ∈ [T] | π(t,x(t)) = stop}. (2.1)

14

We denote the case that the system is never stopped by τπ = +∞, and we assume that the

reward is zero in this case, i.e., g(+∞,x) = 0 for all x ∈ X .

Letting Π denote the set of all policies, the decision maker’s goal is to specify the policy

π that maximizes the expected discounted reward, which can be written as the following

optimization problem:

supremum
π∈Π

E[g(τπ,x(τπ))]. (2.2)

We make two important remarks regarding our optimal stopping problem (2.2). First, we

note that our formulation does not include a discount factor, which is common in the optimal

stopping literature. Our motivation for this modeling choice was to simplify the mathemat-

ical exposition and to make certain expressions that appear later on less cumbersome. We

also note that this is not a restrictive modeling choice, as the reward function g is time

dependent, and so one can specify it so as to incorporate discounting. Second, for the en-

tirety of the chapter, we shall assume that g is uniformly bounded, which we formalize in

the following assumption.

Assumption 1 There exists a finite upper bound Ḡ such that for any t ∈ [T], x ∈ X ,

0 ≤ g(t,x) ≤ Ḡ.

2.3.2 Deterministic linear policies

The optimal stopping problem (2.2) is a challenging problem to solve because the set of

policies is unrestricted. Rather than working with the set of all policies, we will consider the

set of policies that can be described using a linear combination of basis functions. Specifically,

let us define ϕ1, . . . , ϕK : X → R to be a collection of basis functions, which map a state to

a real number; for convenience, we will use Φ(x) = (ϕ1(x), . . . , ϕK(x)) to denote the vector

of basis functions. Let us also define bt = (bt,1, . . . , bt,K) ∈ RK to be a K-dimensional vector

of weights corresponding to the policy at period t ∈ [T], and additionally, let us use b to

denote the collection of bt vectors, i.e., b = (b1, . . . ,bT). We can then define the policy πb as

15

the policy that recommends stopping whenever the weighted combination of basis functions,

where the weights come from b, is positive:

πb(t,x) =

 stop if
∑K

k=1 bt,kϕk(x(t)) > 0,

continue otherwise.
(2.3)

We let B ⊆ RKT be the set of feasible weight vectors, and let ΠB be the corresponding set

of linear policies:

ΠB = {πb | b ∈ B}.

The linear policy optimal stopping problem can then be written as:

supremum
π∈ΠB

E[g(τπ,x(τπ))]. (2.4)

Note that we can re-write this problem without the use of the stopping time τπ, and to make

the dependence on b more explicit, as follows:

supremum
b∈B

E

[
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

I{bt′ • Φ(x(t′)) ≤ 0} · I{bt • Φ(x(t)) > 0}

]
, (2.5)

where we use I{·} to denote the indicator function (i.e., I{A} = 1 if A is true, and 0 if A is

false), and for notational convenience, we use • to denote inner products, i.e., for a,b ∈ Rn,

a • b =
∑n

i=1 aibi. Note that the term
∏t−1

t′=1 I{bt′ • Φ(x(t′)) ≤ 0} · I{bt • Φ(x(t)) > 0} is

equal to 1 if and only if τπ = t; thus, this problem is equivalent to problem (2.4). We also

use JD(b) to denote the objective value of problem (2.5) at a fixed weight vector b.

2.3.3 Data-driven optimization over deterministic linear policies

While problem (2.5) is a simplification of the general optimal stopping problem (2.2), it is

still challenging to solve as it requires one to compute expectations over the stochastic process

{x(t)}Tt=1 exactly. More specifically, this problem is challenging because the stochastic pro-

cess is sufficiently complicated that optimizing over the objective function of problem (2.5)

is computationally difficult, or because the stochastic process itself is not known exactly.

16

Thus, rather than considering the exact version of the problem, one can consider solving a

sample-average approximation (SAA) version of the problem, wherein one has access to a

set of trajectories of the stochastic process.

To define this problem, we assume that we have access to a set of Ω trajectories and that

each trajectory is indexed by ω, which ranges from 1 to Ω. Each trajectory ω corresponds

to a sequence of states x(ω, 1),x(ω, 2), . . . ,x(ω, t). Given a policy and a trajectory ω, we

define the stopping time for policy π in trajectory ω as

τπ,ω = min{t ∈ [T] | π(t,x(ω, t)) = stop}.

Our SAA problem to determine the optimal linear policy is then

supremum
π∈ΠB

1

Ω

Ω∑
ω=1

g(τπ,ω,x(ω, τπ,ω)). (2.6)

Similarly to problem (2.5), we can re-write problem (2.6) as an optimization problem over

b as follows:

supremum
b∈B

1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t)) ·
t−1∏
t′=1

I{bt′ •Φ(x(ω, t′)) ≤ 0} · I{bt •Φ(x(ω, t)) > 0}. (2.7)

Note that the term
∏t−1

t′=1 I{bt′ •Φ(x(ω, t′)) ≤ 0} · I{bt •Φ(x(ω, t)) > 0} is equal to 1 if and

only if τπb,ω = t. Additionally, we use ĴD(b) to denote the objective value of problem (2.7)

at a fixed weight vector b.

By re-writing problem (2.6) as problem (2.7), we can see that the deterministic policy

SAA problem (2.7) can be regarded as a type of discrete optimization problem over the

weight vector b. (Note that the supremum in problem (2.7) is always attainable and can be

replaced by a maximum, since the objective function ĴD(·) only takes finitely many values.)

While this problem can be further re-formulated as a mixed-integer optimization problem,

it is unlikely that one would be able to solve such a formulation to provable full or near

optimality at a large scale (with tens of thousands or hundreds of thousands of trajectories).

Moreover, the gradient of the objective function in problem (2.7), when it is defined, is always

17

zero due to the presence of the indicator function. This precludes the use of gradient-based

methods, such as stochastic gradient descent, for solving the problem.

2.3.4 Randomized linear policies

Rather than solving problems (2.5) and (2.7), which optimize over deterministic linear poli-

cies, we can instead consider a problem where we optimize over randomized linear policies.

In particular, given a collection of coefficients b = (b1, . . . ,bT) where b1, . . . ,bT ∈ RK we

consider randomized linear policies of the form

π̃b(t,x) =

 stop with probability σ(bt • Φ(x)),

continue with probability 1− σ(bt • Φ(x)),

where σ(u) = eu/(1+eu) corresponds to the logistic response function, and where the decision

to stop in period t is independent of periods 1, . . . , t − 1. Thus, given the coefficients in b,

the randomized policy π̃b randomly chooses to stop with a logistic probability that depends

on a weighted sum of basis functions.

The stopping time τπ̃ of a randomized policy π̃ is defined as follows. Conditional on

a fixed trajectory {x(t)}Tt=1, the stopping time τπ̃ is a random variable, whose probability

distribution is given by

P(τπ̃ = t | x(1), . . . ,x(T)) =
t−1∏
t′=1

(1− σ(bt′ • Φ(x(t′)))) · σ(bt • Φ(x(t))), t = 1, . . . , T,

P(τπ̃ = +∞ | x(1), . . . ,x(T)) =
T∏

t′=1

(1− σ(bt′ • Φ(x(t′)))).

With a slight abuse of notation, let B ⊆ RKT denote the set of feasible weight vectors for

randomized policies, and define Π̃B to be the set of feasible randomized policies:

Π̃B = {π̃b | b ∈ B}.

Thus, the expected reward of the randomized policy π̃b, where the expectation is taken over

18

both the stochastic process {x(t)}Tt=1 and the random stopping decisions can be written as

supremum
π̃∈Π̃B

E[g(τπ̃,x(τπ̃))], (2.8)

or equivalently, as

supremum
b∈B

E

[
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

(1− σ(bt′ • Φ(x(t′)))) · σ(bt • Φ(x(t)))

]
, (2.9)

where the expectation in problem (2.9) is now taken only over the stochastic process {x(t)}Tt=1.

We shall use JR(b) to denote the objective function of problem (2.9) at a fixed b ∈ B.

Similarly to the deterministic problem, we can also consider a sample-average approxi-

mation of the true stochastic optimization problem (2.9). Given a sample of Ω trajectories

as in Section 2.3.3, we can define the randomized policy SAA problem as

supremum
b∈B

1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t)) ·
t−1∏
t′=1

(1− σ(bt′ • Φ(x(ω, t′)))) · σ(bt • Φ(x(ω, t))). (2.10)

In other words, we seek to find the coefficients b = (b1, . . . ,bT) so as to maximize the

expected sample-average reward that arises from using these coefficients to effect randomized

stopping decisions. We note that in problem (2.10), the optimization problem is formulated

using the supremum. This is necessary, because although the objective function of (2.10)

is continuous and bounded, the set B may not be compact, and therefore there may not

have an attainable maximum. We shall use ĴR(b) to denote the objective function of the

randomized policy at a fixed weight vector b ∈ B.

2.3.5 Equivalence of deterministic and randomized policies

In this section, we investigate the connection between the deterministic policy problems

laid out in Sections 2.3.2 and 2.3.3, and the randomized policy problems in Section 2.3.4.

It turns out that under a small set of conditions, it is possible to show that the optimal

objective values of the deterministic policy SAA problem (2.7) and the randomized policy

SAA problem (2.10) are equivalent. With one additional assumption, it is also possible

19

to show that the optimal objective values of the deterministic and randomized policy true

problems (problems (2.5) and (2.9) respectively) are also equivalent.

Recall that JD(·), ĴD(·) JR(·) and ĴR(·) are the respective objective functions of the

deterministic policy true problem (2.5), the deterministic policy SAA problem (2.7), the

randomized policy true problem (2.9) and the randomized policy SAA problem (2.10). For

the purposes of the exposition of this section, we will use b̃ to denote a vector of weights for

the randomized policy problem, while b will be used to denote a vector of weights for the

deterministic policy problem. We will also further disambiguate the sets of feasible weight

vectors for the two problems by using B to denote the set of feasible weight vectors for the

deterministic problem, and B̃ the set of feasible weight vectors for the randomized problem.

Before stating our first result, we make two assumptions. Our first assumption is that

the set of feasible weight vectors for the deterministic policy and randomized policy SAA

problems are the same.

Assumption 2 B = B̃ = RKT .

Our second assumption concerns the collection of basis functions.

Assumption 3 The first basis function ϕ1(·) is the constant basis function, i.e., ϕ1(x) = 1

for all x ∈ X .

With these two assumptions, we state our first main result.

Theorem 1 Under Assumptions 2 and 3 the objective values of problems (2.7) and (2.10)

are equal, that is,

sup
b∈B

ĴD(b) = sup
b̃∈B̃

ĴR(b̃).

The proof of Theorem 1 (see Appendix A.1.1) is based on two key ideas: (1) given a

weight vector b of a deterministic policy, the same weight vector scaled by an arbitrarily

20

large positive constant α would result in the randomized policy behaving in the same (deter-

ministic) way, since σ(u)→ 1 as u→∞ and σ(u)→ 0 as u→ −∞; and (2) given a weight

vector b̃ of a randomized policy, one can view ĴR(b̃) as the expectation of a deterministic

policy with a particular basis function weight chosen randomly, so applying the probabilistic

method implies the existence of a weight vector for a deterministic policy that performs at

least as well as the randomized policy. With regard to the assumptions, Assumption 2 is

a technical assumption that is necessary to be able to scale a deterministic weight vector

into an appropriate randomized policy, as in idea (1), while Assumption 3 is a technical

assumption that is necessary to avoid pathological cases where bt •Φ(x) = 0 and to be able

to appropriately apply the probabilistic method as in idea (2). From a practical perspective,

Assumption 3 is not too restrictive, as it is common to use a constant basis function in

implementations of ADP for optimal stopping.

Theorem 1 asserts that the SAA formulations of the two policy optimization problems

are essentially equivalent. To establish equivalence of the true deterministic and randomized

policy optimization problems (2.5) and (2.9), we need the following additional assumption,

which concerns the stochastic process itself. We defer our discussion of this assumption until

the statement of Theorem 2. To state this assumption, we let Φ2:K : X → RK−1 be defined

as Φ2:K(x) = (ϕ2(x), . . . , ϕK(x)), which is just the vector-valued mapping of the state x to

the basis function values ϕ2(x) through ϕK(x) (in other words, it is just the mapping Φ,

only with the first basis function ϕ1(·) omitted).

Assumption 4 For any hyperplane A ⊆ RK−1, i.e., a set of the form A = {y ∈ RK−1 |

c • y + d = 0} for some c ∈ RK−1, d ∈ R, and any t ∈ [T], P(Φ2:K(x(t)) ∈ A) = 0.

We can now state our counterpart of Theorem 1 for the true stochastic optimization

problems (2.9) and (2.5).

Theorem 2 Under Assumptions 2, 3 and 4 the objective values of the randomized prob-

21

lem (2.9) and the deterministic problem (2.5) are equal, that is,

sup
b∈B

JD(b) = sup
b̃∈B̃

JR(b̃).

The proof of Theorem 2 (see Appendix A.1.2) is similar to the proof of Theorem 1, but

with several key differences. The most significant difference is that in the proof of Theorem 1,

we show that a given deterministic linear policy can be approximated arbitrarily closely by a

randomized policy. This is facilitated by Assumption 3, which allows one to avoid situations

where the inner product of bt and Φ(x(ω, t)) is exactly zero in a given ω and t (since there

are finitely many trajectories, one can perturb a given deterministic weight vector b into a

new deterministic weight vector b′ that has the same stopping behavior but never satisfies

bt •Φ(x(ω, t)) = 0 for any ω and any t). In the true stochastic optimization problem setting,

this is no longer possible. For this reason, we introduce Assumption 4, which requires that

Φ2:K(x(t)) has probability zero of being in any given hyperplane. This assumption allows

us to avoid the aforementioned pathological cases where the stochastic process is such that,

for a given non-zero weight vector b for the randomized policy problem, the inner product

bt •Φ(x(t)) may be exactly zero, which would mean the randomized policy would choose to

stop or continue with equal probability.

With regard to Assumption 4, we note that this assumption holds for many, though

not all, problem instances. For example, suppose that X ⊆ Rn and ϕ2(x), . . . , ϕK(x) are

polynomials of x ∈ X . In this case, the set {x ∈ X | c • Φ2:K(x) + d = 0} is the set

of zeros of a polynomial function of x, which is a measure zero set (Okamoto 1973). If

we further assume that x(t) at each t has a bounded density, which is the case for many

commonly used stochastic processes (e.g., geometric Brownian motion), then it immediately

follows that P(Φ2:K(x(t)) ∈ A) = 0 for any hyperplane A ⊆ RK−1. As another example,

suppose that X = RK−1, and define E as E = Φ2:K(X), the image of X under Φ2:K(·), which

we assume to be an open subset of RK−1. Suppose also that the inverse function Φ−1
2:K(·)

22

is defined on E and is continuously differentiable. Then the event Φ2:K(x(t)) ∈ A for a

hyperplane A ⊆ RK−1 is equivalent to the event Φ2:K(x(t)) ∈ A ∩ E, which is equivalent to

the event x(t) ∈ Φ−1
2:K(A ∩ E). If A is a hyperplane in RK−1, it has measure zero, and so

does A ∩ E; and since Φ−1
2:K(·) is continuously differentiable, Φ−1

2:K(A ∩ E) is also a measure

zero set in RK−1 (see Lemma 18.1 of Munkres 1991). If we again assume that each x(t) has

a bounded density, then it again follows that P(x(t) ∈ Φ−1
2:K(A ∩ E)) = 0 or equivalently,

P(Φ2:K(x(t)) ∈ A) = 0. Where Assumption 4 could potentially fail is when the basis function

mapping Φ2:K(·) collapses subsets of X to singletons, which could cause the probability of

Φ2:K(x(t)) being in certain hyperplanes to be non-zero.

We conclude this section by offering two remarks on Theorems 1 and 2. First, the

significance of these two theorems is that in a certain sense, the problem of optimizing

over deterministic policies and the problem of optimizing over randomized policies are the

same. In the case of the true stochastic optimization problems, by solving the randomized

problem (2.9), we can obtain a policy that performs as well as the one we would obtain by

solving the deterministic problem (2.5). Similarly, in the case when we are working with a

finite sample of trajectories, solving the randomized SAA problem (2.10) allows us to obtain

a policy that performs as well as the one we would obtain by solving the deterministic SAA

problem (2.7). From a practical perspective, the advantage of solving the randomized policy

SAA problem (2.10), as opposed to the deterministic policy SAA problem (2.7), is that the

objective function ĴR(·) is a differentiable function. Although ĴR(·) is non-convex due to

the presence of the logistic response function σ(·), it is at least possible to approximately

optimize ĴR(·) using gradient-based methods. The specific structure of ĴR(·) lends itself to

an iterative algorithm that optimizes the weight vector b̃ one period at a time, starting with

the last period, that is reminiscent of the least-squares Monte Carlo (LSM) method; we defer

our presentation of this algorithm to Section 2.5.2.

Second, we comment a little more on the motivation of our randomized policy optimiza-

tion approach, in light of Theorems 1 and 2. Our interest in randomized linear policies

23

does not stem from some fundamental operational benefit that a randomized policy provides

over a deterministic policy; stated differently, we do not wish to argue that in practice, a

decision maker would want to make stopping decisions randomly as opposed to determin-

istically. Instead, our motivation for studying randomized policies is that the use of the

logistic response function σ allows use to view the randomized policy true problem (2.9) and

the SAA problem (2.10) as differentiable or “soft” counterparts to the deterministic policy

problems (2.5) and (2.7), respectively, which are formulated using the indicator function I{·}

and involve making “hard” stopping decisions. Theorems 1 and 2 show that in general, this

view is justified, as the deterministic and randomized problems are equal in objective value.

As we will shortly see, the randomized policy SAA problem is amenable to an analysis of its

convergence and generalization properties, and as we have already mentioned, is amenable

to an intuitive heuristic for approximately solving it. Later, in Section 2.6, we will see nu-

merically that using an approximate solution of the randomized policy SAA problem within

a deterministic policy performs very well and can result in significant improvements over

existing approaches.

2.4 Statistical properties

In this section, we investigate the statistical properties of the randomized policy SAA prob-

lem (2.10). In Section 2.4.1 we show that the objective value and optimal solution set of

the randomized policy SAA problem converge almost surely to those of the true randomized

policy problem. In Section 2.4.2, we establish guarantees on the out-of-sample performance

of the solution obtained from the randomized policy SAA problem by characterizing the

Rademacher complexity of the expected reward generated by a given set of weight vectors.

24

2.4.1 Convergence of randomized policy SAA problem

It is natural to expect that the optimal value and optimal solutions of the SAA problem

(2.10) converge to their counterparts of the true optimization problem as the number of

sample trajectories Ω→∞. In this section, we provide Theorems 3 and 4 to establish these

two convergence properties of our randomized policy SAA problem.

We first make the following two mild assumptions to facilitate the proofs of Theorems 3

and 4.

Assumption 5 There exists a constant Q > 0 such that for any x ∈ X , ∥Φ(x)∥∞≤ Q.

Assumption 6 B is a compact subset of RKT .

Note that we no longer carry Assumptions 2, 3 and 4. In particular, Assumption 2 is not

relevant to Theorems 3 and 4, and Assumptions 3 and 4 are not required to establish our

results here.

With these two assumptions, we can establish the following theorem which shows the

almost sure uniform convergence of ĴR(·) to JR(·) over the set B.

Theorem 3 Suppose that Assumptions 5 and 6 both hold. Then with probability one,

lim
Ω→∞

sup
b∈B
|ĴR(b)− JR(b)|= 0. (2.11)

The proof of Theorem 3 is provided in Appendix A.1.3. It relies on the fact that the

objective function JR(·) in the true problem (2.9) and the objective function ĴR(·) in the

SAA problem (2.10) have bounded Lipschitz constants, and the compactness of B. Thus, we

can use these two properties, together with the strong law of large numbers, to show uniform

convergence.

Now, using Theorem 3, it is straightforward to derive the convergence of the SAA optimal

objective value, which is stated in the following corollary.

25

Corollary 1 Suppose that Assumptions 5 and 6 both hold. Then with probability one,

lim
Ω→∞

sup
b∈B

ĴR(b) = sup
b∈B

JR(b). (2.12)

For the convergence of the SAA optimal solutions, let us define the sets B∗ and B̂ as

B∗ = argmax
b∈B

JR(b),

B̂ = argmax
b∈B

ĴR(b),

that is, B∗ is the set of optimal solutions of the true stochastic problem (2.9) while B̂ is

the set of optimal solutions to the SAA problem (2.10). In addition, let D(B̂,B∗) be the

deviation (see Chapter 7 of Shapiro et al. 2014) of the set B̂ from B∗, that is,

D(B̂,B∗) = sup
b∈B̂

inf
b′∈B∗

∥b− b′∥2.

In the above definition, the inner infimum measures the distance between a given optimal so-

lution b of the SAA problem (2.10) and the closest optimal solution of the true problem (2.9);

the outer supremum then takes the largest such distance, over all optimal solutions of the

SAA problem.

With these definitions, we can now apply Theorem 5.3 in Shapiro et al. (2014) to establish

the following theorem:

Theorem 4 Suppose that Assumptions 5 and 6 both hold. Then with probability one,

D(B̂,B∗)→ 0 as Ω→∞.

Corollary 1 and Theorem 4 indicate that, given a sufficiently large sample size, the weight

vector obtained by solving the SAA optimization problem (2.10) can be arbitrarily close to

the optimal weight vector set of the true problem (2.9), and the corresponding optimal value

of the SAA problem can be arbitrarily close to the optimal value of true problem.

26

2.4.2 Rademacher Complexity

In Section 2.4.1, we have seen from Theorem 3 that the optimal SAA objective value

supb∈B ĴR(b) converges with probability one to the true optimal objective value supb∈B JR(b)

as the number of trajectories goes to infinity. However, in practice, we can only have access

to a finite number of sample trajectories; in other words, there always exists some gap be-

tween JR(b) and ĴR(b). Therefore, it is important to investigate how far ĴR(b) could be

away from JR(b) for a finite sample size and find good bounds on this gap. In this section,

we will use a classical data-dependent complexity estimate of a function class, Rademacher

complexity, to lower-bound the value of JR(b)− ĴR(b), and provide three upper bounds on

the Rademacher complexity term, corresponding to different choices of the weight vector set

B.

To establish this result, we require some additional definitions. We use Y to denote a

system realization, which is a pair consisting of the sequence of states and the sequence of

rewards, that is, Y = ({x(t)}Tt=1, {g(t,x(t))}Tt=1). We use Y1, . . . , YΩ to denote the sample of

system realizations. We define the function Γ : RT × [0, Ḡ]T → R as

Γ(u,v) =
T∑
t=1

vt

t−1∏
t′=1

(1− σ(ut′))σ(ut), (2.13)

where u,v ∈ RT . For a fixed weight vector b ∈ B, we define the function ψb : X T×RT → R2T

which maps a system realization Y to a 2T -dimensional vector as

ψb(Y) =

b1 • Φ(x(1))
...

bT • Φ(x(T))

g(1,x(1))
...

g(T,x(T))

. (2.14)

We define F = {Γ ◦ ψb | b ∈ B} as the class of realization-to-reward functions. Note that

for a fixed weight vector b, the function value (Γ ◦ψb)(Y) gives exactly the expected reward

27

of the randomized policy, where the expectation is taken over the stopping/continuation

decisions, but conditional on the fixed system realization Y .

Lastly, we define the empirical Rademacher complexity R̂(F) as

R̂(F) = 1

Ω
Eϵ

[
sup
f∈F

Ω∑
ω=1

ϵωf(Yω)

]
, (2.15)

where ϵ1, . . . , ϵΩ are independent Rademacher random variables, that is, each ϵω is equal to

-1 or +1 with probability 1/2, and ϵ is used to denote the vector of these random variables.

We define the (ordinary) Rademacher complexity R(F) as R(F) = EY1,...,YΩ
[R̂(F)].

Having set up the definitions of empirical Rademacher complexity and (ordinary/non-

empirical) Rademacher complexity, Proposition 1 establishes the lower bounds of JR(b) −

ĴR(b) in terms of these two complexity terms.

Proposition 1 Let S = {Y1, . . . , YΩ} be a collection of independent and identically dis-

tributed system realizations. For all δ > 0, with probability at least 1 − δ over the sample

S:

JR(b) ≥ ĴR(b)− 2R(F)− Ḡ
√

log(1/δ)

2Ω
, ∀ b ∈ B (2.16)

JR(b) ≥ ĴR(b)− 2R̂(F)− 3Ḡ

√
log(2/δ)

2Ω
, ∀ b ∈ B (2.17)

The proof of Proposition 1 is given in Appendix A.1.6; it follows the standard proof of

generalization error bounds based on Rademacher complexity in statistical learning theory.

We remark here that the generalization bounds established in Proposition 1 are different

from those in classical statistical learning. Proposition 1 provides lower bounds on the true

reward JR(b) in the form of the sample-based estimate ĴR(b) minus a penalty term related to

the complexity of our model; whereas in classical statistical learning problems, Rademacher

complexity is used to upper-bound the true error in the form of the training error plus the

complexity term. The reason for this difference is that our problem is to maximize the

28

expected reward, while the goal of classical statistical learning problem is to minimize some

loss function.

The key quantities in Proposition 1 are the empirical and ordinary Rademacher complex-

ities R(F) and R̂(F). To understand how these quantities scale in the problem primitives

and the structure of the admissible weight vector set B, we have the following result, which

provides deterministic bounds on R̂(F). (Note that since these bounds on R̂(F) hold almost

surely, they are also valid bounds on R(F).)

Theorem 5 Suppose that Assumption 5 holds. Let B ≥ 0. Then we have the following

deterministic bounds for the empirical Rademacher complexity R̂(F):

a) If B = {b ∈ RKT | ∥b∥1≤ B}, then R̂(F) ≤
√
2(Ḡ+ 1) · BQ

√
2 log(2KT)
√
Ω

.

b) If B = {b ∈ RKT | ∥b∥2≤ B}, then R̂(F) ≤
√
2(Ḡ+ 1) · BQ

√
KT√
Ω

.

c) If B = {b ∈ RKT | ∥b∥∞≤ B}, then R̂(F) ≤
√
2(Ḡ+ 1) · BQKT√

Ω
.

The proof of Theorem 5 (see Appendix A.1.7) consists of two main steps. The first

step is relating the Rademacher complexity of F to the Rademacher complexity of the class

{ψb | b ∈ B}. This involves the application of Maurer’s vector contraction inequality

(Maurer 2016), which is useful when a class of vector-valued functions is composed with a

collection of scalar-valued Lipschitz functions, and can be used to relate the Rademacher

complexity of the class of composite functions to the Rademacher complexity of the class of

vector-valued functions. The outcome of this is that the Rademacher complexity of F can

be written in terms of the Rademacher complexity of {ψb | b ∈ B}; in the second step, we

analyze the Rademacher complexity of this latter class by exploiting the structure of B.

From this result, we can see that in all three cases, the Rademacher complexity scales

gracefully with the problem dimension. In the worst case (when B is equal to the L∞ norm

ball; part c), it scales at most linearly with K and with T . This is partially driven by

the fact that the function Γ is Lipschitz continuous (with respect to the L2 norm) with

29

constant Ḡ + 1. Importantly, this constant does not depend on T . This is not obvious,

because the probability of stopping at period t is the product of t Lipschitz continuous and

bounded functions, and so by standard properties of Lipschitz functions one should expect

the Lipschitz constant to depend on T . It turns out that one can avoid a dependence on

T because the products terms of the form
∏t−1

t′=1(1 − σ(bt′ • Φ(x(t′))))σ(bt • Φ(x(t))) form

a probability distribution. Consequently, the dependence on T in the bounds in Theorem 5

arises from the structure of the set B, and not from the function Γ.

2.5 Solution Methodology

We now turn our attention to how one can actually solve the randomized policy SAA prob-

lem (2.10). In Section 2.5.1, we show that the randomized policy SAA problem is in general

NP-Hard. Motivated by this, in Section 2.5.2 we propose an algorithm for approximately

solving the SAA problem, based on backward induction. We conclude in Section 2.5.3 by

comparing our proposed heuristic algorithm with the LSM algorithm.

2.5.1 Complexity of randomized policy SAA problem

Our main theoretical result on the solvability of the randomized policy SAA problem (2.10)

is unfortunately a negative one.

Theorem 6 The randomized policy SAA problem (2.10) is NP-Hard.

We make a few remarks about this result. First, our proof of Theorem 6 (see Ap-

pendix A.1.8) involves considering the decision form of the randomized policy SAA prob-

lem (2.10), which asks whether there exists a weight vector b that achieves at least a certain

target sample-average reward. By considering this decision problem, we show that for any

instance of the decision form of the MAX-3SAT problem, a well-known NP-Complete prob-

lem, we can construct a corresponding instance of the randomized policy SAA problem such

30

that the answers to the two decision problems are identical. We note that the proof is not

trivial, as the randomized policy SAA problem is in general a continuous problem, whereas

MAX-3SAT is inherently discrete. In particular, showing that a positive answer to the SAA

decision problem implies a positive answer to the MAX-3SAT problem involves viewing ex-

pressions involving σ(·) as expected values of expressions defined using a certain collection

of i.i.d. random variables, and applying the probabilistic method to guarantee the existence

of values for those random variables that can then be used to construct a solution to the

MAX-3SAT problem. Most importantly, our proof does not achieve this equivalence by re-

stricting the set of feasible weight vectors B to be a discrete set: the only restriction we place

is to restrict the weight vectors be equal across time (i.e., bt,k = bt′,k for t ̸= t′), which still

results in B being uncountably infinite.

Second, we note that from an intuition standpoint, it is not reasonable to expect the

randomized policy SAA problem (2.10) to be tractable. As alluded to before, this problem is

a non-convex optimization problem, due to the presence of the function σ(·) that is neither

convex nor concave. In addition, as σ(u) can be viewed as a continuous approximation of

the step function I{u ≥ 0}, one can expect the function ĴR(·) to have many local optima.

In the next section, we consider a heuristic approach for solving the problem.

2.5.2 Backward optimization algorithm

Motivated by the fact that our randomized policy SAA problem (2.10) is theoretically in-

tractable, we develop an iterative heuristic algorithm for solving the problem.

The high level idea of our heuristic is to solve problem (2.10) by optimizing over the

weights one period at a time, starting from the last one. In particular, recall that b =

(b1, . . . ,bT) and with a slight abuse of notation, let ĴR(b1, . . . ,bT) denote the SAA objective

value for the given collection of time-specific weight vectors. Assume also that that the set

of feasible weight vectors is the Cartesian product of T period-wise weight vector sets, that

is, B = B1 × . . . × BT , where B1, . . . ,BT ⊆ RK . The tth iteration of the algorithm involves

31

solving the single-period problem

max
b′
t∈Bt

ĴR(b1, . . . ,bt−1,b
′
t,bt+1, . . . ,bT) (2.18)

and updating the tth weight vector in b, which is bt, with the new solution b∗
t . This process

goes on from period t = T all the way to t = 1; after the t = 1 iteration, the algorithm

terminates. We formally define our procedure as Algorithm 1 below.

Algorithm 1 Backwards optimization algorithm for approximately solving the randomized

policy SAA problem (2.10).

Initialize bt ← 0 for all t ∈ [T].

Initialize cT (ω) = 0 for all ω ∈ [Ω].

for t = T, . . . , 1 do

Compute pt(ω) as

pt(ω) =
t−1∏
t′=1

(1− σ(bt′ • Φ(x(ω, t′)))). (2.19)

Solve the problem

max
bt∈Bt

Ω∑
ω=1

1

Ω
·pt(ω) · [g(t,x(ω, t)) ·σ(bt•Φ(x(ω, t)))+ct(ω) ·(1−σ(bt•Φ(x(ω, t))))] (2.20)

to obtain an optimal solution b∗
t .

Compute ct−1(ω) as

ct−1(ω) = g(t,x(ω, t)) · σ(b∗
t • Φ(x(ω, t))) + ct(ω) · (1− σ(b∗

t • Φ(x(ω, t)))). (2.21)

end for

We pause to make several comments about Algorithm 1. First, observe that the period

t problem solved in Algorithm 1, problem (2.20), is of a different form from problem (2.18).

The two problems are equivalent in that problem (2.20) is a simplification of problem (2.18).

In particular, pt(ω) can be regarded as the probability, conditional on the weight vectors

b1, . . . ,bt−1, of not having stopped by period t in trajectory ω. By using this term, we can

32

simplify the problem and remove the appearance of the weight vectors for periods prior to t.

Similarly, ct(ω) can be regarded as the expected continuation value at period t in trajectory

ω, i.e., given that we have not stopped by period t, what is the expected reward (where the

expectation is with respect to the randomness of the stopping decisions) from not stopping

at period t, for the trajectory ω. Using both of these, and using the fact that ĴR(·) includes

terms that only depend on bt′ for t
′ < t, we can boil problem (2.18) down to problem (2.20),

which is of the form
∑

ω(cω + dω · σ(bt • Φ(x(ω, t)))).

Second, we note that problem (2.20) is still a challenging problem to solve, as the objec-

tive function is still non-convex. It is an instance of the sum-of-sigmoids problem (a sigmoid

function being an S-shaped function, such as the logistic response function σ(·)), which Udell

and Boyd (2013) show to be NP-Hard in general. Similarly, Akçakuş and Mǐsić (2021) show

that a related problem, of finding a binary product attribute vector that maximizes the ex-

pected market share under a mixture-of-logits model, is NP-Hard. However, problem (2.20)

is more manageable to solve than the complete randomized policy SAA problem (2.10), as

it involves only the weight variables for a single period (K variables) as opposed to all T

periods (KT variables). In our implementation of Algorithm 1, we use the Adam algorithm

(Kingma and Ba 2014) to approximately solve problem (2.20).

Lastly, we comment on how we use the solution b∗ = (b∗
1, . . . ,b

∗
T) produced by Algo-

rithm 1. Although b∗ corresponds to a randomized policy, in our numerical experiments we

will focus on using b∗ within a deterministic linear policy. In other words, we plug b∗ into

a policy of the form of equation (2.3). The reason for doing this is that in general, we have

empirically observed that the deterministic policy defined with b∗ performs better than the

randomized policy defined with b∗. To understand the intuition for this, let us consider

problem (2.20). For this problem, a good weight vector bt at time t would be one where,

for most trajectories, bt • Φ(x(ω, t)) is very positive when g(t,x(ω, t)) is higher than ct(ω),

and where bt •Φ(x(ω, t)) is very negative when ct(ω) is higher than g(t,x(ω, t)). When this

is true for most trajectories, it is reasonable to expect that we could improve our objective

33

value by thresholding bt •Φ(x(ω, t)), i.e., rounding σ(bt •Φ(x(ω, t))) to 0 or 1, which would

have the effect of making the expression in the square brackets in problem (2.20) generally

(i.e., for most trajectories) equal to max{g(t,x(ω, t)), ct(ω)}, which is a higher quantity than

g(t,x(ω, t)) · σ(bt • Φ(x(ω, t))) + ct(ω) · (1− σ(bt • Φ(x(ω, t)))).

Besides this consideration, as discussed in Section 2.3.5, optimizing over randomized poli-

cies is equivalent to optimizing over deterministic policies, and our motivation for optimizing

over randomized policies is to ultimately obtain good deterministic policies in a tractable

manner. Lastly, we note that using b∗ within a deterministic policy is similar to how in bi-

nary classification problems in machine learning, it is common to learn a probabilistic model

whose natural output is a probability of a target class (for example, a logistic regression

model), and to then threshold this probability to obtain a hard classification.

2.5.3 Comparison of backward optimization algorithm with least-squares Monte

Carlo

Algorithm 1 shares some similarities with the least-squares Monte Carlo (LSM) algorithm

of Longstaff and Schwartz (2001). For easier comparison, we state the basic LSM algorithm

adapted to our problem setting as Algorithm 2 below.

In particular, the LSM algorithm also involves iterating backwards in time, and also

involves updating the continuation value using the current policy. However, a key difference

is that LSM involves solving a least-squares problem to obtain basis function weights bt,

so as to predict the continuation value using those basis function weights. The stopping

policy is then defined by comparing the current payoff to the predicted continuation value,

where stopping is prescribed if and only if the current payoff is more than the predicted

continuation value. In contrast, our algorithm involves directly optimizing over the stopping

policy at a given period: in problem (2.20), we look for weights bt for the stopping decision in

the current period so that the expected reward, which accounts for both the current period’s

reward and the continuation value ct(ω) that captures reward in future periods, is optimized.

34

Algorithm 2 Least-squares Monte Carlo (LSM) algorithm of Longstaff and Schwartz (2001).

Initialize cT−1(ω) = g(T,x(ω, T)) for all ω ∈ [Ω].

for t = T − 1, . . . , 1 do

Solve the least-squares problem

min
bt∈RK

1

2

Ω∑
ω=1

(ct(ω)− bt • Φ(x(ω, t)))2 (2.22)

to obtain an optimal solution b∗
t .

Compute ct−1(ω) as

ct−1(ω) =

 ct(ω) if b∗
t • Φ(x(ω, t)) ≥ g(t,x(ω, t)),

g(t,x(ω, t)) if b∗
t • Φ(x(ω, t)) < g(t,x(ω, t)).

(2.23)

end for

Besides this difference, it is also important to appreciate the higher level differences in

the two approaches. In particular, LSM (Algorithm 2) produces a policy of the form

π(t,x) =

 stop if g(t,x) > bt • Φ(x(t)),

continue if g(t,x) ≤ bt • Φ(x(t)).

Note that this policy can be made equivalent to a deterministic linear policy as we have

defined it in Sections 2.3.2 and 2.3.3. Specifically, we can augment the state variable x(t)

to include an additional coordinate that is equal to g(t,x(t)) and then augment the basis

function architecture Φ(x) = (ϕ1(x), . . . , ϕK(x))) with a K + 1th basis function ϕK+1(·)

that is exactly equal to this new coordinate. With these augmentations, the weight vector

b̃t = (−bt,1, . . . ,−bt,K ,+1) is such that

g(t,x) >
K∑
k=1

bt,kϕk(x(t)) if and only if
K+1∑
k=1

b̃t,kϕk(x(t)) > 0,

i.e., the corresponding deterministic linear policy with the K + 1 basis functions and the

weight vectors b̃1, . . . , b̃T behaves identically to the LSM policy. Thus, LSM can be viewed

35

as a method for returning a solution to the deterministic policy SAA problem (2.7).

In light of this relationship, we note that, to our knowledge, there is no guarantee that

the solution that LSM returns solves either the true deterministic policy problem (2.5) or

the deterministic policy SAA problem (2.7). In contrast, Algorithm 1 is designed to di-

rectly (albeit approximately) solve the randomized policy SAA problem (2.10). Our results

in Sections 2.3 and 2.4 provide theoretical justification for why this approach is desirable:

under mild conditions, the true randomized policy problem (2.9) and its SAA counterpart

(2.10) are equivalent to the true deterministic policy problem (2.5) and its SAA counterpart,

respectively (guaranteed by our equivalence results, Theorems 1 and 2); as we accumulate

more data, the optimal objective value and solution of the randomized policy SAA prob-

lem (2.10) converge to that of the true randomized policy problem (2.9) (guaranteed by our

consistency results, Corollary 1 and Theorem 4); and optimizing the randomized policy SAA

problem directly optimizes a lower bound on the out-of-sample reward that becomes tighter

as one accumulates more data (guaranteed by our generalization bound and Rademacher

complexity results, Proposition 1 and Theorem 5). Taken together, these results suggest

that for a fixed basis function architecture, our method (Algorithm 1) has the potential to

obtain policies that deliver better out-of-sample performance than LSM. In Section 2.6, we

will showcase one family of benchmark problem instances where this is indeed the case.

2.6 Application to option pricing

In this section, we apply our randomized policy approach to a standard option pricing

problem, previously considered in a number of papers (e.g., Desai et al. 2012, Ciocan and

Mǐsić 2022). We define our option pricing problem in Section 2.6.1. In Section 2.6.2, we

illustrate the difference between our randomized policy approach and prior approaches for

obtaining deterministic linear policies using a simple option pricing problem involving a single

asset. Then, in Section 2.6.3, we test our approach and compare it to prior approaches in a

36

higher dimensional setting with eight assets.

We implement our methods in the Julia programming language, version 0.6.4 (Bezanson

et al. 2017). For the pathwise optimization method, we implement the pathwise linear

program using the JuMP package (Lubin and Dunning 2015, Dunning et al. 2017) and

solve it using Gurobi, version 9.5 (Gurobi Optimization, Inc. 2022). All our experiments are

executed on Amazon Elastic Compute Cloud (EC2), on a single instance of type r4.8xlarge

(Intel Xeon E5-2686 v4 processor with 32 virtual CPUs and 244 GBs of memory).

2.6.1 Background

The optimal stopping problem that we will focus on is pricing a Bermudan max-call option

with a knock-out barrier, which was previously studied in Desai et al. (2012) and later in

Ciocan and Mǐsić (2022). We consider the same family of problem instances used in those

papers, and briefly review the details here.

In this family of problem instance, the option is dependent on n assets. The option is

exercisable over a period of 3 calendar years with T = 54 equally spaced exercise times. The

price of each underlying asset follows a geometric Brownian motion, with the drift set equal

to the annualized risk-free rate r and the annualized volatility set to σ, and each asset is

assumed to start at an initial price of p̄. In all of the experiments that we will present, we

shall assume r = 5% and σ = 20%, as in Desai et al. (2012), and we will also assume the

pairwise correlation between the assets to be zero. We use pi(t) denote the price of asset i

at exercise time t.

The option has a strike price K and a knock-out barrier price B. The payoff of the option

at any given time is determined by the strike price K, the knock-out barrier value B and

the maximum price among the n underlying assets. If at time t the maximum price of the

n underlying assets exceeds the barrier price B, the option is “knocked out” and the payoff

becomes zero for all times t̃ ≥ t. We let y(t) be an indicator variable that is 1 if the option

37

has not been knocked out by time t and zero otherwise:

y(t) = I
{

max
1≤i≤n,1≤t′≤t

pi(t
′
) < B

}
(2.24)

We let g′(t) denote the (undiscounted) payoff from exercising the option at time t, which is

defined as follows:

g′(t) = y(t) ·max

{
0, max

1≤i≤n
pi(t)−K

}
. (2.25)

All payoffs are assumed to be discounted continuously according to the risk-free rate. This

implies a discrete discount factor β = exp(−r × 3/54) = 0.99723. We can thus define

the discounted reward g(t) to be g(t) = βt · g′(t), which can be thought of as the payoff

denominated in dollars corresponding to time t = 0.

We compare three different methods: our randomized policy optimization (RPO) ap-

proach, the least-squares Monte Carlo (LSM) method of Longstaff and Schwartz (2001) and

the pathwise optimization (PO) method of Desai et al. (2012). We test of each of these

methods with a variety of basis functions. In our presentation of our results, we will denote

the different sets of basis functions as follows:

• one: the constant basis function, equal to 1 for every state.

• prices: the price pi(t) of asset i for i ∈ [n].

• payoff: the undiscounted payoff g′(t).

• KOind: the knock-out (KO) indicator variable y(t).

• pricesKO: the KO adjusted prices pi(t) · y(t) for i ∈ [n].

• maxpriceKO and max2priceKO: the largest and second largest KO adjusted prices.

• prices2KO: the KO adjusted second-order price terms, pi(t) · pj(t) · y(t) for 1 ≤ i ≤

j ≤ n.

38

In our implementation of the RPO approach, we use the backward algorithm, Algo-

rithm 1. We use the coefficients obtained directly within a deterministic policy. We solve

problem (2.20) using a custom implementation of Adam, a momentum-based first-order

method (Kingma and Ba 2014, Goodfellow et al. 2016). We follow the parameter defaults

in Kingma and Ba (2014), with the exception of the step size, for which we use 10−1, as

opposed to 10−3. Additionally, we do not apply any minibatching, and compute the full

gradient for the entire sample of Ω trajectories. For each solve of problem (2.20), we warm

start the Adam algorithm using the coefficients obtained by LSM; we describe our warm

starting scheme in more detail in Appendix A.2.1.

In our implementation of the pathwise optimization method, we follow Desai et al. (2012)

in generating 500 inner samples.

2.6.2 Experiment #1: An illustrative example with n = 1

In our first experiment, to demonstrate the difference between our approach and incumbent

approaches, we consider an instance of the option with n = 1 asset; thus, the undiscounted

payoff and knock-out indicators can be written simply as

g′(t) = y(t) ·max {0, p1(t)−K} , (2.26)

y(t) = I
{
max
1≤t′≤t

p1(t
′
) < B

}
. (2.27)

We set K = 100 and B = 150, and vary p̄ in the set {90, 100, 110}. For each initial price

p̄, we perform 10 replications, where in each replication we generate a set of Ω = 100, 000

trajectories to train each policy, and 100,000 trajectories for out-of-sample testing.

We test LSM with two basis function architectures: (i) one, and (ii) one and payoff.

Note that both of these basis function architectures imply an exercise policy that involves

simply comparing the undiscounted payoff g′(t) to a constant, state-independent threshold.

39

In particular, for (i), the exercise policy prescribes stop if and only if

g(t) ≥ bone · 1

= bone,

which is equivalent to

g′(t) ≥ β−tbone.

For (ii), the exercise policy prescribes stop if and only if

g(t) ≥ bone · 1 + bpayoff · g′(t).

Using the fact that g(t) = βtg′(t), we can re-arrange the above inequality into the following

threshold rule in terms of the undiscounted payoff:

g′(t) ≥ bone
βt − bpayoff

,

which holds if βt − bpayoff > 0.

For the pathwise optimization method, we test it with the same two basis function archi-

tectures as LSM. Since the pathwise optimization-based policy is also a greedy policy based

on an approximate continuation value function, one can again represent the policies obtained

with the architectures (i) and (ii) as constant threshold policies. In addition to the policies,

we also use the pathwise optimization solution to compute an upper bound on the optimal

reward using an independent set of 100,000 trajectories (see Desai et al. 2012).

For the randomized policy approach, we test it with a single basis function architecture,

consisting of one and payoff. This results in an exercise policy where stop is recommended

if and only if

bone × 1 + bpayoff × g′(t) > 0,

which is equivalent to the threshold rule

g′(t) > − bone
bpayoff

40

if bpayoff > 0.

Table 2.1 shows the out-of-sample performance of the different methods under the differ-

ent basis function architectures, as well as the pathwise optimization upper bounds. For each

combination of a policy (a combination of one of the three methods – LSM, PO and RPO –

and a basis function architecture) and an initial price p̄, we report the average out-of-sample

reward over the ten replications. We additionally report the standard error over those ten

replications in parentheses.

From this table, we can see that even though the three methods – LSM, pathwise op-

timization and the randomized policy approach – produce policies within the same policy

class, there are significant differences in performance. In particular, the policy produced by

the randomized policy approach significantly outperforms LSM and pathwise optimization.

Comparing to LSM with one, the randomized policy approach with one and payoff attains

an expected discounted reward that is as much as 89% higher. Comparing to LSM with one

and payoff, which in general performs better than LSM with one, the improvement by

the randomized policy approach is as much as 7.7%. Comparing to PO with one and with

one and payoff, the randomized policy approach attains an improvement of up to 29%

and 35%, respectively. In addition, the PO upper bounds are close to the performance of the

randomized policy approach (for all three initial prices, the RPO lower bound is within 2.3%

of the tightest PO upper bound). This suggests that for this problem setting, the policy is

nearly optimal. This experiment highlights the fact that even for a simple problem instance

involving only a single asset and the simplest possible policy class, the LSM method can

return a policy that is substantially suboptimal.

It is also interesting to consider what the thresholds produced by the different methods

look like. Figure 2.1 plots the thresholds for the five different policies at each period in the

time horizon, for a single replication with p̄ = 110. We can see that there are substantial

differences in the policies. The thresholds for the LSM policies are generally lower than those

of the RPO policy, which implies that the LSM policies in general stop earlier in the time

41

Initial price

Method Basis functions p̄ = 90 p̄ = 100 p̄ = 110

LSM one 6.47 (0.010) 10.82 (0.011) 16.47 (0.008)

LSM one, payoff 11.37 (0.020) 16.64 (0.024) 22.01 (0.018)

PO one 9.47 (0.017) 14.79 (0.017) 20.67 (0.014)

PO one, payoff 9.07 (0.032) 16.01 (0.029) 22.73 (0.023)

RPO one, payoff 12.25 (0.018) 17.51 (0.023) 23.04 (0.018)

PO-UB one 18.26 (0.018) 25.47 (0.012) 32.49 (0.012)

PO-UB one, payoff 12.54 (0.009) 17.88 (0.009) 23.55 (0.005)

Table 2.1: Out-of-sample performance of different policies in n = 1 experiment.

horizon, when the reward will generally be lower. The PO policy with one also results in

thresholds that are lower than the RPO policy. On the other hand, the PO policy with one

and payoff results in thresholds that are higher than those from RPO for roughly the first

40 periods; as a result, the PO policy may miss opportunities to stop earlier in the horizon.

Interestingly, the thresholds for the LSM and PO policies begin rapidly decaying earlier in

the time horizon than RPO (for LSM with one, LSM with one and payoff, and PO with

one, this starts right around the beginning of the horizon; for PO with one and payoff,

this starts at around t = 34). For RPO, there is a slow and steady decrease in the threshold

until about t = 48, where the threshold begins to decrease much more quickly.

2.6.3 Experiment #2: multiple assets

In our second experiment, we consider instances of our option pricing problem with more

than one asset. We specifically consider instances with n varying in {4, 8, 16}. As in the

previous experiment, we vary p̄ in {90, 100, 110} and set the strike price K = 100. Following

Desai et al. (2012), we set the barrier price B = 170. For each initial price p̄ and each value

42

0

10

20

30

40

0 6 12 18 24 30 36 42 48 54
t

T
hr

es
ho

ld

Method

LSM (one)
LSM (one, payoff)
PO (one)
PO (one, payoff)
RPO (one, payoff)

Figure 2.1: Plot of thresholds for policies in n = 1 experiment.

of n, we perform ten replications, where in each replication we generate a training set of

Ω = 20, 000 trajectories, and a testing set of 100,000 trajectories. In what follows, we focus

on the results for n = 8, and relegate the performance results for n = 4 and n = 16 to

Appendix A.2.2.

We again test the LSM, PO and RPO methods with a variety of basis function architec-

tures. We also obtain upper bounds from the PO method by reporting the objective value

of the pathwise optimization linear program, which is a biased upper bound on the expected

reward. We opt for this simpler approach over producing an unbiased upper bound (by

generating an independent set of trajectories and the corresponding inner paths; see Desai

et al. 2012) due to the significant computation time required in generating the inner paths.

We note that this inexact approach has also been used in other work that has implemented

the PO method (Ciocan and Mǐsić 2022).

Table 2.2 reports the out-of-sample performance of the LSM, PO and RPO methods, as

well as the (biased) PO upper bound, for the different basis function architectures. Note

43

that the table is organized so that groups of policies corresponding to the same policy class

are grouped together. (For example, LSM/PO with one and prices, LSM/PO with one,

prices and payoff, and RPO with one, prices and payoff appear together.)

From this table, we can see that within each policy class, the RPO method in general

outperforms the LSM method. In some cases the difference can be substantial: for example,

with p̄ = 90 and the policy class corresponding to linear functions of KOind and payoff,

the best LSM policy achieves a reward of 44.26 whereas RPO achieves a reward of 45.45,

which is an improvement of 2.6%. Relative to the PO method, the performance of the RPO

method in most cases is better, and in a few cases is slightly worse (for example, for p̄ = 110

and the pricesKO, KOind and payoff policy class, the best PO policy attains a reward

of 54.27 compared to 54.23 for the RPO policy).

In addition to the comparison of the methods within a fixed policy class, it is also insight-

ful to compare the methods across policy classes, i.e., to think of what is the best attainable

performance across any basis function architecture. In this regard, the highest rewards for all

three initial prices are attained by the RPO method with KOind and payoff as the basis

functions (45.45 for p̄ = 90, 51.37 for p̄ = 100, 54.50 for p̄ = 110). The best performance for

the LSM method across any of the basis function architectures is substantially lower (44.26

for p̄ = 90, 50.07 for p̄ = 100, 53.46 for p̄ = 110). The best performance for the PO method

is better, but still lower (44.79 for p̄ = 90, 50.91 for p̄ = 100, 54.35 for p̄ = 110).

Beside the performance, it is also useful to compare the methods in terms of computation

time. Table 2.3 below shows the average computation time for each of the methods. For

LSM, this is just the time to apply the LSM algorithm. For PO, this time includes the time

to solve the PO linear program using Gurobi and the time to execute the regression, as well

as the time to generate the inner paths and the time to formulate problem in JuMP. For

RPO, this time is the time to apply the backward algorithm (Algorithm 1), which includes

the time to solve the stage t problem (2.20) using Adam, but does not include the time to

obtain the initial starting point using LSM.

44

Initial price

Method Basis function architecture p̄ = 90 p̄ = 100 p̄ = 110

LSM one 33.77 (0.023) 38.67 (0.010) 43.13 (0.013)

LSM one, payoff 41.18 (0.033) 43.21 (0.037) 45.00 (0.027)

PO one 41.08 (0.015) 45.91 (0.021) 48.84 (0.016)

PO one, payoff 22.25 (0.177) 16.07 (0.144) 11.57 (0.119)

RPO one, payoff 45.30 (0.022) 51.10 (0.012) 53.46 (0.053)

PO-UB one 52.19 (0.021) 57.45 (0.020) 60.35 (0.010)

PO-UB one, payoff 46.37 (0.024) 52.68 (0.051) 56.02 (0.047)

LSM prices 33.81 (0.024) 38.54 (0.013) 43.02 (0.013)

LSM prices, payoff 39.56 (0.030) 41.74 (0.033) 44.12 (0.025)

PO prices 40.93 (0.016) 44.83 (0.014) 47.49 (0.016)

PO prices, payoff 22.28 (0.124) 15.89 (0.116) 11.04 (0.091)

RPO prices, payoff 44.49 (0.018) 49.77 (0.029) 52.23 (0.035)

PO-UB prices 51.40 (0.023) 57.20 (0.011) 60.32 (0.010)

PO-UB prices, payoff 46.36 (0.024) 52.64 (0.050) 55.94 (0.045)

LSM pricesKO 41.42 (0.017) 49.35 (0.017) 53.10 (0.009)

LSM pricesKO, payoff 44.04 (0.017) 49.62 (0.012) 52.67 (0.006)

PO pricesKO 44.32 (0.017) 49.82 (0.015) 52.77 (0.018)

PO pricesKO, payoff 44.18 (0.017) 50.06 (0.015) 53.19 (0.007)

RPO pricesKO, payoff 44.53 (0.019) 50.11 (0.013) 53.27 (0.010)

PO-UB pricesKO 48.63 (0.015) 53.12 (0.010) 55.57 (0.011)

PO-UB pricesKO, payoff 46.15 (0.023) 52.06 (0.034) 55.08 (0.024)

LSM KOind 39.37 (0.020) 48.09 (0.030) 53.26 (0.017)

LSM KOind, payoff 44.26 (0.018) 50.07 (0.016) 53.19 (0.010)

PO KOind 43.87 (0.017) 50.85 (0.013) 54.35 (0.009)

PO KOind, payoff 44.79 (0.025) 50.89 (0.013) 53.91 (0.008)

RPO KOind, payoff 45.45 (0.023) 51.37 (0.011) 54.50 (0.010)

PO-UB KOind 49.29 (0.016) 53.47 (0.015) 55.69 (0.009)

PO-UB KOind, payoff 46.15 (0.023) 52.07 (0.033) 55.05 (0.021)

LSM pricesKO, KOind 41.84 (0.015) 49.37 (0.021) 53.46 (0.009)

LSM pricesKO, KOind, payoff 43.77 (0.019) 49.87 (0.018) 53.11 (0.007)

PO pricesKO, KOind 44.01 (0.018) 50.91 (0.013) 54.27 (0.008)

PO pricesKO, KOind, payoff 43.98 (0.021) 50.69 (0.012) 53.84 (0.007)

RPO pricesKO, KOind, payoff 44.08 (0.023) 50.57 (0.031) 54.23 (0.010)

PO-UB pricesKO, KOind 48.45 (0.020) 53.09 (0.011) 55.56 (0.010)

PO-UB pricesKO, KOind, payoff 46.14 (0.022) 52.05 (0.033) 55.04 (0.022)

LSM pricesKO, prices2KO, KOind 43.32 (0.022) 49.86 (0.019) 53.26 (0.013)

LSM pricesKO, prices2KO, KOind, payoff 44.05 (0.022) 49.92 (0.019) 53.14 (0.012)

PO pricesKO, prices2KO, KOind 44.33 (0.018) 50.78 (0.014) 53.93 (0.006)

PO pricesKO, prices2KO, KOind, payoff 44.65 (0.018) 50.65 (0.016) 53.77 (0.008)

RPO pricesKO, prices2KO, KOind, payoff 44.62 (0.015) 50.74 (0.021) 54.03 (0.013)

PO-UB pricesKO, prices2KO, KOind 47.09 (0.016) 52.43 (0.019) 55.25 (0.010)

PO-UB pricesKO, prices2KO, KOind, payoff 46.09 (0.022) 51.98 (0.033) 55.00 (0.022)

LSM pricesKO, KOind, maxpriceKO, max2priceKO 43.83 (0.018) 49.89 (0.023) 53.10 (0.008)

LSM pricesKO, KOind, maxpriceKO, max2priceKO, payoff 43.83 (0.017) 49.88 (0.022) 53.10 (0.008)

PO pricesKO, KOind, maxpriceKO, max2priceKO 43.90 (0.026) 50.66 (0.014) 53.83 (0.008)

PO pricesKO, KOind, maxpriceKO, max2priceKO, payoff 44.04 (0.023) 50.65 (0.015) 53.82 (0.007)

RPO pricesKO, KOind, maxpriceKO, max2priceKO, payoff 44.14 (0.016) 50.55 (0.030) 54.20 (0.010)

PO-UB pricesKO, KOind, maxpriceKO, max2priceKO 46.13 (0.017) 52.04 (0.033) 55.04 (0.022)

PO-UB pricesKO, KOind, maxpriceKO, max2priceKO, payoff 46.12 (0.023) 52.04 (0.033) 55.03 (0.021)

Table 2.2: Out-of-sample performance for different policies, for n = 8 assets.

45

Initial price

Method Basis function architecture p̄ = 90 p̄ = 100 p̄ = 110

LSM one 2.34 (0.248) 1.45 (0.020) 2.23 (0.245)

LSM one, payoff 2.22 (0.238) 2.21 (0.219) 2.32 (0.223)

PO one 737.90 (49.467) 632.84 (39.330) 734.50 (55.495)

PO one, payoff 821.11 (20.357) 652.49 (22.014) 727.22 (25.883)

RPO one, payoff 80.65 (5.193) 332.82 (28.783) 305.96 (21.902)

LSM KOind 2.32 (0.159) 3.01 (0.207) 2.37 (0.267)

LSM KOind, payoff 2.79 (0.318) 3.73 (0.357) 3.70 (0.335)

PO KOind 899.30 (21.038) 851.05 (18.996) 838.18 (27.319)

PO KOind, payoff 944.45 (26.243) 819.51 (20.691) 822.24 (25.099)

RPO KOind, payoff 4.87 (0.541) 16.86 (1.794) 20.41 (1.977)

LSM prices 2.22 (0.190) 3.09 (0.286) 3.02 (0.218)

LSM prices, payoff 3.18 (0.294) 4.35 (0.291) 3.25 (0.203)

PO prices 902.42 (27.296) 913.33 (25.858) 938.11 (18.843)

PO prices, payoff 1098.98 (21.250) 943.94 (33.928) 1070.94 (32.581)

RPO prices, payoff 174.12 (11.573) 565.27 (21.773) 584.55 (24.491)

LSM pricesKO 3.64 (0.334) 4.32 (0.493) 4.12 (0.383)

LSM pricesKO, payoff 2.43 (0.248) 3.07 (0.367) 3.23 (0.303)

PO pricesKO 1163.28 (19.574) 1092.48 (13.862) 1093.83 (17.630)

PO pricesKO, payoff 1269.60 (25.366) 1155.69 (22.082) 1158.41 (34.489)

RPO pricesKO, payoff 6.55 (0.719) 14.52 (1.077) 14.56 (1.329)

LSM pricesKO, KOind 3.90 (0.302) 5.05 (0.347) 4.62 (0.346)

LSM pricesKO, KOind, payoff 3.03 (0.454) 3.84 (0.165) 3.30 (0.371)

PO pricesKO, KOind 1268.21 (35.401) 1099.33 (27.684) 1114.49 (23.758)

PO pricesKO, KOind, payoff 1395.44 (23.614) 1251.74 (35.740) 1202.02 (23.449)

RPO pricesKO, KOind, payoff 10.46 (1.729) 22.45 (1.831) 22.43 (2.184)

LSM pricesKO, prices2KO, KOind 8.41 (0.353) 7.96 (0.429) 8.02 (0.552)

LSM pricesKO, prices2KO, KOind, payoff 6.61 (0.334) 11.39 (1.338) 8.59 (0.520)

PO pricesKO, prices2KO, KOind 4712.40 (48.063) 4303.43 (186.668) 4824.68 (190.066)

PO pricesKO, prices2KO, KOind, payoff 3347.31 (21.754) 4884.33 (188.597) 4787.41 (150.816)

RPO pricesKO, prices2KO, KOind, payoff 38.18 (2.942) 87.08 (8.357) 66.91 (5.050)

LSM pricesKO, KOind, maxpriceKO, max2priceKO 2.63 (0.136) 4.39 (0.388) 4.95 (0.431)

LSM pricesKO, KOind, maxpriceKO, max2priceKO, payoff 2.82 (0.176) 5.48 (0.480) 5.44 (0.513)

PO pricesKO, KOind, maxpriceKO, max2priceKO 1026.37 (9.217) 1561.72 (50.908) 1534.24 (23.832)

PO pricesKO, KOind, maxpriceKO, max2priceKO, payoff 1012.27 (6.559) 1597.34 (37.282) 1491.44 (28.252)

RPO pricesKO, KOind, maxpriceKO, max2priceKO, payoff 12.37 (0.710) 37.34 (3.715) 33.59 (3.213)

Table 2.3: Computation time for different policies, for n = 8 assets.

46

From this table, we can see that LSM in general requires the least amount of computation

time, requiring no more than 12 seconds on average. The RPO method requires more time,

but in all cases its computation time is reasonable: in general, it requires no more than 585

seconds (approximately 10 minutes) on average. We note that the computation time for RPO

is in general not monotonic in in the size of the basis function architecture: for example,

RPO with one and payoff (total of 2 basis functions) requires more time than RPO with

pricesKO, prices2KO, KOind, payoff (total of 46 basis functions). This is likely due

to the non-convex nature of the objective function in the period t problem of the backward

algorithm. In particular, with one and payoff, the initial starting point produced by LSM

could be further away from an approximately stationary point and Adam may require more

iterations before termination, whereas with pricesKO, prices2KO, KOind and payoff

it may be closer and Adam may terminate more quickly.

Comparing to the PO method, we can see that the PO method requires a significantly

larger amount of time than RPO, with the average computation time ranging from about

632 seconds (p̄ = 100, PO with one; just over 10 minutes) to 4884 seconds (p̄ = 100, PO

with pricesKO, prices2KO, KOind, payoff; roughly 80 minutes). The majority of this

time comes from the generation of the inner paths, which is in general a computationally

intensive task. Although RPO occasionally performs slightly worse than PO as we saw in

Table 2.2, RPO may still be preferable to PO for obtaining good policies due to the significant

computation times required by PO.

Lastly, we note that the computation time of the RPO method is sensitive to several im-

plementation decisions. As alluded to above, the choice of starting point for problem (2.20),

as well as the number of starting points used, will directly affect the time required for Adam

to converge. Another decision is the step size used for Adam. In our experimentation,

a smaller step size would lead to slower convergence, but would generally result in better

solutions.

47

CHAPTER 3

Randomized Robust Price Optimization

3.1 Introduction

Price optimization is a key problem in modern business. The price optimization problem

can be stated as follows: we are given a collection of products. We are given a demand

model which tells us, for each product, what the expected demand for that product will be

as a function of the price of that product as well as the price of the other products. Given

this demand model, the price optimization problem is to decide a price vector – i.e., what

price to set for each product – so as to maximize the total expected revenue arising from the

collection of products.

The primary input to a price optimization approach is a demand model, which maps

the price vector to the vector of expected demands of a product. However, in practice,

the demand model is never known exactly, and must be estimated from data. This poses

a challenge because data is typically limited, and thus a firm often faces uncertainty as to

what the demand model is. This is problematic because a mismatch between the demand

model used for price optimization – the nominal demand model – and the demand model

that materializes in reality can lead to suboptimal revenues.

As a result, there has been much research in how to address demand model uncertainty

in pricing. In the operations research community, a general framework for dealing with

uncertainty is robust optimization. The idea of robust optimization is to select an uncertainty

set, which is a set of values for the uncertain parameter that we believe could plausibly

48

occur, and to optimize the worst-case value of the objective function, where the worst-case

is taken over the uncertainty set. In the price optimization context, one would construct

an uncertainty set of potential demand models and determine the prices that maximize the

worst-case expected revenue, where the worst-case is the minimum revenue over all of the

demand models in the uncertainty set. In applying such a procedure, one can ensure that

the performance of the chosen price vector is good under a multitude of demand models,

and that one does not experience the deterioration of a price vector optimized from a single

nominal demand model.

Typically in robust optimization, the robust optimization problem is to find the single

best decision that optimizes the worst-case value of the objective function. Stated in a slightly

different way, one deterministically implements a single decision. However, a recent line of

research (Delage et al. 2019) has revealed that with regard to the worst-case objective, it is

possible to obtain better performance than the traditional deterministic robust optimization

approach by randomizing over multiple solutions. Specifically, instead of optimizing over a

single decision in some feasible set that optimizes the worst-case objective, one optimizes

over a distribution supported on the feasible set that informs the decision maker how to

randomize.

In this chapter, we propose a methodology for robust price optimization that is based

on randomization. In particular, we propose solving a randomized robust price optimization

(RRPO) problem, which outputs a probability distribution that specifies the frequency with

which the firm should use different price vectors. From a practical perspective, such a

randomization scheme has the potential to be implemented in modern retailing as a strategy

for mitigating demand uncertainty. In particular, in an ecommerce setting, randomization

is already used for A/B testing, which involves randomly assigning some customers to one

experimental condition and other customers to a different experimental condition. Thus, it is

plausible that the same form of randomization could be used to display different price vectors

with certain frequencies. In the brick-and-mortar setting, one can potentially implement

49

randomization by varying prices geographically or temporally. For example, if the RRPO

solution is the three price vectors p1,p2,p3 with probabilities 0.2, 0.3, 0.5, then for a set of

50 regions, we would choose 10 (= 50× 0.2) to assign to price vector p1, 15 (= 50× 0.3) to

assign to p2, and 25 (= 50 × 0.5) to assign to p3. Similarly, if one were to implement the

same randomization scheme temporally, then for a selling horizon of 20 weeks, one would

use the price vector p1 for 4 (= 20 × 0.2) weeks, p2 for 6 (= 20 × 0.3) weeks and p3 for 10

(= 20× 0.5) weeks.

We make the following specific contributions:

1. Benefits of randomization. We formally define the RRPO problem and analyze it

under different conditions to determine when the underlying robust price optimization

problem is randomization-receptive – there is a benefit from implementing a randomized

decision over a deterministic decision – versus when it is randomization-proof – the

optimal randomized and deterministic decisions perform equally well. We show that

the robust price optimization problem is randomization-proof in several interesting

settings, which can be described roughly as follows: (1) when the set of feasible price

vectors is convex and the set of uncertain revenue functions is concave; (2) when the

set of feasible price vectors and the set of uncertain demand parameters are convex,

and the revenue function obeys certain quasiconvexity and quasiconcavity properties

with respect to the price vector and the uncertain parameter; and (3) when the set of

feasible price vectors is finite, and a certain minimax property holds. We showcase a

number of examples of special cases that satisfy the hypotheses of these results and

consequently are randomization-proof. We also present several examples showing how

these results can fail to hold when certain assumptions are relaxed and the problem

thus becomes randomization-receptive.

2. Tractable solution algorithms. We propose algorithms for solving the RRPO prob-

lem in two different settings:

50

(a) In the first setting, we assume that the set of possible price vectors is a finite set

and that the uncertainty set of demand function parameters is a convex set. In

this setting, when the revenue function is quasiconvex in the uncertain parameters,

we show that the RRPO problem can be solved via delayed constraint generation.

The separation problem that is solved to determine which constraint to add is

exactly the nominal pricing problem for a fixed uncertain parameter vector of the

demand function. For the log-log and semi-log demand models, we show that this

nominal pricing problem can be reformulated and solved to global optimality as

a mixed-integer exponential cone program. We believe these reformulations are

of independent interest as to the best of our knowledge, these are the first exact

mixed-integer convex formulations for these problems in either the marketing or

operations literatures, and they leverage recent advances in solution technology

for mixed-integer conic programs (as exemplified in the conic solver Mosek).

(b) In the second setting, we assume that both the price set and the uncertainty set are

finite sets. In this setting, we show how the RRPO problem can be solved using

a double column generation method, which involves iteratively generating new

uncertainty realizations and price vectors by solving primal and dual separation

problems, respectively. We show how the primal and dual separation problems

can be solved exactly for the linear, semi-log and log-log demand models.

3. Numerical evaluation with synthetic and real data. We evaluate the effective-

ness of randomized pricing on different problem instances generated synthetically and

problem instances calibrated with real data. Using synthetic data instances, we show

that randomized pricing can improve worst-case revenues by as much as 1300% over

deterministic pricing, while in our real data instances, the benefit can be as high as

92%. Additionally, we show that for instances of realistic size (up to 20 products), our

algorithm can solve the RRPO problem in a reasonable amount of time (no more than

four minutes on average).

51

The rest of this chapter is organized as follows. Section 3.2 reviews the related literature

on pricing, robust optimization and randomized robust optimization. Section 3.3 formally

defines the nominal price optimization problem, the deterministic robust price optimization

problem and the randomized robust price optimization problem. Section 3.4 analyzes the

robust price optimization problem and provides conditions under which the price optimiza-

tion problem is randomization-receptive and randomization-proof. Section 3.5 presents our

constraint generation approach for solving the RRPO problem when the price set is a fi-

nite set and the uncertainty set is a convex set, and discusses how this approach can be

adapted for different families of demand models. Section 3.6 provides a brief overview of

our methodology for solving the RRPO problem when the price set and uncertainty sets are

finite sets, with the details provided in Section B.3 of the companion. Section 3.7 presents

our numerical experiments.

3.2 Literature review

Our work is closely related to three streams of research: pricing, robust optimization and the

use of randomized strategies in optimization. We discuss each of these three streams below.

Pricing optimization and demand models. Optimal pricing has been extensively stud-

ied in many fields such as revenue management and marketing research; for a general overview

of this research area, we refer readers to Soon (2011) and Gallego and Topaloglu (2019). An

important stream of pricing literature is on static pricing, which involves setting a fixed price

for a product. The most commonly considered demand models in the static pricing literature

are the linear and log-log models. For example, the papers of Zenor (1994) and Bernstein and

Federgruen (2003) assume linear demand functions in the study of pricing strategies. The

papers of Reibstein and Gatignon (1984), and Montgomery and Bradlow (1999) use log-log

(multiplicative) demand functions to represent aggregate demand. The paper of Kalyanam

52

(1996) considers a semi-log demand model. Besides linear, semi-log and log-log demand

functions, another type of demand form that is extensively discussed in pricing literature

is based on an underlying discrete choice model. For example, Hanson and Martin (1996),

Aydin and Ryan (2000), and Hopp and Xu (2005) consider the product line pricing problem

under the multinomial logit (MNL) model. Keller et al. (2014) consider attraction demand

models which subsume MNL models. Li and Huh (2011) study the pricing problem with the

nested logit (NL) models, and show the concavity of the profit function with respect to mar-

ket share holds. Gallego and Wang (2014) characterize the optimal pricing structure under

the general nested logit model with product-differentiated price sensitivities and arbitrary

nest coefficients. The papers of Keller (2013) and Zhang et al. (2018) study the multiproduct

pricing problem under the family of generalized extreme value (GEV) models which includes

MNL and NL models as special cases. Our work differs from this prior work on multiproduct

pricing in that the demand model is not assumed to be known, and that there is an uncer-

tainty set of plausible demand models that could actually materialize. Correspondingly, the

firm is concerned not with expected revenue under a single, nominal demand model, but

with the worst-case revenue with respect to this uncertainty set of demand models.

Another significant stream of pricing literature is to consider multiple-period pricing de-

cisions where the prices of products change over time and there is a fixed inventory of each

product; we refer readers to McGill and van Ryzin (1999), Elmaghraby and Keskinocak

(2003), Bitran and Caldentey (2003), and Talluri and van Ryzin (2004) for a comprehensive

review on dynamic pricing strategies with inventory considerations. As in the static pricing

literature, studies in dynamic pricing also vary in the types of demand models. Besbes and

Zeevi (2015) assume linear demand in a multiperiod single product pricing problem, and

show that the corresponding pricing policy can perform well even under model misspeci-

fication. Caro and Gallien (2012) consider multiplicative models where the demand rate

and price discount have the logarithmic relationship, and consider a multiproduct clearance

pricing optimization problem for the fast-fashion retailer Zara. Akçay et al. (2010) consider

53

dynamic pricing under MNL models for horizontally differentiated products and show that

the profit function is unimodal in prices, while Song et al. (2021) and Dong et al. (2009)

reformulate the MNL profit as a concave function of its market share rather than prices. Our

work focuses on the static, single-period setting where there is no inventory consideration,

and is thus not directly related to this stream of the pricing literature.

Robust Optimization. Within the literature mentioned above, either the probability dis-

tributions of demand are assumed to be known exactly or the demand models are estimated

from historical data. However, in practice, the decision maker often has no access to the

complete information of demand distributions. Also, in many real applications, the lack of

sales data makes it hard to obtain a good estimation of demand models, which leads to

model misspecification and thus suboptimal pricing decisions. In operations research, this

type of challenge is most commonly addressed using the framework of robust optimization,

where uncertain parameters are assumed to belong to some uncertainty set and one opti-

mizes for the worst-case objective of parameters within the set. We refer readers to Ben-Tal

et al. (2009), Bertsimas et al. (2011), Gabrel et al. (2014) and Bertsimas and den Hertog

(2022) for a detailed overview of this approach. Robust optimization has been widely ap-

plied in various problem settings such as assortment optimization (Rusmevichientong and

Topaloglu 2012, Bertsimas and Mǐsić 2017, Sturt 2021b), inventory management (Bertsimas

and Thiele 2006, Govindarajan et al. 2021) and financial option pricing (Bandi and Bertsimas

2014, Sturt 2021a).

Within this literature, our work contributes to the substream that considers robust op-

timization for pricing. Thiele (2009) consider tractable robust counterparts to the deter-

ministic multiproduct pricing problem with the budget-of-resource-consumption constraint

in the case of additive demand uncertainty, and investigate the impact of uncertainty on the

optimal prices of multiple products sharing capacitated resources. Mai and Jaillet (2019) con-

sider robust multiproduct pricing optimization under the generalized extreme value (GEV)

54

choice model and characterize the robust optimal solutions for unconstrained and constrained

pricing problems. Hamzeei et al. (2021) study the robust pricing problem with interval un-

certainty of the price sensitivity parameters under the multi-product linear demand model.

For robust dynamic pricing problems, Lim and Shanthikumar (2007) and Lim et al. (2008)

use relative entropy to represent uncertainty in the demand rate and thus the demand uncer-

tainty can be expressed through a constraint on relative entropy. Perakis and Sood (2006),

Adida and Perakis (2010) and Chen and Chen (2018) all study robust dynamic pricing

problems with demand uncertainty modeled by intervals. Harsha et al. (2019) study robust

dynamic price optimization on an omnichannel network with cross-channel interactions in

demand and supply where demand uncertainty is modeled through budget constraints. From

a different perspective, Cohen et al. (2018) develop a data-driven framework for solving the

robust dynamic pricing problem by directly using samples in the optimization. Specifically,

the paper considers three types of robust objective (max-min, min-max regret and max-min

ratio), and uses the given sampled scenarios to approximate the uncertainty set by a finite

number of constraints.

Our work differs from the majority of this body of work that takes a robust optimization

approach to pricing in that the decision we seek to make is no longer a deterministic decision,

but a randomized one. Within this body of work, the papers closest to our work are Allouah

et al. (2021) and Allouah et al. (2022). The paper of Allouah et al. (2021) considers a pricing

problem under a valuation-based model of demand, where each customer has a valuation

drawn from an unknown cumulative distribution function on the positive real line, and the

firm only has one historical data point. The paper considers the pricing problem from a max-

min ratio standpoint, where the firm seeks to find a pricing mechanism that maximizes the

percentage attained of the true maximum revenue under the worst-case (minimum) valuation

distribution consistent with the data point. The paper shows the approximation rate that

is attainable given knowledge of different quantiles of the valuation distribution when the

valuation distribution is a regular distribution or a monotone non-decreasing hazard rate

55

distribution. The mechanisms that are proposed in the paper, which are mappings from the

data point to a price, include deterministic ones that offer a fixed price, as well as randomized

ones that offer different prices probabilistically. The paper of Allouah et al. (2022) considers

a similar setting, where instead of knowing a point on the valuation CDF exactly or to within

an interval, one has access to an IID sample of valuations drawn from the unknown valuation

CDF, and similarly proposes deterministic and randomized mechanisms for this setting.

With regard to Allouah et al. (2021) and Allouah et al. (2022), our setup differs in a num-

ber of ways. First, our methodology focuses on a max-min revenue objective, as opposed

to a max-min ratio objective that considers performance relative to oracle-optimal revenue.

Our methodology also does not start from a valuation model, but instead starts from an

aggregate demand model, and additionally considers the multi-product case in the general

setting. Additionally, we do not take data as a starting point, but instead assume that

the aggregate demand model is uncertain. Lastly, the overarching goals are different: while

Allouah et al. (2021) and Allouah et al. (2022) seek to understand the value of data, and

how well one can do with limited data, our goal is to demonstrate that from the perspective

of worst-case revenue performance, a randomized pricing strategy can be preferable over a

deterministic fixed price, and to develop tractable computational methods for computing

such strategies under commonly used demand models in the multi-product setting.

Randomized strategies in optimization under uncertainty. The conventional robust

optimization problems mentioned above only consider deterministic solutions. In recent

years, the benefit of using randomized strategies has received increasing attention in the

literature on decision making under uncertainty and robust optimization. Mastin et al.

(2015) study randomized strategies for min-max regret combinatorial optimization problems

in the cases of interval uncertainty and uncertainty representable by discrete scenarios, and

provide bounds on the gains from randomization for these two cases. Bertsimas et al. (2016b)

consider randomness in a network interdiction min-max problem where the interdictor can

56

benefit from using a randomized strategy to select arcs to be removed.

The paper of Delage et al. (2019) considers the problem of making a decision whose payoff

is uncertain and minimizing a risk measure of this payoff, and studies under what circum-

stances a randomized decision leads to lower risk than a deterministic decision. The paper

characterizes the classes of randomization-receptive and randomization-proof risk measures

in the absence of distributional ambiguity (i.e., classical stochastic programs), and discusses

conditions under which problems with distributional ambiguity (i.e., distributionally robust

problems) can benefit from randomized decisions.

Subsequently, the paper of Delage and Saif (2022) studies the value of randomized solu-

tions for mixed-integer distributionally robust optimization problems. The paper develops

bounds on the magnitude of improvement given by randomized solutions over determinis-

tic solutions, and proposes a two-layer column generation method for solving single-stage

and two-stage linear DRO problems with randomization. Our work relates to Delage and

Saif (2022) in that we apply a similar two-layer column generation approach for solving the

randomized robust pricing problem when the price set and the uncertainty set are both fi-

nite; we discuss this connection in more detail in our discussion of the paper of Wang et al.

(2024) below. The paper of Sadana and Delage (2023) develops a randomization approach

for solving a distributionally robust maximum flow network interdiction problem with a

conditional-value-at-risk objective, which is also solved using a column generation approach.

Our work is most closely related to the excellent paper of Wang et al. (2024). The paper

of Wang et al. (2024) introduces randomization into the robust assortment optimization and

characterizes the conditions under which a randomized strategy strictly improves worst-case

expected revenues over a deterministic strategy. The paper proposes several different solution

methods for finding an optimal distribution over assortments for the MNL, Markov chain

and ranking-based models. For the MNL model in particular, the paper adapts the two-

layer column generation method of Delage and Saif (2022) to solve the randomized robust

assortment optimization problem when the uncertainty set is discrete.

57

Our work shares a high-level viewpoint with the paper of Wang et al. (2024) in that rev-

enue management decisions, such as assortment decisions and pricing decisions, are subject

to uncertainty and from an operational point of view, have the potential to be randomized

and to benefit from randomization. From a technical standpoint, several of our results on

the benefit of randomization when the price set is discrete that are stated in Section 3.4.3

are generalizations of results in Wang et al. (2024) to the pricing setting that we study. In

terms of methodology, the solution approach we apply when the price set and uncertainty

set are discrete in Section 3.6 (described more fully in Section B.3) is related to the approach

in Wang et al. (2024) for the MNL model, as we also use the two-layer column generation

scheme of Delage and Saif (2022). The main difference between the method in Wang et al.

(2024) and our method lies in the nature of the subproblems. In the paper of Wang et al.

(2024), the primal subproblem is a binary sum of linear fractional functions problem, and

the dual subproblem is essentially a mixture of multinomial logits assortment problem that

can be reformulated as a mixed-integer linear program. In our work, the primal and dual

subproblems that are used to generate new price vectors and uncertainty realizations comes

from the underlying pricing problem and the structure of different demand models (linear,

semi-log and log-log), which lead to different subproblems than in the assortment setting. In

particular, in the semi-log and log-log cases, both the primal and dual subproblems can be

formulated as mixed-integer exponential cone programs. In the semi-log and log-log cases

specifically, the formulations of the dual subproblems, which are used to identify new price

vectors to add, require a logarithmic transformation together with a biconjugate represen-

tation of the log-sum-exp function. This technique is also used to develop a constraint

generation scheme for the randomized robust pricing problem when the price set is discrete

and the uncertainty set is convex (Section 3.5); the subproblem in this case involves solving

a nominal pricing problem under the semi-log or log-log model, which we are also able to

reformulate exactly as a mixed-integer exponential cone program. As noted in the introduc-

tion, we believe these are the first exact formulations of these problems using mixed-integer

58

conic programming.

Other work on randomization. Lastly, we comment on several streams of work that

use randomization but are unrelated to our work. Within the revenue management commu-

nity, there are instances where randomization is an operational aspect of the algorithm. For

example, in network revenue management, the heuristic of probabilistic allocation control

involves using the primal variable values in the deterministic linear program (DLP) to de-

cide how frequently requests should be accepted or rejected (Jasin and Kumar 2012). Here,

randomization is used to ensure that the long run frequency with which different requests

are accepted or rejected is as close as possible to the DLP solution, which corresponds to

an idealized upper bound on expected revenue. As another example, randomization can

be used for solving large-scale linear programs. For instance, Akchen and Mǐsić (2024) de-

velop a randomized method which involves sampling a collection of columns and solving the

corresponding restricted linear program. Here, randomization is a technique to avoid com-

putational challenge due to column generation. Besides, randomization is often also a part

of methods for problems that involve learning. For example, Ferreira et al. (2018) propose a

method for network revenue management where there is uncertainty in demand rates based

on Thompson sampling, which is a method from the bandit literature that involves taking

a random sample from the posterior distribution of an uncertain parameter and taking the

action that is optimal with respect to that sample. Here, randomization is a way of ensur-

ing that the decision maker explores possibly suboptimal actions. In our work, the focus

is not on using randomization to achieve better expected performance, using randomization

to achieve low computational costs or using randomization to achieve a balance between

exploration and exploitation, but rather to operationalize randomization to achieve better

worst-case performance.

59

3.3 Problem definition

In this section, we begin by defining the nominal price optimization problem in Section 3.3.1.

We subsequently define the deterministic robust price optimization problem in Section 3.3.2.

Lastly, we define the randomized robust price optimization problem in Section 3.3.3.

3.3.1 Nominal price optimization problem

We assume that the firm offers I products, indexed from 1 to I. We let pi denote the price

of product i ∈ [I], where we use the notation [n] = {1, . . . , n} for any positive integer n. We

use p = (p1, . . . , pI) to denote the vector of prices. We assume that the price vector p is

constrained to lie in the set P ⊆ RI
+, where R+ is the set of nonnegative real numbers.

We let di denote the demand function of product i, so that di(p) denotes the demand of

product i when the price vector p is chosen. The revenue function R(·) can then be written

as R(p) =
∑I

i=1 pi · di(p).

The nominal price optimization (NPO) problem can be written simply as

NPO : max
p∈P

R(p).

There are numerous demand models that can be used in practice, which lead to different

price optimization problems; we briefly review some of the more popular ones here.

1. Linear demand model : A linear demand model is defined by parameters α ∈ RI ,

β ∈ RI , γ = (γi,j)i,j∈[I],i ̸=j ∈ RI·(I−1). The demand function di(·) of each product

i ∈ [I] has the form

di(p) = αi − βipi +
∑
j ̸=i

γi,jpj, (3.1)

where βi ≥ 0 is the own-price elasticity parameter of product i, which indicates how

much demand for product i is affected by the price of product i, whereas γi,j is a cross-

price elasticity parameter that describes how much demand for product i is affected

60

by the price of a different product j. Note that γi,j can be positive, which generally

corresponds to products i and j being substitutes (i.e., when the price of product

j increases, customers tend to switch to product i), or negative, which corresponds

to products i and j being complements (i.e., products i and j tend to be purchased

together, so when the price of product j increases, this causes a decrease in demand

for product i). The corresponding revenue function R(·) is then

R(p) =
I∑

i=1

pi · (αi − βipi +
∑
j ̸=i

γi,jpj). (3.2)

2. Semi-log demand model : A semi-log demand model is defined by parameters α ∈ RI ,

β ∈ RI , γ = (γi,j)i,j∈[I],i ̸=j ∈ RI·(I−1). In a semi-log demand model, the logarithm

of the demand function di(·) of each product i ∈ [I] has a linear form in the prices

p1, . . . , pI :

log di(p) = αi − βipi +
∑
j ̸=i

γi,jpj. (3.3)

This implies that the demand function is

di(p) = eαi−βipi+
∑

j ̸=i γi,jpj . (3.4)

The corresponding revenue function R(·) is then

R(p) =
I∑

i=1

pi · eαi−βipi+
∑

j ̸=i γi,jpj . (3.5)

3. Log-log demand model : A log-log demand model is defined by parameters α ∈ RI ,

β ∈ RI , γ = (γi,j)i,j∈[I],i ̸=j ∈ RI·(I−1). In a log-log demand model, the logarithm of the

demand function di(·) of each product i ∈ [I] has a linear form in the log-transformed

prices log p1, . . . , log pI :

log di(p) = αi − βi log pi +
∑
j ̸=i

γi,j log pj. (3.6)

61

This implies that the demand function for product i is

di(p) = eαi−βi log pi+
∑

j ̸=i γi,j log pj (3.7)

= eαip−βi

i ·
∏
j ̸=i

p
γi,j
j , (3.8)

and that the revenue function is therefore

R(p) =
I∑

i=1

pi · eαip−βi

i ·
∏
j ̸=i

p
γi,j
j (3.9)

=
I∑

i=1

eαi · p1−βi

i ·
∏
j ̸=i

p
γi,j
j . (3.10)

3.3.2 Deterministic robust price optimization problem

We now define the deterministic robust price optimization (DRPO) problem. To define this

problem abstractly, we let R denote an uncertainty set of possible revenue functions. The

DRPO problem is to then maximize the worst-case revenue, where the worst-case is the min-

imum revenue of a given price vector taken over all revenue functions in R. Mathematically,

this problem can be written as

DRPO : max
p∈P

min
R∈R

R(p).

We use Z∗
DR to denote the optimal objective value of the DRPO problem.

Although R can be defined in many different ways, we will now focus on one general case

that we will assume for most of our subsequent results in Sections 3.4, 3.5 and 3.6. Suppose

that we fix the demand model to a specific parametric family, such as a log-log demand

model. Let u denote the vector of demand model parameters. For example, for log-log, u

would be the tuple u = (α,β,γ). Let U denote a set of possible values of u; U is then an

uncertainty set of model parameters. With a slight abuse of notation, let di(p,u) denote the

demand for product i when the demand model parameters are specified by u. Then R can

be defined as:

R = {R(·) ≡
I∑

i=1

pi · di(·,u) | u ∈ U}, (3.11)

62

i.e., it is all of the possible revenue functions spanned by the uncertain parameter vector u

in U .

To express the DRPO problem in this setting more conveniently, we will abuse our

notation slightly and use R(p,u) to denote the revenue function evaluated at a price vector

p with a particular parameter vector u specified. With this abuse of notation, the DRPO

problem can be written as

DRPO : max
p∈P

min
u∈U

R(p,u).

3.3.3 Randomized robust price optimization problem

In the DRPO problem, we assume that the decision maker will deterministically implement

a single price vector p in the face of uncertainty in the revenue function. In the RRPO

problem, we instead assume that the decision maker will randomly select a price vector p

according to some distribution F over the feasible price set P . Under this assumption, we

can write the RRPO problem as

RRPO : max
F∈F

min
R∈R

∫
P
R(p) dF (p),

where F is the set of all distributions supported on P . We use Z∗
RR to denote the optimal

objective value of the RRPO problem. Note that Z∗
RR ≥ Z∗

DR. This is because for every p′ ∈

P , the distribution F (·) = δp′(·), where δp′(·) is the Dirac delta function at p′, is contained

in F . For this distribution, minR∈R
∫
R(p) dF (p) = minR∈RR(p

′), which is exactly the

worst-case revenue of deterministically selecting p′.

A special instance of this problem arises when P is a discrete, finite set. In this case, F is

a discrete probability distribution, and one can re-write the inner problem as an optimization

problem over a discrete probability distribution π = (πp)p∈P over P :

RRPO-D : max
π∈∆P

min
R∈R

∑
p∈P

R(p)πp,

where we use ∆S to denote the (|S|−1)-dimensional unit simplex, i.e., ∆S = {π ∈ RS |

63

∑
i∈S πi = 1, πi ≥ 0 ∀ i ∈ S}.

Lastly, under the assumption that R is the set of revenue functions of a fixed demand

model family whose parameter vector u belongs to a parameter uncertainty set U , we can

restate the RRPO problem when P is a generic set and when P is finite as

RRPO : max
F∈F

min
u∈U

∫
P
R(p,u) dF (p), (3.12)

RRPO-D : max
π∈∆P

min
u∈U

∑
p∈P

R(p,u)πp. (3.13)

3.4 Benefits of randomization

In this section, we analyze when randomization can be beneficial. To aid us, we introduce

some additional nomenclature in this section, which follows the terminology established

in the prior literature on randomized robust optimization (Delage et al. 2019, Delage and

Saif 2022, Wang et al. 2024). We say that a robust price optimization (RPO) problem is

randomization-receptive if Z∗
RR > Z∗

DR, that is, randomizing over price vectors leads to a

higher worst-case revenue than deterministically selecting a single price vector. Otherwise,

we say that a RPO problem is randomization-proof if Z∗
RR = Z∗

DR, that is, there is no benefit

from randomizing over price vectors.

In the following three subsections, we derive three classes of results that establish when

the RPO problem is randomization-proof. The first condition (Section 3.4.1) for randomization-

proofness applies in the case when P is a convex set and R is an arbitrary set of revenue

functions each of which is concave in p. The second and third conditions apply to the case

where R arises out of a single demand model, where the parameter vector u belongs to an

uncertainty set. The second condition (Section 3.4.2) applies in the case when P and U are

compact, convex sets and R(p,u) obeys certain quasiconvexity and quasiconcavity proper-

ties. The third condition (Section 3.4.3) is for the case when P is finite and involves a certain

minimax condition being met; as corollaries, we show that randomization-proofness occurs if

64

the DRPO problem satisfies a strong duality property, and that randomization-receptiveness

is essentially equivalent to the DRPO solution being different from the nominal price opti-

mization problem solution at the worst-case u. Along the way, we also give a number of

examples where our results can be used to establish that a particular family of RPO prob-

lems is randomization-proof, and also highlight how the results fail to hold when certain

hypotheses are relaxed.

The main takeaway from these results is that the set of RPO problems that are randomization-

proof is small. As we will see, the conditions under which a RPO problem will be randomization-

proof are delicate and quite restrictive, and are satisfied only for certain very special cases; in

most other realistic cases, the RPO problem will be randomization-receptive. Consequently,

in Sections 3.5 and 3.6, we will develop algorithms for solving the randomized robust when

the candidate price vector P is finite, and in Sections 3.7 we will show a wide range of both

synthetic and real data instances in which the RPO problem is randomization-receptive.

3.4.1 Concave revenue function uncertainty sets

Our first major result is for the case where R consists of concave revenue functions.

Theorem 7 Suppose that P is a convex set and that R is such that every R ∈ R is a concave

function of p. Then the RPO problem is randomization-proof, that is, Z∗
RR = Z∗

DR.

The proof of this results (see Appendix B.1.1) follows from a simple application of Jensen’s

inequality. We pause to make a few important comments about this result. First, one aspect

of this result that is special is that R can be a very general set: it could be countable or

uncountable, and it could consist of revenue functions corresponding to different families

of demand models. This will not be the case for our later results in Section 3.4.2 and

3.4.3, which require that R is defined based on a single demand model family, and that the

uncertainty set of parameter vectors for that family be a convex compact set.

Second, we remark that the condition that all functions inR be concave cannot be relaxed

65

in general. We illustrate this in the following example, where R consists of two functions

and one of the two is non-concave.

Example 1 Consider a single-product RPO problem, and suppose that the revenue function

uncertainty set R = {R1, R2}, where R1(·) and R2(·) are defined as

R1(p) = p(10− 2p),

R2(p) = p · 10p−2.

Note that R1(p) is the revenue function corresponding to the linear demand function d1(p) =

10 − 2p, while R2(p) is the revenue function corresponding to the log-log demand function

d2(p) = exp(log(10) − 2 log(p)) = 10p−2. Note also that R1(·) is concave, while R2(·) is

convex. Suppose additionally that P = [1, 4].

We first calculate the optimal value of the DRPO problem. Observe that in the interval

[1, 4], the only root of the equation 10 − 2p = 10p−2 is p ≈ p′ = 1.137805 For p < p′,

d2(p) > d1(p), and for p > p′, d1(p) > d2(p). Therefore, the optimal value of the of the

DRPO problem can be calculated as

max
p∈[1,4]

min
R∈R

R(p)

= max{ max
p∈[1,p′]

min
R∈R

R(p), max
p∈[p′,4]

min
R∈R

R(p)}

= max{ max
p∈[1,p′]

p · (10− 2p), max
p∈[p′,4]

p · 10p−2}

= 10p′ − 2p′2

= 8.78885

In the above, the first step follows because the best value of the worst-case revenue over

[1, 4] is equivalent to taking the higher of the best worst-case revenue over either [1, p′]

or [p′, 4]. The second step follows because for every p ∈ [1, p′], d1(p) < d2(p), and so

R1(p) = p · d1(p) < p · d2(p) = R2(p); similarly, for every p ∈ [p′, 4], d1(p) > d2(p), and so

R2(p) < R1(p). The third step follows by carrying out the maximization of each of the two

functions from the prior step over its corresponding interval.

66

Now, let us lower bound the optimal value of the RRPO problem. Consider a distribution

F that randomizes over prices in the following way:

p =

 1 with probability 17/21,

2.5 with probability 4/21.
(3.14)

The worst-case revenue for this distribution is

min
R∈R

∫ 4

1

R(p) dF (p)

= min

{
17

21
·R1(1) +

4

21
·R1(2.5),

17

21
·R2(1) +

4

21
·R2(2.5)

}
= min

{
17

21
· 8 + 4

21
· 12.5, 17

21
· 10 + 4

21
· 4
}

= min

{
62

7
,
62

7

}
=

62

7

= 8.857143.

This implies that Z∗
RR ≥ 8.857143, whereas Z∗

DR = 8.78885, and thus Z∗
RR > Z∗

DR. □

Third, we note that the requirement that P be a convex set also cannot be relaxed in

general. The following example illustrates how Theorem 7 can fail to hold when P is not a

convex set.

Example 2 Consider again a single-product RPO problem. Suppose that R = {R1, R2},

where R1(p) = p(10 − p), R2(p) = p(4 − 0.2p); R1 and R2 correspond to linear demand

functions d1(p) = 10 − p, d2(p) = 4 − 0.2p. Suppose that P = {p1, p2}, where p1 = 5,

p2 = 10. From this data, observe that:

R1(p1) = 5(10− 5) = 25,

R1(p2) = 10(10− 10) = 0,

R2(p1) = 5(4− 0.2(5)) = 15,

R2(p2) = 10(4− 0.2(10)) = 20.

67

We first calculate the optimal value of the DRPO problem:

Z∗
DR = max

p∈{p1,p2}
min{R1(p), R2(p)}

= max{min{25, 15},min{0, 20}}

= max{15, 0}

= 15.

For the RRPO problem, the optimal value is given by the following LP:

maximize
η,π

η (3.15a)

subject to η ≤ πp1 · p1 · (10− p1) + πp2 · p2 · (10− p2) (3.15b)

η ≤ πp1 · p1 · (4− 0.2p1) + πp2 · p2 · (4− 0.2p2) (3.15c)

πp1 + πp2 = 1 (3.15d)

πp1 , πp2 ≥ 0. (3.15e)

The optimal distribution over P = {p1, p2} is given by πp1 = 2/3, πp2 = 1/3, which leads

to Z∗
RR = 50/3 = 16.6667. Since this is higher than Z∗

DR, we conclude that this particular

instance is randomization-receptive. □

Lastly, Theorem 7 has a number of implications for different classes of demand models.

Example 3 (Single-product pricing under linear demand). Suppose that I = 1, which

corresponds to a single-product pricing problem. Let u = (α, β) ∈ R2 denote the vector of

linear demand model parameters, and let U ⊆ R2 be an uncertainty set of possible values

of (α, β). Let R = {R(·,u) | u ∈ U} be the set of revenue functions that arise from

the uncertainty set U . Note that each revenue function is of the form R(p) = αp − βp2.

Therefore, the condition that each R ∈ R is concave implies that R′′(p) = −2β ≤ 0. Thus,

if U is such that inf{β | (α, β) ∈ U} ≥ 0, then the robust price optimization problem is

randomization-proof. □

68

Example 4 (Multi-product pricing under linear demand). In the more general multi-product

pricing problem, let u = (α,β,γ) ∈ RI × RI × RI(I−1) denote the vector of linear demand

model parameters, and let U be an arbitrary uncertainty set of these model parameter

vectors. Let R = {R(·,u) | u ∈ U} be the set of revenue functions that arise from the

uncertainty set U . Observe that each revenue function R(·,u) is of the form

R(p) =
I∑

i=1

pi(αi − βipi +
∑
j ̸=i

γi,jpj)

= αTp− pTMβ,γp,

where Mβ,γ is the matrix

Mβ,γ =

−β1 γ1,2 γ1,3 · · · γ1,I−1 γ1,I

γ2,1 −β2 γ2,3 · · · γ2,I−1 γ2,I
...

...
. . .

...
...

γI,1 γI,2 γI,3 · · · γI,I−1 −βI

 .

This implies that

∇2R(p) = −2Mβ,γ .

The function R is therefore concave if the matrix Mβ,γ is positive semidefinite. Therefore,

if U is such that inf{λmin(Mβ,γ) | (α,β,γ) ∈ U} ≥ 0, where λmin(A) denotes the mini-

mum eigenvalue of a symmetric matrix A, then the robust price optimization problem is

randomization proof. □

Example 5 (Single-product pricing under semi-log demand). For the single-product pricing

problem under semi-log demand, d(p) = exp(α − βp) is the demand function given the

parameter vector u = (α, β). Let U ⊆ R2 be an uncertainty set of possible values of

(α, β), and assume that β is bounded away from zero, that is, inf{β | (α, β) ∈ U} ≥ 0.

R = {R(·,u) | u ∈ U} be the revenue function uncertainty set. For a given R ∈ R, its

second derivative is R′′(p) = R′′(p) = β(βp− 2)eα−βp. Thus, for R′′(p) to be nonpositive, we

69

need βp−2 ≤ 0 or equivalently βp ≤ 2 (since β is assumed to be nonnegative) for all p ∈ P in

order for R(p) to be concave. Thus, if supp∈P sup(α,β)∈U{βp} ≤ 2 and inf{β | (α, β) ∈ U} ≥ 0,

then the RPO problem is randomization-proof. □

Example 6 (Single-product pricing under log-log demand). For the single-product pricing

problem under log-log demand, d(p) = exp(α − β log p) = eα · p−β is the demand function

and u = (α, β) ∈ R2 is the vector of uncertain demand model parameters. Let U ⊆ R2 be an

uncertainty set of possible values of (α, β), and assume that β is bounded away from zero from

below, that is, inf{β | (α, β) ∈ U} ≥ 0. Let R = {R(·,u) | u ∈ U} be the revenue function

uncertainty set. For a given R ∈ R, its second derivative is R′′(p) = eα · (β − 1)(β) · p−β−1.

Thus, for R′′(p) to be nonpositive, we need β − 1 ≤ 0, or equivalently β ≤ 1. Thus, if

sup(α,β)∈U β ≤ 1 and inf(α,β)∈U β ≥ 0, then the RPO problem is randomization-proof. □

3.4.2 Quasiconcavity in p and quasiconvexity in u

The second result we establish concerns the RRPO problem when there is a demand param-

eter uncertainty set U . In this case, the RRPO and DRPO problems are

RRPO : max
F∈F

min
u∈U

∫
P
R(p,u) dF (p),

DRPO : max
p∈P

min
u∈U

R(p,u).

We make the following assumption about R.

Assumption 7 R is a continuous function of (p,u).

Under these assumptions, we obtain the following result.

Theorem 8 Suppose that Assumptions 7 holds. Suppose that P ⊆ RI and U ⊆ Rd are

compact convex sets. Suppose that
∫
P R(p,u) dF (p) is a quasiconvex function of u on U for

any F ∈ F . Suppose that R(p,u) is quasiconcave in p on P for any u ∈ U and quasiconvex

in u on U for any p ∈ P. Then, the robust price optimization problem is randomization-

proof, that is, Z∗
DR = Z∗

RR.

70

The proof of Theorem 8 (see Appendix B.1.2) follows from applying Sion’s minimax

theorem twice. This result allows us to show that a larger number of RPO problems are

randomization-proof. We provide a few examples below.

Example 7 Consider a single-product price optimization problem where the demand follows

a semi-log model. The uncertain parameter is therefore u = (α, β).

Observe that R(p,u) = peα−βp is convex in u. Thus, it is also quasiconvex in u for a fixed

p. Additionally, for any distribution F over P , we have that the function
∫
P R(p,u) dF (p) is

convex in u (it is a nonnegative weighted combination of the functions u = (α, β) 7→ peα−βp,

each of which is convex), and is thus also quasiconvex in u.

Note also that the function R is quasi-concave in p. To see this, observe that logR(p,u) =

log p + α − βp, which is concave in p; this means that R is log-concave in p. Since any log-

concave function is quasiconcave, it follows that R is quasiconcave in p.

Thus, if P ⊆ R and U ⊆ R2 are compact and convex, then Theorem 8 asserts that the

RPO problem is randomization-proof. □

Example 8 Consider a single-product price optimization problem where the demand follows

a log-log model. The uncertain parameter is u = (α, β), and R(p,u) = peα−β log p. Assume

that P ⊆ R is a compact convex set, and that min{p | p ∈ P} > 0.

Observe that R(p,u) = p · eα−β log p is convex in u, and therefore quasiconvex in u

for a fixed p. Additionally, for any distribution F over P , we have that the function∫
P R(p,u) dF (p) is convex in u and therefore also quasiconvex in u for a fixed F .

Lastly, with regard to quasiconcavity in p, observe that logR(p,u) = log p+α−β log p =

(1− β) log p+α, which means that R is log-concave in p whenever 1− β > 0 or equivalently

β < 1. Therefore, R will also be quasiconcave whenever β < 1.

Thus, if P ⊆ R and U ⊆ R2 are compact and convex, and max{β | (α, β) ∈ U} < 1, then

Theorem 8 guarantees that the RPO problem is randomization-proof. □

With regard to the above two examples, we note that in general, the revenue function

71

for a semi-log or a log-log demand model is not concave in p. Thus, Theorem 7 cannot be

used in these cases, and we must use Theorem 8. Note, however, that the two examples

above critically rely on the revenue function being log-concave and therefore quasiconcave,

which is only the case for single product price optimization problems. Log-concavity and

quasiconcavity are in general not preserved under addition (i.e., the sum of quasiconcave

functions is not always quasiconcave, and the sum of log-concave functions is not always

log-concave), and so Theorem 8 will in general not be applicable for multiproduct pricing

problems involving the semi-log or log-log demand model.

3.4.3 Finite price set P

In this section, we analyze randomization-receptiveness when P is a finite set. To study this

setting, let us define the set Q as the set of all probability distributions supported on U . We

note that these results are adaptations of several results fromWang et al. (2024) to the pricing

setting that we study, which develop analogous conditions for randomization-proofness for

the robust assortment optimization problem.

Our first result establishes that randomization-proofness is equivalent to the existence of

a distribution Q over U under which any price vector’s expected performance is no better

than the deterministic robust optimal value.

Theorem 9 Suppose that R(p,u) is continuous in u for any fixed p ∈ P. A robust price

optimization problem with finite P is randomization-proof if and only if there exists a distri-

bution Q ∈ Q such that for all p ∈ P,∫
U
R(p,u) dQ(u) ≤ Z∗

DR.

To prove this result, we use Sion’s minimax theorem to establish that

Z∗
RR = inf

Q∈Q
max
p∈P

∫
U
R(p,u) dQ(u); (3.16)

72

with that result in hand, the condition in Theorem 9 is equivalent to establishing that

Z∗
DR ≥ inf

Q∈Q
max
p∈P

∫
U
R(p,u) dQ(u) = Z∗

RR,

which, together with the inequality Z∗
DR ≤ Z∗

RR immediately yields randomization-proofness.

We note that this result is analogous to Theorem 1 in Wang et al. (2024), which provides

a similar necessary and sufficient condition for randomization-proofness in the context of

robust assortment optimization. Our proof, which relies on Sion’s minimax theorem, is

perhaps slightly more direct than the proof of Theorem 1 in Wang et al. (2024), although

this is a matter of taste.

Our next two results are consequences of this theorem. The first essentially states that a

price optimization problem proof will be randomization-proof if the robust price optimization

problem obeys strong duality. The second states that, under some conditions, a robust price

optimization problem is randomization-receptive if and only if the deterministic robust price

vector p∗
DR is not an optimal solution of the nominal price optimization problem under the

worst-case u∗ that attains the worst-case objective under p∗
DR. We note that these results

are both analogous to Corollaries 1 and 2 in Wang et al. (2024).

Corollary 2 Suppose that R(p,u) is a continuous function of u for every p ∈ P. A robust

price optimization problem with finite P is randomization-proof if and only if it satisfies

strong duality:

max
p∈P

min
u∈U

R(p,u) = min
u∈U

max
p∈P

R(p,u). (3.17)

Corollary 3 Suppose that U is a compact subset of Rd, and that R(p,u) is a continu-

ous function of u for every p ∈ P. Suppose that p∗
DR ∈ argmaxp∈P minu∈U R(p,u) is

an optimal solution of the deterministic robust price optimization problem, and suppose

that minu∈U R(p
∗
DR;u) has a unique solution u∗. Then the robust price optimization is

randomization-receptive if and only if p∗
DR /∈ argmaxp∈P R(p,u

∗).

With regard to Corollary 3, we note that the uniqueness requirement for u∗ cannot in gen-

eral be relaxed. In Appendix B.1.6, we show an instance where minu∈U R(p
∗
DR,u) has multi-

73

ple optimal solutions, p∗
DR /∈ argmaxp∈P R(p,u

′) for every u′ that solves minu∈U R(p
∗
DR,u),

and yet the problem is randomization-proof, i.e., Z∗
DR = Z∗

RR.

We remark that the necessary and sufficient conditions for randomization-proofness in

Corollaries 2 and 3 are rather stringent and demanding. With regard to Corollary 2, strong

duality is in general unlikely to hold given that P is a finite set. With regard to Corollary 3,

we note that in general, the solution of the deterministic robust price optimization problem is

unlikely to also be an optimal solution of an appropriately defined nominal price optimization

problem; this is frequently not the case in many applications of robust optimization outside

of pricing. Given this, these conditions are suggestive of the fact that most robust price

optimization problems will be randomization-receptive. This motivates our study of solution

algorithms for numerically solving the RRPO problem in the next two sections.

3.5 Solution algorithm for finite price set P, convex uncertainty

set U

In this section, we describe a general solution algorithm for solving the RRPO problem

when the price set P is a finite set, and the uncertainty set U is a general convex uncertainty

set. Section 3.5.1 describes the general solution algorithm, which is a constraint generation

algorithm that involves solving a nominal pricing problem over P as a subroutine. Sec-

tions 3.5.2, 3.5.3 and 3.5.4 describe how the solution algorithm specializes to the cases of the

linear, semi-log and log-log demand models, respectively, and in particular, how the nominal

pricing problem can be solved for each of these three cases; the formulations we present for

the semi-log and log-log models here may be of independent interest as they are, to the best

of our knowledge, the first exact mixed-integer convex formulations for the multi-product

pricing problem under a finite price set for these demand models.

74

3.5.1 General solution approach

The first general solution scheme that we consider is when P is a discrete set and the

uncertainty set U is a convex uncertainty set. In this case, if the revenue function R(p,u)

is quasiconvex and continuous in u ∈ U , then the RRPO problem can be reformulated as

follows:

max
π∈∆P

min
u∈U

∑
p∈P

πpR(p,u)

= min
u∈U

max
π∈∆P

∑
p∈P

πpR(p,u)

= min
u∈U

max
p∈P

R(p,u),

where the first equality follows by Sion’s minimax theorem, and the second equality follows

by the fact that the inner maximum is attained by setting πp = 1 for some p and setting

πp′ = 0 for all p′ ̸= p. This last problem can be written in epigraph form as

minimize
u,t

t (3.18a)

subject to t ≥ R(p,u), ∀ p ∈ P , (3.18b)

u ∈ U . (3.18c)

Problem (3.18) can be solved using constraint generation. In such a scheme, we start with

constraint (3.18b) enforced only at a subset P̂ ⊂ P , and solve problem (3.18) to obtain

a solution (u, t). At this solution, we solve the problem maxp∈P R(p,u), and compare this

objective value to the current value of t. If it is less than or equal to t, we conclude that (u, t)

satisfies constraint (3.18b) and terminate with (u, t) as the optimal solution. Otherwise, if

it is greater than t, we have identified a p for which constraint (3.18b) and we add the new

constraint to P̂ . We then re-solve the problem to obtain a new solution (u, t) and repeat

the process until we can no longer identify any violated constraints. To recover the optimal

randomization scheme from the solution of this problem (i.e., the distribution π), we simply

consider the optimal dual variable of each constraint t ≤ R(p,u).

75

The viability of this solution approach critically depends on our ability to solve the

separation problem maxp∈P R(p,u) efficiently, and to solve the problem (3.18) efficiently for

a fixed subset P̂ ⊂ P . In what follows, we shall demonstrate that this problem can actually

be solved practically for the linear, semi-log and log-log problems.

To develop our approaches for the linear, semi-log and log-log models, we will make

the following assumption about the price set P , which simply states that P is a Cartesian

product of finite sets of prices for each of the products.

Assumption 8 P = P1 × . . .× PI , where Pi is a finite subset of R+ for each i.

3.5.2 Linear demand model

We begin by showing how our solution approach for convex U applies to the linear demand

model case. Recall that the linear model revenue function is

R(p,u) =
I∑

i=1

pi(αi − βipi +
∑
j ̸=i

γi,jpj). (3.19)

For a fixed p, the function R(p,u) is linear and therefore convex and quasiconvex in u =

(α,β,γ). Thus, given a subset P̂ ⊂ P , the problem (3.18) should be easy to solve, assuming

that U is also a sufficiently tractable convex set. For example, if U is a polyhedron, then

since each constraint (3.18b) is linear in u, problem (3.18) would be a linear program.

The separation problem for the linear demand model case is

max
p∈P

I∑
i=1

pi(αi − βipi +
∑
j ̸=i

γi,jpj)

= max
p∈P

I∑
i=1

piαi −
I∑

i=1

βip
2
i +

I∑
i=1

∑
j ̸=i

γi,jpipj

Since P = P1 × . . . × PI , we can formulate this as a mixed-integer program. Let xi,t be a

binary variable that is 1 if product i has price t ∈ Pi, and 0 otherwise. Similarly, let yi,j,t1,t2

76

be a binary decision variable that is 1 if product i is given price t1 and product j is given

price t2 for i ̸= j, and 0 otherwise. Then the separation problem can be straightforwardly

written as

maximize
x,y

I∑
i=1

∑
t∈Pi

αi · t · xi,t +
I∑

i=1

∑
t∈Pi

t2 · βi · xi,t +
I∑

i=1

∑
j ̸=i

∑
t1∈Pi

∑
t2∈Pj

γi,j · t1 · t2 · yi,j,t1,t2

(3.20a)

subject to
∑
t∈Pi

xi,t = 1, ∀ i ∈ [I], (3.20b)

∑
t2∈Pj

yi,j,t1,t2 = xi,t1 , ∀ i, j ∈ [I], j ̸= i, t1 ∈ Pi, (3.20c)

∑
t1∈Pi

yi,j,t1,t2 = xi,t2 , ∀ i, j ∈ [I], j ̸= i, t2 ∈ Pj, (3.20d)

xi,t ∈ {0, 1}, ∀ i ∈ [I], t ∈ Pi, (3.20e)

yi,j,t1,t2 ∈ {0, 1}, ∀ i, j ∈ [I], i ̸= j, t1 ∈ Pi, t2 ∈ Pj, (3.20f)

where the first constraint simply enforces that exactly one price is chosen for each product,

while the second and third constraints require that the yi,j,t1,t2 variables are essentially equal

to xi,t1 · xj,t2 .

3.5.3 Semi-log demand model

We will now show how the solution approach we have defined earlier applies to the semi-log

demand model. Recall that the semi-log revenue function is

R(p,u) =
I∑

i=1

pi · eαi−βipi+
∑

j ̸=i γi,jpj . (3.21)

Observe that for a fixed p, the function R(p,u) is convex (and therefore quasiconvex) in

u, since it is the nonnegative weighted combination of exponentials of linear functions of

u = (α,β,γ). Thus, given a subset P̂ ⊂ P , solving problem (3.18) should again be “easy”,

assuming also that U is a sufficiently tractable convex set. (In particular, the function

77

R(p,u) can be represented using I exponential cones; assuming that U is also representable

using conic constraints, problem (3.18) will thus be some type of continuous conic program.)

We now turn our attention to the separation problem, maxp∈P R(p,u). Specifically, this

problem is

max
p∈P

I∑
i=1

pi · eαi−βipi+
∑

j ̸=i γi,jpj .

Observe that since the function f(t) = log(t) is monotonic, the set of optimal solutions

remains unchanged if we consider the same problem with a log-transformed objective

max
p∈P

log

(
I∑

i=1

pi · eαi−βipi+
∑

j ̸=i γi,jpj

)

= max
p∈P

log

(
I∑

i=1

eαi+log pi−βipi+
∑

j ̸=i γi,jpj

)
. (3.22)

To now further re-formulate this problem, we observe that the objective function can be

re-written using the function g(y) = log(
∑I

i=1 e
yi). The function g is what is known as

the log-sum-exp function, which is a convex function (Boyd and Vandenberghe 2004). More

importantly, a standard result in convex analysis is that any proper, lower semi-continuous,

convex function is equivalent to its biconjugate function, which is the convex conjugate of its

convex conjugate (Rockafellar 1970). For the log-sum-exp function, this in particular means

that g(y) can be written as

g(y) = max
µ∈∆[I]

{µTy −
I∑

i=1

µi log µi}.

The function h(x) = x log x is the negative entropy function (Boyd and Vandenberghe 2004),

and is a convex function; thus, the function inside the max{·} is a linear function minus a

sum of convex functions, and is a concave function.

78

For our problem, this means that (3.22) can be re-written as

max
p∈P

logR(p,u)

= max
p∈P

log

(
I∑

i=1

eαi+log pi−βipi+
∑

j ̸=i γi,jpj

)

= max
p∈P

max
µ∈∆[I]

{
I∑

i=1

µi(αi + log pi − βipi +
∑
j ̸=i

γi,jpj)−
I∑

i=1

µi log µi

}

= max
p∈P, µ∈∆[I]

{
I∑

i=1

µi(αi + log pi − βipi +
∑
j ̸=i

γi,jpj)−
I∑

i=1

µi log µi

}
. (3.23)

To further reformulate this problem, we now make use of Assumption 8, which states that

P is the Cartesian product of finite sets. Let us introduce a new binary decision variable

xi,t which is 1 if product i’s price is set to price t ∈ Pi, and 0 otherwise. Using this new

decision variable, observe that we can replace pi wherever it occurs with
∑

t∈Pi
t ·xi,t. We can

also similarly replace log pi with
∑

t∈Pi
log t · xi,t. Therefore, problem (3.23) can be further

reformulated as

maximize
x,µ

I∑
i=1

µi

αi +
∑
t∈Pi

log t · xi,t − βi ·
∑
t∈Pi

t · xi,t +
∑
j ̸=i

γi,j
∑
t∈Pj

t · xj,t

− I∑
i=1

µi log µi

(3.24a)

subject to
I∑

i=1

µi = 1, (3.24b)

∑
t∈Pi

xi,t = 1, ∀ i ∈ [I], (3.24c)

xi,t ∈ {0, 1}, ∀ i ∈ [I], t ∈ Pi, (3.24d)

µi ≥ 0, ∀ i ∈ [I]. (3.24e)

This last problem is almost a mixed-integer convex program: as noted earlier, the expression

−
∑I

i=1 µi log µi is concave in µ. The main wrinkle is the presence of the bilinear terms in the

objective function, specifically terms of the form µi ·xj,t. Fortunately, we can circumvent this

difficulty by introducing a new decision variable, wi,j,t, which is the linearization of µi · xj,t,

79

for each i, j ∈ [I], t ∈ Pj. By adding this new decision variable and additional constraints,

we arrive at our final formulation, which is a mixed-integer convex program.

maximize
µ,w,x

I∑
i=1

µiαi +
I∑

i=1

∑
t∈Pi

log t · wi,i,t −
I∑

i=1

βi ·
∑
t∈Pi

t · wi,i,t

+
I∑

i=1

∑
j ̸=i

γi,j · (
∑
t∈Pj

t · wi,j,t)−
I∑

i=1

µi log µi (3.25a)

subject to
∑
t∈Pj

wi,j,t = µi, ∀ i ∈ [I], j ∈ [I], (3.25b)

I∑
i=1

wi,j,t = xj,t, ∀ j ∈ [I], t ∈ Pj, (3.25c)

I∑
i=1

µi = 1, (3.25d)

∑
t∈Pi

xi,t = 1, ∀ i ∈ [I], (3.25e)

wi,j,t ≥ 0, ∀ i ∈ [I], j ∈ [I], t ∈ Pj, (3.25f)

xi,t ∈ {0, 1}, ∀ i ∈ [I], t ∈ Pi, (3.25g)

µi ≥ 0, ∀ i ∈ [I]. (3.25h)

There are a few important points to observe about this formulation. First, note that because

the µi’s sum to 1 over i, and the xj,t’s are binary and sum to 1 over t ∈ Pj for any j, then

ensuring that wi,j,t = µi · xj,t can be done simply through constraints (3.25b) and (3.25c).

This is different from the usual McCormick envelope-style linearization technique, which in

this case would involve the four inequalities:

wi,j,t ≤ xj,t, (3.26)

wi,j,t ≤ µi, (3.27)

wi,j,t ≥ xj,t + µi − 1, (3.28)

wi,j,t ≥ 0, (3.29)

for every i ∈ [I], j ∈ [I], t ∈ Pj. It is not difficult to show that these constraints are implied

80

by constraints (3.25b), (3.25c) and (3.25f).

Second, at the risk of belaboring the obvious, the optimal objective value of prob-

lem (3.25) is the value of maxp∈P logR(p,u), where R is the semi-log revenue function.

Upon solving problem (3.25) to obtain the objective value Z ′, we can obtain the optimal

objective value of the untransformed problem maxp∈P R(p,u) as e
Z′
.

Third, this formulation is notable because, to our knowledge, this is the first exact mixed-

integer convex formulation of the nominal multi-product pricing problem under semi-log

demand and a price set defined as the Cartesian product of finite sets. To date, virtually all

research that has considered solving this type of problem in the marketing and operations

management literatures has involved heuristics (see, for example, Section EC.3 of Mǐsić 2020,

which solves log-log and semi-log multi-product pricing problems for a collection of stores

using local search). From this perspective, although we developed this formulation as part

of the overall solution approach for the RRPO problem, we believe it is of more general

interest.

Building on the previous point, problem (3.25) can be formulated as a mixed-integer

exponential cone program. Such problems are garnering increasing attention from the aca-

demic and industry sides. In particular, since 2019, the MOSEK solver (ApS 2022) supports

the exponential cone and can solve mixed-integer conic programs that involve the expo-

nential cone to global optimality. Although the solution technology for mixed-integer conic

programs is not as developed as that of mixed-integer linear programs (as exemplified by

state-of-the-art solvers such as Gurobi and CPLEX), it is reasonable to expect that these

solvers will continue to improve and allow larger and larger problem instances to be solved

to optimality in the future.

Lastly, we comment that the same reformulation technique used above – taking the

logarithm, replacing the log-sum-exp function with its biconjugate, and then linearizing the

products of the binary decision variables and the probability mass function values (the µi

variables) that arise from the biconjugate – can also be used to derive an exact formulation

81

of the deterministic robust price optimization problem. By taking the same approach, one

obtains a max-min-max problem, and one can use Sion’s minimax theorem again to swap the

inner maximization over µ with the minimization over u to obtain a robust counterpart that

can then be further reformulated using duality or otherwise solved using delayed constraint

generation. We provide the details of this derivation in Appendix B.2.1.

3.5.4 Log-log demand model

To now show how the solution scheme in Section 3.5.1 applies to the log-log approach, we

again recall the form of the log-log revenue function:

R(p,u) =
I∑

i=1

pi · eαi−βi log pi+
∑

j ̸=i γi,j log pj (3.30)

=
I∑

i=1

eαi+log pi−βi log pi+
∑

j ̸=i γi,j log pj (3.31)

Using the same biconjugate trick as with the semi-log approach, we can show that

max
p∈P

logR(p,u)

= max
p∈P

log

(
I∑

i=1

eαi+log pi−βi log pi+
∑

j ̸=i γi,j log pj

)

= max
p∈P

max
µ∈∆[I]

{
I∑

i=1

µi(αi + log pi − βi log pi +
∑
j ̸=i

γi,j log pj)−
I∑

i=1

µi log µi

}
(3.32)

If we now invoke Assumption 8, then we can introduce the same decision variables xi,t and

wi,j,t as in problem (3.25) to obtain a mixed-integer convex formulation of the log-log price

optimization problem, which has the same feasible region as the semi-log formulation (3.25):

maximize
w,x,µ

I∑
i=1

µiαi +
I∑

i=1

∑
t∈Pi

log t · wi,i,t −
I∑

i=1

βi ·
∑
t∈Pi

log t · wi,i,t

+
I∑

i=1

∑
j ̸=i

γi,j
∑
t∈Pj

log t · wi,j,t −
I∑

i=1

µi log µi (3.33a)

subject to constraints (3.25b) – (3.25h). (3.33b)

82

While the feasible region of problem (3.33) is the same as that of (3.25), the objective function

of (3.33) is different. Just like problem (3.25), problem (3.33) can be written as a mixed-

integer exponential cone program, and similarly, to the best of our knowledge, this is the

first exact mixed-integer convex formulation of the log-log multi-product price optimization

problem under a Cartesian product price set. Lastly, just like the semi-log problem (3.25),

one can easily modify the formulation to obtain an exact formulation of the deterministic

robust price optimization problem under log-log demand (see Appendix B.2.2).

We note that the log-log separation problem has an interesting property, which is that

there exist optimal solutions that are extreme, in the sense that each product’s price is set

to either its lowest or highest allowable price. This property is formalized in the following

proposition (see Section B.1.7 for the proof).

Proposition 2 Suppose that Assumption 8 holds. Let (µ,p) be an optimal solution of

problem (3.32). Then there exists an optimal solution (µ,p′), such that for each i ∈ [I],

either p′i = minPi or p
′
i = maxPi.

3.6 Solution method for finite P, finite U

In addition to the case where U is convex, we also consider the case where U is a finite

discrete set. Due to page limitations, our presentation of our solution method for this case is

relegated to Appendix B.3. At a high level, the foundation of our approach is double column

generation, which alternates between solving the primal version of the RRPO problem,

which is maxπ∈∆P minu∈U
∑

p∈P πpR(p,u), and the dual version of the RRPO problem,

which is minλ∈∆U maxp∈P
∑

u∈U λuR(p,u). In each iteration, we solve the primal problem

with P replaced by a subset P̂ ⊆ P , where we use constraint generation to handle the inner

minimization over u ∈ U ; this gives rise to a finite set of uncertainty realizations Û ⊆ U .

We then solve the dual problem with U replaced by Û , where we use constraint generation

to handle the inner maximization over p ∈ P , which gives rise to a finite set of price vectors

83

P̂ ⊆ P . At each step of the algorithm, the objective value of the primal problem restricted

to P̂ is a lower bound on the true optimal objective, while the objective value of the dual

problem restricted to Û is an upper bound on the optimal objective; the algorithm terminates

when these two bounds are equal or are otherwise within a pre-specified tolerance.

To implement this approach for the demand models that we consider, one needs to be

able to solve the primal separation problem (solve minu∈U
∑

p∈P̂ πpR(p,u)) and the dual

separation problem (solve maxp∈P
∑

u∈Û λu ·R(p,u)). We show how both of these problems

can be reformulated as mixed-integer exponential cone programs for the semi-log and log-log

demand models, and as mixed-integer linear programs for the linear demand model.

3.7 Numerical experiments

In this section, we conduct several sets of experiments involving synthetic problem instances

to understand the tractability of the RRPO approach and the improvement in worst-case

revenue of the randomized robust pricing strategy over the deterministic robust pricing

strategy. In Section 3.7.1, we consider instances involving the linear, semi-log and log-log

models where the uncertainty set U is a convex set. In Section 3.7.2, we consider instances

involving the linear, semi-log and log-log models where the uncertainty set U is a discrete

set. Finally, in Section 3.7.3, we consider log-log and semi-log robust price optimization

instances derived from a real data set on sales of orange juice products from a grocery store

chain.

All of our code is implemented in the Julia programming language (Bezanson et al. 2017).

All optimization models are implemented using the JuMP package (Lubin and Dunning

2015). All linear and mixed-integer linear programs are solved using Gurobi Gurobi Opti-

mization, Inc. (2022) and all mixed-integer exponential cone programs are solved using Mosek

(ApS 2022), with a maximum of 8 threads per program. All of our experiments are con-

ducted on Amazon Elastic Compute Cloud (EC2), on a single instance of type m6a.48xlarge

84

(AMD EPYC 7R13 processor, with 192 virtual CPUs and 768 GB of memory).

3.7.1 Experiments with convex U and linear, log-log and semi-log demand mod-

els

In our first set of experiments, we consider the log-log and semi-log demand models, and

specifically consider a L1-norm uncertainty set U :

U = {u = (α,β,γ) | ∥ũ∥1≤ θ, [ũk =
uk − u0k

u0k

∀k ∈ {1, .., I + I2}]}, (3.34)

where u0 is the vector of nominal values of the uncertain parameters u = (α,β,γ), and θ is

the budget of the uncertainty set.

For each of the three demand models (linear, semi-log and log-log), we vary the number

of products I varies in {5, 10, 15, 20}. For each value of I, we generate 24 random instances,

where the values of α,β,γ are independently randomly generated as follows:

1. Linear demand.

Each αi ∼ Uniform(200, 300), βi ∼ Uniform(5, 15), γi,j ∼ Uniform(−0.1,+0.1).

2. Semi-log demand.

Each αi ∼ Uniform(4, 7), βi ∼ Uniform(1, 1.5), γi,j ∼ Uniform(−0.4,+0.4).

3. Log-log demand.

Each αi ∼ Uniform(10, 14), βi ∼ Uniform(1, 2), γi,j ∼ Uniform(−0.6,+0.6).

For each product i ∈ [I], we set Pi = {1, 2, 3, 4, 5}.

For the uncertainty set U , the budget parameter θ varies in {0.1, 0, 5, 1, 1.5, 2} for each

instance.

For each instance, we solve the nominal problem, the DRPO problem and the RRPO

problem. For DRPO and RRPO, we vary the budget parameter θ that defines the uncer-

tainty within the set {0.1, 0.5, 1, 1.5, 2}. To solve the RRPO problem for each instance, we

85

execute the constraint generation solution algorithm described in Section 3.5. For instances

with log-log demand, we take advantage of Proposition 2 and thus simplify the price set P

to contain the highest and lowest price levels for each product only. To solve the DRPO

problem, we formulate it as either a mixed-integer linear program (for linear demand) or a

mixed-integer exponential cone program (for semi-log and log-log demand) via the log-sum-

exp biconjugate-based technique described in Appendix B.2, and use standard LP duality

techniques to reformulate the objective function of the resulting problem (formulation (B.7)

and formulation (B.8) in Section B.2). Due to the prohibitive computation times that we

encountered for the DRPO problem with log-log and semi-log demand, we impose a com-

putation time limit of 20 minutes. From our experimentation with the DRPO problem for

log-log and semi-log, it is often the case that an optimal or nearly optimal solution is found

early on, and the bulk of the remaining computation time, which can be in the hours, is

required by Mosek to prove optimality and close the gap. Finally, to solve the nominal

problem for each instance, we also use the same biconjugate-based technique to formulate

the nominal price optimization problem as a mixed-integer exponential cone program.

We present the objective value as well as the computation time of each RRPO, DRPO and

nominal problem. We additionally compute several other metrics. We compute E[R(p∗
RR,u0)],

which is the expected revenue of the randomized RPO solution assuming that the nominal

parameter values are realized. We also compute R(p∗
DR,u0), the nominal revenue of DRPO

solution, and ZN,WC = minu∈U R(p
∗
N,u), the worst-case revenue of the nominal solution.

We use the following metric to show the benefit of randomized strategy in robust price

optimization:

RI = (Z∗
RR − Z∗

DR)/Z
∗
DR × 100% (3.35)

For each metric, we compute its average over the 24 instances for each value of I and θ.

Tables 3.1, 3.2 and 3.3 shows the results for the linear, semi-log and log-log demand

models, respectively. For linear demand, we find that the improvement by randomized

robust pricing over deterministic robust pricing is modest; the largest average improvement

86

is 4.63% for I = 5, θ = 2. We note that we experimented with other forms of uncertainty

sets and choices of the nominal parameter values, but we generally did not encounter large

improvements of the same size as we did for the other two demand models.

I θ tRR Z∗
RR E[R(p∗

RR,u0)] tDR Z∗
DR RI(%) R(p∗

DR,u0) tN Z∗
N ZN,WC

5 0.1 7.77 4825.94 4967.01 0.40 4825.94 0.00 4967.01 0.34 4967.01 4825.94

5 0.5 0.06 4261.65 4967.01 0.03 4261.65 0.00 4967.01 – – 4261.65

5 1.0 0.14 3574.50 4929.31 0.03 3557.12 0.52 4960.78 – – 3556.29

5 1.5 0.22 2912.85 4816.66 0.03 2859.49 1.98 4899.71 – – 2878.88

5 2.0 0.32 2293.09 4686.41 0.03 2195.89 4.63 4717.99 – – 2201.48

10 0.1 0.17 9851.95 9998.29 0.10 9851.95 0.00 9998.29 0.08 9998.29 9851.95

10 0.5 0.18 9266.59 9998.29 0.10 9266.59 0.00 9998.29 – – 9266.59

10 1.0 0.43 8552.00 9958.68 0.11 8534.89 0.20 9998.29 – – 8534.89

10 1.5 0.62 7853.61 9911.18 0.11 7803.34 0.65 9990.94 – – 7831.55

10 2.0 0.81 7173.52 9856.00 0.12 7077.66 1.37 9941.59 – – 7128.21

15 0.1 0.34 14855.50 15002.93 0.21 14855.50 0.00 15002.93 0.16 15002.93 14855.50

15 0.5 0.34 14265.78 15002.93 0.21 14265.78 0.00 15002.93 – – 14265.78

15 1.0 0.85 13539.69 14975.91 0.23 13528.63 0.08 15002.93 – – 13528.63

15 1.5 1.20 12825.97 14931.12 0.24 12791.49 0.27 15002.93 – – 12810.52

15 2.0 1.60 12126.11 14916.28 0.24 12054.34 0.61 15002.93 – – 12092.41

20 0.1 0.57 19776.82 19923.37 0.36 19776.82 0.00 19923.37 0.28 19923.37 19776.82

20 0.5 0.55 19190.63 19923.37 0.37 19190.63 0.00 19923.37 – – 19190.63

20 1.0 1.41 18464.77 19910.10 0.39 18457.88 0.04 19923.37 – – 18457.88

20 1.5 2.08 17744.39 19895.41 0.42 17725.13 0.11 19923.37 – – 17735.21

20 2.0 2.89 17030.17 19859.43 0.43 16992.38 0.22 19923.37 – – 17012.55

Table 3.1: Results for linear instances with convex U .

Besides linear demand, these results also show that for semi-log and log-log demand, there

can be a very large difference between the randomized and deterministic robust pricing

schemes. The benefit of randomization, quantified by the metric RI, ranges from about

3% to as much as 1320% for semi-log instances, and from about 7% to 243% for log-log

87

I θ tRR Z∗
RR E[R(p∗

RR,u0)] tDR Z∗
DR RI(%) R(p∗

DR,u0) tN Z∗
N ZN,WC

5 0.1 12.04 2.60× 103 4.53× 103 0.45 2.55× 103 2.86 4.56× 103 0.37 4.56× 103 2.54× 103

5 0.5 0.28 5.40× 102 2.92× 103 0.18 4.26× 102 30.89 3.67× 103 – – 3.25× 102

5 1.0 0.34 2.14× 102 2.33× 103 0.19 1.52× 102 42.14 1.81× 103 – – 66.06

5 1.5 0.38 1.09× 102 1.77× 103 0.21 72.97 49.46 9.42× 102 – – 27.85

5 2.0 0.39 60.06 1.67× 103 0.22 38.76 53.11 9.17× 102 – – 14.54

10 0.1 0.80 2.29× 105 4.05× 105 0.45 2.27× 105 5.14 4.08× 105 0.20 4.08× 105 2.27× 105

10 0.5 1.55 5.44× 104 2.44× 105 1.77 2.83× 104 86.68 2.84× 105 – – 2.44× 104

10 1.0 2.35 1.93× 104 2.00× 105 4.78 6.22× 103 178.14 1.41× 105 – – 3.24× 103

10 1.5 3.36 8.37× 103 1.59× 105 12.76 2.19× 103 242.84 8.94× 104 – – 1.20× 103

10 2.0 5.03 4.62× 103 1.29× 105 21.73 1.07× 103 273.72 1.42× 105 – – 6.58× 102

15 0.1 1.83 7.26× 106 1.33× 107 1.93 7.24× 106 2.79 1.34× 107 0.75 1.34× 107 7.24× 106

15 0.5 4.50 1.18× 106 9.18× 106 11.57 7.12× 105 91.22 1.29× 107 – – 6.63× 105

15 1.0 10.18 3.41× 105 6.11× 106 123.07 9.89× 104 302.39 6.11× 106 – – 5.26× 104

15 1.5 20.74 1.47× 105 5.46× 106 499.02 3.64× 104 406.11 6.59× 106 – – 2.40× 104

15 2.0 32.79 7.67× 104 4.79× 106 799.69 1.66× 104 502.85 7.32× 106 – – 1.21× 104

20 0.1 6.65 2.17× 108 4.13× 108 5.74 2.16× 108 3.87 4.13× 108 1.66 4.13× 108 2.16× 108

20 0.5 25.98 2.33× 107 1.96× 108 204.50 1.65× 107 178.27 4.11× 108 – – 1.63× 107

20 1.0 36.70 6.93× 106 1.83× 108 795.72 1.11× 106 715.40 7.17× 107 – – 7.42× 105

20 1.5 59.76 3.01× 106 1.30× 108 1036.22 3.64× 105 1000.01 3.66× 108 – – 3.1× 105

20 2.0 75.66 1.56× 106 2.05× 108 1129.75 1.72× 105 1320.44 2.52× 108 – – 1.43× 105

Table 3.2: Results for semi-log instances with convex U .

instances. Note that the magnitude of RI for the semi-log instances is larger than that for

log-log, because the logarithm of demand in the semi-log model has a linear dependence on

price which results in an exponential dependence of demand on price, but in log-log, the

logarithm of demand is linear in the logarithm of price, resulting in a milder polynomial

dependence of demand on price. For semi-log and log-log demand, both the worst-case

revenue of RRPO solution and the worst-case revenue of DRPO solution decrease as the

uncertainty set becomes larger, and the rate of reduction becomes less as the uncertainty

budget θ is larger. In addition, for linear, semi-log and log-log demand, the RI generally

increases as the uncertainty budget θ increases. Also, as we expect, Z∗
RR ≥ Z∗

DR ≥ ZN,WC.

88

I θ tRR Z∗
RR E[R(p∗

RR,u0)] tDR Z∗
DR RI(%) R(p∗

DR,u0) tN Z∗
N ZN,WC

5 0.5 11.93 3.47× 105 2.01× 106 0.39 3.30× 105 6.90 1.95× 106 0.55 2.85× 106 2.34× 105

5 1.0 0.16 9.74× 104 1.94× 106 0.14 9.23× 104 7.24 1.88× 106 – – 6.03× 104

5 1.5 0.17 2.87× 104 1.94× 106 0.14 2.70× 104 7.93 1.83× 106 – – 1.76× 104

5 2.0 0.17 8.52× 103 1.94× 106 0.14 7.99× 103 7.93 1.83× 106 – – 5.20× 103

10 0.5 1.53 2.78× 106 1.20× 107 25.53 2.07× 106 34.28 1.07× 107 0.55 2.24× 107 1.37× 106

10 1.0 2.21 1.15× 106 9.94× 106 44.96 8.27× 105 38.84 7.59× 106 – – 5.04× 105

10 1.5 2.94 5.67× 105 9.20× 106 54.57 4.03× 105 41.13 8.15× 106 – – 2.41× 105

10 2.0 2.93 3.00× 105 8.74× 106 61.97 2.11× 105 43.68 7.21× 106 – – 1.24× 105

15 0.5 11.42 1.18× 107 5.42× 107 934.31 7.45× 106 70.56 5.77× 107 4.63 1.28× 108 4.45× 106

15 1.0 22.91 5.32× 106 3.77× 107 1193.31 2.98× 106 85.48 3.43× 107 – – 1.68× 106

15 1.5 32.63 3.01× 106 3.28× 107 1200.57 1.58× 106 93.71 2.51× 107 – – 8.68× 105

15 2.0 38.84 1.83× 106 3.06× 107 1200.61 9.36× 105 99.16 2.05× 107 – – 5.00× 105

20 0.5 42.59 5.16× 107 2.40× 108 1200.50 1.89× 107 178.79 1.41× 108 21.44 6.77× 108 9.07× 106

20 1.0 115.78 2.37× 107 1.62× 108 1200.88 8.04× 106 209.87 1.04× 108 – – 3.65× 106

20 1.5 197.12 1.40× 107 1.33× 108 1200.97 4.40× 106 229.16 8.81× 107 – – 2.04× 106

20 2.0 257.13 8.95× 106 1.21× 108 1201.03 2.66× 106 243.71 8.34× 107 – – 1.27× 106

Table 3.3: Results for log-log instances with convex U .

Interestingly, the randomized robust pricing scheme can achieve better performance than

the deterministic robust scheme under the nominal demand model (for example, compare

E[R(p∗
RR,u0)] and R(p

∗
DR,u0) for log-log demand with I = 10); this appears to be the case

for almost all (I, θ) combinations for log-log, and for a smaller set of (I, θ) combinations for

semi-log.

With regard to the computation time, we observe that the computation time generally

grows with the number of products for both RRPO and DRPO. For linear demand, both

RRPO and DRPO can be solved extremely quickly (no more than 3 seconds on average,

even with I = 20 products). For log-log and semi-log, when the number of products is held

constant, the amount of time required to solve either RRPO generally becomes larger as the

uncertainty set becomes larger. However, what we find is that for both log-log and semi-

log demand, RRPO generally requires much less time to solve to complete optimality than

89

DRPO; this is likely because the nominal problem (which is a key piece of the constraint

generation method for RRPO when U is convex) can be solved rapidly, whereas the robust

version of this mixed-integer exponential cone program is more challenging for Mosek.

3.7.2 Experiments with discrete U and and linear, log-log and semi-log demand

models

In our second set of experiments, we consider linear, log-log and semi-log demand models,

where uncertainty is modeled through a discrete uncertainty set. We specifically consider a

discrete budget uncertainty set U here:

U = {u = u0−(u0−ū)◦ξ−(u0−u)◦η | e⊤ξ+e⊤η ≤ Γ, ξ+η ≤ 1, ξ, η ∈ {0, 1}I+I2}, (3.36)

where u and ū are respectively the component-wise lower and upper bounds of u, u0 is the

nominal value of the uncertain parameter vector u = (α,β,γ), Γ is the budget of uncertainty

and I + I + I(I − 1) = I + I2 is the total number of demand model parameters. Under

the budget uncertainty set U , up to Γ parameters can attain their lower bounds or upper

bounds, whereas the remaining parameters can only attain their nominal values. We shall

assume that the lower bound vector u and upper bound vector u are defined as u = 0.7u0

and u = 1.3u0, where u0 is the vector of nominal parameters.

For each of the three demand models (linear, semi-log and log-log), we vary the number

of products I in {5, 10, 15}. For each value of I, we generate 24 random instances, where

the values of α,β,γ are independently randomly generated as follows:

1. Linear demand.

Each αi ∼ Uniform(100, 200), βi ∼ Uniform(5, 15), γi,j ∼ Uniform(−0.1,+0.1).

2. Semi-log demand.

Each αi ∼ Uniform(8, 10), βi ∼ Uniform(1.5, 2), γi,j ∼ Uniform(−0.5,+0.5).

3. Log-log demand.

90

Each αi ∼ Uniform(10, 14), βi ∼ Uniform(1.5, 2), γi,j ∼ Uniform(−0.8,+0.8).

We set the price set of each i ∈ [I] as Pi = {1, 2, 3, 4, 5}.

For each instance, we solve the nominal problem, the DRPO problem and the RRPO

problem. For both RRPO and DRPO, we test a different collection of Γ values for the

uncertainty set depending on the value of I.

To solve the RRPO problem for each instance, we execute the double column generation

algorithm described in Section B.3. In our preliminary experimentation with the restricted

dual problem, we observed that exactly solving the dual separation problem (B.32) (for semi-

log demand) or (B.38) (for log-log demand) via Mosek takes quite a long time. Therefore, to

reduce the computation time of RRPO with discrete U , we instead use a random improve-

ment heuristic to obtain the solution of dual separation problem. Specifically, we randomly

select a price vector p0 as a starting point. We start with changing the price of product

i = 1 and keeping the prices of all other products unchanged, to search for a price vector p1

that makes the objective value of the dual separation problem the largest. Then based on

the current price vector p1, we change the price of product i = 2 and keep the prices of all

other products unchanged, to search for a better price vector p2. We repeat this for all of the

products, yielding the price vector pI . We repeat this procedure with 100 random starting

points, and retain the best solution over these 100 repetitions. Although this approximate

method cannot guarantee that the overall double column generation procedure converges to

a provably optimal solution, our preliminary experimentation with small instances suggests

that it obtains the exact solution of RRPO that one would obtain if the dual separation

problem were solved to provable optimality. For the linear demand model, we solve both

primal and dual separation problems as mixed-integer programs in Gurobi.

With regard to the DRPO problem for each log-log and semi-log instance, we note that

we do not have a solution algorithm or formulation to solve it exactly. Therefore, we again

use the same random improvement heuristic to obtain an approximate solution of DRPO

91

with these demand models. We randomly pick a starting price vector, and change the price

of one product at a time to improve the worst case objective value until we no longer get an

improvement. We repeat this procedure 50 times and select the best resulting price vector

from these 50 repetitions as the approximate solution of DRPO. We note that we use a

smaller number of repetitions because each repetition involves solving worst-case problem

over u ∈ U repeatedly in order to evaluate the robust objective of each candidate price vector;

this contributes to a large overall computation time for this approach. With regard to the

DRPO problem for linear demand, we observe that the objective function of DRPO is linear

in the uncertain parameter vector u, and that the description of the set polyhedron (3.36) is

integral (i.e., extreme points of this polyhedron naturally correspond to ξ,η ∈ {0, 1}2I+I2).

Therefore, DRPO can be solved exactly by relaxing the requirement ξ,η ∈ {0, 1}2I+I2 in the

uncertainty set (3.36), and reformulating the worst-case objective using LP duality, leading

to a mixed-integer linear program.

Lastly, for the nominal problem for each instance, we use the biconjugate technique to

formulate it as a mixed-integer exponential cone program.

We report the same metrics as in Section 3.7.1, with two minor modifications. We

use ẐDR and p̂DR to denote the approximate objective value and solution of DRPO given

by the random improvement heuristic. The approximate improvement percentage is then

R̂I = (Z∗
RR − ẐDR)/ẐDR × 100%.

Table 3.4 shows the results for the linear demand model. Here, we interestingly find that

the vast majority of instances are randomization-proof, i.e., the average RI is below 1%, if not

exactly 0%. We note here that we tested other families of instances where (α,β,γ) and Pi

are generated differently, but in virtually every case we found that the relative improvement

of randomized over deterministic robust pricing was very small. These results, together with

those for the convex U case, suggest that randomized pricing is of limited benefit compared

to deterministic pricing for the uncertain linear demand model case.

Tables 3.5 and 3.6 show how the results vary for different values of discrete uncertainty

92

budget Γ for semi-log and log-log demand.1 We can see that, in most of the cases we test,

the randomized robust pricing strategy provides a substantial benefit over the deterministic

robust price solution. The percentage improvement given by randomization ranges from 0%

to as much as 488.59% for semi-log instances, and from 0% to 175.18% for log-log instances.

Similar to the cases with convex U , both Z∗
RR and ẐDR decrease as the uncertainty set

becomes larger. While the RI metric generally decreases as Γ increases, in some instances it

can be increasing in Γ at small values of Γ (this is visible in the average results metrics for

I = 10 with semi-log demand). When Γ is large enough, the RI metric often becomes very

small or even zero. This makes sense when interpreted through Corollary 3. Specifically,

when nature is able to make a large number of demand model parameters take their worst

values, it is likely that at the u∗ at which the optimal objective of DRPO is attained is such

that the price vector for the nominal problem with u∗ coincides with the optimal price vector

for DRPO. Thus, by Corollary 3, the problem will be randomization-proof.

With regard to the computation time, the computation time for both RRPO and DRPO

increases with I. Interestingly, the computation time required by RRPO does not necessarily

increase as the discrete uncertainty budget Γ increases; in some cases, when Γ is large, the

RRPO solution degenerates to the DRPO solution, allowing the double column generation

algorithm to terminate quickly. By comparing tRR and tDR, we can see that RRPO in

general takes less time than DRPO. The computation time of the RRPO problem in semi-

log instances is no more than approximately two minutes on average (I = 15, Γ = 60), while

in log-log instances, solving RRPO requires no more than 1.5 minutes on average (I = 15,

Γ = 18). Lastly, for linear demand, the computation time for RRPO is extremely small,

requiring no more than a few seconds on average.

1We note here that for the log-log model, we encountered one instance (I = 10, Γ = 44) where ẐDR was
higher than Z∗

RR; in general, Z∗
RR should be higher than Z∗

DR. We have verified that the reason for this
anomaly was a numerical error in the solution of the worst-case subproblem in Mosek within the DRPO
random improvement heuristic. This instance is omitted in our calculation of ẐDR, RI and E[R(pDR,u0)],
and the affected entries are indicated by * in Table 3.6.

93

3.7.3 Results using real data instances

In our last set of experiments, we evaluate the effectiveness of solution algorithms on problem

instances calibrated with real data. For these experiments, we consider the orangeJuice

data set from Montgomery (1997), which was accessed via the bayesm package in R (Rossi

2022). This data set contains price and sales data for I = 11 different orange juice brands at

the Dominick’s Finer Foods chain of grocery stores in the Chicago area. Each observation in

the data set consists of: the store s; the week t; the log of the number of units sold log(qt,s,i)

for brand i; the prices pt,s,1...pt,s,11 of the eleven orange juice brands; the dummy variable dt,s,i

indicating whether brand i had any in-store displays at store s in week t; and the variable

ft,s,i indicating if brand i was featured/advertised at store s in week t. We fit log-log and

semi-log regression models for each brand i according to the following specifications:

(semi-log) log(qt,s,i) = αi − βipt,s,i +
∑
j ̸=i

γijpt,s,j + θidt,s,i + µift,s,i + ϵt,s,i, (3.37)

(log-log) log(qt,s,i) = αi − βi log(pt,s,i) +
∑
j ̸=i

γij log(pt,s,j) + θidt,s,i + µift,s,i + ϵt,s,i,

(3.38)

where {ϵt,s,i}t,s,i is a collection of IID normally distributed error terms. The point estimates

of the model parameters are provided in Appendix B.4.1. We note that prior work has

considered the estimation of both of these types of models (see the examples in Rossi 2022;

see also Montgomery 1997 and Mǐsić 2020).

We consider the problem of obtaining a price vector p = (p1, p2, . . . , p11) for this collection

of 11 products. To formulate the price vector set P , we assume that each product i has five

allowable prices, which are shown in Table 3.7. These prices correspond to the 0th (i.e.,

minimum), 25th, 50th, 75th and 100th (i.e., maximum) percentiles of the observed prices in

the dataset.

For each type of demand model, we consider two forms of uncertainty set: a convex

L1-norm uncertainty set (as in equation (3.34)) and a discrete budget uncertainty set (as

94

in equation (3.36)). We vary the budget θ of the L1-norm uncertainty set and present the

results in Tables 3.8 and 3.9. We also vary the budget Γ of the discrete budget uncertainty

set and present the results in tables B.3 and B.4. Specifically, for discrete budget uncertainty

set, we assume that ᾱ = 1.2α, α = 0.8α, β̄ = 1.3β, β = 0.7β, γ̄ = 1.4γ, and γ = 0.6γ.

Tables 3.8 and 3.9 below present the results under the convex L1-norm uncertainty set for the

semi-log and log-log demand models, respectively. Due to page considerations, the results

for the discrete U case are provided in Appendix B.4.2.

We can see from Tables 3.8 and 3.9 that the randomized pricing strategy performs signif-

icantly better than the deterministic pricing solution under the worst-case demand model,

with the RI ranging from 17.86% to 47.81% for semi-log demand and from 27.71% to 92.31%

for log-log demand. In addition, for the same demand type and uncertainty set, the computa-

tion time of RRPO is comparable to that of DRPO. With regard to the discrete uncertainty

set case, the results shown in Section B.4.2 are qualitatively similar, with the randomized

robust pricing strategy similarly outperforming the deterministic robust solution. We do

also observe that under bothdemand models, solving RRPO with the discrete uncertainty

set requires more time than solving it with convex uncertainty set, although the overall time

is still reasonable (in the most extreme case, RRPO for the discrete uncertainty set can take

up to approximately 300 seconds, and DRPO requires up to 600 second, compared to 60

seconds for both RRPO and DRPO for the L1-norm uncertainty set).

Lastly, it is also interesting to compare the randomized robust pricing strategy to the

deterministic robust price vector. Taking the log-log demand model and the convex L1

uncertainty set with θ = 0.8 as an example, the solution of the RRPO problem is the

95

following randomized pricing strategy:

p =

(3.87, 5.82, 1.25, 0.99, 3.17, 5.09, 3.07, 0.91, 0.69, 2.69, 1.99) w.p. 0.1628,

(1.29, 5.82, 3.35, 3.06, 0.88, 2.76, 3.07, 2.69, 3.08, 2.69, 4.99) w.p. 0.1752,

(3.87, 2.86, 1.25, 3.06, 3.17, 5.09, 0.91, 2.69, 3.08, 0.52, 4.99) w.p. 0.2658,

(3.87, 5.82, 3.35, 3.06, 0.88, 2.76, 3.07, 0.91, 3.08, 2.69, 4.99) w.p. 0.0381,

(3.87, 2.86, 1.25, 3.06, 3.17, 2.76, 3.07, 2.69, 0.69, 2.69, 4.99) w.p. 0.3258,

(3.87, 2.86, 1.25, 3.06, 3.17, 5.09, 0.91, 0.91, 3.08, 0.52, 4.99) w.p. 0.0323.

(3.39)

Observe that in this randomized pricing strategy, each price vector is such that the product

is set to either its lowest or highest allowable price. This is congruent with Proposition 2,

which suggests that the nominal problem under the log-log demand model will always have

a solution that involves setting each product to its highest or lowest price; since our solution

algorithm is based on constraint generation using this nominal problem as a separation pro-

cedure, it makes sense that the randomized price vector will be supported on such extremal

price vectors. On the other hand, the solution of the DRPO problem is the price vector

pDR = (3.87, 2.86, 1.25, 3.06, 3.17, 2.76, 0.91, 2.69, 0.69, 0.52, 4.99), for which we observe that

the chosen prices are also either the lowest or highest for each product.

96

I Γ tRR Z∗
RR E[R(p∗

RR,u0)] tDR Z∗
DR RI(%) R(p∗

DR,u0) tN Z∗
N ZN,WC

5 3 8.76 1724.38 2458.17 0.43 1723.46 0.06 2462.66 0.32 2473.30 1719.29

5 6 0.27 1316.39 2382.10 0.04 1313.68 0.23 2383.35 – – 1261.84

5 9 0.27 1159.33 2294.44 0.03 1157.98 0.12 2293.84 – – 1039.24

5 12 0.19 1126.85 2259.05 0.03 1126.85 0.00 2259.05 – – 987.29

5 18 0.20 1124.87 2256.23 0.03 1124.87 0.00 2256.23 – – 984.10

5 24 0.17 1123.78 2256.23 0.03 1123.78 0.00 2256.23 – – 982.18

10 5 0.53 3717.70 4990.89 0.11 3714.08 0.10 4997.68 0.09 5009.03 3711.50

10 7 0.59 3315.59 4972.42 0.11 3312.91 0.08 4973.49 – – 3297.07

10 9 0.70 2982.02 4941.26 0.11 2979.68 0.08 4944.40 – – 2942.80

10 14 1.35 2589.70 4782.85 0.12 2583.93 0.23 4791.83 – – 2437.09

10 19 0.84 2372.37 4662.16 0.11 2371.21 0.05 4657.17 – – 2133.38

10 26 0.56 2342.57 4636.61 0.10 2342.57 0.00 4636.61 – – 2086.03

10 33 0.57 2339.18 4633.87 0.11 2339.18 0.00 4636.61 – – 2081.46

10 44 0.57 2334.90 4627.78 0.10 2334.90 0.00 4627.78 – – 2075.15

15 6 0.92 5920.62 7495.77 0.22 5918.51 0.04 7506.26 0.17 7513.95 5917.60

15 12 1.79 4706.04 7435.56 0.25 4701.16 0.11 7442.32 – – 4668.21

15 18 3.16 4051.33 7250.57 0.27 4045.35 0.15 7248.00 – – 3889.25

15 24 4.50 3722.40 7071.15 0.29 3713.86 0.23 7068.49 – – 3428.59

15 36 1.12 3500.73 6889.94 0.21 3500.73 0.00 6889.47 – – 3112.83

Table 3.4: Results for linear instances with discrete U .

97

I Γ tRR Z∗
RR E[R(p∗

RR,u0)] tDR ẐDR RI(%) R(p̂DR,u0) tN Z∗
N ZN,WC

5 3 13.23 8.65× 103 1.57× 105 20.35 5.56× 103 63.01 2.17× 105 0.93 2.27× 105 5.04× 103

5 6 0.43 3.06× 103 1.81× 105 20.52 1.92× 103 66.89 2.20× 105 – – 1.78× 103

5 9 0.55 1.84× 103 2.09× 105 22.96 1.64× 103 18.42 2.22× 105 – – 1.63× 103

5 12 0.63 1.65× 103 2.22× 105 25.53 1.60× 103 4.39 2.25× 105 – – 1.60× 103

5 18 0.27 1.59× 103 2.27× 105 23.87 1.59× 103 0.11 2.27× 105 – – 1.59× 103

5 24 0.08 1.59× 103 2.27× 105 13.53 1.59× 103 0.00 2.27× 105 – – 1.59× 103

10 5 1.59 1.21× 106 5.30× 107 117.69 4.95× 105 173.47 6.73× 107 0.15 7.16× 107 4.48× 105

10 7 2.59 6.50× 105 4.10× 107 119.28 1.87× 105 233.11 5.69× 107 – – 1.88× 105

10 9 3.49 4.32× 105 3.64× 107 121.43 1.09× 105 250.12 5.41× 107 – – 1.05× 105

10 14 6.44 1.80× 105 3.67× 107 180.63 6.69× 104 161.08 6.96× 107 – – 6.78× 104

10 19 10.23 9.63× 104 5.29× 107 362.29 6.36× 104 67.80 7.15× 107 – – 6.36× 104

10 26 12.14 6.69× 104 6.40× 107 559.63 6.32× 104 19.70 7.15× 107 – – 6.33× 104

10 33 11.37 6.37× 104 7.11× 107 699.06 6.33× 104 6.47 7.15× 107 – – 6.33× 104

10 44 7.84 6.33× 104 7.15× 107 799.81 6.33× 104 0.09 7.16× 107 – – 6.33× 104

15 6 37.63 3.55× 108 3.22× 109 331.13 1.59× 107 488.59 4.52× 109 0.44 5.05× 109 1.42× 107

15 12 18.86 8.69× 106 3.24× 109 344.94 2.15× 106 471.14 3.51× 109 – – 1.77× 106

15 18 33.08 3.11× 106 3.08× 109 653.64 1.18× 106 323.61 4.91× 109 – – 1.16× 106

15 24 48.52 1.75× 106 3.67× 109 1525.41 1.12× 106 165.75 5.03× 109 – – 1.11× 106

15 36 101.38 1.21× 106 4.82× 109 3400.17 1.1× 106 38.58 5.02× 109 – – 1.10× 106

Table 3.5: Results for semi-log instances with discrete U .

98

I Γ tRR Z∗
RR E[R(p∗

RR,u0)] tDR ẐDR RI(%) R(p̂DR,u0) tN Z∗
N ZN,WC

5 3 13.33 3.26× 105 1.86× 106 31.23 2.80× 105 22.03 1.89× 106 0.96 4.31× 106 1.49× 105

5 6 0.20 6.37× 104 4.03× 106 20.39 6.15× 104 3.16 4.29× 106 – – 6.1× 104

5 9 0.27 4.91× 104 4.19× 106 18.39 4.87× 104 0.65 4.24× 106 – – 4.77× 104

5 12 0.35 4.71× 104 4.20× 106 16.82 4.70× 104 0.20 4.18× 106 – – 4.57× 104

5 18 0.17 4.66× 104 4.18× 106 11.67 4.66× 104 0.01 4.18× 106 – – 4.52× 104

5 24 0.14 4.66× 104 4.18× 106 8.73 4.66× 104 0.05 4.16× 106 – – 4.52× 104

10 5 4.64 2.33× 106 3.89× 107 161.57 1.38× 106 83.54 6.45× 107 0.31 7.66× 107 1.23× 106

10 7 5.39 1.31× 106 5.22× 107 165.21 8.59× 105 63.34 7.12× 107 – – 8.39× 105

10 9 5.30 8.74× 105 5.15× 107 149.63 6.23× 105 38.99 7.28× 107 – – 6.12× 105

10 14 5.10 5.07× 105 5.67× 107 138.67 3.82× 105 29.31 7.30× 107 – – 3.80× 105

10 19 3.52 3.74× 105 6.35× 107 136.70 3.31× 105 12.90 7.51× 107 – – 3.33× 105

10 26 3.56 3.27× 105 7.38× 107 138.77 3.18× 105 4.28 7.59× 107 – – 3.21× 105

10 33 4.79 3.18× 105 7.60× 107 137.07 3.15× 105 2.34 7.59× 107 – – 3.17× 105

10 44 3.19 3.15× 105 7.62× 107 131.47 3.19× 105* 1.19* 7.53× 107* – – 3.14× 105

15 6 35.68 1.71× 107 4.33× 108 552.64 7.75× 106 175.18 7.83× 108 1.20 8.38× 108 7.20× 106

15 12 62.70 5.55× 106 4.93× 108 582.20 2.94× 106 102.06 7.78× 108 – – 2.76× 106

15 18 76.60 2.92× 106 4.55× 108 561.96 1.92× 106 65.73 8.24× 108 – – 1.88× 106

15 24 54.30 2.03× 106 6.79× 108 572.08 1.71× 106 32.76 8.19× 108 – – 1.71× 106

15 36 48.34 1.69× 106 8.11× 108 600.30 1.63× 106 8.07 8.32× 108 – – 1.63× 106

Table 3.6: Results for log-log instances with discrete U .

Product (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1.29 2.86 1.25 0.99 0.88 2.76 0.91 0.91 0.69 0.52 1.99

2.49 4.19 2.69 1.99 1.99 3.67 1.99 1.99 1.79 1.58 2.99

2.99 4.75 2.89 2.35 2.17 3.96 2.39 2.19 1.99 1.59 3.59

3.19 4.99 3.12 2.49 2.49 4.49 2.56 2.39 2.36 1.99 3.99

3.87 5.82 3.35 3.06 3.17 5.09 3.07 2.69 3.08 2.69 4.99

Table 3.7: Possible price levels for products in orangeJuice experiment instances.

99

θ tRR Z∗
RR E[R(p∗

RR,u0)] tDR Z∗
DR RI(%) R(p∗

DR,u0) tN Z∗
N ZN,WC

0.10 16.86 342357.06 481125.25 15.98 290474.67 17.86 590546.51 0.83 590547.01 290474.76

0.50 41.42 197517.06 373973.40 47.65 147748.35 33.68 294483.28 – – 96016.90

0.80 42.61 149709.04 352742.22 67.83 105734.14 41.59 294483.28 – – 67924.78

1.00 67.47 125987.02 349644.33 74.03 86977.24 44.85 265173.68 – – 55394.70

1.50 61.70 82880.96 348467.74 44.65 56474.64 46.76 265173.68 – – 34864.43

2.00 65.21 54665.15 348466.26 52.10 37164.75 47.09 265173.68 – – 22615.70

Table 3.8: Results for orangeJuice pricing problem with semi-log demand and convex U .

θ tRR Z∗
RR E[R(p∗

RR,u0)] tDR Z∗
DR RI(%) R(p∗

DR,u0) tN Z∗
N ZN,WC

0.10 0.71 722647.22 1051269.80 1.97 565866.71 27.71 922172.97 0.88 1112050.59 560812.30

0.50 1.42 342614.34 687632.84 4.99 233387.10 46.80 782893.68 – – 152881.89

0.80 1.91 260049.66 672481.74 6.77 162276.97 60.25 782893.68 – – 102893.20

1.00 2.08 217580.86 683576.99 9.41 128220.45 69.69 782893.68 – – 81427.57

1.50 2.26 142307.66 670759.12 13.02 75897.66 87.50 599315.12 – – 48983.56

2.00 2.39 94847.37 670758.38 13.49 49319.21 92.31 377932.71 – – 31055.19

Table 3.9: Results for orangeJuice pricing problem with log-log demand and convex U .

100

CHAPTER 4

Conclusions

In this thesis, we have studied how randomization helps to find optimal linear policies in

optimal stopping and to achieve better worst-case performance in robust pricing. We briefly

conclude each chapter and discuss potential future directions below.

In Chapter 2, we consider the problem of designing randomized policies for high-dimensional

optimal stopping problems. We formulate the problem as an SAA problem, prove its con-

vergence properties and establish generalization error bounds on the out-of-sample reward.

Based on the NP-Hardness of the SAA problem, we develop a backward optimization heuris-

tic for approximately solving the SAA problem. We show in the numerical experiments that

our heuristic can achieve better performance than the LSM method and is better or compa-

rable to the PO method.

There are at least two interesting future directions for randomized policies in high-

dimensional optimal stopping. First, it would be interesting to further understand the be-

havior of the non-convex objective function of the randomized policy SAA problem and of

the period t problem in the backward optimization heuristic, and to understand how one can

obtain high quality solutions to both of these problems. In particular, our experimentation

suggests that quality of the solution in the period t problem is fairly sensitive to the choice

of starting point, so it would be interesting to explore other ways of selecting initial points,

as well as other methods beside Adam for solving the period t problem. Second, it would

be interesting to explore whether our methodology can be generalized to other stochastic

dynamic programming problems outside of optimal stopping.

101

In Chapter 3, we considered the problem of designing randomized robust pricing strate-

gies to maximize worst-case revenue. We presented idealized conditions under which such

randomized pricing strategies fare no better than the deterministic robust pricing approach,

and subsequently we developed solution methods for obtaining the randomized pricing strate-

gies in different settings (when the price set is finite, and when the uncertainty set is either

convex or discrete). We showed using both synthetic instances and real data instances that

such randomized pricing strategies can lead to large improvements in worst-case revenue over

deterministic robust price prescriptions.

With regard to future research in randomized robust pricing, an interesting direction is

to consider a version of the robust price optimization problem that incorporates contextual

information. For example, in the ecommerce setting, different customers who log onto a

retailer’s website will differ in characteristics (age, web browser, operating system, etc.). This

information could be used to craft a richer uncertainty set, and to motivate randomization

strategies that randomize differently based on user characteristics. More generally, we hope

that this work, which was inspired by the paper of Wang et al. (2024), motivates further study

in how randomization can be used to mitigate risk in revenue management applications.

102

APPENDIX A

Randomized Policy Optimization for Optimal Stopping

A.1 Omitted proofs

A.1.1 Proof of Theorem 1

We prove this result in two steps. We first show that maxb∈B ĴD(b) ≤ supb̃∈B̃ ĴR(b̃), and

then show that supb∈B ĴD(b) ≥ supb̃∈B̃ ĴR(b̃).

Proof of supb∈B ĴD(b) ≤ supb̃∈B̃ ĴR(b̃): To establish this, fix any deterministic policy

weight vector b ∈ B.

Without loss of generality, we can assume that bt•Φ(x(ω, t)) satisfies either bt•Φ(x(ω, t)) >

0 or bt •Φ(x(ω, t)) < 0 for each ω and t. (Stated differently, bt •Φ(x(ω, t)) cannot be exactly

equal to zero.) If this is not the case, then using Assumption 3, we can modify the weight bt,1

of the constant basis function ϕ1(x) = 1 for any period t such that the condition is satisfied,

and the sample-average reward ĴD(b) remains unchanged.

Now, consider the randomized policy weight vector b′ defined as b′ = αb, where α > 0.

Observe now that, since bt • Φ(x(ω, t)) > 0 or bt • Φ(x(ω, t)) < 0 for each ω and t, we have

103

that

lim
α→+∞

σ(b′
t • Φ(x(ω, t))) = lim

α→+∞
σ(αbt • Φ(x(ω, t)))

=

 +1 if bt • Φ(x(ω, t)) > 0,

0 if bt • Φ(x(ω, t)) ≤ 0

= I{bt • Φ(x(ω, t)) > 0}.

Consequently, we have that

lim
α→+∞

ĴR(b
′)

= lim
α→+∞

ĴR(αb)

= lim
α→+∞

1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t)) ·
t−1∏
t′=1

(1− σ(αbt′ • Φ(x(ω, t′)))) · σ(αbt • Φ(x(ω, t)))

=
1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t)) ·
t−1∏
t′=1

(1− I{bt′ • Φ(x(ω, t′)) > 0}) · I{bt • Φ(x(ω, t)) > 0}

= ĴD(b).

Since b′ ∈ B̃ = RKT , we have that ĴR(αb) ≤ supb̃∈B̃ ĴR(b̃) for all α > 0; as a result, the

limit of ĴR(αb) as α→∞ must also be upper bounded by supb̃∈B̃ ĴR(b̃). We thus have that

supb̃∈B̃ ĴR(b̃) is an upper bound on ĴD(b) for any b ∈ B.

By the definition of the supremum, it therefore follows that

sup
b∈B

ĴD(b) ≤ sup
b̃∈B̃

ĴR(b̃). (A.1)

Proof of supb∈B ĴD(b) ≥ supb̃∈B̃ ĴR(b̃): To establish this inequality, fix a randomized

policy weight vector b̃ from B̃. The key idea in the proof is that the logistic response

function σ(·) can also be viewed as the cumulative distribution function (CDF) of a logistic

random variable. Recall that a logistic random variable, ξ ∼ Logistic(µ, s), where µ is the

location parameter and s is the scale parameter, has CDF given by

P(ξ < t) =
e(t−µ)/s

1 + e(t−µ)/s
.

104

Thus, the logistic response function σ(·) corresponds to a Logistic(0, 1) random variable.

Armed with this insight, let us define T i.i.d. Logistic(0, 1) random variables, ξ1, . . . , ξT .

Observe that we can write the reward of the randomized policy as

ĴR(b̃)

=
1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t)) ·
t−1∏
t′=1

(1− σ(b̃t′ • Φ(x(ω, t′)))) · σ(b̃t • Φ(x(ω, t)))

=
1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t)) ·
t−1∏
t′=1

P(ξt′ ≥ b̃t′ • Φ(x(ω, t′))) · P(ξt < b̃t • Φ(x(ω, t)))

=
1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t)) ·
t−1∏
t′=1

E[I{ξt′ ≥ b̃t′ • Φ(x(ω, t′))}] · E[I{ξt < b̃t • Φ(x(ω, t))}]

=
1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t)) · E

[
t−1∏
t′=1

I{ξt′ ≥ b̃t′ • Φ(x(ω, t′))} · I{ξt < b̃t • Φ(x(ω, t))}

]

= E

[
1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t)) ·
t−1∏
t′=1

I{ξt′ ≥ b̃t′ • Φ(x(ω, t′))} · I{ξt < b̃t • Φ(x(ω, t))}

]
(A.2)

where the second equality follows by the definition of each ξt as a Logistic(0, 1) random

variable; the third by the fact that P(A) = E[I{A}] for any event A; the fourth by the fact

that ξ1, . . . , ξT are independent; and the fifth by the linearity of expectation.

We now observe that there must exist values ξ̄1, . . . , ξ̄T for which the random variable in

(A.2) is at least its expected value, i.e.,

E

[
1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t)) ·
t−1∏
t′=1

I{ξt′ ≥ b̃t′ • Φ(x(ω, t′))} · I{ξt < b̃t • Φ(x(ω, t))}

]

≤ 1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t)) ·
t−1∏
t′=1

I{ξ̄t′ ≥ b̃t′ • Φ(x(ω, t′))} · I{ξ̄t < b̃t • Φ(x(ω, t))}.

Finally, let us define a deterministic policy weight vector b as

bt,k =

 b̃t,k − ξ̄t if k = 1,

b̃t,k if k ̸= 1,

for each t and k. In other words, we decrease the weight on the constant basis function exactly

by ξ̄t, the realized value of the tth logistic random variable. (Note that this construction is

105

made possible by Assumption 3.) By constructing b in this way, we obtain that

ξ̄t < b̃t • Φ(x(ω, t))

⇔ b̃t • Φ(x(ω, t))− ξ̄t > 0

⇔ bt • Φ(x(ω, t)) > 0

for each ω and t. We thus have that

ĴR(b̃)

= E

[
1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t)) ·
t−1∏
t′=1

I{ξt′ ≥ b̃t′ • Φ(x(ω, t′))} · I{ξt < b̃t • Φ(x(ω, t))}

]

≤ 1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t)) ·
t−1∏
t′=1

I{ξ̄t′ ≥ b̃t′ • Φ(x(ω, t′))} · I{ξ̄t < b̃t • Φ(x(ω, t))}

=
1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t)) ·
t−1∏
t′=1

I{bt′ • Φ(x(ω, t′)) ≤ 0} · I{bt • Φ(x(ω, t)) > 0}

= ĴD(b)

As a result, the reward of a randomized policy weight vector b̃ can be bounded by the reward

of a deterministic policy weight vector b. Thus, supb∈B ĴD(b) is a valid upper bound on

ĴR(b̃) for any b̃ ∈ B. By the definition of the supremum as the least upper bound, we

consequently have

sup
b̃∈B̃

ĴR(b̃) ≤ sup
b∈B

ĴD(b). (A.3)

Since we have shown both inequalities, it follows supb̃∈B̃ ĴR(b̃) = supb∈B ĴD(b), as re-

quired. □

A.1.2 Proof of Theorem 2

We prove this in two steps: first, by showing that supb∈B JD(b) ≤ supb̃∈B̃ JR(b̃), and then

by showing that supb∈B JD(b) ≥ supb̃∈B̃ JR(b̃).

106

Step 1: supb∈B JD(b) ≤ supb̃∈B̃ JR(b̃). Let b ∈ B. Let α > 0 be a constant, and define

b̃ as follows:

b̃t =

 αbt if bt ̸= 0,

−αe1 if bt = 0,

where 0 is a K-dimensional vector of zeros and e1 = (1, 0, . . . , 0) is the first standard basis

vector for RK .

Let I = {t ∈ [T] | bt ̸= 0}, and for each t ∈ I, define the set Qt as

Qt = {(y2, . . . , yK) ∈ RK−1 | bt,1 +
K∑
k=2

ykbt,k = 0}. (A.4)

Observe that Qt is a hyperplane in RK−1, so by Assumption 4, we have that

P(Φ2:K(x(t)) ∈ Qt) = 0. (A.5)

We note that the event Φ2:K(x(t)) ∈ Qt is exactly the event that the inner product of bt

and Φ(x(t)) is equal to zero (i.e., we are on the boundary between choosing to stop or to

continue): in particular, we have that

Φ2:K(x(t)) ∈ Qt

⇔ bt,1 +
K∑
k=2

ϕk(x(t))bt,k = 0

⇔
K∑
k=1

ϕk(x(t))bt,k = 0

⇔ bt • Φ(x(t)) = 0

where the third step follows because ϕ1(x) = 1 for all x ∈ X (this is Assumption 3).

Let E be the event defined as

E =
⋃
t∈I

{Φ2:K(x(t)) ∈ Qt}. (A.6)

107

Observe that P(E) = 0 since

P(E) = P

(⋃
t∈I

{Φ2:K(x(t)) ∈ Qt}

)
≤
∑
t∈I

P(Φ2:K(x(t)) ∈ Qt)

= 0,

where the inequality follows by the countable subadditivity of P.

Observe also that for any (x(1), . . . ,x(T)) /∈ E, we have the following behavior: if bt ̸= 0,

then

lim
α→+∞

σ(b̃t • Φ(x(t)))

= lim
α→+∞

σ(αbt • Φ(x(t)))

=

 1 if bt • Φ(x(t)) > 0,

0 if bt • Φ(x(t)) ≤ 0,

= I{bt • Φ(x(t)) > 0}.

Otherwise, if bt = 0, then

lim
α→+∞

σ(b̃t • Φ(x(t)))

= lim
α→+∞

σ(−αe1 • Φ(x(t)))

= lim
α→+∞

σ(−α)

= 0

= I{bt • Φ(x(t)) > 0}.

Therefore, for any (x(1), . . . ,x(T)) /∈ E, we have

lim
α→+∞

T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

(1− σ(b̃t • Φ(x(t′)))) · σ(b̃t • Φ(x(t)))

=
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

I{bt′ • Φ(x(t′)) ≤ 0} · I{bt • Φ(x(t)) > 0}.

108

In addition, for all (x(1), . . . ,x(T)), the term in the limit obeys the bound

T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

(1− σ(b̃t • Φ(x(t′)))) · σ(b̃t • Φ(x(t)))

≤
T∑
t=1

g(t,x(t))

≤ T · Ḡ,

where the first inequality holds because 0 ≤ σ(u) ≤ 1 for any real u, and the second holds

by Assumption 1.

Therefore, by applying the bounded convergence theorem, we can assert that

lim
α→+∞

JR(b̃)

= lim
α→+∞

E

[
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

(1− σ(b̃t • Φ(x(t′)))) · σ(b̃t • Φ(x(t)))

]
(A.7)

= E

[
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

I{bt′ • Φ(x(t′)) ≤ 0} · I{bt • Φ(x(t)) > 0}

]
(A.8)

= JD(b).

Note that in our application of the bounded convergence theorem, we are using the fact

that the functions of (x(1), . . . ,x(T)) whose expectation defines JR(b̃) in (A.7) converge

pointwise to the function of (x(1), . . . ,x(T)) whose expectation defines JD(b) in (A.8) almost

everywhere with respect to the probability measure of (x(1), . . . ,x(T)). (The only set of

values of (x(1), . . . ,x(T)) on which the pointwise convergence does not hold is E, for which

we have already established that P(E) = 0.)

Thus, limα→+∞ JR(b̃) = JD(b). Since JR(b̃) ≤ supb′∈B̃ JR(b
′) by the definition of the

supremum, it then follows that for any α > 0,

lim
α→+∞

JR(b̃) ≤ sup
b′∈B̃

JR(b
′),

109

which implies that

JD(b) ≤ sup
b′∈B̃

JR(b
′).

Since b was arbitrary, we thus have that

sup
b∈B

JD(b) ≤ sup
b′∈B̃

JR(b
′)

as required.

Step 2: supb∈B JD(b) ≥ supb̃∈B̃ JR(b̃). To show this, let b̃ be any set of random policy

weights in B̃. As in the proof of Theorem 1, let us define random variables ξ1, . . . , ξT that

are i.i.d. standard logistic random variables, that is, for each t ∈ [T], we have:

P(ξt < s) = σ(s)

for all s ∈ R. Then observe that for a fixed trajectory x(1), . . . ,x(T), we can write the

reward of the randomized policy with weights b̃ as

=
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

(1− σ(b̃t′ • Φ(x(t′)))) · σ(b̃t • Φ(x(t)))

=
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

P(ξt′ ≥ b̃t′ • Φ(x(t′))) · P(ξt < b̃t • Φ(x(t)))

=
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

E[I{ξt′ ≥ b̃t′ • Φ(x(t′))}] · E[I{ξt < b̃t • Φ(x(t))}]

=
T∑
t=1

g(t,x(t)) · Eξ1,...,ξT

[
t−1∏
t′=1

I{ξt′ ≥ b̃t′ • Φ(x(t′))} · I{ξt < b̃t • Φ(x(t))}

]

= Eξ1,...,ξT

[
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

I{ξt′ ≥ b̃t′ • Φ(x(t′))} · I{ξt < b̃t • Φ(x(t))}

]
. (A.9)

110

We thus have that

JR(b̃)

= Ex(1),...,x(T)

[
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

(1− σ(b̃t′ • Φ(x(t′)))) · σ(b̃t • Φ(x(t)))

]

= Ex(1),...,x(T)

[
Eξ1,...,ξT

[
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

I{ξt′ ≥ b̃t′ • Φ(x(t′))} · I{ξt < b̃t • Φ(x(t))}

]]

= Eξ1,...,ξT

[
Ex(1),...,x(T)

[
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

I{ξt′ ≥ b̃t′ • Φ(x(t′))} · I{ξt < b̃t • Φ(x(t))}

]]

where the interchange of expectations in the last step follows by Fubini’s theorem, since the

random variable (A.9) is always nonnegative.

By the definition of expected value, there must exist a realization ξ′1, . . . , ξ
′
T such that

Eξ1,...,ξT

[
Ex(1),...,x(T)

[
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

I{ξt′ ≥ b̃t′ • Φ(x(t′))} · I{ξt < b̃t • Φ(x(t))}

]]

≤ Ex(1),...,x(T)

[
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

I{ξ′t′ ≥ b̃t′ • Φ(x(t′))} · I{ξ′t < b̃t • Φ(x(t))}

]
.

Now, let us define a weight vector b for the deterministic probelm as follows:

bt,k =

 b̃t,k if k ̸= 1,

b̃t,1 − ξ′t if k = 1,
(A.10)

where we recall that the index k = 1 corresponds to the constant basis function ϕ1(·) = 1.

Observe that by the manner in which we have defined b, we have that

I{ξt ≥ b̃t • Φ(x(t))}

= I{0 ≥ b̃t • Φ(x(t))− ξt}

= I{0 ≥ bt • Φ(x(t))}.

111

Thus, we have that

JR(b̃) ≤ Ex(1),...,x(T)

[
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

I{ξ′t′ ≥ b̃t′ • Φ(x(t′))} · I{ξ′t < b̃t • Φ(x(t))}

]

= Ex(1),...,x(T)

[
T∑
t=1

g(t,x(t)) ·
t−1∏
t′=1

I{bt′ • Φ(x(t′)) ≤ 0} · I{bt • Φ(x(t)) > 0}

]
= JD(b)

≤ sup
b′∈B

JD(b
′).

Since b̃ was arbitrary, this implies that supb′∈B JD(b
′) is an upper bound on JR(b̃) for all

b̃ ∈ B̃, and thus that

sup
b̃∈B̃

JR(b̃) ≤ sup
b∈B

JD(b), (A.11)

as required. □

A.1.3 Proof of Theorem 3

To establish this result, we will show that the functions ĴR(·) and JR(·) are Lipschitz con-

tinuous, and use this together with the compactness of B to establish uniform convergence

of ĴR(·) to JR(·). To establish that these two functions are Lipschitz continuous, we need

three preliminary results. The first is a basic result that the product of bounded Lipschitz

continuous functions is a Lipschitz continuous function. Note that for this result and all

other results in this section of the Appendix, Lipschitz continuity is understood with respect

to the L1 norm, i.e., f(b) is said to be Lipschitz continuous if there exists an L > 0 such

that |f(b)− f(b′)|≤ L∥b− b′∥1 for all b,b′.

Lemma 1 Suppose that f, h : B → R are Lipschitz continuous functions with Lipschitz

constants Lf , and Lh, respectively, and are also uniformly bounded by constants Kf and

Kh, i.e., supb∈B|f(b)|≤ Kf , supb∈B|h(b)|≤ Kh. Then the function w : B → R defined as

w(b) = f(b)h(b) is also Lipschitz continuous with Lipschitz constant Lw = KfLh +KhLf .

112

Proof of Lemma 1: Let b, b̄ ∈ B and consider |w(b)− w(b̄)|:

|w(b)− w(b̄)| = |f(b)h(b)− f(b̄)h(b̄)|

= |f(b)h(b)− f(b)h(b̄) + f(b)h(b̄)− f(b̄)h(b̄)|

≤ |f(b)|·|h(b)− h(b̄)|+|f(b)− f(b̄)|·|h(b̄)|

≤ Kf · Lh∥b− b̄∥+Lf∥b− b̄∥·Kh

= (KfLh + LfKh)∥b− b̄∥,

as required.

The second result that we will use is that the probabilities of stopping and continuing at

time t and at a state x ∈ X in a randomized policy are Lipschitz continuous with respect to

b.

Lemma 2 Suppose that Assumption 5 holds. For any t ∈ [T] and x ∈ X , the functions f

and h defined as

f(b) = σ(bt • Φ(x)),

h(b) = 1− σ(bt • Φ(x)),

are Lipschitz continuous with Lipschitz constant Q.

Proof of Lemma 2: Observe that for f , the gradient of f satisfies

∇btf(b) = Φ(x)σ(bt • Φ(x)),

∇bt′
f(b) = 0, ∀t′ ̸= t.

Therefore, by Assumption 5,

∥∇f(b)∥∞= ∥∇btf(b)∥∞≤ ∥Φ(x)∥∞≤ Q.

Now, consider b and b̄ in B. Since f is a differentiable function, it follows by the mean value

theorem that there exists a b′ ∈ RKT such that

f(b)− f(b̄) = ∇f(b′)T (b− b̄). (A.12)

113

We thus have

|f(b)− f(b̄)| = |∇f(b′)T (b− b̄)| (A.13)

≤ ∥∇f(b′)∥∞∥b− b̄∥1 (A.14)

≤ Q∥b− b̄∥1, (A.15)

where the first inequality follows by the Cauchy-Schwartz inequality, and the second by our

earlier result that the norm of the gradient of f is bounded everywhere by Q. Thus, f

is Lipschitz continuous with constant Q. The proof for h follows by an almost identical

argument.

Lemma 3 Suppose Assumption 5 holds. Fix any (x(1), . . . ,x(T)) ∈ X T , and any t ∈ [T].

The function Ht(·) defined as

Ht(b) =
t∏

t′=1

(1− σ(bt′ • Φ(x(t′))))

is Lipschitz continuous with constant tQ.

Proof of Lemma 3: We will prove this by induction on t. The base case is when t = 1. In

this case, H1(b) = 1 − σ(b1 • Φ(x(1))). By Lemma 2, this function is Lipschitz continuous

with constant Q, as required.

To establish the claim for t ≥ 2, suppose that Ht−1(·) is Lipschitz continuous with

constant (t−1)Q. We now need to establish that Ht(·) is Lipschitz continuous with constant

tQ.

To see this, observe that we can writeHt(b) = Ht−1(b)·(1−σ(bt•Φ(x(t)))). The function

Ht−1(·) and the function h(b) = 1− σ(bt • Φ(x(t))) are both bounded in absolute value by

1. Additionally, by Lemma 2, the function h(·) is Lipschitz continuous with constant Q.

Together with the induction hypothesis that Ht−1(·) is Lipschitz continuous with constant

(t− 1)Q, we can invoke Lemma 1 to assert that Ht(·) is Lipschitz continuous with constant

(t− 1)Q · 1 +Q · 1 = tQ.

114

Lemma 4 Suppose Assumption 5 holds. The function ĴR(·) is Lipschitz continuous with

Lipschitz constant L = ḠT 2Q.

Proof of Lemma 4: Let b, b̄ ∈ B. We have

|ĴR(b)− ĴR(b̄)|

= | 1
Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t))
t−1∏
t′=1

(1− σ(bt′ • Φ(x(ω, t′))))σ(bt • Φ(x(ω, t)))

− 1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t))
t−1∏
t′=1

(1− σ(b̄t′ • Φ(x(ω, t′))))σ(b̄t • Φ(x(ω, t)))|

≤ 1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t))|
t−1∏
t′=1

(1− σ(bt′ • Φ(x(ω, t′))))σ(bt • Φ(x(ω, t)))

−
t−1∏
t′=1

(1− σ(b̄t′ • Φ(x(ω, t′))))σ(b̄t • Φ(x(ω, t)))|

≤ 1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t))tQ∥b− b̄∥1

≤ 1

Ω

Ω∑
ω=1

T∑
t=1

ḠTQ∥b− b̄∥1

=
1

Ω
· Ω · T · ḠTQ∥b− b̄∥1

= ḠT 2Q∥b− b̄∥1

where the first inequality is just the triangle inequality; the second inequality follows by

applying Lemmas 3, 2 and 1 together; and the remaining steps follow by algebra and using

the definition of Ḡ as a universal upper bound on g(t,x) (Assumption 1).

Lemma 5 The function JR(·) is Lipschitz continuous with Lipschitz constant L = ḠT 2Q.

115

Proof of Lemma 5: Let b, b̄ ∈ B. Using similar logic as the proof of Lemma 4, we have

|JR(b)− JR(b̄)|

=

∣∣∣∣∣E
[

T∑
t=1

g(t,x(t))
t−1∏
t′=1

(1− σ(bt′ • Φ(x(t′))))σ(bt • Φ(x(t)))

]

−E

[
T∑
t=1

g(t,x(t))
t−1∏
t′=1

(1− σ(b̄t′ • Φ(x(t′))))σ(b̄t • Φ(x(t)))

]∣∣∣∣∣
≤ E

[
T∑
t=1

g(t,x(t)) ·

∣∣∣∣∣
t−1∏
t′=1

(1− σ(bt′ • Φ(x(t′))))σ(bt • Φ(x(t)))

−
t−1∏
t′=1

(1− σ(b̄t′ • Φ(x(t′))))σ(b̄t • Φ(x(t)))

∣∣∣∣∣
]

≤ E

[
T∑
t=1

ḠTQ∥b− b̄∥1

]
= ḠT 2Q∥b− b̄∥1,

as required.

With Lemma 4 and 5, we can prove the following theorem, which will be the final stepping

stone to Theorem 3.

Theorem 10 Suppose that Assumptions 5 and 6 both hold. Fix any ϵ > 0. With probability

one, there exists a finite sample size N such that for all Ω ≥ N ,

sup
b∈B
|JR(b)− ĴR(b)|≤ ϵ. (A.16)

Proof of Theorem 10: For the given ϵ, set δ = ϵ/(3L) where L = ḠT 2Q is the Lipschitz

constant of both ĴR(·) and JR(·). Since B is compact (Assumption 6), there exist finitely

many points b1, . . . ,bM such that B ⊆
⋃M

m=1B(bm, δ), where B(b, r) = {b′ ∈ B | ∥b′−b∥1<

r} is the open ball of radius r in the L1 norm.

116

For each point bm, the strong law of large numbers guarantees that ĴR(b
m) converges

to JR(b
m) almost surely. Thus, almost surely, there exists an integer Nm such that for all

Ω > Nm, |ĴR(bm)− JR(bm)|< ϵ/3. Let N = max{N1, . . . , NM}. Then, almost surely, for all

Ω > N , it holds that |ĴR(bm)− JR(bm)|< ϵ/3 for all m ∈ [M].

Now, consider any b ∈ B. By the definition of {b1, . . . ,bM} as a δ-net of B, there exists

an m such that b ∈ B(bm, δ). For all Ω > N , we therefore have

|ĴR(b)− JR(b)| = |ĴR(b)− ĴR(bm) + ĴR(b
m)− JR(bm) + JR(b

m)− JR(b)|

≤ |ĴR(b)− ĴR(bm)|+|ĴR(bm)− JR(bm)|+|JR(bm)− JR(b)|

≤ L∥b− bm∥1+
ϵ

3
+ L∥b− bm∥1

≤ L · ϵ
3L

+
ϵ

3
+ L · ϵ

3L

=
ϵ

3
+
ϵ

3
+
ϵ

3

= ϵ

where the second step follows by the triangle inequality; the third step follows by using the

Lipschitz continuity of ĴR(·) and JR(·) from Lemmas 4 and 5 respectively, as well as the

almost sure convergence of ĴR(·) to JR(·) at bm; the fourth step by our definition of bm as

the point in the δ-net containing b; and the remaining steps by algebra.

Since b was arbitrary, it follows that almost surely, for all Ω > N and all b ∈ B, that

|ĴR(b)− JR(b)|< ϵ. This completes the proof.

Using Theorem 10, we now finally prove Theorem 3.

Proof of Theorem 3: To show that supb∈B|ĴR(b)− JR(b)|→ 0 as Ω→∞ almost surely, we

observe that this event can be written as

⋂
ϵ>0

∞⋃
N=1

⋂
Ω>N

{
sup
b∈B
|ĴR(b)− JR(b)|< ϵ

}
,

117

which is equivalent to

∞⋂
k=1

∞⋃
N=1

⋂
Ω>N

{
sup
b∈B
|ĴR(b)− JR(b)|<

1

2k

}
. (A.17)

The event in (A.17) is the countable intersection of events of the form
⋃∞

N=1

⋂
Ω>N{|ĴR(b)−

JR(b)|< 1/2k}, each of which occurs with probability one by Theorem 10. Therefore,

event (A.17) occurs with probability 1, which establishes the required result.

A.1.4 Proof of Corollary 1

We will first show that if ĴR(·) converges uniformly to JR(·) on B, then it must be the case

that supb∈B ĴR(b) converges to supb∈B JR(b).

Let ϵ > 0. Then there exists an integerN such that for all Ω > N , supb∈B|ĴR(b)−JR(b)|<

ϵ/2.

Let Ω > N . Suppose without loss of generality that supb∈B ĴR(b) ≤ supb∈B JR(b). Let

b̃ ∈ B be a weight vector such that

JR(b̃) ≥ sup
b∈B

JR(b)−
ϵ

2
,

or equivalently,

JR(b̃) +
ϵ

2
≥ sup

b∈B
JR(b).

Then we have ∣∣∣∣sup
b∈B

JR(b)− sup
b∈B

ĴR(b)

∣∣∣∣ = sup
b∈B

JR(b)− sup
b∈B

ĴR(b)

≤ JR(b̃) +
ϵ

2
− ĴR(b̃)

≤ sup
b∈B
|ĴR(b)− JR(b)|+

ϵ

2

≤ ϵ

2
+
ϵ

2

= ϵ.

118

(In the case that supb∈B ĴR(b) ≥ supb∈B JR(b), the same steps go through, with the modifi-

cation that b̃ is chosen to be within ϵ/2 of sup ĴR(b), i.e., b̃ satisfies ĴR(b̃) ≥ supb∈B ĴR(b)−

ϵ/2.)

Thus, we have shown that whenever supb∈B|ĴR(b)−JR(b)|→ 0 as Ω→∞, we also must

have that supb∈B ĴR(b)→ supb∈B JR(b) as Ω→∞. Since the former occurs with probability

one by Theorem 3, then it must be the case that limΩ→∞ supb∈B ĴR(b) = supb∈B JR(b) also

occurs with probability one. □

A.1.5 Proof of Theorem 4

By Theorem 5.3 from Shapiro et al. (2014), since (i) the set B∗ of the optimal solutions of

supb∈B JR(b) is nonempty and B∗ ⊆ B; (ii) JR(·) is continuous on B as JR(b) is a Lipschitz

continuous function of b ∈ B, and JR(b) is finite valued as we assume the reward g(t,x)

has a finite upper bound; (iii) ĴR(·) converges uniformly to JR(·) with probability one by

Theorem 3; and (iv) with probability one, for Ω large enough, the set B̂Ω is nonempty and

B̂ ⊆ B; then with probability one, D(B̂,B∗)→ 0 as Ω→∞.□

A.1.6 Proof of Proposition 1

Our proof of Proposition 1 follows the proof of Rademacher complexity-based generalization

bounds in statistical learning (see for example Theorem 3.1 in Mohri et al. 2018). For

completeness, we provide the proof here.

Given an i.i.d. sample of system realizations S = (Y1, . . . , YΩ), let D(S) be the random

variable defined as

D(S) = sup
f∈F

(
1

Ω

Ω∑
ω=1

f(Yω)− E[f(Y)]

)
,

where Y is a random variable that represents a single system realization. Our goal will

be to obtain a high probability bound on D(S). We will proceed in three steps: first, we

will bound the deviation of D(S) from its mean E[D(S)]; second, we will bound E[D(S)];

119

and finally, we will put these two inequalities together, and show how they imply our main

inequalities in terms of JR(·) and ĴR(·).

Step 1. Let S ′
i = (Y1, . . . , Y

′
i , . . . , YΩ) be a sample of system realizations that differs from S

only in the ith trajectory. It is straightforward to show that

D(S)−D(S ′
i) ≤

Ḡ

Ω
,

and that by symmetry, D(S ′
i)−D(S) ≤ Ḡ/Ω as well. Together, these two inequalities imply

that D(S) satisfies the bounded differences property: for any i ∈ {1, . . . ,Ω}, any S and any

Y ′
i , we have |D(S ′

i)−D(S)|≤ Ḡ/Ω.

Thus, McDiarmid’s inequality implies that with probability at least 1−δ over the sample

of system realizations S, the following inequality holds:

D(S)− E[D(S)] ≤ Ḡ

√
log(1/δ)

2Ω
.

Step 2. We now bound E[D(S)]. Let S ′ = (Y ′
1 , . . . , Y

′
Ω) be a second i.i.d. sample of Ω system

realizations. We then have

E[D(S)] = ES

[
sup
f∈F

(
1

Ω

Ω∑
ω=1

f(Yω)− E[f(Y)]

)]

= ES

[
sup
f∈F

(
1

Ω

Ω∑
ω=1

f(Yω)− ES′ [
1

Ω

Ω∑
ω=1

f(Yω)]

)]

≤ ES,S′

[
sup
f∈F

(
1

Ω

Ω∑
ω=1

f(Yω)−
1

Ω

Ω∑
ω=1

f(Y ′
ω)

)]

= ES,S′,ϵ

[
sup
f∈F

1

Ω

Ω∑
ω=1

ϵω(f(Yω)− f(Y ′
ω))

]

≤ ES,S′,ϵ

[
sup
f∈F

1

Ω

Ω∑
ω=1

ϵωf(Yω)

]
+ ES,S′,ϵ

[
sup
f∈F

1

Ω

Ω∑
ω=1

ϵωf(Y
′
ω)

]
= 2R(F),

120

where ϵ = (ϵ1, . . . , ϵΩ) denotes an i.i.d. set of Rademacher random variables, that is, each ϵω

satisfies P(ϵω = +1) = 1/2, P(ϵω = −1) = 1/2.

Step 3. Using results from Step 1 and 2, we have that D(S) ≤ 2R(F) + Ḡ
√

log(1/δ)/(2Ω).

By the definition of D, this implies that

1

Ω

Ω∑
ω=1

f(Yω)− E[f(Y)] ≤ 2R(F) + Ḡ

√
log(1/δ)

2Ω
, ∀f ∈ F ,

or equivalently,

E[f(Y)] ≥ 1

Ω

Ω∑
ω=1

f(Yω)− 2R(F)− Ḡ
√

log(1/δ)

2Ω
, ∀f ∈ F . (A.18)

Note that by the definition of F , f = Γ ◦ ψb for some b ∈ B, and thus

E[f(Y)] = E[(Γ ◦ ψb)(Y)]

= JR(b),

and

1

Ω

Ω∑
ω=1

f(Yω) =
1

Ω

Ω∑
ω=1

(Γ ◦ ψb)(Yω)

= ĴR(b).

Thus, (A.18) is equivalent to

JR(b) ≥ ĴR(b)− 2R(F)− Ḡ
√

log(1/δ)

2Ω
, ∀b ∈ B,

which is exactly inequality (2.16).

To establish inequality (2.17), let R̂S(F) be the empirical Rademacher complexity with

respect to a sample of system realizations S. It is straightforward to verify that R̂S(F)

satisfies the bounded differences property with the bound Ḡ/Ω: for any sample S ′
i that differs

121

from S in only the ith trajectory, |R̂S(F)− R̂S′
i
(F)|≤ Ḡ/Ω. By then applying McDiarmid’s

inequality, we can bound the deviation of R̂S(F) from R(F): we have

R(F)− R̂S(F) ≤ Ḡ

√
log(1/δ)

2Ω
, (A.19)

with probability at least 1− δ over the sample of trajectories S.

By now plugging in δ/2 instead of δ in both inequality (A.18) and inequality (A.19) and

combining them with the union bound, we obtain that with probability at least 1− δ,

E[f(Y)] ≥ 1

Ω

Ω∑
ω=1

f(Yω)− 2R̂S(F)− 3Ḡ

√
log(2/δ)

2Ω
, ∀f ∈ F . (A.20)

This is equivalent to

JR(b) ≥ ĴR(b)− 2R̂S(F)− 3Ḡ

√
log(2/δ)

2Ω
, ∀b ∈ B, (A.21)

which is exactly inequality (2.17). □

A.1.7 Proof of Theorem 5

To prove Theorem 5, we need to first establish a number of auxiliary results. Our first result

is that the function Γ, which maps the vector produced by ψb to an expected reward, is

Lipschitz continuous with a particular constant. Note that for this result, Lipschitz continuity

is understood with respect to the L2 norm, as this will be needed later for the application

of Maurer’s contraction inequality.

Lemma 6 The function Γ : RT×[0, Ḡ]T → R is Lipschitz continuous with Lipschitz constant

Ḡ+ 1.

Proof of Lemma 6: To prove this, we will show that the L2 norm of the gradient of Γ can

122

be bounded by Ḡ+ 1. To begin, let us consider the partial derivatives of Γ:

∂

∂vt
Γ =

t−1∏
t′=1

(1− σ(ut))σ(ut), (A.22)

∂

∂ut
Γ = vtσ(ut)(1− σ(ut))

t−1∏
t′=1

(1− σ(ut′))

−
∑

t′=t+1

vt′σ(ut)(1− σ(ut))
t−1∏
t′′=1

(1− σ(ut′′))
t′−1∏

t′′=t+1

(1− σ(ut′′))σ(ut′)

(A.23)

Observe that we can further re-arrange the partial derivative with respect to ut as

∂

∂ut
Γ =

[
t−1∏
t′=1

(1− σ(ut′))σ(ut)

]
·

[
vt −

T∑
t′=t

vt′
t′−1∏
t′′=t

(1− σ(ut′′))σ(ut′)

]
.

For a fixed t, let us define At as

At = vt −
T∑

t′=t

vt′
t′−1∏
t′′=t

(1− σ(ut′′))σ(ut′), (A.24)

and let us define p̃t′ for each t
′ ∈ {t, . . . , T} as

p̃t′ =
t′−1∏
t′′=t

(1− σ(ut′′))σ(ut′). (A.25)

We can thus re-write At as At = vt−
∑T

t′=t vt′ p̃t′ , which allows us to bound it from above as

follows:

At = vt −
T∑

t′=t

vt′ p̃t′

≤ Ḡ−
T∑

t′=t

0p̃t′

= Ḡ,

where we also use the fact that each vt is bounded between 0 and Ḡ.

123

We can also bound At from below as follows:

At = vt −
T∑

t′=t

vt′ p̃t′

≥ 0−
T∑

t′=t

Ḡp̃t′

≥ −Ḡ,

where the first inequality follows because each vt is bounded between 0 and ḡ, and the second

inequality follows because each p̃t′ ≥ 0 and
∑T

t′=t p̃t′ ≤ 1. (Each p̃t′ can be thought of as the

probability of stopping at t′ according to the logits given in u, conditional on starting from

period t.) Thus, we have that |At|≤ Ḡ.

Having defined and bounded At, let us additionally define pt as

pt =
t−1∏
t′=1

(1− σ(ut′))σ(ut). (A.26)

Similarly to the p̃t′ values, it is straightforward to establish that
∑T

t=1 pt ≤ 1. With pt now

defined, we can write the partial derivatives of Γ more compactly as

∂

∂vt
Γ = pt, (A.27)

∂

∂ut
Γ = ptAt. (A.28)

124

We can now proceed to bound the gradient of Γ. We have

∥∇Γ∥2 =

∥∥∥∥∥∥
 ∇uΓ

∇vΓ

∥∥∥∥∥∥
2

≤ ∥∇uΓ∥2+∥∇vΓ∥2

=

∥∥∥∥∥∥∥∥∥

p1A1

...

pTAT

∥∥∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥∥∥

p1

. . .

pT

∥∥∥∥∥∥∥∥∥
2

=
√
p21A

2
1 + · · ·+ p2TA

2
T +

√
p21 + . . . p2T

≤
√
p1A2

1 + . . . pTA2
T +
√
p1 + · · ·+ pT

≤
√
p1Ḡ2 + . . . pT Ḡ2 +

√
p1 + · · ·+ pT

≤
√
Ḡ2 +

√
1

= Ḡ+ 1,

where the first inequality follows by the fact that p2t ≤ pt (since each pt ≤ 1); the second

inequality follows by the fact that |At|≤ Ḡ for each t; and the last inequality follows by the

fact that
∑T

t=1 pt ≤ 1.

Having established that ∥∇Γ∥2≤ Ḡ+ 1, the fact that Γ is Lipschitz with constant Ḡ+ 1

follows by applying the mean value theorem and the Cauchy-Schwartz inequality.

Armed with this result that Γ is Lipschitz, we can now relate the Rademacher complexity

of F (the class of functions which map system realizations to rewards) to the Rademacher

complexity of the weight vector set B. We do so by using Maurer’s vector contraction

inequality (Maurer 2016), which is a result for analyzing the Rademacher complexity of a

function class that arises from composing a vector-valued function with a Lipschitz function.

Lemma 7 The empirical Rademacher complexity of F can be bounded as R̂(F) ≤
√
2(Ḡ+

1)R̂(B), where the empirical Rademacher complexity R̂(B) of the set of feasible weight vectors

125

is defined as

R̂(B) = 1

Ω
E

[
sup
b∈B

Ω∑
ω=1

T∑
t=1

ϵω,tbt • Φ(x(ω, t))

]
. (A.29)

Proof of Lemma 7: To establish this, we will use a specific form of the vector contraction

inequality from Maurer (2016), which we re-state here:

Lemma 8 (Corollary 4 of Maurer (2016)) Let X be any set, (x1, . . . , xn) ∈ X n, let F be a

class of functions f : X → ℓ2 and let hi : ℓ2 → R have Lipschitz constant L. Then

E[sup
f∈F

n∑
i=1

ϵihi(f(xi))] ≤
√
2LE[sup

f∈F

∑
i,k

ϵi,kfk(xi)], (A.30)

where ℓ2 is the set of square summable sequences of real numbers, {ϵi} is a collection of

independent Rademacher variables, {ϵi,k} is a collection of independent (doubly indexed)

Rademacher variables, and fk(xi) is the kth component of f(xi).

126

With this result in mind, we bound the empirical Rademacher complexity as follows:

R̂(F) = 1

Ω
E

[
sup
f∈F

Ω∑
ω=1

ϵωf(Yω)

]

=
1

Ω
E

[
sup
b∈B

Ω∑
ω=1

ϵω(Γ ◦ ψb)(Yω)

]

≤ 1

Ω

√
2(Ḡ+ 1)E

[
sup
b∈B

Ω∑
ω=1

2T∑
t=1

ϵω,tψb,t(Yω)

]

≤ 1

Ω

√
2(Ḡ+ 1)E

[
sup
b∈B

Ω∑
ω=1

T∑
t=1

ϵω,tψb,t(Yω)

]

+
1

Ω

√
2(Ḡ+ 1)E

[
sup
b∈B

Ω∑
ω=1

2T∑
t=T+1

ϵω,tψb,t(Yω)

]

=
1

Ω

√
2(Ḡ+ 1)E

[
sup
b∈B

Ω∑
ω=1

T∑
t=1

ϵω,T+tbt • Φ(x(ω, t))

]

+
1

Ω

√
2(Ḡ+ 1)E

[
sup
b∈B

Ω∑
ω=1

T∑
t=1

ϵω,tg(t,x(ω, t))

]

=
1

Ω

√
2(Ḡ+ 1)E

[
sup
b∈B

Ω∑
ω=1

T∑
t=1

ϵω,tbt • Φ(x(ω, t))

]
=
√
2(Ḡ+ 1)R̂(B),

where the first inequality follows by Lemma 6 and Maurer’s vector contraction inequality

(note that ψb,t(Y) is used to denote the tth coordinate of ψb(Y)); the second inequality fol-

lows by basic properties of suprema and by linearity of expectation; the third equality follows

by the definition of ψb(·); and the fourth equality follows because the last T coordinates of

ψb(·) do not depend on b, and thus the expectation of the weighted sum of the Rademacher

random variables works out to zero.

We are now in a position to prove Theorem 5.

Proof of Theorem 5: To establish each of the three statements, we first bound R̂(B); com-

bining this bound with Lemma 7 then establishes the result. We note that the proofs of

127

part (a) and part (b) follow standard arguments for obtaining the Rademacher complexity

of hypothesis classes defined by norm balls (for example, see the proofs of Theorem 11 and

12 in Liang 2018).

Proof of Part (a): For this result, observe that B is equal to the L1 ball of radius B, and

is a bounded polyhedron. Therefore, letting Bext denote the set of extreme points of B, we

can write B as B = conv(Bext). By a standard property of Rademacher complexity, we thus

have R̂(B) = R̂(Bext).

Each extreme point b ∈ Bext is either of the form b = +Bet
′,k′ or b = −Bet

′,k′ , where

et,k is the standard unit vector with a one at the (t, k) position, and zeros everywhere else.

Thus, given b = ±Bet
′,k′ , and given ω ∈ [Ω] and t ∈ [T], we will have

|bt • Φ(x(ω, t))| = |Bet
′,k′ • Φ(x(ω, t))|

= B|ϕk′(x(ω, t))|

if t = t′, and |bt • Φ(x(ω, t))|= 0 if t ̸= t′.

Thus, given b ∈ Bext, the vector w = [wω,t]ω,t where wω,t = bt • Φ(x(ω, t)), has L2 norm

of

∥w∥2 =

√√√√ Ω∑
ω=1

T∑
t=1

w2
ω,t

=

√√√√ Ω∑
ω=1

w2
ω,t′

≤

√√√√ Ω∑
ω=1

B2Q2

=
√
ΩBQ.

We now recall Massart’s finite lemma (see Theorem 3.3 in Mohri et al. 2018):

128

Lemma 9 (Massart’s Finite Lemma) Let A ⊂ Rm be a finite set, with r = maxx∈A∥x∥2.

Then we have

E[sup
x∈A

m∑
i=1

xiϵi] ≤ r
√
2 log|A|,

where ϵ1, . . . , ϵm are i.i.d. Rademacher variables.

Let W consist of vectors w constructed in the manner described above for each extreme

point in Bext. We clearly have that |W |= |Bext|= 2KT . We therefore have

R̂(B) = 1

Ω
E

[
sup
b∈B

Ω∑
ω=1

T∑
t=1

ϵω,tbt • Φ(x(ω, t))

]

=
1

Ω
E

[
sup

b∈Bext

Ω∑
ω=1

T∑
t=1

ϵω,tbt • Φ(x(ω, t))

]

=
1

Ω
E

[
sup
w∈W

Ω∑
ω=1

T∑
t=1

ϵω,twω,t

]
≤ 1

Ω
·
√
ΩBQ ·

√
2 log(2KT)

=
BQ
√

2 log(2KT)√
Ω

,

where the inequality follows by Massart’s finite lemma.

Proof of Part (b): For this case, observe that we can write

E

[
sup
b∈B

Ω∑
ω=1

T∑
t=1

ϵω,tbt • Φ(x(ω, t))

]
(A.31)

= E

[
sup
b∈B

T∑
t=1

bt •

[
Ω∑

ω=1

ϵω,tΦ(x(ω, t))

]]

= E
[
sup
b∈B

b •V
]

(A.32)

129

where V is defined as

V =

∑Ω

ω=1 ϵω,1Φ(x(ω, 1))
...∑Ω

ω=1 ϵω,TΦ(x(ω, T))

=
Ω∑

ω=1

ϵω,1

Φ(x(ω, 1))

0
...

0

+ · · ·+
Ω∑

ω=1

ϵω,T

0
...

0

Φ(x(ω, T))

 .

For convenience let us define the vectors Vω,1, . . . ,Vω,T ∈ RKT as

Vω,1 =

Φ(x(ω, 1))

0
...

0

 , . . . ,Vω,T =

0
...

0

Φ(x(ω, T))

 ,

so that V =
∑Ω

ω=1

∑T
t=1 ϵω,tVω,t.

Let us now proceed with bounding (A.32):

E
[
sup
b∈B

b •V
]
= BE[∥V∥2]

≤ B
√
E[∥V∥22]

= B

√√√√E

[
∥

Ω∑
ω=1

T∑
t=1

ϵω,tVω,t∥22

]

= B

√√√√E

[
Ω∑

ω=1

T∑
t=1

ϵ2ω,t∥Vω,t∥22

]

= B

√√√√E

[
Ω∑

ω=1

T∑
t=1

∥Vω,t∥22

]

= B

√√√√ Ω∑
ω=1

T∑
t=1

∥Vω,t∥22]

130

where the first step follows because the maximizing b ∈ B is equal to b = BV/∥V∥2; the

second step follows by the concavity of f(x) =
√
x and Jensen’s inequality; the third step

follows by the definition of the Vω,t’s; the fourth step follows by expanding the square of the

norm, and then using the independence of the ϵω,t to eliminate the cross-terms; and the last

step by recognizing that the Vω,t vectors are not random.

At this juncture, we observe that the square 2-norm of the Vω,t’s can be bounded as

follows:

∥Vω,t∥22 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0
...

0

Φ(x(ω, t))

0
...

0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

= ϕ1(x(ω, t))
2 + · · ·+ ϕK(x(ω, t))

2

≤ KQ2.

Thus, returning to our bound, we have

E[sup
b∈B

b •V] ≤ B

√√√√ Ω∑
ω=1

T∑
t=1

∥Vω,t∥22]

≤ B

√√√√ Ω∑
ω=1

T∑
t=1

KQ2

= B
√

ΩTKQ2

= BQ
√
ΩKT.

131

This implies that the empirical Rademacher complexity can be bounded as

R̂(B) = 1

Ω
E[sup

b∈B

Ω∑
ω=1

T∑
t=1

ϵω,tbt • Φ(x(ω, t))]

≤ 1

Ω
·BQ

√
ΩKT.

=
BQ
√
KT√
Ω

.

Proof of Part (c): Using the same definition of the vector V as in the proof of part (b), we

can write

E

[
sup
b∈B

T∑
t=1

Ω∑
ω=1

ϵω,tbt • Φ(x(ω, t))

]

= E

[
sup
b∈B

T∑
t=1

bt •

[
Ω∑

ω=1

ϵω,tΦ(x(ω, t))

]]

= E
[
sup
b∈B

b •V
]

(A.33)

We now observe that for an arbitrary vector a ∈ Rn, the optimal solution to

maxx∈Rn:∥x∥∞≤B a • x is given by x = Bsign(a), where sign(a) is an n-dimensional vector

with each entry carrying the sign of the corresponding coordinate of a. The objective value

132

is given by Bsign(a) • a = B∥a∥1. Thus, we can bound (A.33) as follows:

E[sup
b∈B

b •V] = BE[∥V∥1]

= BE

[
T∑
t=1

K∑
k=1

∣∣∣∣∣
Ω∑

ω=1

ϵω,tϕk(x(ω, t))

∣∣∣∣∣
]

= B

T∑
t=1

K∑
k=1

E

[∣∣∣∣∣
Ω∑

ω=1

ϵω,tϕk(x(ω, t))

∣∣∣∣∣
]

≤ B

T∑
t=1

K∑
k=1

√√√√E

[
(

Ω∑
ω=1

ϵω,tϕk(x(ω, t)))2

]

≤ B
T∑
t=1

K∑
k=1

√√√√E

[
Ω∑

ω=1

ϵ2ω,tϕk(x(ω, t))2

]

≤ B
T∑
t=1

K∑
k=1

√
ΩQ2

= BQKT
√
Ω,

where the second step follows by the definition of V; the third step follows by the linearity of

expectation; the fourth step follows by the concavity of the square root function and Jensen’s

inequality; the fifth step by expanding the square of the weighted sum of the ϵω,t’s, and using

the independence of the ϵω,t’s to eliminate cross terms; the sixth step by using the definition

of Q and the fact that ϵ2ω,t = 1; and the remaining steps by algebra.

We now bound the Rademacher complexity as

R̂(B) = 1

Ω
E

[
sup
b∈B

Ω∑
ω=1

T∑
t=1

ϵω,tbt • Φ(x(ω, t))

]
≤ 1

Ω
·BKT

√
ΩQ

=
BQKT√

Ω
,

as required.

133

A.1.8 Proof of Theorem 6

We will show that the problem is NP-Hard by showing that the decision version of the MAX-

3SAT problem is equivalent to decision version of the randomized policy SAA problem.

The MAX-3SAT problem is a well-known NP-Complete problem, which can be defined

as follows. We are given N binary variables, denoted by y1, . . . , yN . We also haveM clauses,

c1, . . . , cM , where each clause is a disjunction involving three literals (one of the binary

variables or its negation). As an example, a clause could be y1∨y4∨¬y5, which is satisfied if

y1 = 1, y4 = 1 or y5 = 0. The optimization form of the MAX-3SAT problem is to find values

for the binary variables y1, . . . , yN that maximizes the number of satisfied clauses. For our

purposes, it will be easier to work with the decision form of the problem, which we state

below.

MAX-3SAT

Inputs:

• Integers N , M ;

• Clauses c1, . . . , cM of three literals;

• Target number of satisfied clauses W .

Question: Do there exist binary values y1, . . . , yN such that the number of

satisfied literals c1, . . . , cM is at least W?

We similarly define the decision form of the randomized policy SAA problem.

134

Randomized Policy SAA

Inputs:

• Integers Ω, K, T ;

• State space X ;

• Basis function mapping Φ(·);

• Reward function g(·, ·);

• Sample of trajectories x(1, ·), . . . ,x(Ω, ·);

• Set of feasible weight vectors B ⊆ RKT ;

• Target expected reward θ.

Question: Does there exist a weight vector b ∈ B such that the reward

ĴR(b) ≥ θ? That is, is the inequality

1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t))
t−1∏
t′=1

(1− σ(bt′ • Φ(x(ω, t′))))σ(bt • Φ(x(ω, t))) ≥ θ

satisfied?

We now show how, for any arbitrary instance of the MAX-3SAT decision problem, we can

construct a corresponding instance of the randomized policy SAA decision problem such that

the two decision problems are equivalent (the answer to the MAX-3SAT decision problem

is yes if and only if the answer to the randomized policy SAA decision problem is yes). We

begin by constructing the instance, and then show the equivalence.

Construction of instance: Given a MAX-3SAT decision problem instance, let X = RN ,

and let the basis function mapping Φ be just equal to the identity mapping, i.e., Φ(x) = x

for any x ∈ X . Thus, the dimension of the basis function vector K is equal to N .

For the trajectories, we will construct Ω = M trajectories of T = 3 periods. For each

135

clause m ∈ [M], let im,1, im,2, im,3 be the indices of the binary variables that participate in

the clause, and let am,1, am,2, am,3 be equal to +1 or -1 if the literal is the binary variable

itself or its negation, respectively. For example, if the clause were y3∨¬y4∨y7, then im,1 = 3,

im,2 = 4, im,3 = 7, and am,1 = +1, am,2 = −1, am,3 = +1. With these definitions, let us

define the trajectories as follows, for each ω ∈ [M], each t ∈ {1, 2, 3}:

xi(ω, t) =

 am,t if i = im,t,

0 otherwise.

For example, for the previous clause, assuming N = 8, then the trajectory would be:

x(m, ·) =

0 0 0

0 0 0

+1 0 0

0 −1 0

0 0 0

0 0 0

0 0 +1

0 0 0

.

For the set of feasible weight vectors, we will define B as

B = {b ∈ RKT | bk,1 = bk,2 = bk,3 for all k ∈ [K]}.

In words, the weight vector set B is such that the weight of basis function k is the same in

all three periods. For notational convenience, we will drop the time subscript, and just use

the subscript k to refer to the weight of basis function k, e.g., bk instead of bk,1.

For the reward function g(·, ·), we simply set it as g(t,x) = Ω for all t ∈ {1, 2, 3} and

x ∈ X .

Lastly, for the target objective value θ, we set it equal to W − 1/2.

136

To understand the strategy of our construction, let us write out the expected reward:

ĴR(b)

=
1

Ω

Ω∑
ω=1

T∑
t=1

g(t,x(ω, t))
t−1∏
t′=1

(1− σ(bt • Φ(x(ω, t′))))σ(bt • Φ(x(ω, t)))

=
1

Ω

Ω∑
ω=1

Ω[σ(aω,1biω,1) + (1− σ(aω,1biω,1))σ(aω,2biω,2)

+ (1− σ(aω,1biω,1))(1− σ(aω,2biω,2))σ(aω,3biω,3)]

=
M∑

m=1

[σ(am,1bim,1) + (1− σ(am,1bim,1))σ(am,2bim,2)

+ (1− σ(am,1bim,1))(1− σ(am,2bim,2))σ(am,3bim,3)]. (A.34)

To gain some intuition for how this last expression will correspond to the number of satisfied

clauses, we make a couple of remarks here.

First, we will see shortly that bi will correspond to the binary variable yi in the MAX-

3SAT problem. The weight bi can be thought of as a “soft” / “continuous”, real-valued

counterpart of the binary variable yi; we want to use very large positive values of bi to

correspond to the variable yi being equal to 1, and very small negative values of bi to

correspond to the variable yi being equal to 0.

Second, to understand how the expression in the square brackets corresponds to a clause

evaluating to 1 or 0, observe that we can write a disjunction as the sum of products of the

literals. For example, the clause y3 ∨ ¬y4 ∨ y7 we could write as

y3 + (¬y3) · (¬y4) + (¬y3) · (¬¬y4) · y7

= y3 + (1− y3)(1− y4) + (1− y3)(y4)y7. (A.35)

In the above expression, observe that if y3 = 1, then the first term evaluates to 1, and the

rest evaluate to 0; otherwise, if y3 = 0 and y4 = 0, then the first term evaluates to 0, the

second to 1, and the third to 0; otherwise, if y3 = 0, y4 = 1 and y7 = 1, then the first and

second terms evaluate to 0, while the last evaluates to 1. Thus, the two expressions – the

137

original clause y3 ∨ ¬y4 ∨ y7 and the expression (A.35) – are equivalent. The term in the

square brackets in (A.34) has this same form, and we will see shortly that we can use this

to establish our needed equivalence. With a slight abuse of terminology, we will refer to the

term in the square brackets in (A.34) as the reward of a single trajectory m.

We now proceed with showing the equivalence of the MAX-3SAT decision problem and

the randomized policy SAA decision problem with the structure described above.

MAX-3SAT answer is yes ⇒ randomized policy SAA answer is yes : If the MAX-3SAT

decision problem answer is yes, then let y1, . . . , yN be an assignment with objective at least

W . Let α > 0 be a positive constant, and define a weight vector b for the randomized policy

SAA problem as follows:

bi =

 +α if yi = 1,

−α if yi = 0.
(A.36)

Observe now that for a given clause/trajectory m, taking the limit as α → ∞ of

138

σ(am,tbim,t) gives us the following:

lim
α→+∞

σ(am,tbim,t)

=

limα→+∞ σ(α) if am,t = +1, yim,t = 1,

limα→+∞ σ(−α) if am,t = −1, yim,t = 1,

limα→+∞ σ(−α) if am,t = +1, yim,t = 0,

limα→+∞ σ(+α) if am,t = −1, yim,t = 0

=

1 if am,t = +1, yim,t = 1,

0 if am,t = −1, yim,t = 1,

0 if am,t = +1, yim,t = 0,

1 if am,t = −1, yim,t = 0

=

 yim,t if am,t = +1,

¬yim,t if am,t = −1

In other words, as α → ∞, σ(am,tbim,t) evaluates to exactly the tth literal of clause m. By

our aforementioned equivalence of a disjunction and a sum of products of binary variables

(as in the example in equation (A.35)), it follows that

lim
α→+∞

ĴR(b) = lim
α→+∞

M∑
m=1

[σ(am,1bim,1) + (1− σ(am,1bim,1))σ(am,2bim,2)

+ (1− σ(am,1bim,1))(1− σ(am,2bim,2))σ(am,3bim,3)]

=
M∑

m=1

cm,

i.e., the limit as α goes to infinity is exactly equal to the number of satisfied clauses in the

MAX-3SAT solution y1, . . . , yN . Since the answer to the MAX-3SAT decision problem is

yes, we know that
∑M

m=1 cm ≥ W , so that the limit limα→+∞ ĴR(b) ≥ W as well. Since the

limit is at least W , it follows that there must exist an α, and thus a corresponding b (as

defined in (A.36)) such that ĴR(b) ≥ W − 1/2.

139

Randomized policy SAA answer is yes ⇒ MAX-3SAT answer is yes : To show the other

direction of the equivalence, let us suppose we have a solution b for the randomized policy

SAA problem with objective value ĴR(b) ≥ W − 1/2. We now need to construct a solution

for the MAX-3SAT decision problem with objective value at least W .

Let us use cm(y1, . . . , yN) to denote the value of clause m as a function of the binary

variables y1, ..., yN . We claim that

ĴR(b) = E

[
M∑

m=1

cm(I{ξ1 ≤ b1}, . . . , I{ξN ≤ bN})

]
, (A.37)

where ξ1, . . . , ξN are i.i.d. standard logistic random variables (i.e., P(ξi ≤ t) = σ(t) for all the

variables i). Once we show this, we can use the probabilistic method to assert the existence

of y1, . . . , yN that give an affirmative answer to the MAX-3SAT problem.

To show the equivalence (A.37), we argue that for any clause m,

E[cm(I{ξ1 ≤ b1}, . . . , I{ξN ≤ bN})]

= σ(am,1bim,1) + (1− σ(am,1bim,1))σ(am,2bim,2)

+ (1− σ(am,1bim,1))(1− σ(am,2bim,2))σ(am,3bim,3). (A.38)

To see why this must be true, we argue by way of an example. Consider again the example

clause y3 ∨ ¬y4 ∨ y7. Consider the right-hand side of (A.38), which is the reward of the

corresponding trajectory, after we substitute in the values of the am,t’s. This right hand side

works out to

σ(b3) + (1− σ(b3))σ(−b4) + (1− σ(b3)(1− σ(−b4))σ(b7).

We now use an important property of the logistic response function σ, which is that for any

real u, σ(u) = 1−σ(−u). Therefore, we can readily modify the above expression so that the

coefficient of any bi is always +1:

σ(b3) + (1− σ(b3))(1− σ(b4)) + (1− σ(b3)σ(b4)σ(b7).

140

Letting ξ1, . . . , ξN denote i.i.d. standard logistic random variables, the above can be equiva-

lently written as

P(ξ3 ≤ b3) + (1− P(ξ3 ≤ b3))(1− P(ξ4 ≤ b4)) + (1− P(ξ3 ≤ b3)) · P(ξ4 ≤ b4) · P(ξ7 ≤ b7)

(A.39)

= E[I{ξ3 ≤ b3}] + E[1− I{ξ3 ≤ b3}]E[1− I{ξ4 ≤ b4}]

+ E[1− I{ξ3 ≤ b3}]E[I{ξ4 ≤ b4}]E[I{ξ7 ≤ b7}]

= E[I{ξ3 ≤ b3}+ (1− I{ξ3 ≤ b3})(1− I{ξ4 ≤ b4}) + (1− I{ξ3 ≤ b3})I{ξ4 ≤ b4}I{ξ7 ≤ b7}],

(A.40)

where the equality on the final line follows by the independence of the ξ’s and the linearity

of expectation. Now, let y3 = I{ξ3 ≤ b3}, y4 = I{ξ4 ≤ b4} and y7 = I{ξ7 ≤ b7}. Observe that

the expression inside the expectation in (A.40) can be written as

y3 + (1− y3)(1− y4) + (1− y3)y4y7

which is logically identical to y3 ∨ ¬y4 ∨ y7. Thus, in this example, it follows that equa-

tion (A.38) holds. Note that there is nothing special in the particular clause that we chose;

the same procedure, which involves using the identity σ(−u) = 1 − σ(u) to eliminate any

term of the form σ(−bi) that appears in the right-hand side of (A.38), can be used to turn

the right-hand side of (A.38) into the expected value of the clause function cm(y1, . . . , yN)

when one replaces each yi with I{ξi ≤ bi}.

Since (A.38) holds, by linearity of expectation it must be the case that (A.37) also holds.

Consequently, there must exist values ξ′1, . . . , ξ
′
N of the random variables ξ1, . . . , ξN which

satisfy the following:

E[
M∑

m=1

cm(I{ξ1 ≤ b1}, . . . , I{ξN ≤ bN})]

≤
M∑

m=1

cm(I{ξ′1 ≤ b1}, . . . , I{ξ′N ≤ bN}). (A.41)

141

Define now a candidate solution to the MAX-3SAT problem y1, . . . , yN as yi = I{ξ′i ≤ bi} for

each i. By (A.41) and (A.37), we have

M∑
m=1

cm(y1, . . . , yN) ≥ ĴR(b).

Recall that ĴR(b) ≥ W − 1/2, so we further have that

M∑
m=1

cm(y1, . . . , yN) ≥ W − 1/2.

Since W is an integer, and the number of satisfied clauses must also be an integer, the above

is equivalent to
M∑

m=1

cm(y1, . . . , yN) ≥ W,

which shows that the answer to the MAX-3SAT decision problem is yes.

We have shown that the MAX-3SAT decision problem and randomized policy SAA de-

cision problem are equivalent for the constructed instance of the randomized policy SAA

problem. Since the particular instance of the randomized policy SAA decision problem

can be constructed in polynomial time, and since the MAX-3SAT problem is NP-Complete

(Garey and Johnson 1979), it follows that the randomized policy SAA decision problem is

NP-Hard. □

A.2 Additional numerical results

A.2.1 Warm starting of RPO method using LSM

In this section, we briefly describe how we use the LSM solution to warm start each solve of

problem (2.20). Suppose that the basis function set contains payoff, i.e., the undiscounted

payoff g′(t) is a basis function. Let bt = (bt,1, . . . , bt,K) be the vector of weights for the LSM

algorithm, as we have defined it in Section 2.5.3 (Algorithm 2). The LSM policy stops at

142

time t if and only if

g(t) >
K∑
k=1

bt,kϕk(x(t)).

Using the fact that g(t) = βtg′(t) = βtϕK(x(t)), we can re-write this as

g(t)−
K∑
k=1

bt,kϕk(x(t)) > 0

⇒ βtϕK(x(t))−
K∑
k=1

bt,kϕk(x(t)) > 0

⇒
K∑
k=1

b′t,kϕk(x(t)) > 0,

where the vector b′
t is defined as b′

t = (−β−tbt,1, . . . ,−β−tbt,K−1, 1− β−tbt,K).

Observe that, as discussed in Section 2.5.3, b′
t can be viewed as a weight vector defining

a deterministic linear policy at time t, that would behave identically to the LSM policy at

time t. At the same time, one can also treat b′
t as a candidate weight vector for a randomized

policy at time t. Thus, our warm starting strategy is to simply use b′
t as the initial solution

to problem (2.20).

A.2.2 Additional policy performance results for Section 2.6.3

Table A.1 displays the results comparing LSM, PO and RPO for instances with n = 4 assets,

while Table A.2 displays analogous results for n = 16 assets. Note that for n = 16 assets,

we omit the results for PO for the basis function architecture containing the second-order

price basis functions (prices2KO) due to the significant computational effort required for

the PO method in this case.

143

Initial price

Method Basis function architecture p̄ = 90 p̄ = 100 p̄ = 110

LSM one 24.68 (0.019) 31.78 (0.016) 37.45 (0.038)

LSM one, payoff 32.84 (0.030) 40.02 (0.047) 43.16 (0.043)

PO one 30.84 (0.024) 38.97 (0.019) 44.57 (0.027)

PO one, payoff 22.67 (0.167) 20.77 (0.126) 16.53 (0.127)

RPO one, payoff 34.48 (0.020) 42.92 (0.020) 49.16 (0.020)

PO-UB one 43.23 (0.032) 51.11 (0.024) 56.46 (0.022)

PO-UB one, payoff 35.11 (0.023) 43.94 (0.034) 50.55 (0.032)

LSM prices 25.74 (0.025) 32.08 (0.025) 37.38 (0.040)

LSM prices, payoff 32.34 (0.021) 38.14 (0.040) 40.74 (0.030)

PO prices 31.40 (0.023) 38.92 (0.015) 43.42 (0.017)

PO prices, payoff 23.04 (0.138) 19.94 (0.099) 15.63 (0.095)

RPO prices, payoff 33.96 (0.018) 42.03 (0.013) 47.89 (0.020)

PO-UB prices 40.57 (0.022) 49.27 (0.011) 55.62 (0.018)

PO-UB prices, payoff 35.11 (0.023) 43.94 (0.034) 50.53 (0.032)

LSM pricesKO 28.53 (0.029) 38.34 (0.018) 46.55 (0.034)

LSM pricesKO, payoff 33.45 (0.018) 41.71 (0.019) 47.73 (0.016)

PO pricesKO 32.68 (0.024) 41.84 (0.016) 47.78 (0.018)

PO pricesKO, payoff 32.67 (0.027) 41.52 (0.020) 48.02 (0.019)

RPO pricesKO, payoff 33.98 (0.020) 42.14 (0.017) 48.17 (0.016)

PO-UB pricesKO 39.52 (0.020) 46.89 (0.012) 51.89 (0.012)

PO-UB pricesKO, payoff 35.07 (0.020) 43.79 (0.030) 50.17 (0.026)

LSM KOind 26.19 (0.027) 35.61 (0.020) 44.02 (0.048)

LSM KOind, payoff 33.39 (0.028) 41.89 (0.028) 48.06 (0.022)

PO KOind 31.51 (0.025) 41.04 (0.018) 48.43 (0.024)

PO KOind, payoff 32.22 (0.047) 42.28 (0.029) 49.01 (0.016)

RPO KOind, payoff 34.53 (0.020) 43.07 (0.020) 49.39 (0.019)

PO-UB KOind 41.46 (0.028) 48.38 (0.022) 52.83 (0.018)

PO-UB KOind, payoff 35.08 (0.021) 43.79 (0.031) 50.18 (0.027)

LSM pricesKO, KOind 30.23 (0.030) 39.07 (0.015) 46.59 (0.029)

LSM pricesKO, KOind, payoff 32.72 (0.023) 41.24 (0.023) 47.74 (0.025)

PO pricesKO, KOind 31.88 (0.019) 40.61 (0.027) 48.41 (0.025)

PO pricesKO, KOind, payoff 31.40 (0.030) 40.59 (0.019) 48.45 (0.020)

RPO pricesKO, KOind, payoff 32.95 (0.023) 41.42 (0.025) 48.09 (0.036)

PO-UB pricesKO, KOind 38.82 (0.016) 46.45 (0.016) 51.75 (0.014)

PO-UB pricesKO, KOind, payoff 35.07 (0.021) 43.78 (0.030) 50.16 (0.026)

LSM pricesKO, prices2KO, KOind 31.92 (0.032) 40.93 (0.014) 47.74 (0.019)

LSM pricesKO, prices2KO, KOind, payoff 33.41 (0.023) 41.82 (0.021) 48.02 (0.021)

PO pricesKO, prices2KO, KOind 32.18 (0.028) 41.88 (0.017) 48.73 (0.015)

PO pricesKO, prices2KO, KOind, payoff 33.66 (0.021) 42.48 (0.017) 48.78 (0.015)

RPO pricesKO, prices2KO, KOind, payoff 33.97 (0.026) 42.59 (0.021) 48.93 (0.022)

PO-UB pricesKO, prices2KO, KOind 36.30 (0.010) 44.56 (0.011) 50.51 (0.011)

PO-UB pricesKO, prices2KO, KOind, payoff 35.07 (0.021) 43.74 (0.025) 50.08 (0.023)

LSM pricesKO, KOind, maxpriceKO, max2priceKO 32.93 (0.023) 41.37 (0.020) 47.81 (0.025)

LSM pricesKO, KOind, maxpriceKO, max2priceKO, payoff 32.99 (0.025) 41.38 (0.018) 47.79 (0.024)

PO pricesKO, KOind, maxpriceKO, max2priceKO 32.52 (0.024) 40.92 (0.020) 48.48 (0.019)

PO pricesKO, KOind, maxpriceKO, max2priceKO, payoff 32.23 (0.027) 41.12 (0.020) 48.49 (0.018)

RPO pricesKO, KOind, maxpriceKO, max2priceKO, payoff 33.23 (0.024) 41.59 (0.022) 48.16 (0.035)

PO-UB pricesKO, KOind, maxpriceKO, max2priceKO 35.38 (0.020) 43.84 (0.029) 50.17 (0.025)

PO-UB pricesKO, KOind, maxpriceKO, max2priceKO, payoff 35.06 (0.022) 43.77 (0.030) 50.16 (0.025)

Table A.1: Out-of-sample performance for different policies, for n = 4 assets.

144

Initial price

Method Basis function architecture p̄ = 90 p̄ = 100 p̄ = 110

LSM one 39.08 (0.015) 43.20 (0.016) 47.14 (0.017)

LSM one, payoff 43.15 (0.033) 45.15 (0.016) 47.47 (0.020)

PO one 46.29 (0.018) 48.93 (0.014) 51.07 (0.009)

PO one, payoff 18.10 (0.142) 15.89 (0.277) 34.50 (0.257)

RPO one, payoff 51.52 (0.028) 52.73 (0.040) 53.60 (0.028)

PO-UB one 57.57 (0.008) 60.29 (0.011) 61.87 (0.007)

PO-UB one, payoff 53.21 (0.035) 56.11 (0.037) 57.40 (0.039)

LSM prices 38.97 (0.019) 43.12 (0.017) 47.06 (0.018)

LSM prices, payoff 42.22 (0.026) 44.55 (0.019) 47.13 (0.021)

PO prices 45.57 (0.016) 48.05 (0.013) 50.37 (0.007)

PO prices, payoff 18.14 (0.098) 16.35 (0.242) 34.82 (0.081)

RPO prices, payoff 50.00 (0.033) 52.07 (0.028) 53.57 (0.032)

PO-UB prices 57.47 (0.004) 60.27 (0.011) 61.84 (0.008)

PO-UB prices, payoff 53.16 (0.033) 56.03 (0.034) 57.31 (0.037)

LSM pricesKO 50.31 (0.009) 53.39 (0.011) 54.70 (0.008)

LSM pricesKO, payoff 50.28 (0.011) 52.93 (0.010) 54.46 (0.009)

PO pricesKO 50.84 (0.010) 53.44 (0.011) 55.03 (0.008)

PO pricesKO, payoff 50.83 (0.009) 53.45 (0.008) 54.95 (0.006)

RPO pricesKO, payoff 50.92 (0.010) 53.60 (0.010) 55.22 (0.010)

PO-UB pricesKO 53.31 (0.007) 55.44 (0.007) 56.70 (0.006)

PO-UB pricesKO, payoff 52.49 (0.022) 55.07 (0.017) 56.41 (0.016)

LSM KOind 49.83 (0.015) 53.79 (0.012) 55.15 (0.007)

LSM KOind, payoff 50.66 (0.015) 53.36 (0.008) 54.84 (0.008)

PO KOind 51.59 (0.012) 54.46 (0.012) 55.73 (0.006)

PO KOind, payoff 51.38 (0.012) 53.96 (0.008) 55.31 (0.007)

RPO KOind, payoff 51.93 (0.011) 54.58 (0.013) 55.97 (0.007)

PO-UB KOind 53.47 (0.009) 55.49 (0.007) 56.74 (0.006)

PO-UB KOind, payoff 52.50 (0.021) 55.06 (0.014) 56.40 (0.015)

LSM pricesKO, KOind 50.38 (0.011) 53.70 (0.010) 54.99 (0.009)

LSM pricesKO, KOind, payoff 50.50 (0.013) 53.28 (0.010) 54.79 (0.009)

PO pricesKO, KOind 51.60 (0.011) 54.34 (0.010) 55.55 (0.005)

PO pricesKO, KOind, payoff 51.27 (0.011) 53.91 (0.008) 55.29 (0.008)

RPO pricesKO, KOind, payoff 51.41 (0.013) 54.38 (0.014) 55.87 (0.008)

PO-UB pricesKO, KOind 53.30 (0.008) 55.43 (0.005) 56.69 (0.005)

PO-UB pricesKO, KOind, payoff 52.48 (0.021) 55.04 (0.014) 56.38 (0.015)

LSM pricesKO, KOind, maxpriceKO, max2priceKO 50.50 (0.008) 53.26 (0.013) 54.79 (0.014)

LSM pricesKO, KOind, maxpriceKO, max2priceKO, payoff 50.49 (0.009) 53.26 (0.013) 54.79 (0.014)

PO pricesKO, KOind, maxpriceKO, max2priceKO 51.23 (0.010) 53.89 (0.012) 55.28 (0.011)

PO pricesKO, KOind, maxpriceKO, max2priceKO, payoff 51.23 (0.011) 53.89 (0.011) 55.28 (0.011)

RPO pricesKO, KOind, maxpriceKO, max2priceKO, payoff 51.39 (0.017) 54.37 (0.016) 55.84 (0.012)

PO-UB pricesKO, KOind, maxpriceKO, max2priceKO 52.48 (0.027) 55.04 (0.019) 56.38 (0.018)

PO-UB pricesKO, KOind, maxpriceKO, max2priceKO, payoff 52.40 (0.039) 54.90 (0.082) 56.38 (0.019)

LSM pricesKO, prices2KO, KOind 50.32 (0.014) 53.19 (0.010) 54.61 (0.008)

LSM pricesKO, prices2KO, KOind, payoff 50.25 (0.016) 53.05 (0.010) 54.60 (0.008)

RPO pricesKO, prices2KO, KOind, payoff 50.94 (0.021) 53.78 (0.019) 55.24 (0.033)

Table A.2: Out-of-sample performance for different policies, for n = 16 assets.

145

APPENDIX B

Randomized Robust Price Optimization

B.1 Omitted proofs

B.1.1 Proof of Theorem 7

To prove this, we prove that Z∗
DR ≥ Z∗

RR. For any R ∈ R, and any distribution F supported

on P , we have ∫
P
R(p) dF (p) ≤ R

(∫
P
p dF (p)

)
, (B.1)

which follows by Jensen’s inequality and the concavity of R. This implies that for any F ∈ F ,

inf
R∈R

∫
P
R(p) dF (p) ≤ inf

R∈R
R

(∫
P
p dF (p)

)
. (B.2)

Therefore, we have that

Z∗
RR = max

F∈F

{
inf
R∈R

∫
P
R(p) dF (p)

}
≤ max

F∈F

{
inf
R∈R

R

(∫
P
p dF (p)

)}
≤ max

p∈P

{
inf
R∈R

R (p))

}
= Z∗

DR,

where the second inequality follows because P is assumed to be convex, and thus for any

F ∈ F ,
∫
P p dF (p) is contained in P . □

146

B.1.2 Proof of Theorem 8

Before we begin, we recall Sion’s minimax theorem:

Theorem 11 (Sion’s minimax theorem (Corollary 3.3 of Sion 1958)) Let M and N be

convex spaces, with at least one of the two spaces being compact Let f : M × N → R be a

function such that f(µ, ν) is quasiconcave and upper semi-continuous in µ for any fixed ν, and

quasiconvex and lower semi-continuous in ν for any fixed µ. Then supµ∈M infν∈N f(µ, ν) =

infν∈N supµ∈M f(µ, ν).

We have:

Z∗
RR = max

F∈F
min
u∈U

∫
P
R(p,u) dF (p)

= min
u∈U

max
F∈F

∫
P
R(p,u) dF (p)

= min
u∈U

max
p∈P

R(p,u)

= max
p∈P

min
u∈U

R(p,u)

= Z∗
DR.

In the above, the steps are justified as follows. The first step follows by the definition of

Z∗
RR.

The second step follows by applying Sion’s minimax theorem to interchange the order

of minimization over U and maximization over F . The justification for applying Sion’s

minimax theorem here is that (1) the set F of distributions supported on P is a convex set;

(2)
∫
P R(p,u) dF (p) is linear in F when u is fixed; and (3)

∫
P R(p,u)dF (p) is quasiconvex in

u when F is fixed by the hypotheses of the theorem. Note that
∫
P R(p,u) dF (p) is continuous

in F if the set of measures F is endowed with the topology of weak convergence. Additionally,

note that
∫
P R(p,u) dF (p) is continuous in u. This is guaranteed because, by compactness

of P and U and continuity of R in (p,u) from Assumption 7, there exists a constant C

such that |R(p,u)|< C for all p ∈ P and u ∈ U ; thus, by the bounded convergence

147

theorem, for any sequence (uk)
∞
k=1 such that uk → u, we shall also have

∫
P R(p,uk) dF (p)→∫

P R(p,u) dF (p).

The third step follows by the fact that maxF∈F
∫
P R(p,u) dF (p) = maxp∈P R(p,u), since

F includes the distribution the Dirac delta distribution δp′ that places unit probability mass

on p′, for every p′ ∈ P .

The fourth step follows by applying Sion’s minimax theorem again, using the hypotheses

that R(p,u) is quasiconvex in u and quasiconcave in p, and additionally that R is continuous

in both u and p (Assumption 7). □

B.1.3 Proof of Theorem 9

To establish this result, observe that

inf
Q∈Q

max
p∈P

∫
U
R(p,u) dQ(u)

= inf
Q∈Q

max
π∈∆P

∑
p∈P

π(p) ·
∫
U
R(p,u) dQ(u)

= max
π∈∆P

inf
Q∈Q

∑
p∈P

π(p) ·
∫
U
R(p,u) dQ(u)

= max
π∈∆P

inf
Q∈Q

∫
U

∑
p∈P

π(p) ·R(p,u) dQ(u)

= max
π∈∆P

min
u∈U

∑
p∈P

π(p) ·R(p,u)

= Z∗
RR.

In the above, the steps are justified as follows. The first step follows because maximizing

a function of p over the finite set P is the same as maximizing the expected value of that

same function with respect to all probability mass functions π supported on P .

The second step follows by Sion’s minimax theorem, because the quantity
∑

p∈P π(p) ·∫
U R(p,u) dQ(u) is linear and therefore quasiconcave in π for a fixed Q, and is linear

and therefore quasiconvex in Q for a fixed π; additionally, the set ∆P = {π ∈ R|P| |

148

1Tπ = 1,π ≥ 0} is a compact convex set, and Q is a convex set. Additionally, note that∑
p∈P π(p) ·

∫
U R(p,u) dQ(u) is clearly continuous in π. It is also continuous in Q, because

each term
∫
U R(p,u) dQ(u) is continuous in Q when Q is endowed with the topology of weak

convergence, and there are finitely many such terms.

The third step follows by the linearity of integration. The fourth step follows by the fact

that Q contains the Dirac delta distribution that places unit mass on u, for every u ∈ U .

The final step just follows from the definition of Z∗
RR.

With this result in hand, observe that the existence of a Q ∈ Q such that for all p ∈ P ,∫
U R(p,u)dQ(u) ≤ Z∗

DR is equivalent to the existence of Q ∈ Q such that

max
p∈P

∫
U
R(p,u)dQ(u) ≤ Z∗

DR,

which is equivalent to

inf
Q∈Q

max
p∈P

∫
U
R(p,u)dQ(u) ≤ Z∗

DR.

Since the left-hand side of this inequality is equal to Z∗
RR, the existence of the distribution

Q ∈ Q as in the theorem statement is equivalent to Z∗
RR ≤ Z∗

DR; since it is always the case

that Z∗
RR ≥ Z∗

DR, this is equivalent to the problem being randomization-proof. □

B.1.4 Proof of Corollary 2

Observe that since maxp∈P minu∈U R(p,u) ≥ minu∈U maxp∈P R(p,u) always holds, equa-

tion (3.17) is equivalent to

max
p∈P

min
u∈U

R(p,u) ≤ min
u∈U

max
p∈P

R(p,u),

or equivalently,

Z∗
DR ≥ min

u∈U
max
p∈P

R(p,u).

Observe that the condition minu∈U maxp∈P R(p,u) ≤ Z∗
DR is exactly equivalent to the con-

dition that there exists a u ∈ U such that for all p ∈ P , R(p,u) ≤ Z∗
DR.

149

To connect this to Theorem 9, consider Q = δu, where δu is the Dirac delta distribution

centered at u. For any p ∈ P , R(p,u) =
∫
U R(p,u

′) dQ(u′). Thus, for this choice of Q, it

is the case that for all p ∈ P ,
∫
U R(p,u

′) dQ(u′) ≤ Z∗
DR. By Theorem 9, this is equivalent

to randomization-proofness. Thus, it follows that the strong duality condition (3.17) is

equivalent to the RPO problem being randomization-proof. □

B.1.5 Proof of Corollary 3

To prove the ⇒ direction of the equivalence, suppose that the robust price optimization

problem is randomization-receptive. From Theorem 9, a robust price optimization problem

is randomization-proof if and only if there exists a distribution Q ∈ Q such that for all

p ∈ P ,
∫
U R(p,u) dQ(u) ≤ Z∗

DR. The negation of this latter statement is the following

statement:

∀Q ∈ Q, ∃p ∈ P such that

∫
U
R(p,u) dQ(u) > Z∗

DR. (B.3)

We need to show that p∗
DR /∈ argmaxp∈P R(p,u

∗). To establish this, it is sufficient to

show that there exists a p̃ ∈ P such that R(p̃,u∗) > R(p∗
DR,u

∗). Let Q̃ = δu∗ , where δu∗

denotes the Dirac delta distribution centered at u∗. By invoking (B.3), we are assured of

the existence of a price vector p̃ such that
∫
U R(p̃,u) dQ̃(u) > Z∗

DR. Since Q̃ = δu∗ , we have

that
∫
U R(p̃,u) dQ̃(u) = R(p̃,u∗), and thus we have that

R(p̃,u∗) > R(p̃DR,u
∗),

exactly as needed. Thus, it follows that p∗
DR /∈ argmaxp∈P R(p,u

∗).

To prove the ⇐ direction of the equivalence, let p̃ ∈ P be a price vector for which

R(p̃,u∗) > R(p∗
DR,u

∗). To establish that the problem is randomization-receptive, we shall

again use the condition (B.3).

Let Q ∈ Q be an arbitrary distribution. We need to show that there exists a p ∈ P

that satisfies
∫
U R(p,u) dQ(u) > Z∗

DR. There are two mutually exclusive and collectively

150

exhaustive cases to consider:

Case 1: There exists a closed set B ⊆ U such that u∗ /∈ B and Q(B) > 0. The candidate

price vector we will consider in this case is p∗
DR. In this case, observe that since U is compact,

then B is also compact, and together with the extreme value theorem we can assert that

minu∈B R(p
∗
DR,u) = R(p∗

DR, ũ) for some ũ ∈ B. Additionally, since minu∈U R(p
∗
DR,u) has a

unique solution u∗ and u∗ /∈ B, we are assured that R(p∗
DR, ũ) > R(p∗

DR,u
∗). Armed with

these facts, we have that∫
U
R(p∗

DR,u) dQ(u)

=

∫
B

R(p∗
DR,u) dQ(u) +

∫
U\B

R(p∗
DR,u) dQ(u)

≥ R(p∗
DR, ũ) ·Q(B) +R(p∗

DR,u
∗) · (1−Q(B))

> R(p∗
DR,u

∗) · (Q(B) + 1−Q(B))

= R(p∗
DR,u

∗)

= Z∗
DR,

which establishes that condition (B.3) holds in Case 1.

Case 2: For every closed set B ⊆ U , either u∗ ∈ B or Q(B) = 0. The candidate price

vector in this case will be p̃.

To establish condition (B.3) in this case, let ϵ be any number such that 0 < ϵ < R(p̃,u∗)−

R(p∗
DR,u

∗). The assumption about the continuity of R(p,u) in u implies that there must

exist a δ > 0 such that for any u ∈ U with ∥u− u∗∥< δ, R(p̃,u) > R(p∗
DR,u

∗) + ϵ.

Let C = {u ∈ U | ∥u − u∗∥< δ}, which is an open set. Additionally, let B = U \ C =

{u ∈ U | ∥u − u∗∥≥ δ} be the complement of C, which must be a closed set. By the

assumption of Case 2, any closed subset of U must be such that either u∗ is inside that set,

or the measure of that set under Q is zero. Here, by construction, B cannot contain u∗;

therefore, we must have that Q(B) = 0. Since C and B are complements, it must also be

the case that Q(C) = 1.

151

Armed with these facts, we now have that∫
U
R(p̃,u) dQ(u)

=

∫
C

R(p̃,u) dQ(u) +

∫
B

R(p̃,u) dQ(u)

≥ [R(p∗
DR,u

∗) + ϵ] ·Q(C) + 0

= R(p∗
DR,u

∗) + ϵ

> R(p∗
DR,u

∗)

= Z∗
DR,

which again establishes that condition (B.3) holds.

Since we have shown that condition (B.3) holds in these two mutually exclusive and col-

lectively exhaustive cases, it follows that the problem is randomization-receptive, as required.

□

B.1.6 Example of necessity of uniqueness assumption in Corollary 3

Consider a single product pricing instance, i.e., I = 1, which we define as follows. Let

P = {p1, p2, p3} where p1 = 5, p2 = 8, p3 = 9. Let the demand model d be a linear demand

model, so that the uncertain parameter u = (α, β) and d(p,u) = α − βp. Finally, let U =

{(α1, β1), (α2, β2), (α3, β3)}, where (α1, β1) = (10, 1), (α2, β2) = (3, 0.1), (α3, β3) = (3.6, 0.2).

We first calculate minu∈U R(p,u) for each p ∈ P . We have:

• For p1 = 5: p1(α2 − β2p1) = 12.5 < p1(α3 − β3p1) = 13 < p1(α1, β1p1) = 25. Hence,

minu∈U R(p1,u) = min{12.5, 13, 25} = 12.5.

• For p2 = 8: p2(α1 − β1p2) = p2(α3 − β3p2) = 16 < p2(α2 − β2p2) = 17.6. Hence,

minu∈U R(p2,u) = min{16, 16, 17.6} = 16, and note also that the minimizing u is not

unique (the minimum is attained at both (α1, β1) and (α3, β3)).

152

• For p3 = 9: p3(α1 − β1p3) = 9 < p3(α3 − β3p3) = 16.2 < p3(α2 − β2p3) = 18.9. Hence,

minu∈U R(p3,u) = min{9, 16.2, 18.9} = 9.

From this, we can see that the optimal deterministic robust price is p∗DR = p2 = 8 and

the optimal deterministic robust objective value is Z∗
DR = 16. At p = 8, we can see that

argminu∈U R(p2,u) = {(α1, β1), (α3, β3)}.

Let us now consider the RRPO problem. When we write the problem

maxπ∈∆P minu∈U
∑

p∈P πpR(p,u) as a linear program, we get the following problem:

maximize
π,t

t (B.4a)

subject to t ≤ πp1 · p1(α1 − β1p1) + πp2 · p2(α1 − β1p2) + πp3 · p3(α1 − β1p3), (B.4b)

t ≤ πp1 · p1(α2 − β2p1) + πp2 · p2(α2 − β2p2) + πp3 · p3(α2 − β2p3), (B.4c)

t ≤ πp1 · p1(α3 − β3p1) + πp2 · p2(α3 − β3p2) + πp3 · p3(α3 − β3p3), (B.4d)

πp1 + πp2 + πp3 = 1, (B.4e)

πp1 , πp2 , πp3 ≥ 0, (B.4f)

or equivalently,

maximize
π,t

t (B.5a)

subject to t ≤ 25πp1 + 16πp2 + 9πp3 (B.5b)

t ≤ 12.5πp1 + 17.6πp2 + 18.9πp3 , (B.5c)

t ≤ 13πp1 + 16πp2 + 16.2πp3 , (B.5d)

πp1 + πp2 + πp3 = 1, (B.5e)

πp1 , πp2 , πp3 ≥ 0, (B.5f)

for which the optimal objective value is Z∗
RR = 16, which is the same as Z∗

DR. Thus, if the

uniqueness condition on minu∈U R(p
∗
DR,u) is relaxed, then it is possible for the problem to

be randomization proof.

153

B.1.7 Proof of Proposition 2

Observe that the objective function in (3.32) can be re-arranged as

max
µ∈∆[I],p∈P

{
I∑

i=1

µi(αi + log pi − βi log pi +
∑
j ̸=i

γi,j log pj)−
I∑

i=1

µi log µi

}

= max
µ∈∆[I]

max
p∈P

{
I∑

i=1

µi · αi +
I∑

i=1

µi ·

[
1− βi +

∑
j ̸=i

γj,i

]
· log pi −

I∑
i=1

µi log µi

}

= max
µ∈∆[I]

[
I∑

i=1

µi · αi +
I∑

i=1

max
pi∈Pi

{
µi ·

[
1− βi +

∑
j ̸=i

γj,i

]
· log pi

}
−

I∑
i=1

µi log µi

]

where the first step follows by algebra, and the second by the separability of the objective in

p1, . . . , pI and Assumption 8 (since the price set is a Cartesian product and the objective is

separable, each product’s price can be optimized independently). Thus, when µ is fixed, the

optimal value of pi for the above objective depends on the sign of (1−βi+
∑

j ̸=i γj,i). If this

coefficient is positive, then since log pi is increasing in pi, it is optimal to set p′i = maxPi. If

this coefficient is negative, then it is optimal to set p′i = minPi. It thus follows that for any

µ for which we can find a price vector p such that (µ,p) is optimal, it will be the case that

(µ,p′) will also be optimal. □

B.2 Deterministic robust price optimization for finite P, convex

U under the semi-log and log-log demand models

In this section, we describe how to formulate the DRPO problem as a mixed-integer expo-

nential cone program for the semi-log and log-log demand models. In both cases, we assume

that U is a convex uncertainty set, and that Assumption 8 on the structure of P holds.

154

B.2.1 Semi-log model

For the semi-log demand model, we can write the DRPO problem as

max
p∈P

min
u∈U

R(p,u)

= max
p∈P

min
u∈U

I∑
i=1

pi · eαi−βipi+
∑

j ̸=i γi,jpj . (B.6)

To accomplish our reformulation, we will make use of the fact that the optimal solution set

of the DRPO problem is unchanged upon log-transformation, that is,

argmax
p∈P

min
u∈U

R(p,u) = argmax
p∈P

min
u∈U

logR(p,u).

Thus, instead of problem (B.6), we can focus on the following problem:

max
p∈P

min
u∈U

log

(
I∑

i=1

pi · eαi−βipi+
∑

j ̸=i γi,jpj

)

= max
p∈P

min
u∈U

log

(
I∑

i=1

elog pi+αi−βipi+
∑

j ̸=i γi,jpj

)

Here, we can again use the log-sum-exp biconjugate technique to reformulate the objective

function in the following way:

log

(
I∑

i=1

elog pi+αi−βipi+
∑

j ̸=i γi,jpj

)

= max
µ∈∆[I]

{
I∑

i=1

µi · (log pi + αi − βipi +
∑
j ̸=i

γi,jpj)−
I∑

i=1

µi log µi

}
.

Thus, the overall problem becomes the following max-min-max problem:

max
p∈P

min
u∈U

max
µ∈∆[I]

{
I∑

i=1

µi · (log pi + αi − βipi +
∑
j ̸=i

γi,jpj)−
I∑

i=1

µi log µi

}
.

Here, we observe that the objective function is linear in u = (α,β,γ), and is concave in µ;

additionally, the feasible region of u is assumed to be convex, and the feasible region of µ

is convex and compact (being just the (|I|−1)-dimensional unit simplex). Therefore, we can

155

use Sion’s minimax theorem to interchange the minimization over u and the maximization

over µ, which gives us

max
p∈P

min
u∈U

max
µ∈∆[I]

{
I∑

i=1

µi · (log pi + αi − βipi +
∑
j ̸=i

γi,jpj)−
I∑

i=1

µi log µi

}

= max
p∈P

max
µ∈∆[I]

min
u∈U

{
I∑

i=1

µi · (log pi + αi − βipi +
∑
j ̸=i

γi,jpj)−
I∑

i=1

µi log µi

}

= max
p∈P,µ∈∆[I]

min
u∈U

{
I∑

i=1

µi · (log pi + αi − βipi +
∑
j ̸=i

γi,jpj)−
I∑

i=1

µi log µi

}

Under Assumption 8, this final problem can then be reformulated as robust mixed-integer

exponential cone program, just as in Section 3.5.3. We introduce the same binary decision

variable xi,t which is 1 if product i is offered at price t ∈ Pi, and 0 otherwise, and we use wi,j,t

to denote the linearization of µi · xj,t for i, j ∈ [I], t ∈ Pj. This gives rise to the following

program:

maximize
µ,w,x

min
u∈U

I∑

i=1

µiαi +
I∑

i=1

∑
t∈Pi

log t · wi,i,t − βi
∑
t∈Pi

t · wi,i,t +
∑
j ̸=i

γi,j
∑
t∈Pj

t · wi,j,t

−

I∑
i=1

µi log µi

}
(B.7a)

subject to
∑
t∈Pj

wi,j,t = µi, ∀ i ∈ [I], j ∈ [I], (B.7b)

I∑
i=1

wi,j,t = xj,t, ∀ j ∈ [I], t ∈ Pj, (B.7c)

I∑
i=1

µi = 1, (B.7d)

∑
t∈Pi

xi,t = 1, ∀ i ∈ [I], (B.7e)

wi,j,t ≥ 0, ∀ i ∈ [I], j ∈ [I], t ∈ Pj, (B.7f)

xi,t ∈ {0, 1}, ∀ i ∈ [I], t ∈ Pi, (B.7g)

µi ≥ 0, ∀ i ∈ [I]. (B.7h)

156

Note that the feasible region of this problem is identical to that of problem (3.25), which

appeared in our discussion of the separation problem for the RRPO problem when U is convex

and P is finite. The difference here is that the objective is now a robust objective; it is the

worst-case value of the objective of problem (3.25), taken over the convex uncertainty set U .

Depending on the structure of U , the overall problem can remain in the mixed-integer convex

program problem class. For example, if U is a polyhedron, then one can use LP duality to

reformulate the robust problem exactly by introducing additional variables and constraints,

as is normally done in robust optimization (Bertsimas and Sim 2004, Ben-Tal and Nemirovski

2000, Bertsimas et al. 2011). Similarly, if U is a second-order cone representable set, then

one can again use conic duality to reformulate the problem. Alternatively, one can also

consider solving the problem using a cutting plane method/delayed constraint generation

approach, whereby one reformulates the program in epigraph form and then solves the inner

minimization over u to identify new cuts to add (Bertsimas et al. 2016a).

B.2.2 Log-log model

For the log-log demand model, we can write the DRPO problem as

max
p∈P

min
u∈U

R(p,u)

= max
p∈P

min
u∈U

I∑
i=1

pi · eαi−βi log pi+
∑

j ̸=i γi,j log pj

= max
p∈P

min
u∈U

I∑
i=1

eαi+(1−βi) log pi+
∑

j ̸=i γi,j log pj

Again, as with the semi-log model, solving the above problem is equivalent to solving the

same problem with a log-transformed objective. Taking this log-transformed problem as our

starting point, replacing the log-sum-exp function with its biconjugate and applying Sion’s

157

minimax theorem gives us:

max
p∈P

min
u∈U

log

(
I∑

i=1

eαi+(1−βi) log pi+
∑

j ̸=i γi,j log pj

)

= max
p∈P

min
u∈U

max
µ∈∆[I]

{
I∑

i=1

[
αiµi +

I∑
i=1

(1− βi)µi · log pi +
∑
j ̸=i

γi,jµi · log pj

]
−

I∑
i=1

µi log µi

}

= max
p∈P,µ∈∆[I]

min
u∈U

{
I∑

i=1

[
αiµi +

I∑
i=1

(1− βi)µi · log pi +
∑
j ̸=i

γi,jµi · log pj

]
−

I∑
i=1

µi log µi

}
.

Under Assumption 8, this last problem can be re-written as the following robust version of

problem (3.33), with the decision variables defined identically:

maximize
µ,w,x

min
u∈U

{
I∑

i=1

µiαi +
I∑

i=1

(∑
t∈Pi

log t · wi,i,t − βi ·
∑
t∈Pi

log t · wi,i,t

+
∑
j ̸=i

γi,j
∑
t∈Pj

log t · wi,j,t

− I∑
i=1

µi log µi

 (B.8a)

subject to constraints (3.25b) – (3.25h). (B.8b)

Again, this problem has exactly the same feasible region as the log-log separation prob-

lem (3.33) and the semi-log separation problem (3.25). Additionally, just as with the deter-

ministic robust problem (B.7) for the semi-log model, this problem can be further reformu-

lated by exploiting the structure of U , or otherwise one can design a cutting plane method

that generates violated uncertain parameter vectors u ∈ U on the fly.

B.3 Solution method for finite P, finite U

The second solution approach we consider is for the case where both P and U are finite sets.

In particular, we assume that the uncertainty set U is a binary representable set. For fixed

positive integers m and n, we let U be defined as

U = {u = Fz | Az ≤ b, z ∈ {0, 1}n}, (B.9)

158

where b is a m dimensional real vector, A is a m-by-n real matrix and F is a d-by-n real

matrix, where d is the dimension of the uncertain parameter vector u.

Recall that when P is finite, then the RRPO problem is

Z∗
RR = max

π∈∆P
min
u∈U

∑
p∈P

πpR(p,u). (B.10)

We can transform this problem into a dual problem where the outer problem is to optimize

a distribution over uncertain parameter vectors, and the inner problem is to optimize over

the price vector, as follows:

Z∗
RR = max

π∈∆P
min
u∈U

∑
p∈P

πpR(p,u) (B.11)

= max
π∈∆P

min
λ∈∆U

∑
p∈P

∑
u∈U

πpλuR(p,u) (B.12)

= min
λ∈∆U

max
π∈∆P

∑
p∈P

∑
u∈U

πpλuR(p,u) (B.13)

= min
λ∈∆U

max
p∈P

∑
u∈U

λuR(p,u), (B.14)

where the first equality follows because minimization of a function of u over the finite set U is

the same as minimizing the expected value of that function over all probability mass functions

supported on U ; the second equality follows by linear programming duality; and the final

equality follows because maximization of a function of p over P is the same as maximizing

the expected value of that function over all probability mass functions supported on P . We

refer to problem (B.10) as the primal problem and (B.14) as the dual problem.

Consider now the restricted primal problem, where we replace P with a subset P̂ ⊆ P in

problem (B.10), and the restricted dual problem, where we replace U with a subset Û ⊆ U

in problem (B.14). Let us denote the objective values of these two problems with ZP,P̂ and

159

ZD,Û , respectively. These two problems are:

ZP,P̂ = max
π∈∆P̂

min
u∈U

∑
p∈P̂

πpR(p,u), (B.15)

ZD,Û = min
λ∈∆Û

max
p∈P

∑
u∈Û

λuR(p,u). (B.16)

Observe that ZP,P̂ and ZD,Û bound Z∗
RR from below and above, that is,

ZP,P̂ ≤ Z∗
RR ≤ ZD,Û .

In the above, the justification for the first inequality is because maximizing over distributions

supported on the smaller set of price vectors P̂ cannot result in a higher worst-case objec-

tive than solving the full primal problem with P , which gives the value Z∗
RR. The second

inequality similarly follows because minimizing over distributions supported on the smaller

set of uncertainty realizations Û cannot result in a lower worst-case objective than solving

the full dual problem with U , which gives Z∗
RR.

The idea of double column generation is as follows. Let us pick some subset of price

vectors P̂ ⊆ P and some subset of uncertainty realizations Û ⊆ U . Observe that the

restricted primal problem (B.15) for P̂ can be written in epigraph form as

maximize
π,t

t (B.17a)

subject to t ≤
∑
p∈P̂

πpR(p,u), ∀ u ∈ U , (B.17b)

∑
p∈P̂

πp = 1, (B.17c)

πp ≥ 0, ∀ p ∈ P̂ . (B.17d)

This problem has a huge number of constraints (one for each u ∈ U). However, we can solve

it using delayed constraint generation, starting from the set Û . Upon solving it in this way,

at termination we will have a subset U ′ of uncertainty realizations from U that were found

during the constraint generation process. We update Û to be equal to U ′.

160

With this (updated) subset Û in hand, we now solve the restricted dual problem (B.16)

for Û . This problem can be written in epigraph form as

minimize
λ,ρ

ρ (B.18a)

subject to ρ ≥
∑
u∈Û

λuR(p,u), ∀ p ∈ P , (B.18b)

∑
u∈Û

λu = 1, (B.18c)

λu ≥ 0, ∀ u ∈ Û . (B.18d)

This problem also has a huge number of constraints, but again we can solve it using delayed

constraint generation, with the initial subset of price vectors set to P̂ . At termination, we

will have a new subset P ′ of price vectors, which will contain the original set of price vectors

in P̂ . We then update P̂ to P ′, and go back to solving the restricted primal problem. The

process then repeats: after solving the restricted primal, we will have a new (bigger) Û ; we

then solve the restricted dual, after which we have a new (bigger) P̂ ; we then go back to

the restricted primal, and so on. After each iteration of solving the restricted primal and

restricted dual, the set P̂ expands and the set Û expands. Thus, the bounds ZP,P̂ and ZD,Û

get closer and closer to Z∗
RR. The algorithm can then be terminated either when ZP,P̂ = ZD,Û ,

which would imply that both restricted primal and restricted dual objective values exactly

coincide with Z∗
RR; or otherwise, one can terminate when ZD,Û − ZP,P̂ < ϵ, where ϵ > 0 is a

user specified tolerance.

The overall algorithmic approach is formalized as Algorithm 3. This algorithm invokes

two procedures, PrimalCG (Algorithm 4) and DualCG (Algorithm 5), which are de-

layed constraint generation algorithms for solving the restricted primal and dual problems

respectively. We note that Algorithm 3 is an adaptation of the double column generation

algorithm of Wang et al. (2024) for the randomized robust assortment optimization prob-

lem, which is itself adapted from the double column generation algorithm of Delage and Saif

(2022) for solving mixed-integer distributionally robust optimization problems. The proof of

161

correctness of this procedure follows similarly to Delage and Saif (2022), and is omitted for

brevity. The novelty in our approach lies in how we handle the separation problems which

are at the heart of PrimalCG and DualCG, which we discuss next.

Algorithm 3 Double column generation method for solving the finite P , finite U RRPO

problem.

1: Initialize P̂ to be a non-empty subset of P , and Û to be a non-empty subset of U .

2: Set LB← −∞, UB← +∞

3: repeat

4: Run PrimalCG(P̂ , Û) to solve the restricted primal problem with P̂ and with Û as

the initial uncertainty set. Let the objective value be ZP,P̂ and the new uncertainty

set be U ′.

5: Set Û ← U ′.

6: Set LB← ZP,P̂ .

7: Run DualCG(P̂ , Û) to solve the restricted dual problem with Û and with P̂ as the

initial price vector set. Let the objective value be ZD,P̂ and the new price vector set

be P ′.

8: Set P̂ ← P ′.

9: Set UB← ZD,Û .

10: until UB− LB < ϵ

Note that the doubly restricted primal and dual problems (B.19) and (B.21) solved in

PrimalCG and DualCG are both linear programs, and can be thus be solved easily.

The principal difficulty in these procedures comes from the primal and dual separation

problems (B.20) and (B.22), which require optimizing over a price vector p ∈ P and an

uncertain parameter vector u ∈ U respectively. In the following sections, we discuss how

these two separation problems can be tackled for the linear, semi-log and log-log demand

models. Note that in all three sections, we continue to make Assumption 8, which states

that P can be written as the Cartesian product of finite sets of prices for each product, i.e.,

162

Algorithm 4 PrimalCG procedure.

1: Initialize U ′ ← Û

2: repeat

3: Solve the doubly restricted primal problem:

maximize
π,t

t (B.19a)

subject to t ≤
∑
p∈P̂

πpR(p,u), ∀u ∈ U ′, (B.19b)

∑
p∈P̂

πp = 1, (B.19c)

πp ≥ 0, ∀ p ∈ P̂ . (B.19d)

Let (π, t∗) be the optimal solution of the doubly restricted problem.

4: Solve the primal separation problem:

min
u∈U

∑
p∈P̂

πp ·R(p,u). (B.20)

Let t′ and u∗ be the optimal objective value and solution of this separation problem.

5: if t∗ > t′ then

6: Set U ′ ← U ′ ∪ {u∗}

7: end if

8: until t∗ ≤ t′

9: Set ZP,P̂ ← t∗

10: return (ZP,P̂ ,U ′).

163

Algorithm 5 DualCG procedure.

1: Initialize P ′ ← P̂

2: repeat

3: Solve the doubly restricted dual problem:

minimize
λ,ρ

ρ (B.21a)

subject to ρ ≥
∑
u∈Û

λuR(p,u), ∀p ∈ P ′, (B.21b)

∑
u∈Û

λu = 1, (B.21c)

λu ≥ 0, ∀ u ∈ Û . (B.21d)

Let (λ, ρ∗) be the optimal solution of the doubly restricted problem.

4: Solve the dual separation problem:

max
p∈P

∑
u∈Û

λu ·R(p,u) (B.22)

Let ρ′ and p∗ be the optimal objective value and solution of this separation problem.

5: if ρ∗ < ρ′ then

6: Set P ′ ← P ′ ∪ {p∗}

7: end if

8: until ρ∗ ≥ ρ′

9: Set ZD,Û ← ρ∗

10: return (ZD,Û ,P ′).

164

P = P1 × . . .× PI , where P1, . . . ,PI are finite sets.

B.3.1 Primal and dual subproblems for linear demand model

For the linear demand model, the primal separation problem is

min
u∈U

∑
p∈P̂

πp ·

[
I∑

i=1

pi · (αi − βipi +
∑
j ̸=i

γi,jpj)

]
. (B.23)

Note that this objective function is linear in u = (α,β,γ). Therefore, the whole problem

can be expressed as

minimize
∑
p∈P̂

πp ·

[
I∑

i=1

pi · (αi − βipi +
∑
j ̸=i

γi,jpj)

]
(B.24a)

subject to u = Fz, (B.24b)

Az ≤ z, (B.24c)

z ∈ {0, 1}n, (B.24d)

which is a mixed-integer linear program.

The dual separation problem is

max
p∈P

∑
u∈Û

λu ·

[
I∑

i=1

pi(αi − βipi +
∑
j ̸=i

γi,jpj)

]
. (B.25)

By introducing the same binary variables as in the separation problem (3.20) (the linear

demand separation problem for the convex U setting), we obtain the following mixed-integer

165

linear program:

maximize
x,y

∑
u∈Û

λu ·

[
I∑

i=1

∑
t∈Pi

αi · t · xi,t +
I∑

i=1

∑
t∈Pi

t · βi · xi,t

+
I∑

i=1

∑
j ̸=i

∑
t1∈Pi

∑
t2∈Pj

γi,j · t1 · t2 · yi,j,t1,t2

 (B.26a)

subject to
∑
t∈Pi

xi,t = 1, ∀ i ∈ [I], (B.26b)

∑
t2∈Pj

yi,j,t1,t2 = xi,t1 , ∀ i, j ∈ [I], j ̸= i, t2 ∈ Pj, (B.26c)

∑
t1∈Pi

yi,j,t1,t2 = xi,t1 , ∀ i, j ∈ [I], j ̸= i, t1 ∈ Pi, (B.26d)

xi,t ∈ {0, 1}, ∀ i ∈ [I], t ∈ Pi, (B.26e)

xi,j,t1,t2 ∈ {0, 1}, ∀ i, j ∈ [I], i ̸= j, t1 ∈ Pi, t2 ∈ Pj. (B.26f)

Importantly, note that the size of this problem does not scale with the number of uncertainty

realizations inside Û ; the form of this problem is equivalent to problem (3.20) where u is

replaced with
∑

u∈Û λu · u (the “average” uncertain demand parameter). As we will see in

the next couple of sections, the same will not be true for the semi-log and log-log demand

models.

B.3.2 Primal and dual subproblems for semi-log demand model

For the semi-log demand model, the primal separation problem is

min
u∈U

∑
p∈P̂

πp ·

[
I∑

i=1

pi · eαi−βipi+
∑

j ̸=i γi,jpj

]
. (B.27)

Note that this objective function is convex in u = (α,β,γ), because the weights πp and pi

for a given p ∈ P and i ∈ [I] are nonnegative, and because the function eαi−βipi+
∑

j ̸=i γi,jpj is

166

convex in u = (α,β,γ). Thus, the whole problem can be expressed as

minimize
u,z

∑
p∈P̂

πp ·

[
I∑

i=1

pi · eαi−βipi+
∑

j ̸=i γi,jpj

]
(B.28a)

subject to u = Fz, (B.28b)

Az ≤ b, (B.28c)

z ∈ {0, 1}n, (B.28d)

which can be re-written as a mixed-integer exponential cone program.

The dual separation problem is

max
p∈P

∑
u∈Û

λu ·

[
I∑

i=1

pi · eαi−βipi+
∑

j ̸=i γi,jpj

]
. (B.29)

The objective function of this problem is in general not concave in p. However, just as in

Section 3.5.3, the related problem of optimizing the logarithm of this objective, which is

max
p∈P

log

∑
u∈Û

λu ·

[
I∑

i=1

pi · eαi−βipi+
∑

j ̸=i γi,jpj

] (B.30)

= max
p∈P

log

∑
u∈Û

I∑
i=1

elog λu+log pi+αi−βipi+
∑

j ̸=i γi,jpj

 (B.31)

can be reformulated as a mixed-integer exponential cone program using the same biconjugate-

based technique in Section 3.5.3. In particular, when Assumption 8 holds, then prob-

lem (B.31) is equivalent to

167

maximize
w,x,µ

∑
u∈Û

I∑
i=1

µu,i · (log λu + αi)

+
∑
u∈Û

I∑
i=1

∑
t∈Pi

log twu,i,i,t

+
∑
u∈Û

I∑
i=1

∑
t∈Pi

(−βi) · t · wu,i,i,t

+
∑
u∈Û

I∑
i=1

∑
j ̸=i

γi,j ·
∑
t∈Pj

t · wu,i,j,t

−
∑
u∈Û

I∑
i=1

µu,i log µu,i (B.32a)

subject to
∑
u∈Û

I∑
i=1

µu,i = 1, (B.32b)

∑
t∈Pj

wu,i,j,t = µu,i, ∀ u ∈ Û , i, j ∈ [I], (B.32c)

∑
u∈Û

I∑
i=1

wu,i,j,t = xj,t, ∀ j ∈ [I], t ∈ Pj, (B.32d)

∑
t∈Pj

xj,t = 1, ∀j ∈ [I], (B.32e)

wu,i,j,t ≥ 0, ∀ u ∈ Û , i, j ∈ [I], t ∈ Pj, (B.32f)

µu,i ≥ 0, ∀ u ∈ Û , i ∈ [I], (B.32g)

xj,t ∈ {0, 1}, ∀ j ∈ [I], t ∈ Pj, (B.32h)

where xj,t is a binary decision variable that is 1 if product j is offered at price t ∈ Pj, and 0

otherwise; µu,i is a nonnegative decision variable introduced as part of the biconjugate-based

reformulation; and wu,i,j,t is a decision variable that represents the linearization of µu,i · xj,t

for all u ∈ Û , i, j ∈ [I], and t ∈ Pj.

As with problem (3.25), this problem can be expressed as a mixed-integer exponential

cone program. One notable difference between formulation (B.32) and formulation (3.25)

168

from earlier is that the number of decision variables and constraints is larger because the

decision variable µu,i is introduced for every combination of an uncertainty realization in Û

and each product i; thus, µ represents a probability mass function over the set Û × [I].

B.3.3 Primal and dual subproblems for log-log demand model

For the log-log demand model, the primal separation problem is

min
u∈U

∑
p∈P̂

πp ·
I∑

i=1

pi · eαi−βi log pi+
∑

j ̸=i γi,j log pj . (B.33)

Note that the objective function is convex in u = (α,β,γ); it is the nonnegative weighted

combination of terms of the form eαi−βi log pi+
∑

j ̸=i γi,j log pj , each of which are convex in (α,β,γ).

Thus, the overall problem, which can be stated as

minimize
z

∑
p∈P̂

πp ·
I∑

i=1

pi · eαi−βi log pi+
∑

j ̸=i γi,j log pj (B.34a)

subject to u = Fz, (B.34b)

Az ≤ b, (B.34c)

z ∈ {0, 1}n, (B.34d)

is a mixed-integer convex program, and can be expressed as a mixed-integer exponential

cone program.

The dual separation problem is

max
p∈P

∑
u∈Û

λu ·

[
I∑

i=1

pi · eαi−βi log pi+
∑

j ̸=i γi,j log pj

]
. (B.35)

The objective function of this problem is in general not concave in p. However, following

the same method as in Section 3.5.4, we can reformulate the related problem of maximizing

169

the logarithm, which is

max
p∈P

log

∑
u∈Û

λu ·

[
I∑

i=1

pi · eαi−βi log pi+
∑

j ̸=i γi,j log pj

] (B.36)

= max
p∈P

log

∑
u∈Û

I∑
i=1

elog λu+log pi+αi−βi log pi+
∑

j ̸=i γi,j log pj

 (B.37)

as a mixed-integer exponential cone program. Under Assumption 8, the resulting formulation

is

maximize
x,w,µ

∑
u∈Û

I∑
i=1

µu,i · (log λu + αi)

+
∑
u∈Û

I∑
i=1

∑
t∈Pi

(1− βi) log t · wu,i,i,t

+
∑
u∈Û

I∑
i=1

∑
j ̸=i

γi,j ·
∑
t∈Pj

log t · wu,i,j,t

−
∑
u∈Û

I∑
i=1

µu,i log µu,i (B.38a)

subject to
∑
u∈Û

I∑
i=1

µu,i = 1, (B.38b)

∑
t∈Pj

wu,i,j,t = µu,i, ∀ u ∈ Û , i, j ∈ [I], (B.38c)

∑
u∈Û

I∑
i=1

wu,i,j,t = xj,t, ∀ j ∈ [I], t ∈ Pj, (B.38d)

∑
t∈Pj

xj,t = 1, ∀j ∈ [I], (B.38e)

wu,i,j,t ≥ 0, ∀ u ∈ Û , i, j ∈ [I], t ∈ Pj, (B.38f)

µu,i ≥ 0, ∀ u ∈ Û , i ∈ [I], (B.38g)

xj,t ∈ {0, 1}, ∀ j ∈ [I], t ∈ Pj, (B.38h)

where the decision variables have the same meaning as those in formulation (B.32).

170

B.4 Additional numerical results

B.4.1 Estimation results for orangeJuice data set

Tables B.1 and B.2 display the point estimates of α, β and γ for the semi-log and log-log

demand models for the orangeJuice data set.

Product

Parameters 1 2 3 4 5 6 7 8 9 10 11

αsemi-log 9.873 9.829 8.598 9.504 9.024 9.828 8.582 7.901 7.152 11.161 10.896

βsemi-log 1.0222 0.4581 1.2735 1.7888 1.3354 0.6507 1.6491 1.3945 2.0809 1.6290 0.0383

αlog-log 10.140 10.956 8.266 8.421 9.045 10.613 7.832 7.127 6.563 11.326 11.198

βlog-log 2.7195 2.0410 3.3037 3.8855 2.9357 2.6101 3.6063 2.8209 3.9717 2.7942 0.1542

Table B.1: Estimation results for α and β.

B.4.2 Performance results for orangeJuice data set

Tables B.3 and B.4 below compare the performance of the nominal, deterministic robust

and randomized robust pricing solutions under a discrete budget uncertainty set for the

orangeJuice data set.

171

γsemi-log j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10 j = 11

i = 1 – 0.0571 0.0813 0.0966 0.0193 -0.0232 0.1305 0.1904 0.1490 0.0582 0.0815

i = 2 0.1384 – 0.0041 0.0009 0.0204 0.0153 0.0090 0.1040 -0.0023 0.0491 0.0394

i = 3 0.3386 0.0916 – 0.1943 0.0702 -0.0062 0.0051 0.0950 -0.0310 0.0690 0.0950

i = 4 0.4313 0.0976 -0.1112 – 0.4089 0.3518 0.2085 -0.0777 -0.0352 0.0383 -0.2290

i = 5 0.1916 0.0490 0.3026 0.2966 – -0.1538 0.1547 -0.0314 0.1034 0.3338 0.0370

i = 6 0.0211 0.0493 -0.0194 -0.0018 0.0888 – 0.0340 0.0472 -0.0167 0.0297 0.1119

i = 7 0.2007 0.0388 0.0706 0.0672 0.3233 0.0837 – 0.0377 0.2216 -0.0504 0.1405

i = 8 0.0117 0.0119 0.0932 0.0757 0.1023 -0.0160 0.1345 – 0.1372 0.2143 0.2699

i = 9 0.0955 0.0373 -0.0211 0.3651 0.4176 0.0358 0.2127 0.1462 – 0.2337 0.1627

i = 10 0.0412 -0.3941 0.0764 0.4867 0.4810 0.0109 -0.0814 -0.1047 0.0878 – 0.0274

i = 11 -0.0893 -0.1587 -0.1358 -0.0252 -0.0690 0.0079 -0.0574 -0.1117 -0.1271 0.0809 –

γ log-log j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10 j = 11

i = 1 – 0.2196 0.1631 0.2129 0.0646 -0.0577 0.2576 0.3338 0.2494 0.0621 0.2939

i = 2 0.3474 – 0.0403 0.0004 0.0338 0.0492 0.0193 0.1879 -0.0042 0.0739 0.1257

i = 3 0.8673 0.5123 – 0.4400 0.1482 -0.0338 0.0527 0.1480 -0.1001 0.1267 0.3683

i = 4 1.1581 0.3822 -0.2283 – 0.8367 1.2659 0.4495 -0.1569 -0.0115 0.1003 -0.7321

i = 5 0.4624 0.2241 0.8344 0.6406 – -0.6800 0.3223 0.0646 0.1426 0.5815 0.1782

i = 6 0.0462 0.2424 -0.0343 -0.0173 0.2086 – 0.0975 0.1187 -0.0364 0.0561 0.4159

i = 7 0.4644 0.2531 0.0971 0.1204 0.6997 0.2946 – 0.1728 0.4912 -0.0564 0.4497

i = 8 0.0652 0.1430 0.1980 0.1587 0.2705 -0.0988 0.3198 – 0.3034 0.2992 0.9436

i = 9 0.2971 -0.1190 -0.0216 0.7986 0.8825 0.3045 0.5869 0.1706 0.0 0.3171 0.4223

i = 10 0.1406 -1.7987 0.1061 1.0453 1.0852 0.0811 -0.1213 -0.1760 0.0454 – -0.0371

i = 11 -0.2246 -0.7519 -0.3177 -0.0483 -0.1635 -0.0570 -0.1100 -0.1780 -0.2646 0.1341 –

Table B.2: Estimation results for γ for orangeJuice data set.

Γ tRR Z∗
RR E[R(p∗

RR,u0)] tDR ẐDR RI(%) R(p̂DR,u0) tN Z∗
N ZN,WC

5 14.64 162753.97 290939.28 225.36 102626.41 58.59 260321.17 0.81 590547.01 85304.36

10 6.29 70401.48 404458.22 208.42 47969.46 46.76 350396.25 – – 38815.61

15 3.93 39567.50 349936.30 209.14 32757.43 20.79 334211.84 – – 22798.44

20 16.70 31438.76 328664.19 197.37 25348.77 24.02 299970.20 – – 15940.16

Table B.3: Results for orangeJuice pricing problem with semi-log demand and discrete U .

172

Γ tRR Z∗
RR E[R(p∗

RR,u0)] tDR ẐDR RI(%) R(p̂DR,u0) tN Z∗
N ZN,WC

5 12.85 272399.89 605265.00 306.63 174478.12 56.12 811254.69 0.87 1110000.00 117186.58

10 10.41 135761.31 750084.92 260.96 77297.42 75.63 896972.12 – – 50458.15

15 15.59 72930.45 761785.89 193.13 44914.20 62.38 896972.12 – – 27389.15

20 8.56 45153.74 770505.32 190.76 27675.07 63.16 409330.70 – – 17502.32

Table B.4: Results for orangeJuice pricing problem with log-log demand and discrete U

173

Bibliography

E. Adida and G. Perakis. Dynamic pricing and inventory control: robust vs. stochastic uncertainty

models—a computational study. Annals of Operations Research, 181(1):125–157, 2010.

İ. Akçakuş and V. V. Mǐsić. Exact logit-based product design. Available at SSRN 3875986, 2021.

Y. Akçay, H. P. Natarajan, and S. H. Xu. Joint dynamic pricing of multiple perishable products

under consumer choice. Management Science, 56(8):1345–1361, 2010.

Yi-Chun Akchen and Velibor V Mǐsić. Column-randomized linear programs: Performance guaran-

tees and applications. Operations Research, 2024.

A. Allouah, A. Bahamou, and O. Besbes. Optimal pricing with a single point. arXiv preprint

arXiv:2103.05611, 2021.

A. Allouah, A. Bahamou, and O. Besbes. Pricing with samples. Operations Research, 70(2):

1088–1104, 2022.

L. Andersen and M. Broadie. Primal-dual simulation algorithm for pricing multidimensional Amer-

ican options. Management Science, 50(9):1222–1234, 2004.

MOSEK ApS. The MOSEK optimization toolbox for C manual. Version 10.0., 2022. URL

http://docs.mosek.com/10.0/capi/index.html.

G. Aydin and J. K. Ryan. Product line selection and pricing under the multinomial logit choice

model. In Proceedings of the 2000 MSOM conference. Citeseer, 2000.

C. Bandi and D. Bertsimas. Robust option pricing. European Journal of Operational Research, 239

(3):842–853, 2014.

A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contaminated

with uncertain data. Mathematical programming, 88(3):411–424, 2000.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization, volume 28. Princeton university

press, 2009.

F. Bernstein and A. Federgruen. Pricing and replenishment strategies in a distribution system with

competing retailers. Operations Research, 51(3):409–426, 2003.

D. Bertsimas and D. den Hertog. Robust and adaptive optimization. Dynamic Ideas LLC, 2022.

174

D. Bertsimas and N. Kallus. From predictive to prescriptive analytics. Management Science, 66

(3):1025–1044, 2020.

D. Bertsimas and V. V. Mǐsić. Robust product line design. Operations Research, 65(1):19–37, 2017.

D. Bertsimas and M. Sim. The price of robustness. Operations research, 52(1):35–53, 2004.

D. Bertsimas and A. Thiele. A robust optimization approach to inventory theory. Operations

research, 54(1):150–168, 2006.

D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust optimization.

SIAM Review, 53(3):464–501, 2011.

D. Bertsimas, I. Dunning, and M. Lubin. Reformulation versus cutting-planes for robust optimiza-

tion: A computational study. Computational Management Science, 13:195–217, 2016a.

D. Bertsimas, E. Nasrabadi, and J. B. Orlin. On the power of randomization in network interdiction.

Operations Research Letters, 44(1):114–120, 2016b.

O. Besbes and A. Zeevi. On the (surprising) sufficiency of linear models for dynamic pricing with

demand learning. Management Science, 61(4):723–739, 2015.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical

computing. SIAM Review, 59(1):65–98, 2017.

G. Bitran and R. Caldentey. An overview of pricing models for revenue management. Manufacturing

& Service Operations Management, 5(3):203–229, 2003.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

D. B. Brown and J. E. Smith. Information relaxations and duality in stochastic dynamic programs:

A review and tutorial. Working paper, 2022.

D. B. Brown, J. E. Smith, and P. Sun. Information relaxations and duality in stochastic dynamic

programs. Operations research, 58(4-part-1):785–801, 2010.

E. J. Candes, X. Li, and M. Soltanolkotabi. Phase retrieval via wirtinger flow: Theory and algo-

rithms. IEEE Transactions on Information Theory, 61(4):1985–2007, 2015.

F. Caro and J. Gallien. Clearance pricing optimization for a fast-fashion retailer. Operations

research, 60(6):1404–1422, 2012.

175

J. F. Carriere. Valuation of the early-exercise price for derivative securities using simulations and

splines. Insurance: Mathematics and Economics, 19(1):19–30, 1996.

M. Chen and Z.-L. Chen. Robust dynamic pricing with two substitutable products. Manufacturing

& Service Operations Management, 20(2):249–268, 2018.

N. Chen and P. Glasserman. Additive and multiplicative duals for American option pricing. Finance

and Stochastics, 11(2):153–179, 2007.

D. F. Ciocan and V. V. Mǐsić. Interpretable optimal stopping. Management Science, 68(3):1616–

1638, 2022.

M. C. Cohen, N.-H. Z. Leung, K. Panchamgam, G. Perakis, and A. Smith. The impact of linear

optimization on promotion planning. Operations Research, 65(2):446–468, 2017.

M. C. Cohen, R. Lobel, and G. Perakis. Dynamic pricing through data sampling. Production and

Operations Management, 27(6):1074–1088, 2018.

E. Delage and A. Saif. The value of randomized solutions in mixed-integer distributionally robust

optimization problems. INFORMS Journal on Computing, 34(1):333–353, 2022.

E. Delage, D. Kuhn, and W. Wiesemann. “dice”-sion–making under uncertainty: When can a

random decision reduce risk? Management Science, 65(7):3282–3301, 2019.

V. V. Desai, V. F. Farias, and C. C. Moallemi. Pathwise optimization for optimal stopping problems.

Management Science, 58(12):2292–2308, 2012.

L. Dong, P. Kouvelis, and Z. Tian. Dynamic pricing and inventory control of substitute products.

Manufacturing & Service Operations Management, 11(2):317–339, 2009.

I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathematical optimization.

SIAM Review, 59(2):295–320, 2017.

A. N. Elmachtoub and P. Grigas. Smart “predict, then optimize”. Management Science, 2021.

W. Elmaghraby and P. Keskinocak. Dynamic pricing in the presence of inventory considerations:

Research overview, current practices, and future directions. Management science, 49(10):

1287–1309, 2003.

K. J. Ferreira, B. H. A. Lee, and D. Simchi-Levi. Analytics for an online retailer: Demand forecast-

176

ing and price optimization. Manufacturing & Service Operations Management, 18(1):69–88,

2016.

K. J. Ferreira, D. Simchi-Levi, and H. Wang. Online network revenue management using thompson

sampling. Operations research, 66(6):1586–1602, 2018.

V. Gabrel, C. Murat, and A. Thiele. Recent advances in robust optimization: An overview. Euro-

pean journal of operational research, 235(3):471–483, 2014.

G. Gallego and H. Topaloglu. Revenue management and pricing analytics, volume 209. Springer,

2019.

G. Gallego and R. Wang. Multiproduct price optimization and competition under the nested

logit model with product-differentiated price sensitivities. Operations Research, 62(2):450–

461, 2014.

M. R. Garey and D. S. Johnson. Computers and intractability. W. H. Freeman New York, 1979.

R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points—online stochastic gradient

for tensor decomposition. In Conference on learning theory, pages 797–842. PMLR, 2015.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

A. Govindarajan, A. Sinha, and J. Uichanco. Distribution-free inventory risk pooling in a multilo-

cation newsvendor. Management Science, 67(4):2272–2291, 2021.

Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual, 2022. URL

http://www.gurobi.com.

M. Hamzeei, A. Lim, and J. Xu. Robust price optimization of multiple products under interval

uncertainties. Journal of Revenue and Pricing Management, pages 1–13, 2021.

W. Hanson and K. Martin. Optimizing multinomial logit profit functions. Management Science,

42(7):992–1003, 1996.

P. Harsha, S. Subramanian, and J. Uichanco. Dynamic pricing of omnichannel inventories. Manu-

facturing & Service Operations Management, 21(1):47–65, 2019.

M. B. Haugh and L. Kogan. Pricing American options: a duality approach. Operations Research,

52(2):258–270, 2004.

177

W. J. Hopp and X. Xu. Product line selection and pricing with modularity in design. Manufacturing

& Service Operations Management, 7(3):172–187, 2005.

P. Jain and P. Kar. Non-convex optimization for machine learning. Foundations and Trends® in

Machine Learning, 10(3-4):142–336, 2017.

S. Jasin and S. Kumar. A re-solving heuristic with bounded revenue loss for network revenue

management with customer choice. Mathematics of Operations Research, 37(2):313–345, 2012.

K. Kalyanam. Pricing decisions under demand uncertainty: A bayesian mixture model approach.

Marketing Science, 15(3):207–221, 1996.

P. W. Keller. Tractable multi-product pricing under discrete choice models. PhD thesis, Mas-

sachusetts Institute of Technology, 2013.

P. W. Keller, R. Levi, and G. Perakis. Efficient formulations for pricing under attraction demand

models. Mathematical Programming, 145(1):223–261, 2014.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

H. Li and W. T. Huh. Pricing multiple products with the multinomial logit and nested logit

models: Concavity and implications. Manufacturing & Service Operations Management, 13

(4):549–563, 2011.

P. Liang. CS229T/STAT231: Statistical Learning Theory (Winter 2016) Lecture Notes, 2018. URL

https://github.com/percyliang/cs229t/blob/master/lectures/notes.pdf.

A. Lim, J. G. Shanthikumar, and T. Watewai. Robust multi-product pricing. Available at SSRN

1078012, 2008.

A. E. B. Lim and J. G. Shanthikumar. Relative entropy, exponential utility, and robust dynamic

pricing. Operations Research, 55(2):198–214, 2007.

F. A. Longstaff and E. S. Schwartz. Valuing American options by simulation: a simple least-squares

approach. The Review of Financial Studies, 14(1):113–147, 2001.

M. Lubin and I. Dunning. Computing in operations research using Julia. INFORMS Journal on

Computing, 27(2):238–248, 2015.

178

T. Mai and P. Jaillet. Robust multi-product pricing under general extreme value models. arXiv

preprint arXiv:1912.09552, 2019.

A. Mastin, P. Jaillet, and S. Chin. Randomized minmax regret for combinatorial optimization

under uncertainty. In International Symposium on Algorithms and Computation, pages 491–

501. Springer, 2015.

A. Maurer. A vector-contraction inequality for rademacher complexities. In International Confer-

ence on Algorithmic Learning Theory, pages 3–17. Springer, 2016.

J. I. McGill and G. J. van Ryzin. Revenue management: Research overview and prospects. Trans-

portation science, 33(2):233–256, 1999.

V. V. Mǐsić. Optimization of tree ensembles. Operations Research, 68(5):1605–1624, 2020.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press, 2018.

A. L. Montgomery. Creating micro-marketing pricing strategies using supermarket scanner data.

Marketing science, 16(4):315–337, 1997.

A. L. Montgomery and E. T. Bradlow. Why analyst overconfidence about the functional form of

demand models can lead to overpricing. Marketing Science, 18(4):569–583, 1999.

J. R. Munkres. Analysis on manifolds. Addison-Wesley Publishing Company, 1991.

P. Netrapalli, P. Jain, and S. Sanghavi. Phase retrieval using alternating minimization. IEEE

Transactions on Signal Processing, 63(18):4814–4826, 2015.

M. Okamoto. Distinctness of the eigenvalues of a quadratic form in a multivariate sample. The

Annals of Statistics, pages 763–765, 1973.

G. Perakis and A. Sood. Competitive multi-period pricing for perishable products: A robust

optimization approach. Mathematical Programming, 107(1):295–335, 2006.

D. J. Reibstein and H. Gatignon. Optimal product line pricing: The influence of elasticities and

cross-elasticities. Journal of marketing research, 21(3):259–267, 1984.

R. T. Rockafellar. Convex analysis, volume 18. Princeton university press, 1970.

L. C. G. Rogers. Monte Carlo valuation of American options. Mathematical Finance, 12(3):271–286,

2002.

179

P. E. Rossi. bayesm: Bayesian inference for marketing/micro-econometrics, 2022. URL

http://CRAN.R-project.org/package=bayesm. R package version 3.1-5.

P. Rusmevichientong and H. Topaloglu. Robust assortment optimization in revenue management

under the multinomial logit choice model. Operations research, 60(4):865–882, 2012.

U. Sadana and E. Delage. The value of randomized strategies in distributionally robust risk-averse

network interdiction problems. INFORMS Journal on Computing, 35(1):216–232, 2023.

A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming: modeling and

theory. SIAM, 2014.

M. Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(4):171–176, 1958.

J.-S. J. Song, Z. X. Song, and X. Shen. Demand management and inventory control for substitutable

products. Available at SSRN 3866775, 2021.

W. Soon. A review of multi-product pricing models. Applied mathematics and computation, 217

(21):8149–8165, 2011.

B. Sturt. A nonparametric algorithm for optimal stopping based on robust optimization. arXiv

preprint arXiv:2103.03300, 2021a.

B. Sturt. The value of robust assortment optimization under ranking-based choice models. Available

at SSRN 3981736, 2021b.

K. T. Talluri and G. J. van Ryzin. The Theory and Practice of Revenue Management. Kluwer

Academic Publishers, 2004.

A. Thiele. Multi-product pricing via robust optimisation. Journal of Revenue and Pricing Man-

agement, 8(1):67–80, 2009.

J. N. Tsitsiklis and B. Van Roy. Regression methods for pricing complex American-style options.

IEEE Transactions on Neural Networks, 12(4):694–703, 2001.

M. Udell and S. Boyd. Maximizing a sum of sigmoids. Optimization and Engineering, pages 1–25,

2013.

Zhengchao Wang, Heikki Peura, and Wolfram Wiesemann. Randomized assortment optimization.

Operations Research, 2024.

180

M. J. Zenor. The profit benefits of category management. Journal of Marketing Research, 31(2):

202–213, 1994.

H. Zhang, P. Rusmevichientong, and H. Topaloglu. Multiproduct pricing under the generalized

extreme value models with homogeneous price sensitivity parameters. Operations Research,

66(6):1559–1570, 2018.

181

