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ABSTRACT OF THE DISSERTATION 

An Evaluation of Methods and Technology to Estimate Localized Environmental and Health 
Impacts from Air Pollution and Pesticide Use  

 

by 

 

Margaret Sandra Isied 

Doctor of Environmental Science and Engineering 

University of California, Los Angeles, 2023 

Professor Timothy Malloy, Chair  

 

Humans are a product of their environment – the air we breathe, the water we drink, the food we 

eat, are all in one way or another our “environment”, which in turn, impacts our health. Air 

pollution has been a long-standing issue, from the time humans innovated cooking over fire 

stoves, to our present-day reliance on transportation, technology, and industry. Exposure to air 

pollution has been linked to premature deaths, respiratory diseases, such as asthma, chronic 

obstructive pulmonary disease (COPD), and bronchitis, total body inflammation, and cancer. We 

are exposed to environmental contaminants everywhere and every day. For example, pesticides 

are used for farming practices to increase crop yield. With the advancements in commercial 

farming, any number of highly toxic, highly volatile pesticides are ubiquitously used within the 

same area. Many communities living near major sources of air pollution, such as freeways, 
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industrial sites, and agricultural areas, have been demonstrated to be disproportionately burdened 

by these environmental contaminants.  

While environmental conditions have improved drastically since the 1970s, there is high 

variability of what communities are experiencing at the local level. Recently, there has been a 

rise in environmental concerns locally; communities are concerned that current environmental 

monitoring and assessment methods are flawed in two ways. First, these methods are focused on 

regional impacts not capturing local environmental conditions within smaller communities. Since 

the 1970s, environmental agencies have evaluated environmental contaminant levels using 

monitoring and modeling techniques that demonstrate how pollutant concentrations are 

impacting a region. Many of these methods were developed to demonstrate compliance with 

state and federal standards. For example, monitoring equipment is strategically placed to 

understand the impacts of air quality on a region, rather than a local community, and air 

dispersion modeling has typically been reserved for large industrial operations that are likely to 

exceed regional air quality standards. Second, these methods do not consider exposure to 

multiple environmental contaminants which, coupled with social burdens such as low income 

and limited access to resources, make communities more susceptible to health impacts, 

ultimately diminishing their quality of life. Single pollutant evaluations are not representative of 

real-world exposure scenarios. 

These concerns highlight a needed call to action to better understand and evaluate environmental 

pollutants. New or repurposed methods and tools would ultimately provide regulators data at a 

more granular scale to make decisions in the interest of specific communities, rather than over an 

entire region. A better understanding of pollution variation in a community would also help 

regulators know where to focus intervention efforts. My dissertation explores tools and methods 
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with the goal to: (1) recommend how to use new low-cost sensor monitoring technology to 

successfully understand localized air quality impacts, (2) present a case study using localized air 

pollution data to better quantify community exposures to air pollution, and (3) explore how air 

dispersion modeling can be used to evaluate exposure to multiple pesticides at the local level. 

Results from this dissertation developed new methods for setting up low-cost air quality sensor 

networks, emphasize variable air pollution concentrations within communities, and demonstrated 

the feasibility of repurposing modeling tools to evaluate pesticide use. This research is critical to 

reinforcing the importance of implementing new methods and technologies to understand 

localized impacts and provide data to regulatory bodies who are responsible for emission control, 

land use decision making, and public health intervention. 
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CHAPTER ONE: INTRODUCTION 

Humans are exposed to many environmental contaminants in food, air, water, and soil. 

There is overwhelming scientific evidence that exposure to environmental contaminants lead to 

adverse health impacts (US EPA, 2022). Air pollution, a key environmental pollutant, has been 

associated with respiratory illnesses, such as asthma and chronic obstructive pulmonary disease 

(COPD), and was responsible for 9 million premature deaths in 2015 (Fuller et al., 2022). 

Pesticides that have been used to help scale up farming to meet food demands also cause adverse 

health impacts to workers and surrounding communities. Pesticides can irritate the eyes and skin, 

and can penetrate the nervous system, hormone and endocrine systems, and has been associated 

with certain cancers (OCSPP, n.d.). While many strides have been taken to reduce environmental 

contaminants since the 1970s, there are still many communities globally that continue to be 

exposed to environmental impacts from air pollutants and pesticide use. Research also suggests 

that communities of color and areas of low income and low socio-economic status have been 

disproportionately exposed to higher concentrations of air pollutants and pesticides, when 

compared with communities with more resources (Bravo et al., 2016; Gochfeld, M., 2011; 

Johnston & Cushing, 2020). 

 Advancements in technology have improved environmental monitoring and modeling to 

estimate impacts from environmental contaminants. To quantify environmental pollutants local, 

state, and federal agencies employ a number of monitoring and modeling techniques to estimate 

concentrations of these pollutants: 

• Priority Air Pollutants - In the United States, air pollution has been evaluated regionally 

to determine compliance with the National Ambient Air Quality Standards (NAAQS). 
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State, regional, or local regulatory agencies are responsible for the necessary monitoring 

equipment. This equipment has been identified as gold-standard equipment, satisfying 

regulatory standard operating procedures, known as Federal Reference Method, or 

Federal Equivalent Method, to evaluate regional air quality. These regulatory monitors 

(herein referred to as reference monitors) are often costly, require special expertise to 

maintain, and are cited based on criteria set by the United States Environmental 

Protection Agency (US EPA) (US EPA, 2016). Reference monitors may or may not be 

placed in communities where people work, live, and spend their time, suggesting that 

data collection regionally may not be representative of local conditions. Furthermore, 

there is overwhelming evidence that air pollution concentrations can vary over space and 

time, and that reference monitors are not an effective solution in evaluating 

hyperlocalized air quality. The NAAQS are health-based standards that estimate adverse 

health impacts beyond a specific pollutant concentration, demonstrating increased 

respiratory and cardiovascular incidence. The literature has numerous studies that there 

are adverse health impacts from exposure to air pollution at even lower concentrations 

that what is deemed to be health protective by the NAAQS standards (Crouse et al., 2012; 

Hales et al., 2012; Shi et al., 2016). 

 

• Pesticides - Existing environmental evaluation methods can be used to evaluate 

exposures to environmental contaminants, such as pesticides. Pesticide use varies by crop 

type among other factors, suggesting that different pesticides can be applied in the same 

location. However, there is no consistent guidance or regulation from US EPA or the 

California Environmental Protection Agency (CalEPA) on how to evaluate impacts from 
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multiple pesticide exposures. The US EPA and CalEPA are required to protect human 

health and the environment. Disproportionately burdened communities would especially 

benefit from widespread and consistent guidance, ensuring that their community is 

adequately evaluated for environmental exposures in the same way as other communities. 

To quantify environmental pollutants local, state, and federal agencies employ a number 

of monitoring and modeling techniques to estimate concentrations of pesticides. Pesticide 

exposure can be monitored using air quality monitoring equipment or can be modeled 

using air dispersion modeling methods and other computational tools. Air dispersion 

modeling has traditionally been used to understand air dispersion patterns from air 

pollution sources. There has been some research on modeling pesticides using air 

dispersion modeling techniques (Costanzini et al., 2018; Teggi et al., 2018; van 

Wesenbeeck et al., 2019).  

California has taken many strides to improve environmental protection: from policy 

development to financial support, California pioneers’ programs that focus on reducing people’s 

exposure to environmental contaminants. Despite these efforts many communities are still 

disproportionally burdened by environmental pollution sources, such as air quality and pesticide 

exposure. These communities tend to be communities of color, areas having low socioeconomic 

status, low education rates, and those that are linguistically isolated (August et al., 2021). 

Pollution burden and socioeconomic factors combined can make these communities more 

vulnerable to the adverse health impacts from environmental pollutants, while also having 

limited capacity to take action to protect their community. CalEPA and the Office of 

Environmental Health Hazard Assessment (OEHHA) created a map to visualize California’s 

environmentally disadvantaged communities. CalEnviroScreen is a science-based tool that uses 
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publicly available data on pollution, socioeconomic status, and health and quantifies it at the 

census tract level to identify and track communities that are disproportionately burdened by these 

factors (August et al., 2021). Communities that have been identified as higher risk communities 

have been eligible for state programs such as the Community Air Protection Program’s 

Community Air Grants, and DPRs Community Air Monitoring, described in the chapters to 

follow.  

The goal of this dissertation is to leverage innovations in air quality monitoring and 

modeling to better characterize and quantify exposure to one or more contaminants. This 

dissertation first examines the potential for low-cost air quality sensors to provide hyperlocal 

monitoring data. Low-cost air quality sensors (Clements et al., n.d.), have increased spatial 

coverage of air monitoring, increasing knowledge of local air quality conditions. Low-cost 

sensors can help provide insights to localized air quality conditions compared to government 

operated reference grade equipment. These insights can help us understand when these 

communities are exposed to greater concentrations of pollutants where they live, work, and play 

than what is being measured at a regional government monitor. This data can be used to make 

policy recommendations and help empower communities to protect their health when air 

pollution concentrations are high. However, there is little research on how to effectively set up a 

low-cost air quality sensor network. 

 This dissertation also addresses the use of air dispersion modeling coupled with 

cumulative risk tools to evaluate environmental exposures to multiple pesticides. Humans 

realistically are exposed to more than one environmental contaminant acutely and chronically. 

Despite these real-world exposure scenarios, pesticide use and safety is evaluated on a per 

pesticide basis. Cumulative impact assessment (CIA) is defined as the analysis, characterization, 
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and possible quantification of the combined risks to health and the environment from multiple 

chemical agents or stressors (Zaunbrecher et al., n.d.). CIA is important to quantify real world 

exposure scenarios and how those contribute to real environmental conditions and public health 

outcomes. The goal of this dissertation is to leverage innovations in air quality monitoring and 

modeling to better characterize and quantify exposure to one or more contaminants. While this 

dissertation heavily focuses on California data and policy, these methods and recommendations 

can be adapted to meet other state, federal, and global needs to assess environmental exposure. 

 This dissertation explores the following topics related to quantifying exposure to 

environmental contaminants: 

• The second chapter explores resources available to effectively use low-cost air quality 

monitors. It identifies resources that exist on how to set up low-cost sensor networks, 

makes recommendations on what considerations should be made when designing a sensor 

network given an example case study, and highlights successes and challenges of using 

low-cost sensors to achieve air quality goals.  

• The third chapter evaluates data from a low-cost sensor network in Richmond, CA to 

understand pollutant concentration variability within the community that is not captured 

by the regional reference monitor. The chapter explores co-exposures to PM2.5, NO2, and 

ozone at a localized scale to identify locations within the community with exposure to 

more than one pollutant. Using low-cost sensors can provide insights where one or more 

pollutant concentrations may exceed health-based standards.  

• The fourth chapter demonstrates the feasibility of using air dispersion modeling to 

evaluate local impacts to two or more pesticides applied on the same day. The proposed 
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tool repurposes an existing air dispersion modeling and health risk assessment tool for 

use for evaluating pesticide dispersion. The proposed tool supports pesticide regulators in 

California to better understand local pesticide existing community burdens before 

approving additional pesticide for use, and further contributing to cumulative exposures 

of pesticides.  
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CHAPTER TWO: Evaluation of Techniques and Methods Available to Set Up Low-Cost 

Sensor Networks 

ABSTRACT 

Low-cost sensors have gained popularity in recent years and have increased air quality 

monitoring coverage globally. Low-cost sensors can be used to answer any variety of questions 

and achieve many project goals, spanning from community-led monitoring to supporting 

government initiatives. Although the popularity of using low-cost sensor technology has 

skyrocketed, there is a lack of consistent guidance or research on how to effectively set up a low-

cost sensor network to achieve project goals. This chapter aims to explore this knowledge gap in 

methods available to set up low-cost sensors. I conducted a search of both the academic and grey 

literature (e.g., UCLA Library, Google Scholar, Engineering Village - Compendex, Inspec, 

Knovel, etc.), using key words representing air quality sensor network design. The grey literature 

search uses Google and contacts at government, non-profit, and other sectors that have published 

guidelines on how to set up a sensor network. I organize the resources into three categories of 

methods: quantitative, qualitative, and combined qualitative and quantitative methods. I reflect 

on my experience during my residency in assisting different customers with setting up their 

sensor networks and use the literature available to create a decision framework that projects can 

use to design sensor networks. I present two example case studies to demonstrate the use of the 

decision framework. Results of this chapter suggest methods to design sensor networks require 

expertise beyond the groups that are actually using low-cost sensor users. Further research is 

needed to make sensor network designs more accessible. Future work should focus on policy 

changes to restructure local and regional government air quality landscapes to devote resources 

for using low-cost sensors.  
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INTRODUCTION 

Poor air quality continues to be a major threat to the environment and public health. Air 

quality impacts people disproportionately, having greater impacts on low- and middle-income 

communities (August et al., 2021). Many countries have little or no access to air quality data. As 

a Pritzker Impact Fellow, I worked with OpenAQ, a non-profit organization that hosts real time 

global air quality data (OpenAQ, 2022). I contributed to the research of the current state of air 

quality data globally and accessibility to this data in a report titled Open Air Quality Data: The 

Global Landscape. Results of the report indicate that 39% of countries globally have no evidence 

of air quality monitoring (OpenAQ-Team & Community, 2022). 

Low-cost air quality sensors are a new technology with a variety of uses such as filling in 

spatial air quality data gaps, and citizen science projects for community monitoring (Williams, 

2019). The United States EPA (US EPA) defines low-cost sensors as devices that use sensor(s) 

and other components to detect, monitor, and report on specific air pollutants and/or 

environmental factors such as temperature and humidity (US EPA, n.d.-c). Figures 2.1 and 2.2 

shows two leading low-cost air quality sensor platforms: PurpleAir and Clarity Movement, and 

the density of coverage of low-cost sensor data in California. Low-cost sensors have decreased 

the barrier to entry for air quality monitoring by giving more people access to air quality 

monitoring data and information. It is not just important to monitor the air, but to have a specific 

project goal in mind. Project goals include but are not limited to: filing in air quality data gaps, 

understanding the air quality impacts of sources on communities, using low-cost sensor data to 

support the installation of reference monitoring equipment, supporting community-led 

monitoring and education initiatives, and using air quality data to understand public health and 

make recommendations.  
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My professional experience has focused on working with stakeholders using low-cost 

sensors to achieve specific project goals. I provide technical expertise on low-cost sensors, and 

work with customers on thinking through how to yield the most useful information for their 

project. With the increase in popularity of low-cost sensors among air quality and non-air quality 

experts alike, users are searching for resources to set up low-cost sensor networks. Many 

countries without any air monitoring at all are using low-cost sensors for preliminary air quality 

measurements to understand the baseline air pollution levels and are seeking guidance on how to 

do this effectively with no historic data or knowledge of air quality (OpenAQ-Team & 

Community, 2022). 

Figure 2.1: Purple Air Low-Cost Sensor measurements of ambient fine particulate matter 
(PM2.5) illustrating spatial coverage of sensors in California. 
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Figure 2.2: Clarity Movement Low-Cost Sensor measurements of ambient fine particulate matter 
(PM2.5) illustrating spatial coverage of sensors in California. 

 

 

 

 

Historically, air pollution has been monitored and regulated at the regional level by 

government-operated reference monitors. Low-cost air quality sensors have the capacity to 

supplement regional reference monitoring, but not all regional and local governments have 

capacity to make use of them (Munir et al., 2019). In the United States, the current funding 

structure to purchase and deploy low-cost sensors rely on the leadership of local communities. 

Recent grant funding opportunities from California and United States governments require that a 

local community-based organization lead the effort or partner with local governments (US EPA 

Office of Environmental Justice, n.d.).  
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There is limited literature on how to define and design a low-cost air quality sensor 

network. The variety in scope of low-cost sensor uses make it challenging to identify consistent 

variables that any and all projects should use when making sensor network decisions. Currently, 

there is no universal sensor network design approach that would address all types of projects.  

Organizations often defer to low-cost sensor providers to answer challenging questions: 

What is the optimal number of sensors needed to cover a specific geographic area, what radius 

beyond the sensor will data be “accurate” for, how many are needed to achieve meaningful 

results? While these are all valid questions, they are very difficult to answer. First, air quality 

knows no geographic limits. Second, air pollution concentrations are dependent on many factors, 

such as temperature, relative humidity, wind, weather, nearby sources, season, and urban 

development. I have spent my Residency as an Environmental Project Manager with Clarity 

Movement, a low-cost air quality sensing company that provides both the hardware to monitor 

air pollutant concentrations, and the software to review and analyze the data. I have worked with 

customers with diverse needs and have been challenged with assisting them in scoping project 

goals and network design. This work has highlighted the real-world need for sensor design 

methods and research.  

This chapter aims to (1) provide a review of both the academic and the grey literature to 

identify what resources currently exist in supporting the design of a low-cost air quality sensors 

network, (2) develop a decision framework that can be utilized by all projects, and (3) highlight 

case studies to illustrate how that framework could be applied to design low-cost sensor 

networks. For this chapter, I define sensor network design as the process to determine the 

optimal placement of individual air quality sensors to measure pollutant concentrations and 

answer project specific goals. 
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METHODS 

Literature Search 

I conducted a comprehensive literature review of the state of research on sensor network 

design. Research articles were obtained through scientific databases, including IEEE explorer, 

Web of Science, and Comprendex. Grey literature was obtained through Google and Google 

Scholar searches. The searches compromised of the following key words: “low-cost air quality 

sensor placement”, “(siting OR placement) AND (“low cost”) AND (“air quality” OR “air 

pollution”) AND (sensor) AND (network) AND (design)”, “("low cost" OR "cost effective") 

AND ("air quality") AND (sensor OR monitor*) AND (network) AND (design)”. 

Exclusions 

Interpretation of “sensor network” may be broad. To focus on sources specific to the 

definition of “sensor network” (defined above), following sources were excluded: (1) sources 

focusing on the feasibility of low-cost sensor deployment, (2) ongoing projects that are exploring 

how to deploy sensor networks and have yet to publish their methods or results, (3), duplicates 

obtained either through similar searches, or between different databases, (4) sources that define 

“sensor networks” as sensors that communicate with each other and rely on measurements from 

one another, and (5) sources focusing on calibration models of sensors that were already 

deployed.  

Decision Framework Development 

To develop a decision framework, I reviewed the available literature for sensor network 

design, summarized the available methods, provided example use cases for the methods, and 

identified data needed to use a specific method. I combine this with real world experience in 



 

13 
 

identifying consistent questions that I have worked through with all projects when designing a 

sensor network. Considerations for the decision framework included: ease of use, applicability 

across multiple project types, and inclusion of factors that are critical to setting up a project.  

Case Study 

To demonstrate the use of the decision framework, I describe two case studies that 

simulate two real organizations that I have worked with to design an air quality sensor network. 

The names of the organizations and locations have been anonymized. Each case study represents 

a different stakeholder group with different project goals, budgets, and expertise levels with the 

goal demonstrate the utility of the decision framework for different projects. 

RESULTS 

Literature Review Findings 

After applying the search criteria and exclusion criteria, a total of 24 sources were 

obtained. For each source, Table 2.1 identifies method type (qualitative, quantitative, or mixed), 

author, title, method name (if applicable), research objectives method/source can support, and 

data needed. 

Table 2.1: Summary of Sensor Network Design Literature Available 

Qualitative/Quantitative/Both Author Title Method Name (if 
Applicable) and 
Description 

Research 
Objectives 
Method Can 
Support 

Data Needed 

Quantitative Grover & 
Lall, 2021 

A Data-Driven 
Framework for 
Deploying 
Sensors in 
Environment 
Sensing 
Application 

Universal Kriging: 
spatially interpolation to 
predict pollutant 
concentrations at non-
monitored locations. 

Modeling Residuals: 
represent spatiotemporal 
variations, sites with low 
residuals values mean the 
sensor is reading similar 
to the estimated mean 

increasing 
monitoring 
spatial 
coverage 

-Geographic data – 
land use regression 
models broken up 
by land uses, such 
as natural land use, 
commercial, 
residential, 
industrial, and 
nonpolluting areas 
-Current monitoring 
data 
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Qualitative/Quantitative/Both Author Title Method Name (if 
Applicable) and 
Description 

Research 
Objectives 
Method Can 
Support 

Data Needed 

values and high residuals 
mean the sensor has 
different readings than 
mean values. 

Data is separated into 
grids and sites with a 
higher sum of differences 
and distances are given 
higher preferences in 
initial deployment  

Quantitative Kelp et al., 
2022 

A new approach 
for determining 
optimal placement 
of PM2.5 air 
quality sensors: 
case study for the 
contiguous United 
States 

Multiresolution Dynamic 
Mode Decomposition 
Model: uses pollutant 
data (in this example, 
PM2.5) temporally to rank 
locations spatially. 
Locations are ranked 
based on spatial patterns 
and variability; the 
higher the variability of 
PM2.5 concentrations 
over space and time, the 
higher prioritized the 
location is for 
monitoring.  

prioritization 
of where to 
place 
reference 
equipment 

-Multiple years of 
daily PM2.5 
concentrations  

*Dataset provided 
through data fusion 
of machine learning 
that combines 
ambient monitoring, 
satellite aerosol 
optical depth, and 
land use data, and 
chemical transport 

Quantitative Yoo et al., 
2020 

Adaptive spatial 
sampling design 
for environmental 
field prediction 
using low-cost 
sensing 
technologies 

Spatial Fixed Rate 
Kriging: uses surface 
prediction uncertainty to 
look at differences 
among spatial data 

understanding 
air pollution 
within a 
community 

-Spatial data 

Quantitative Boghozian, 
2021 

An Exercise in 
Selecting Low-
Cost Air Quality 
Sensor 
Placements within 
an Urban 
Environment 

Gaussian Process Model 
Training: Model uses air 
pollution dispersion to 
optimize the placement 
position of sensors that 
are selected iteratively. 
The model can be 
“trained” to define what 
“good” placement 
means. 

-increasing 
monitoring 
spatial 
coverage 

-Historic Air 
Pollution 
Measurements at 
monitoring sites 
-Defined distances 
between stationary 
monitors 

Qualitative  Morawska et 
al., 2018 

Applications of 
low-cost sensing 
technologies for 
air quality 
monitoring and 
exposure 
assessment: How 
far have they 
gone? 

Best Fit for Purpose:  

-Duration of the project? 
Months or years? -
Continuous monitoring, 
trend exploration? 
-Consideration of 
pollutants measured  
-Creating a hybrid 
network – ingesting both 
reference monitors and 
low-cost sensors  

-increasing 
monitoring 
spatial 
coverage 
-
understanding 
air quality 
trends and 
source 
impacts 

-Duration of Project 
-Project Scope 
-Pollutants of 
Interest 

Qualitative Polidori et al., 
2021 

Community in 
Action: A 
Comprehensive 
Guidebook on Air 
Quality Sensors 

Factors to consider when 
setting up a low-cost 
sensor network. 
-What questions is the 
project trying to answer? 
E.g., placing sensors at 

-increasing 
monitoring 
spatial 
coverage 
-
understanding 

-Duration of Project 
-Project Scope 
-Pollutants of 
Interest 
-Locations for 
sensor placement 
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Qualitative/Quantitative/Both Author Title Method Name (if 
Applicable) and 
Description 

Research 
Objectives 
Method Can 
Support 

Data Needed 

the breathing height is 
important for evaluating 
exposure. 
-What pollutants is the 
project focused on? 
-Siting decisions, 
identify the area, and 
how frequently to collect 
measurements. For 
example, ideal places to 
put sensors include in 
construction, 
infrastructure 
development, near 
facilities with permits 
from local reference 
agencies, pollution 
sources such as 
freeways. 
-To draw comparisons 
between the 
sources/areas of interest, 
consider including 
background sites – 
locations away from your 
sources/areas of interest 
that are not expected to 
be impacted by your 
pollutants 
-Identify resources the 
project has access to, 
what challenges the 
project faces, and what 
resources the project will 
need access to for 
successful project 
completion 
-Are concerns specific to 
a source within the 
community that the 
project wants to study, or 
is the concern for the 
overall community? Who 
are the impacted parties? 
-How is the data 
intended to be used? 
-The more measurements 
the project can gather, 
the greater the strength 
of conclusions that can 
be drawn 
-Understanding how 
environmental factors 
can impact transportation 
of air quality. For 
example, incorporating 
ways that can increase 
understanding of wind 
patterns, if they may be 
seasonal, temperature, 
and/or relative humidity. 
-Consider partnering 
with a trusted local 
community group, who 
can help you frame an 

air quality 
trends and 
source 
impacts 
-
understanding 
air pollution 
exposure at 
sensitive 
receptor 
locations 
-prioritization 
of where to 
place 
reference 
equipment 
 

(both areas of 
concern and 
background) 
-Intended data uses 
and temporal scale  
-Partnership with 
local community 
organization 
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Qualitative/Quantitative/Both Author Title Method Name (if 
Applicable) and 
Description 

Research 
Objectives 
Method Can 
Support 

Data Needed 

issue through a local 
lens, provide insight 
about major sources of 
air pollution, and what 
outcomes they would 
like to see 

Qualitative  TD 
Environmental 
Services, n.d.  

Designing an Air 
Sensor 
Monitoring 
Network 

Sensor placement 
considerations: 
-Create a map of the area 
you’re planning to 
monitor 
-Consider placing 
sensors in residential 
areas, industrial area, 
commercial areas, traffic 
locations, recreation 
spaces, perimeter, 
references/colocation, 
comparison sites 
-Coverage – what areas 
are not measured, is there 
a reason, combining this 
information with sensor 
locations 
-Ideally, reference 
monitors to sensors 
should be at a ratio of 
1:125-35, 5 sensors for 
every 100,000 residents, 
or 2-3 sensors every 10 
km2 

-increasing 
monitoring 
spatial 
coverage 
-
understanding 
air quality 
trends and 
source 
impacts 
-
understanding 
air pollution 
exposure at 
sensitive 
receptor 
locations 
-prioritization 
of where to 
place 
reference 
equipment 
 

N/A 

Both Kanaroglou et 
al., 2005 

Establishing an air 
pollution 
monitoring 
network for 
intraurban 
population 
exposure 
assessment: A 
location-
allocation 
approach 

Land Use Regression 
Modeling: Identify areas 
where there is higher 
pollution variability, 
based on the land use 
surface distribution. 
Monitors should be 
placed in areas with 
higher pollution 
variability. Areas where 
people live and spend 
time can be defined as 
high priority areas 

-prioritization 
of where to 
place 
reference 
equipment 
-increasing 
monitoring 
spatial 
coverage 
 

-Land use data, 
including 
transportation and 
distribution of at-
risk populations 
-High risk 
population areas 
and characteristics 

Qualitative Veiga et al., 
2021 

From a Low-Cost 
Air Quality 
Sensor Network 
to Decision 
Support Services: 
Steps towards 
Data Calibration 
and Service 
Development 

Sensor Deployment by 
Government 
Municipalities: 
-Placing sensors in areas 
owned by the 
municipality, therefore 
removing the logistics 
restrictions on the 
instillation of sensors 
-Placing sensors in areas 
with groups that could be 
at high risk, such as 
schools, playgrounds, 
and libraries  
-Placing sensors in areas 
with lack of monitoring  

-increasing 
monitoring 
spatial 
coverage 
 

N/A 

Both Li et al., 2022 From air quality 
sensors to sensor 
networks: Things 
we need to learn 

Considerations: 
-Calculate the 
relationship (R squared) 
between each pair of 
nearby EPA sites to 

-prioritization 
of where to 
place 
reference 
equipment 

N/A 
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Qualitative/Quantitative/Both Author Title Method Name (if 
Applicable) and 
Description 

Research 
Objectives 
Method Can 
Support 

Data Needed 

explore homogeneity of 
various pollutants 
-results can help provide 
a spatial area for 
representation of certain 
pollutants. For example, 
Ozone concentrations do 
not vary drastically over 
a 10 km2 spatial area. 
-Consider which 
pollutants want to be 
monitored and what the 
environmental conditions 
are at that location. For 
example, results from 
studying the Phoenix 
area suggest that 
monitors should be 
installed within 5 km 
from one another, were 
as in Detroit, they were 
recommended to be 1 km 
apart. 
-Each local area should 
conduct an investigation 
to appropriately 
determine the optimal 
sensor placement and 
distance 

-increasing 
monitoring 
spatial 
coverage 
 

Qualitative  Tracking 
California, 
2018 

Guidebook for 
Developing a 
Community Air 
Monitoring 
Network: Steps, 
Lessons, and 
Recommendations 
from the Imperial 
County 
Community Air 
Monitoring 
Project 

Considerations: 
-Using input from the 
community to prioritize 
locations 
-Determine where the 
sensors can be collocated 
with a reference monitor 
-Placing in spots that are 
meaningful to 
community members 
-Placement that will 
increase awareness of air 
quality issues  
-Collect information on 
sites selected by 
community and set pre-
determined criteria for 
what sites need to have 
to be eligible. For 
example, if your sensor 
needs power or 
connectivity, is that 
available? If the project 
needs siting permission, 
locate appropriate 
communication. 
-Identify areas that may 
have specific pollutants 
of concern, minimum 
number of residents that 
should be covered, or 
other project goals 
-Producing data that 
community members 
will use and that will 
better represent the area 

-
understanding 
air quality 
trends and 
source 
impacts 
-
understanding 
air pollution 
exposure at 
sensitive 
receptor 
locations 
-prioritization 
of where to 
place 
reference 
equipment 
 

N/A 
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Qualitative/Quantitative/Both Author Title Method Name (if 
Applicable) and 
Description 

Research 
Objectives 
Method Can 
Support 

Data Needed 

where the monitor is 
located 
-Define the geographic 
region that the 
monitoring network will 
cover (city, county, 
neighborhood, etc.) 
-Consider limitations and 
prioritizing areas 
depending on budget  
 

Qualitative  Environmental 
Defense Fund, 
n.d.  

How-to Guide for 
Mapping 
Hyperlocal Air 
Pollution 

Considerations: 
-Network should be 
targeted to collect the 
kind of data that enables 
you to achieve your 
monitoring goals  
-Consulting with expert 
partners such as air 
pollution scientists, local 
residents and community 
groups, health scientists, 
and air monitoring 
system provides and/or 
specialists, consultants, 
and contractors 
-Identifying and 
characterizing an air 
pollution problem 
-Consider creating 
awareness and urgency 
around enforcement, 
public health , or an 
advocacy campaign 
-using block by block 
data to fine tune actions 
and policies 
-accessing the impact of 
a policy action by 
measuring pollutant 
levels before and after an 
investigation 

-
understanding 
air quality 
trends and 
source 
impacts 
-
understanding 
air pollution 
exposure at 
sensitive 
receptor 
locations 
-prioritization 
of where to 
place 
reference 
equipment 
 

N/A 

Both Miskell et al., 
2017 

Low-cost sensors 
and crowd-
sourced data: 
Observations of 
siting impacts on 
a network of air-
quality 
instruments 

-Using land use 
parameters such as 
distance from emission 
sources and how sources 
were mounted to 
understand if they are 
measuring pollutants 
effectively  
-Understanding the 
limitations of low-cost 
sensor data that may not 
be set up properly to 
compare to a reference 
monitor 

-prioritization 
of where to 
place 
reference 
equipment 
-increasing 
monitoring 
spatial 
coverage 
 

-Data from multiple 
air pollution 
measurement 
equipment 

Both Weissert et al., 
2019 

Low-cost sensors 
and microscale 
land use 
regression: Data 
fusion to resolve 
air quality 
variations with 
high spatial and 

Land Use Regression: 
-provide high spatial 
resolution in the data set 
to show the short 
distances in variability of 
pollutant concentrations 
on the scale of 100 
meters 

-prioritization 
of where to 
place 
reference 
equipment 
-increasing 
monitoring 
spatial 
coverage 

-Land use data 
-Low-cost air 
quality data 
-Focus study area 
-High Vehicle 
Traffic Areas 
-Instruments on 
different side of 
roadway between 
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Qualitative/Quantitative/Both Author Title Method Name (if 
Applicable) and 
Description 

Research 
Objectives 
Method Can 
Support 

Data Needed 

temporal 
resolution 

-The highest 
concentrations were 
found near bus stops, 
intersections, and under 
shop awnings  

 100 meters and 1 
kilometer apart 
-Historic pollutant 
data to develop 
microscale land use 
regression 
-Permission from 
store owners to 
place low-cost 
sensors 

Both Sun et al., 
2019 

Optimal Citizen-
Centric Sensor 
Placement for Air 
Quality 
Monitoring: A 
Case Study of 
City of 
Cambridge, the 
United Kingdom 

Considerations: 
-What should the key 
citizen-centric objectives 
when deploying an air 
quality monitoring 
network throughout the 
city, in the absence of 
any prior knowledge in 
the field? 
-Given fixed budget 
constraints, what is the 
optimal sensor placement 
strategy to achieve 
objectives? 
-When there are multiple 
objectives to be 
considered 
simultaneously, how 
should we derive a 
suitable sensor 
placement strategy to 
achieve a goal given 
budget constraints? 

-
understanding 
air quality 
trends and 
source 
impacts 
-
understanding 
air pollution 
exposure at 
sensitive 
receptor 
locations 
-prioritization 
of where to 
place 
reference 
equipment 
 

-Sensor number 
constraint, a set of 
grids with 
associated 
percentage of 
population, distance 
function, 
exponential decay 
parameter -cost 
constraint, set of 
grids with 
associated 
percentage of 
population, distance 
function, 
exponential decay 
parameter, and cost 
function -distance to 
the nearest sensor, 
distance between 
the set of grids 
(locations in which 
sensors are placed) -
set of locations of 
interest -number of 
locations of interest 
-number of sensors 
we can place -the 
set of selected 
locations for 
deploying sensors -
an indicator 
denoting whether 
the location is the 
nearest to the point 
of interest (j) -
distance between 
the location (i) and 
the point of interest 
-number of 
candidate locations  
**If interested in 
monitoring traffic 
emissions -all road 
segments -number 
of road segments -
traffic conditions - 
defined from google 
earth as green (no 
traffic), orange 
(medium road-
based traffic), red - 
traffic, dark red- 
high road-based 
traffic) -fraction of 
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Qualitative/Quantitative/Both Author Title Method Name (if 
Applicable) and 
Description 

Research 
Objectives 
Method Can 
Support 

Data Needed 

time in a week that 
the traffic condition 
in the road segment 
is the weight of the 
parameter -
population data 

Quantitative  Lerner et al., 
2017 

Optimal 
Deployment of a 
Heterogeneous 
Air Quality 
Sensor Network 

Based on unit 
characteristics and land 
use analysis of the 
defined region - this is 
flexible and enables 
customization based on 
the defined region - does 
not consider prior 
knowledge of pollutant 
concentrations 

-prioritization 
of where to 
place 
reference 
equipment 
-increasing 
monitoring 
spatial 
coverage 
 

-land use data 

Quantitative Boubrima et 
al., 2015 

Optimal 
Deployment of 
Wireless Sensor 
Networks for Air 
Pollution 
Monitoring 

Basic Model: 
using a dispersion model, 
we determine for each 
pollution source the zone 
which will be polluted, 
and where the source 
starts to emit these 
pollutants 

-prioritization 
of where to 
place 
reference 
equipment 
 

-Gaussian 
dispersion model.  
-potential 
monitoring 
positions - defined 
in this study as 
locations with 
power (i.e., traffic 
lights, lamp posts). 
This can also be a 
grid of points 
obtained if you have 
no placement 
restrictions 
-Number of 
potential positions 
-Number of 
pollution sources 
-Positions for 
sensors and sinks 

Quantitative  Sun, Yu, et 
al., 2019 

Optimal Multi-
type Sensor 
Placements in 
Gaussian Spatial 
Fields for 
Environmental 
Monitoring 

Two criteria for deciding 
what a good design for 
placing single-type 
sensors - entropy and 
mutual information. 
1.entropy seeks to place 
sensors at the most 
uncertain places to 
minimize entropy 
2.mutual information 
seeks to place sensors at 
locations that most 
significantly reduce the 
uncertainty about the 
estimates in the rest of 
the space 

-prioritization 
of where to 
place 
reference 
equipment 
-increasing 
monitoring 
spatial 
coverage 
 

-budget and cost 
-area of study 
-hourly air quality 
monitoring data - 
determine if the 
distribution of 
normalized one-
hour difference of 
pollutants at the 
monitoring station 
are normally 
distributed and thus 
satisfy the 
assumptions made 
by the gaussian 
process 
-a number of 
scenarios to test out 
the algorithm 
-expertise to be able 
to perform such an 
algorithm 

Quantitative Hao & Xie, 
2018 

Optimal 
redistribution of 
an urban air 
quality 
monitoring 
network using 
atmospheric 

-simulation of pollutant 
concentration field 
-definition of network 
design criteria 
-application of a Non-
dominated Sorting 
Genetic Algorithm - a 

-prioritization 
of where to 
place 
reference 
equipment 
 

-define a continuous 
gridded 
zone/optimal grid 
squares for 
deploying sensors 
-atmospheric 
dispersion model - 
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Qualitative/Quantitative/Both Author Title Method Name (if 
Applicable) and 
Description 

Research 
Objectives 
Method Can 
Support 

Data Needed 

dispersion model 
and genetic 
algorithm 

multi objective 
evolutionary algorithm 

reproduce detailed 
concentrations and 
temporal variations 
of pollutant 
-hourly 
concentrations for 
pollutant from 
existing sites 

Quantitative  Kouichi et al., 
2016 

Optimization of 
sensor networks 
for the estimation 
of atmospheric 
pollutants sources 

-goal is to select the best 
set of X number of 
sensors with XX number 
of potential locations, 
minimizing the cost 
function 

-
understanding 
air quality 
trends and 
source 
impacts 
-
understanding 
air pollution 
exposure at 
sensitive 
receptor 
locations 
-prioritization 
of where to 
place 
reference 
equipment 
 

-meteorological 
data  
-budget constraints 
-number of 
locations 
-gridded locations 
-objective of 
network must be 
clearly identified 

Qualitative US EPA, n.d.  A Guide to Siting 
and Installing Air 
Sensors 

Questions to ask when 
picking a site: 
-What does the project 
know about the pollutant 
sources in the area? 
-What monitoring 
location(s) will help me 
answer my question(s)? 
-Does the project need to 
get owner’s permission 
to add a sensor and make 
measurements at their 
site? 
-Will the project be able 
to access the site for 
routine checkups or 
maintenance? 
-Will the project need 
AC power? Is there 
adequate sun exposure? 
-How does the sensor 
communicate data? Is 
Wi-Fi needed and 
available? 
-Can the sensor be 
placed out of reach? Can 
the sensor be placed in 
an enclosure? 
-Will the sensor need 
materials to be mounted? 
-Consider siting away 
from directly building 
exhaust? 
-Try to set up sensors 
with free air flow 
-Install 3-6 above ground 
to represent the breathing 
zone 

-
understanding 
air quality 
trends and 
source 
impacts 
-
understanding 
air pollution 
exposure at 
sensitive 
receptor 
locations 
-prioritization 
of where to 
place 
reference 
equipment 
 

N/A 
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Qualitative/Quantitative/Both Author Title Method Name (if 
Applicable) and 
Description 

Research 
Objectives 
Method Can 
Support 

Data Needed 

Qualitative  X. Li et al., 
2021 

Using Sensor 
Network for 
Tracing and 
Locating Air 
Pollution Sources 

-Establish a fine 
particulate matter 
network of sensors with 
low cost, high 
spatiotemporal 
resolution, flexible 
distribution, large 
numbers, and high 
collection frequency. 
Also includes designing 
the network and selecting 
locations for sensor 
placement on the basis of 
local weather, terrain, 
and land use using 
software/hardware to 
ensure consistency. 
-Data collected from 
low-cost sensor network 
to track and locate 
atmospheric pollutants 
and identify sources 

-prioritization 
of where to 
place 
reference 
equipment 
-increasing 
monitoring 
spatial 
coverage 
 

-local weather, 
terrain, and land use 
data 

 

Sources discussing sensor network design can be organized into three categories: 

qualitative, quantitative, and both-qualitative and quantitative. Qualitative models consider a 

number of factors in determining where and how many monitors to deploy:  

• Project goals 

• Project budget 

• Air quality knowledge 

• Local siting, and access to sites (e.g., crowd sourced sites such as residences and 

reference stations) 

• Consultation with expert partners 

• Understanding the impacts from sources 

• Understanding human exposure, mapping areas, community concerns, and 

knowledge. 
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These variables are important for anyone using low-cost sensors but are especially 

important to engage the communities that low-cost sensors are meant to serve. Qualitative factors 

are also more likely to be used in a professional setting, as companies providing low-cost sensors 

often do not have the tools or expertise to conduct sophisticated spatial modeling to precisely 

locate where each low-cost sensor should be placed. The most important qualitative factors that 

were identified consistently across literature sources are project goals, pollutants of concern, 

budget, and location feasibility: 

Project Goals: The most important first step to consider when designing a low-cost air 

quality sensor network is to define the goals of the project: what pollutants to measure, what the 

data needs are, and how and where monitoring fits in to achieve those goals (Environmental 

Defense Fund, n.d.). Project goals can be defined by air quality agencies, air quality experts, 

local communities, and project partners. The ultimate question is “what does the project aim to 

do with the data?” (Tracking California, 2018). Understanding the project goals will ultimately 

guide the optimal sensor placement to answer and achieve the goals. For example, if the goal of 

the project is to investigate the impacts of an air pollution source within a community, the sensor 

network may be limited to the location around where the source is located. If the goal of the 

project is to inform public health intervention, sensors may be placed at locations where sensitive 

populations spend time, such as schools, residences, parks, and other community spaces 

(Environmental Defense Fund, n.d.; Tracking California, 2018). 

Pollutants of concern: There are a limited number of pollutants that can be measured by 

low-cost sensors (Polidori et al., 2021). Low-cost sensors for pollutants, such as black carbon or 

ozone often cost more than PM2.5. If black carbon is the pollutant of interest, the number of 

sensors may be limited by the budget (Environmental Defense Fund, n.d.). If multiple pollutants 
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are of interest to the project, the pollutant should be attributed to the location of the low-cost 

sensor. Identifying the pollutants require that the project revisit the budget to factor in low-cost 

sensors that may cost more.  

Budget: Ideally, projects would have an unlimited budget to purchase all of the 

equipment and expertise needed to collect, interpret, and present the data. However, budget is 

among the most constraining factors when considering sensor network design. For example, a 

project may have a set budget for X number of low-cost sensors that monitor PM2.5; however, 

upon further discussion, the project may also be interested in monitoring other pollutants, such as 

ozone or black carbon. Since these monitors typically cost more than PM2.5 monitors, a project 

may have to revisit their budget once they have selected their pollutants of interest. This will 

impact the number and type of sensors that each project will use.  

Location Feasibility: To ensure data accuracy and quality, air quality experts recommend 

that low-cost sensors be collocated with a reference monitoring location for a period of time to 

perform a calibration that ensures the measurements from the low-cost sensor and the reference 

monitor are consistent with one another. Calibration models can be applied to the low-cost 

sensor to ensure that how it’s measuring the data is in line with how the reference monitor is 

measuring the data. The project should determine if they can gain access to a nearby reference 

monitoring site to calibrate the low-cost sensors.  

In addition to gaining access to the reference monitoring site, characteristics about the 

location where the low-cost sensors will ultimately end up need to be considered. If the low-cost 

sensors require power and connectivity, are these available at the identified location? If not, this 

will impact which technology the project will have to select (Environmental Defense Fund, n.d.; 
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Polidori et al., 2021; Tracking California, 2018). Projects also have to consider whether they 

have permission at a specific location for a low-cost sensor. Projects may have to request 

permission from a local government authority if they are interested in placing the low-cost sensor 

on a light post, local park, or school (Environmental Defense Fund, n.d.; Tracking California, 

2018).  

In addition to qualitative considerations, quantitative data can also be used to quantify the 

ideal location for low-cost sensors based on factors like historic air quality, land use, and air 

pollution sources. Quantitative methods primarily use machine learning, computer modeling, 

simulations, and statistical estimates. Most quantitative methods use a grid approach – a defined 

spatial grid will cover the geographic area of interest to estimate pollutant concentrations or 

source impacts on an specific spatial area (Boubrima et al., 2015; Grover & Lall, 2021; Hao & 

Xie, 2018; Kouichi et al., 2016; Miskell et al., 2017; Sun, Li, et al., 2019). After assigning spatial 

grid locations, studies use machine learning patterns of pollution dispersion (Boghozian, 2021), 

utilize land use data to predict pollutant concentrations, use historic pollutant data to estimate the 

spatial locations where pollutants concentrations had the highest variability, and combine land 

use data with pollutant data to identify locations with limited monitoring (Kelp et al., 2022; 

Lerner et al., 2017). The ultimate goal of these methods is to define the number of locations 

where sensor placement would fill in pollutant data gaps or provide most optimal data results. 

Many quantitative methods use one variable, such as land use, historic pollutant 

concentrations, or air pollution source locations, and output a number of locations that one would 

deploy if budget was not a factor. A few quantitative studies incorporate both qualitative and 

quantitative data: for example, one study incorporated air pollution sources, sensitive land uses, 

and budget and resource constraints (Lerner et al., 2017). Another study incorporated land use 
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data, existing low-cost air quality sensors, and air pollution to perform land use regression and 

statistical analysis to identify areas with highest pollutant concentrations (Weissert et al., 2019). 

Another study utilized population density, cost, and distance from sources to identify locations 

(Sun, Li, et al., 2019). All of these studies require expertise in modeling, machine learning, 

spatial analysis, and other technical skills and rely heavily on data to drive where the location of 

sensors should be, making it inaccessible to the majority of low-cost air quality sensor users. 

Decision Framework 

In addition to the limited number of sensor network design resources, there is no 

framework that exists that would benefit all project types or factor in project expertise. Based on 

the literature, the most important elements of sensor network design identified in all projects are 

listed below: 

• What are the research questions or project goals? 

• What is the proposed study area? 

• What are the pollutants of interest? 

• What is the budget? 

• What are the prioritized locations for sensor placement?  

• How will a project collect information from local community members or air quality 

experts for locations to place sensors? 

• Is the location accessible to place the low-cost sensors? 

Based on the literature review and my professional experience, I created a decision 

framework for setting up low-cost sensor networks. It incorporates both qualitative and 

quantitative steps that can enhance sensor network design to consider community input and 
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quantitative data. Figure 2.3 shows a diagram of the decision framework. The three steps to 

designing a sensor network are in the center: establishing project goals, identifying the study 

area, and determining the number, type, and location for the sensors. The boxes on the outside of 

the circle (pollutants of interest, community expertise, location feasibility, budget, and 

quantitative decision support tools) are factors used to inform the network design process. They 

are placed in a circle outside to represent the iterative nature of designing a sensor network: if 

one or more factors change, each of these may have to be revisited throughout the process. This 

decision framework is intended to include considerations for the variety of low-cost sensor 

project times and provide input that all low-cost sensor projects should review and discuss before 

designing a low-cost sensor network. To demonstrate the utility of the decision framework, two 

case studies with different stakeholders and project goals are described below. 

Figure 2.3:Decision Framework with considerations for setting up a low-cost sensor network. 
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Case Study #1 

A community organization is interested in better understanding the impacts of warehouses, a rail 

yard, and industrial facilities on their local community.  

Establish Project Goals: The community organization desires to (1) increase air quality 

transparency to community members, and (2) have data to support local action against further 

land use development. The community organization does not have expertise to use quantitative 

decision support tools to identify and prioritize locations spatially, and thus will be relying on 

community input and expertise. The community organization relied on expertise from local 

community members and residents submitted during a community meeting where concerned 

residents and community members identified locations where they would like to see monitoring 

(community input/expertise). Air quality concerns are related to transportation (mobile sources) 

and impacts from industrial facilities. Pollutants of interest to monitor these sources include 

PM2.5 and Black Carbon for diesel related sources (pollutants of interest).  

Identify Study Area: The community organization defined their study area as an entire 

city. Locations for sensors were selected primarily considering access to the site. The community 

organization has strong ties with residents who are willing to host low-cost sensors close to the 

identified sources of interest and are currently working with the school district on a separate but 

relevant monitoring project to place more sensors at schools. The community organization is also 

dedicated to working with the local government for access to public property where sensors can 

be collocated for calibration. Due to limitations with power and connectivity, the community 

organization has decided to select a monitor with solar power and cellular connectivity that 

provides the flexibility for placement and location. The community identified twelve locations 
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within the city, many of which were near the air pollution sources of concern, with only two of 

them monitoring Black Carbon and PM2.5, and the rest only monitoring PM2.5. The community 

organization has been able to secure access to those locations, either through resident volunteers, 

or through the local school district (location feasibility and selecting the type of sensor).  

Determine the number, type, and location of sensors: The community organization 

submitted a grant to the US EPA for environmental justice related projects. The maximum 

budget a project could request is $500,000 over three years. The community organization was 

responsible for determining costs outside of the monitoring hardware and software that they 

would need to make their project successful, such as hiring additional staff to install and manage 

monitors and experts to analyze and interpret the data. The community organization determined 

that they could devote 20% of the budget to monitoring equipment. Based on the number of 

locations proposed and the budget allocated, the community organization is able to purchase 12 

low-cost sensors that measure PM2.5, and one black carbon sensor to fulfill their proposed project 

(budget and number of sensors).  

Case Study #2 

A small country’s government with no historic air quality data monitoring is interested in 

deploying a low-cost sensor network over the entire country. 

Establish project goals: The government aims to (1) compare pollution differences across 

states/provinces in order to know where to focus environmental and project resources and (2) 

determine where to place reference monitoring equipment. Since PM2.5 is both a global air 

pollutant of concern, and relatively simple and reliable to measure, the government wants to start 

with monitoring this pollutant. 
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Identify Study Area: The government organization has the expertise to use quantitative 

decision support tools. Since the country has no historic air quality data available, the expert can 

use land use weighting and land use regression as demonstrated in Lerner et al., 2017, Weissart 

et al., 2019, and C. Li et al., 2021 to identify locations within the country where air pollution 

sources would carry the most weight over a geographic area. The government organization 

would define a 10 x 10 kilometer (km) spatial grid over the entire country, as described in Kelp 

et al., 2022 and Hao & Xie 2018, overlayed with land use data and identify the single highest 10 

x 10 km grid cell in each state/province that had the greatest land uses related to air quality.  

Identify the number, type, and location of sensors: Since the country will be setting up 

the sensor network, there are many options for them for placement within the state/providence. 

When considering the need for power and connectivity, the government is interested in a low-

cost sensor solution that would allow them the flexibility of placing it anywhere if they decide to 

place the sensor in a location that may not have access to power and connectivity. The 

government organization is working with an undefined budget but would require justification of 

the project’s value add for approval. Because the budget was not a limiting factor, the 

government organization decided to focus on bandwidth and capacity. Since the country had not 

previously done air monitoring, there would be a learning curve, limiting the number of sensors 

the country felt comfortable purchasing initially (Expertise). For equality and fairness across the 

country, the government organization decided on 10 low-cost sensors for PM2.5, one for each of 

the state/provinces.  
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DISCUSSION  

 Despite the variety of project goals, and considerations needed to set up a low-cost sensor 

network, this chapter presents a framework that all projects can follow when designing low-cost 

sensors network. The decision framework unifies quantitative methods and qualitative factors 

that are important when considering sensor network design. The literature review demonstrates 

the limited number of publications on the subject and emphasizes the need for future research to 

bridge quantitative and qualitative methods together help projects optimize the locations of low-

cost sensors and ultimately achieve results that support their project goals.  

 Low-cost sensors have gained popularity amongst community groups and organizations; 

one of their intended uses increases data accessibility and empowers communities to be informed 

of their air quality. However, designing a low-cost air quality sensor network focuses on the first 

step of the process: how to set up a network, but does not discuss next steps post data collection. 

The existence of low-cost sensors does not address capacity challenges for interpreting air 

quality data and making it actionable. Many communities know that there is a problem with air 

quality through their lived experiences, but do not have the quantitative data to support this.  

The literature review also showed that applying quantitative methods would require 

expertise beyond air quality, such as computational modeling, and machine learning. Users 

would also have to obtain both air quality and non-air quality datasets, highlighting a limitation 

to accessibility to the methods used to locate low-cost sensors. Without the skillset to implement 

these models, and the expertise to work with additional datasets, how can projects ensure they 

are selecting the most optimal location for the low-cost sensor? To address these fundamental 

issues, federal and state policy needs to change in two ways. First, research and support should 
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focus on developing a tool that includes both qualitative and quantitative inputs. A graphic user 

interface tool that would survey users on their project goals, including pre-defined questions and 

answers, with the technical modeling of the quantitative methods built into the tool, and output a 

map of the study area and locations where the sensors should be placed to answer the research 

goals/questions most optimally. For example, a tool that uses qualitative input such as study 

area/location, research project goals to define a study area, and sources of concern. On the back 

end, the model would include quantitative inputs, such as historic air pollution measurements 

(inputs in the Multi-Resolution Dynamic Model Decomposition Method), land use data, and 

budget constraints as the limiting factor for the number of sensors a project could purchase 

(inputs in the Microsensing units and Land Use analysis model). Ultimately, tools and 

considerations can help guide the placement of low-cost sensors, but they cannot replace the 

importance of community driven input and expertise. 

Second, local regulatory agencies across the nation should be given resources for (1) 

training io agency staff on sensor network design and (2) training community organizations on 

how to interpret and analyze data. In my experience working with many local and state agencies, 

their defined roles are to manage and monitor regional air pollution using reference instruments, 

despite the major shift in monitoring towards low-cost, citizen science solutions. In many 

conversations with agencies, their largest complaint is that they do not have the funding, 

capacity, and organization in place to expand their air quality networks to include low-cost 

sensors, interpret the data, and share those results with the community. Until then, these agencies 

are doing the job they were intended to do. 

There are few success stories for communities working to achieve their air quality goals 

through low-cost sensor networks. These often require partnership and commitment from air 
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quality experts to analyze, interpret, and preset the results of data in a meaningful way to achieve 

results. One demonstration of using low-cost sensors to achieve a specific goal is a project in the 

Pleasantville community within the City of Houston, Texas. Residents had been complaining of 

increased respiratory problems. The US EPA has estimated that the rate of asthma, chronic 

obstructive pulmonary disease (COPD), and lung cancer to be at 50 cases per one million people, 

higher than the national average of 30 cases per one million people. Community members had 

expressed concerns and requests for environmental scientists to look at the air quality issues, but 

when complaints fell on deaf ears, community residents decided to take matters into their own 

hands. The Achieving Community Tasks Successfully (ACTS) nonprofit organization won a 

community grant to build their own low-cost air quality sensor network in order to quantify 

community concerns and request that the Texas Commission of Environmental Quality prioritize 

reference monitoring and resources into their community (One Breath Houston, 2021). TCEQ 

approved the request and is currently working to schedule deployment of the reference monitor. 
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CHAPTER THREE: Local Variation in Ambient Air Quality in an Environmental Justice 

Community: the Richmond Air Monitoring Network  

ABSTRACT 

Regulatory air quality monitoring is designed to assess regional compliance with federal 

air quality standards and does not provide information on localized pollution hot spots. 

Moreover, criteria air pollutants are regulated individually, although cumulative exposures may 

exacerbate health effects. This chapter uses data from the Richmond Air Monitoring Network 

(RAMN) - a low-cost air quality sensor network in an industrialized region of Northern 

California - to illustrate how such a network can aid in the identification of localized variation in 

air pollutant concentrations. Aeroqual AQY1 micro air quality monitors were used to collect 

hourly concentrations of particulate matter < 2.5 microns in diameter (PM2.5), nitrogen dioxide 

(NO2), and ozone (O3) between December 2019 to March 2022 at 50 locations. I calculated mean 

daily concentrations from hourly observations for monitors with 75 percent hourly data 

completeness and assess (1) the degree of correlation between the three pollutants across 

monitoring sites and (2) the number of days measured concentrations exceed World Health 

Organization health-based ambient air quality thresholds for one or more of the three pollutants. 

Results are compared to the reference-grade monitor in the study area. Overall, mean 

concentrations of PM2.5 and ozone from RAMN were similar to that of the reference monitor 

while the mean NO2 concentration was double that of the reference monitor. PM2.5 and NO2 

concentrations were moderately positively correlated at the reference monitor, while PM2.5 and 

ozone as well as NO2 and ozone were positively correlated in the summer but negatively 

correlated in the winter. RAMN monitors revealed significant variation in the degree of 

correlation across space, with many sites exhibiting inverse correlations to those observed at the 
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reference monitor. The WHO thresholds for PM2.5, NO2 and ozone were exceeded at 100%, 

73%, and 100 % of RAMN monitoring locations respectively; and 90%, 86%, and 88 % RAMN 

locations exceeded WHO thresholds for PM2.5, NO2 and ozone, respectively, more frequently 

than the reference monitoring site. My findings indicate that low-cost sensor networks can reveal 

areas within a community with elevated concentrations of multiple air pollutants that are not 

being captured at the reference monitor and warrant further investigation.  

INTRODUCTION 

Air pollution is a major global threat to public health. It is well established that exposure 

to PM2.5, NO2, and ozone contribute to respiratory illnesses, such as asthma, chronic obstructive 

pulmonary disease (COPD) (Gao et al., 2020), lung irritation, premature mortality (Faustini et 

al., 2014; Stieb et al., 2021), and other adverse health impacts (Schwartz et al., 2021). Studies 

have also associated exposure to air pollutants, such as PM2.5, NO2, and ozone, with 

inflammatory bodily response (K. Liu et al., 2022; Ostro et al., 2014; Pope et al., 2016; Xia et al., 

2021).  

In the United States, regulatory air pollution monitors (herein referred to as reference 

monitors) are used to evaluate regional air quality and to determine compliance with the National 

Ambient Air Quality Standards (NAAQS) set to protect public health and the environment. 

Primary NAAQS provide public health protection particularly for sensitive populations such as 

children, the elderly, and individuals with preexisting health conditions (US EPA, n.d.-d). 

Regulatory state, regional, or local agencies are responsible for maintaining reference monitors, 

that follow ‘gold-standard’ operating procedures, otherwise known as Federal Reference 

Methods/Federal Equivalent Methods. Reference monitors are costly, require special expertise to 



 

36 
 

maintain, and are located at sites selected to best capture regional conditions using U.S. 

Environmental Protection Agency (US EPA) criteria (US EPA, 2016). In urban areas, reference 

monitors are located far apart from one another, and some rural areas lack reference monitors all 

together. However, recent studies suggest that rural air quality can be just as concerning as urban 

air quality (Yixiang Wang et al., 2022). Furthermore, regional monitoring is not designed to 

understand intra-urban spatial variation in air quality conditions and is poorly equipped to shed 

light on pollution hotspots in places where people work, live, and spend their time.  

Although PM2.5, NO2, and ozone are considered to be regional pollutants, numerous 

studies suggest spatial variability between reference monitor measurements and low-cost monitor 

measurements (Datta et al., 2020; Feinberg et al., 2019; Morawska et al., 2018; Sadighi et al., 

2018). One study deployed 40 PM2.5 low-cost monitors over Pittsburgh, Pennsylvania comparing 

locations near known air pollution sources (within 100 to 1,500 meters), and suburban residential 

sites (cited 1 mile or more away). Results of the study showed statistically significant differences 

of PM2.5 concentrations within communities that were closest to air pollution sources versus 

communities that were further away (Tanzer et al., 2019). Another study deployed 40 PM2.5 low-

cost monitors in locations across Imperial County, California. Low-cost monitors were cited 

using a combination of regional modeling to identify areas with high PM2.5 variability, and 

community-driven input. Following extensive calibration and data validation (Wong et al., 

2018), the study evaluated the performance of the low-cost monitor network by comparing the 

annual mean PM2.5 from the low-cost monitors to the reference monitor from 2015 to 2018. The 

results suggest that the low-cost monitor annual mean PM2.5 concentrations differed statistically 

from the reference monitor for two out of the four years, suggesting the low-cost air quality 
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monitor network was able to show hyper localized, real-time pollution episodes that were 

underreported by the reference monitor (English et al., 2020).  

While many studies have demonstrated single pollutant variations across space, there are 

few studies that explore geographic hyperlocal variability of two or more pollutants. The 

NAAQS and other health-based air quality goals are set at a per pollutant basis, despite the fact 

that individuals may be exposed to elevated levels of one or more pollutants at a time. The 

literature has highlighted a need for research that evaluates exposure to multiple pollutants when 

assessing health impacts; changes in epidemiological and statistical models that represent 

multiple pollutants; and the need for changes in effective air quality management implemented at 

the federal level (Vedal & Kaufman, 2012). Furthermore, reports have highlighted the growing 

concern of the limited data available on simultaneous exposures to multiple air pollutants (i.e., 

co-exposures), including PM2.5 and ozone (Johnson, 2009). The limited data on co-exposures to 

multiple pollutants, despite its real-world impacts on public health, highlights a fundamental 

limitation in using the NAAQS to protect public health. This is especially important for 

communities who are disproportionately burdened by air pollution and other environmental 

hazards. 

Air pollution is an environmental justice issue, with disadvantaged communities facing 

disproportionate exposure to air pollution. Communities of color or of lower socioeconomic 

status are more likely to be exposed to higher concentrations of air pollutants. One study 

quantified the differences in exposure to the six US EPA criteria pollutants: carbon monoxide 

(CO), sulfur dioxide (SO2), particulate matter less than or equal to 10 microns in diameter 

(PM10), PM2.5, NO2, and ozone from 1990 to 2010. Results of the study indicated that 

racial/ethnic minority groups experienced the highest national average exposure for all years and 
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all pollutants (J. Liu et al., 2021). Another study explored spatial patterns in ambient NO2 

concentrations across US census tracts. Results showed that low-income nonwhite children and 

elderly people are disproportionately exposed to ambient NO2, by a population mean-weighted 

average of 4.6 parts per billion (ppb) higher concentration, which may contribute to development 

of heart disease (L. P. Clark et al., 2014). Due to the clustering of industry in disadvantaged 

communities, residents of those communities tend to be exposed to a greater number of air 

pollution sources, such as freeways, refineries, ports, railyards, and other industrial sources that 

may contribute to exposure to multiple pollutants. Socially disadvantaged populations may also 

be more susceptible to health impacts stemming from their exposure due to social stressors and 

preexisting health conditions (August et al., 2021). Studies have shown that individuals with pre-

existing cardiovascular diseases can respond differently to the effects of air pollution. One study 

demonstrated that long-term exposure to PM2.5 can exacerbate heart disease and increase stroke 

mortality (Hayes et al., 2020). Currently regulatory approaches may be inadequate to protect 

human health in environmental justice communities facing such cumulative exposures for two 

reasons: (1) low-spatial coverage of reference monitors poorly captures localized variation in air 

quality and (2) US EPA NAAQS, European Union, and World Health Organization set health-

based air pollutant standards and guidelines on a per-pollutant basis with limited knowledge of 

the impacts of co-exposures of pollutants, despite its real-world impacts.  

New technologies can help fill gaps in our understanding of localized hotspots for one or 

more pollutants by providing more spatially refined information about air quality. Low-cost air 

quality sensors have gained popularity over the last decade for providing additional air 

monitoring, increasing access to real-time data, increasing the spatial density of monitors, 

reducing the barrier to entry for collecting air quality measurements, and increasing 



 

39 
 

understanding of air pollution attributable to local sources (Considine et al., n.d.; Tanzer et al., 

2019; Zuidema et al., 2021). Low-cost sensors can provide more granular air quality conditions 

than the reference monitors. The comparison between reference monitor data and low-cost air 

quality sensor data is important for a few reasons: First, low-cost sensors can provide insight to 

nearby sources that may be underreported by the reference monitor. For example, we may expect 

to see higher concentrations of pollutants near roadways. Second, reference monitors have to 

follow specific siting requirements, such as height above ground, spacing from air pollution 

sources, and pollutant sampling times (US EPA, 2016). Using reference monitors are not useful 

to measure trends at the local level. Regional reference monitors are used to make decisions on 

health-based air quality standards, yet due to the specific siting requirements, where they are 

located may not be representative of what communities are actually exposed to. Third, the 

quantitative data available for low-cost air quality sensors can support anecdotal experiences that 

localized air quality conditions are variable, and that regulatory decision making should consider 

local conditions, not just reference monitors. Quantitative data from low-cost sensors can 

demonstrate spatial and temporal variation that is useful for governments when deciding where 

to allocate further monitoring efforts and devote community resources for air pollution 

mitigation and emission reduction efforts (Shatas & Hubbell, 2022). 

This study makes use of air quality measurements from a low-cost sensor network in 

Richmond, North Richmond, and San Pablo (Richmond-San Pablo), California. The community 

is burdened by a number of sources, including industrial facilities (petroleum, chemical, and 

other manufacturing), and mobile sources, including high volume freeways, and railways/rail 

yards. The Richmond, North Richmond, and San Pablo communities range from 16 to over 33 

percent African America and from 40 to over 56 percent Latinx. Many areas within the 
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community experience social and economic disadvantages, more asthma emergency room visits, 

higher rates of cardiovascular diseases, and higher incidences of poverty than other areas within 

the region (BAAQMD, 2018). The California legislature passed Assembly Bill 617 (2017), to 

begin working to improve air quality for communities disproportionality affected by air pollution 

(California State Legislature, n.d.). In part due to its high density of complex air pollution 

sources, the Bay Area Air Quality Management District (BAAQMD) recommended the 

Richmond-San Pablo community develop and implement an air monitoring plan. Community 

organizations and residents in the Richmond-San Pablo community worked with BAAQMD to 

develop a Community Steering Committee, providing a process for knowledgeable community 

members to raise awareness to the greatest air quality concerns within the community. The 

Community Steering Committee and BAAQMD used this information to develop a Community 

Air Monitoring Plan (BAAQMD, 2020). 

This chapter analyzes high spatial resolution air pollutant measurements collected via the 

resulting 27-month low-cost sensor air monitoring campaign in Richmond-San Pablo, CA to 

better understand intra-urban variation in ambient concentrations of three criteria air pollutants: 

PM2.5, NO2, and ozone. This chapter builds upon the Richmond Air Monitoring Network 

(RAMN) Study (Lukanov et al., 2022) by focusing on co-pollutant relationships to better 

understand differences in trends shown by RAMN monitors compared to the reference monitor. 

The specific objectives of this chapter are to utilize low-cost sensor data to examine (1) co-

exposure patterns and spatial variation and (2) examine divergence from reference monitors with 

respect to exceedances of health-protective concentrations.  

Co-exposure patterns. Except with respect to NO2 and ozone, the few studies that explore 

the correlation between multiple pollutants cover only China and India. In those studies, regional 
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measurements of PM2.5 and NO2 concentrations were observed to be positively correlated (as one 

increases, the other increases) (Ji et al., 2022; Wu et al., 2016). PM2.5 and ozone were observed 

to have a positive relationship in the summer and negative relationship in the winter (Chen et al., 

2019; L. Wang et al., 2023). NO2 and ozone concentrations were observed to have an inverse 

relationship (CalEPA, CARB, 2007). NO2 is effectively used to create ozone, and thus NO2 

concentrations are lower in the summer when ozone is the highest. Conversely, less chemical 

reactivity via sunlight (precursors to ozone formation), and a higher frequency of lower 

atmosphere inversions in California contribute to higher NO2 concentrations in the winter 

(CalEPA, CARB, 2007). NO2 and ozone typically have an inverse relationship (as one increases, 

the other decreases) (Pancholi et al., 2018; Soares et al., 2021).  

Research revealed no studies in northern California that have explored these relationships 

between NO2 and ozone, nor the respective relationships between PM2.5 and NO2 or PM2.5 and 

ozone anywhere in California. Furthermore, no studies have examined the degree to which these 

multiple pollutant relationships at the regional level are consistent at the local level. Variation in 

proximity to pollutant sources such as roadways, for example, might contribute to higher 

ambient concentrations of both PM2.5 and NO2 that would be observed at the local level and not 

observed at the regional level.  

Exceedance of Health-Protective Air Quality Thresholds. This study also aims to identify 

localized exceedances of health-based air quality standards set by the World Health Organization 

(WHO) by calculating the number of days at each monitoring location for which health-based air 

quality thresholds were exceeded for each pollutant. The WHO sets Air Quality Guidelines 

(AQGs), global targets for governments around the world to work towards reducing exposure to 

harmful air pollutants and improving citizen health overall. WHO sets the AQGs by conducting a 
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systematic literature review, evaluating methods used to better understand the relationship 

between air quality and public health, and consulting with experts, including researchers and 

practitioners. The AQGs are updated regularly to consider new and emerging research (Pai et al., 

2022). The most recent AQGs were established in 2021(Pai et al., 2022). For short term PM2.5 

and NO2 exposures, WHO provides a 24-hour standard. For ozone exposures, WHO provides a 

standard based on an 8-hour rolling average (Table 3.1). 

Table 3.1: WHO AQGs Levels (Pai et al., 2022) 

 

This chapter focuses upon the AQGs rather than the NAAQS because adverse health 

impacts from exposure to air pollution appear to occur at lower concentrations than those 

deemed to be health protective by the NAAQS (Crouse et al., 2012; Hales et al., 2012; Shi et al., 

2016). Given evidence of harm at concentrations lower than existing air quality standards, the 
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US EPA is currently reviewing the PM2.5 NAAQS standard (US EPA, n.d.-e). The AQGs are 

intended to be health protective, and based in scientific rigor, and are more conservative than the 

NAAQS.  

I also identify RAMN locations where concentrations exceeded short-term health-based 

standards for one or more pollutant and whether the reference monitor also captured the same 

number of exceedances. I hypothesize that the RAMN will detect more exceedances than the 

reference monitor due to local influences from air quality sources and highlight potential co-

exposures of pollutants that exceed health-protective standards.  

This aspect of the chapter examines two hypotheses: 

1) On days where PM2.5 is higher, NO2 and ozone will also be higher at most 

monitoring locations, but that the degree of correlation will vary seasonally and 

spatially.  

2) The RAMN monitors will diverge from the reference monitor in terms of 

measured pollutant concentrations and correlations between pollutants, especially 

near air pollution sources, such as roadways. 

METHODS 

Richmond Air Monitoring Network 

In 2018, CARB designated the Richmond-San Pablo community an AB 617 community, 

making the community eligible for community air monitoring funding. PSE Healthy Energy 

(PSE) and the Asian Pacific Environmental Network (APEN) received funding through the AB 

617 Community Air Grants Program to implement a stationary air monitoring network 

throughout Richmond-San Pablo, which is characterized as having some of the most 
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disproportionate air pollution and environmental burdens in California. In 2019, PSE, APEN, 

and University of California, Berkeley received additional funding to expand air monitoring 

efforts. The 2019 project expanded the 2018 project to add additional pollutants and monitoring 

equipment, and made use of existing community efforts and monitoring sites (CARB, 2019). 

Monitoring took place between December 2019 and March 2022, with analysis and preparation 

of a report drawing the project through the end of 2022; project activities and results are 

provided in detail in Lukanov et al. (Lukanov et al., 2022).  

Data for this chapter was obtained from the RAMN. RAMN aimed to provide the 

Richmond-San Pablo community with high-resolution air quality monitoring data to promote 

community engagement, to supplement existing monitoring data within the community, and to 

inform the development of community emission reduction plan. RAMN was established with 

key objectives to conduct high density monitoring with data collected every minute; to 

characterize local ambient concentrations; to detect short-lived pollution; to identify local air 

pollution hot spots and local sources of pollution; and to provide reliable, local air quality data to 

the community and regulators to foster actionable change within the local regulatory landscape.  

Briefly, PSE procured 50 Aeroqual AQY1 air quality monitors (Aeroqual, n.d.-c), which 

monitor PM2.5, NO2, ozone, relative humidity, temperature, and dew point. These low-cost 

sensors transmit data collected to Aeroqual’s cloud-based platform. The RAMN included 

monitors located across 14 neighborhoods with the goal of having at least one air monitor within 

each neighborhood. RAMN monitor locations were assigned a land use category: residential, 

commercial, or industrial. PSE assigned land uses for RAMN using the City of Richmond 

Zoning data and satellite imagery for the San Pablo Area. In total, 29 monitors were deployed at 
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residential land uses, 14 were deployed at commercial land uses, and 7 were deployed at 

industrial land uses.  

PSE collocated the 50 Aeroqual AQY1 air quality monitors near reference monitors at 

CARB’s Monitoring and Laboratory Division in Sacramento, CA between July 2019 and 

January 2020. The long initial field calibration was meant to study and understand overall sensor 

drift and inter-device variability and to correct for individual sensor bias. Two monitors were left 

at the CARB site in Sacramento to continue monitoring for sensor drift. 50 Aeroqual AQY1 air 

quality monitors were deployed throughout the Richmond-San Pablo community between 

December 2019 and August 2020. Monitor deployment was significantly delayed in the Spring 

and Summer of 2020 due to the COVID-19 Pandemic. The network began operating in 

December 2019 and finished collecting data in March 2022.  

Quality Assurance/Quality Control (QA/QC) 

PSE used data from the “San Pablo – Rumrill” reference monitor to compare trends 

between each of the RAMN locations and the reference monitoring location. PSE utilized a 

multi-step quality assurance process to address known issues with data quality, including sensor 

drift, sensor failure, sensitivity to environmental conditions, such as temperature and relative 

humidity, and data incompleteness. Aeroqual AQY1 monitors transmit data directly to the 

Aeroqual Cloud. PSE built a coding script in R/Python that requested data from the Aeroqual 

Cloud on a one-minute basis while also looking for any missing data in the last eight weeks and 

beginning the data request with the first missing one-minute timestamp. The data were then 

average temporally into 10-minute and 60-minute intervals. Averaging into these temporal 

intervals was only conducted if the data was defined as being at least 75 percent complete for a 
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given averaging period. If the data were not 75 percent complete, the data were excluded from 

analysis.  

Due to changing meteorological conditions in Richmond-San Pablo, as compared to 

Sacramento where the devices were collocated, the monitoring network needed ongoing 

calibration for all pollutants. Calibration parameters were provided each month by Aeroqual. 

Aeroqual also applied a proprietary relative humidity correction to all PM2.5 data to improve data 

quality. To apply wildfire corrections, PSE identified ground-level wildfire smoke events on an 

hourly basis. PSE used the Anomaly Detection R Package to detect high PM2.5 events for each 

monitor during deployment. Two of the collocated Aeroqual monitors required data cleaning for 

ozone to adjust incorrectly calibrated values that were clearly incorrect for specific months. This 

was done for the collocated monitors because PSE was able to verify the incorrect values as 

compared to the reference station. Note that it is unknown if this problem persists with the other 

monitors and for different times. Additional information about the Richmond Air Monitoring 

Network can be found in the published report Understanding Air Quality Trends in Richmond-

San Pablo, California (Lukanov et al., 2022). 

Analysis – Co-Exposure Patterns 

PSE provided air quality concentrations for PM2.5, NO2 , and ozone averaged in 60-

minute intervals. Data were provided in units of micrograms per cubic meter (µg/m3) for PM2.5 

and parts per billion (ppb) for NO2 and ozone. Observations that were negative, zero or flatlined 

for greater than 24 hours, above the third quartile plus three times the interquartile range for 

greater than 24 hours, and unexpectedly high concentration events (X ⋝ 800 for PM2.5, 200 for 

NO2, and 150 for ozone) were flagged by as anomalous and thus I excluded them from the 
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analysis. Because my interest was in typical conditions, I excluded wildfire days from the 

RAMN network using PSE’s flags for wildfire smoke events. I also excluded five PM2.5 days, 

and two NO2 days from the reference monitor where observations were identified as being highly 

influenced by wildfires. I used R and ESRI’s ArcGIS Pro were used to conduct the statistical 

analysis. Since the data is non-linear, I conducted a Spearman correlation to determine if there 

were positive or negative relationships between multiple pollutant concentrations. 

The 60-minute concentrations were used to calculate a 24 hour mean for PM2.5, NO2 , and 

ozone only including days where the data were at least 75 percent complete, defined as 18 or 

more 60 minute measurements within a 24-hour period (US EPA, n.d.-b; US EPA OAQPS, 

2017). Since the data do not follow a normal distribution, I then used Spearman correlation 

coefficients to assess the degree of correlation for three pollutant combinations at each 

monitoring location: PM2.5 and NO2, PM2.5 and ozone, and NO2, and ozone. Correlation 

coefficients [r] were mapped to visualize spatial variation in the direction and magnitude of 

correlation between daily mean concentrations of each pair of pollutants over the study period, 

and during summer and winter seasons. In order to explore the hypothesis that correlations 

observed at the local scale differ from those observed regionally, I compare pollutant-pair 

correlation coefficients at each monitoring location to the reference monitor during summer and 

winter and across the study period for all pollutant combinations. PSE calculated the distance to 

the nearest roadway, defined from Highway Performance Monitoring System (HPMS) data 

(FHA, n.d.). I performed a Spearman correlation calculation to demonstrate the relationship 

between distance to nearest roadway and the co-pollutant correlation coefficients. 
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Analysis – Exceedances of 2021 WHO AQGs 

The 24-hour mean PM2.5 and NO2 values were used to calculate exceedance days. In 

accordance with the WHO AQGs, an exceedance day was defined when the 24-hour PM2.5 mean 

was greater than 15 µg/m3,and the 24-hour NO2 mean was greater than 25 µg/m3. For ozone, the 

R “zoo” package was used to calculate the maximum 8-hour ozone rolling average, grouped by 

day, month, and year. An exceedance day was defined when the maximum 8-hour rolling ozone 

average was greater than 100 µg/m3 (Table 3.1). 

To calculate the percent of days that the WHO AQGs were exceeded for each of the three 

pollutants, I divided the number of days that each RAMN monitor and the reference monitor had 

a defined “exceedance” by the number of days that the RAMN monitor was defined as 

operational for that pollutant. I define “days operational” to only include the days where 75 

percent of data were complete, and thus would have enough data to calculate a 24-hour average 

or an 8-hour rolling average, respectively. Days operational varied drastically by location and 

pollutant, due to deployment challenges from the COVID-19 pandemic; intermittent operational 

data transmission issues; and pollutant specific challenges (see Discussion). The percentage was 

then classified as an exceedance if the percentage exceeded was greater than 1 percent, or the 

99th percentile.  

I additionally calculated the number of days where the WHO AQGs were exceeded for 

two or more pollutants by dividing the number of days the standard was exceeded by the number 

of days the monitor was operational and then classified it as exceeding if the result was greater 1 

percent. Data were filtered to show days with (a) PM2.5 and NO2, (b) PM2.5, and ozone, (c) NO2 

and ozone, and (d) PM2.5, NO2 , and ozone WHO AQGs exceedances. Because the number of 
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days that each monitor and pollutant were operational were different, the denominator selected 

was the lowest number of days operational between the two or three pollutants.  

 

RESULTS 

Correlation Between Daily Mean Ambient Air Quality Concentrations: PM2.5 and NO2, PM2.5 

and ozone, and NO2 and ozone 

Fifty RAMN locations were operational for a mean of 580 days for PM2.5, 316 days for 

NO2, and 505 days for ozone (Table 3.2). Mean daily concentrations were 10.4 µg/m3 for PM2.5, 

14.4 ppb for NO2 and 25.5 ppb for ozone, which are similar for PM2.5 and ozone on average with 

analogous concentrations from the reference monitor over the same period (10.1 µg/m3 for PM2.5 

and 26 ppb for ozone) but were higher than the average NO2 concentration at the reference 

monitor (7.2 ppb) (Table 3.3).  

Table 3.2: RAMN Summary Statistics for RAMN monitoring locations (n=50), Richmond-San 
Pablo, CA, January 2020 – March 2022 

 Mean 
(%) 

Minimum Maximum N 

Land use     
Residential - - - 29 

Commercial - - - 14 
Industrial - - - 7 

Days operational     
PM2.5   580 175 791  

NO2  316 34 551  
O3 505 268 780  

24-Hour mean 
concentrations1 

    

PM2.5 (µg/m3) 10.4 0 478.6 28,995 
NO2 (ppb)  14.4 0 161.6 15,821 

 
1 N=the number of days that all monitors from the RAMN network had 75% data completeness for each pollutant 
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 Mean 
(%) 

Minimum Maximum N 

O3 (ppb) 25.5 0.56 108.4 25,236 
Correlation between PM2.5 
and NO2 (Rho) 

    

Study Period 0.000018 -0.31 0.25 23 positive/27 
negative 

Summer 0.05 -0.54 0.79 27 positive/21 
negative 

Winter -0.02 -0.85 0.44 24 positive/24 
negative 

Correlation between PM2.5 
and O3 (Rho) 

    

Study Period -0.17 -0.68 0.12 8 positive/42 
negative 

Summer -0.01 -0.51 0.59 22 positive/25 
negative 

Winter -0.21 -0.68 0.66 8 positive/39 
negative 

Correlation between NO2 
and O3 (Rho) 

    

Study Period -0.16 -0.31 0.25 12 positive/38 
negative 

Summer -0.11 -0.56 0.77 11 positive/35 
negative 

Winter -0.03 -0.87 0.67 22 positive/28 
negative 

Days (%) exceeding 
WHO standard2 

    

PM2.5  105 (18%) 21 192 580 
NO2  124 (40%) 0 252 316 

O3  25 (5.0%) 0 85 505 
PM2.5 and NO2  22 (6.7%) 4 57 326 

PM2.5 and O3  5 (1.6%) 1 26 316 
NO2 and O3  4 (1.8%) 1 19 217 

PM2.5, NO2 and O3  2 (0.6%) 1 5 336 
 

 
2 N=The denominator used to calculate the percent of days exceeding the WHO thresholds are the minimum number 
of days that the RAMN monitor was operational and had 75% data completeness. 



 

51 
 

Table 3.3: Summary Statistics for Richmond-San Pablo Reference monitor (n=811 days), 
Richmond-San Pablo, CA, January 2020 – March 2022 

 Mean 

(%) 

Rho 

24-Hour mean concentrations   
PM2.5 (µg/m3) 10.1  

NO2 (ppb) 7.2  
O3 (ppb) 26  

Correlation between PM2.5 and 
NO2  

  

Study Period  0.23 
Summer  0.47 

Winter  0.51 
Correlation between PM2.5 and O3   

Study Period  -0.04 
Summer  0.24 

Winter  -0.4 
Correlation between NO2 and O3   

Study Period  -0.44 
Summer  0.18 

Winter  -0.44 
Exceedance Days   

PM2.5  97 (12%)  
NO2  68 (8%)  

O3  10 (1.2%)  
PM2.5 and NO2  15 (1.8%)  

PM2.5 and O3  4 (0.5%)  
NO2 and O3  1 (0.1%)  

All Pollutant  1 (0.1%)  
 

Over the entire study period, PM2.5 and NO2 were positively correlated at the reference 

monitor and variably correlated over the RAMN network. Out of 503 of RAMN monitoring 

locations, 27 (54%) were positively correlated, and 23 (46%) were negatively correlated, not 

entirely in accordance with the degree of correlation observed at the reference monitor (Figure 

 
3 This includes the two collocated monitors. 
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3.1a). PM2.5 and NO2 showed similar trends during both summer and winter, trending weakly 

positively correlated. During summer, out of 484 of RAMN monitoring locations, 27 (56%) were 

positively correlated, and 21 (44%) were negatively correlated, in contrast with the degree of 

correlation observed at the reference monitor (Table 3.2). Figure 3.2a shows the Rho values in 

the summer season. In winter, PM2.5 and NO2 correlations between concentrations were both 

positive and negative (Figure 3.2d). Out of 48 RAMN monitoring locations, 24 (50%) were 

positively correlated, and 24 (50%) were negatively correlated, half in accordance with the 

degree of correlation observed at the reference monitor (0.51). The degree of correlation between 

PM2.5 and NO2 slightly declined on average with distance to roadway. The grey shaded areas on 

the plots represent the standard error (Figure 3.7).  

 

 

 

 

 

 

 

 

 

 
4 This excluded the two collocated monitors. 
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Figure 3.1: Correlation between  
daily mean ambient air quality 
concentrations at reference and RAMN  
monitors during entire study period for:  
(a) PM2.5 and NO2, (b) PM2.5 and O3 and,  
(c) NO2 and O3 
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Figure 3.2: Correlation between daily mean ambient air quality concentrations at reference  
and RAMN monitors during summer for: (a) PM2.5 and NO2, (b) PM2.5 and O3 and,  
(c) NO2 and O3 and winter for (d) PM2.5 and NO2, (e) PM2.5 and O3 and, (f) NO2 and O3 
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Over the entire study period, PM2.5 and ozone the correlation was negative at the 

reference monitor, in accordance with the predominantly negative correlations among the 

RAMN network (Table 3.2 and 3.3). Out of 50 RAMN monitoring locations, 8 (16%) exhibited a 

positive correlation and 42 (84%) exhibited a negative correlation, with some areas within the 

community showing a stronger correlation (Figure 3.1b). PM2.5 and ozone showed different 

seasonal trends, trending both positively and negatively correlated during summer (Figure 3.2b). 

Out of 47 RAMN monitoring locations, 22 (46%) were positively correlated, and 25 (53%) were 

negatively correlated, not entirely in accordance with the degree of correlation observed at the 

reference monitor (Table 3.2 and 3.3). In winter, PM2.5 and ozone correlations were 

predominantly negative (Figure 3.2e). Out of 47 RAMN monitoring locations, 8 (17%) were 

positively correlated, and 39 (81%) were negatively correlated, in accordance with the degree of 

correlation observed at the reference monitor. When comparing the nearest roadway to the PM2.5 

and ozone correlation, there is little evidence of a difference in the strength of correlation 

between PM2.5 and ozone and distance to roadway (r=0.048) (Figure 3.7).  

Over the entire study period, NO2 and ozone were negatively correlated at the reference 

monitor (Table 3.3), in accordance with the RAMN network with predominantly negative 

correlations (Figure 3.1c). Out of 50 RAMN monitoring locations, 12 (24%) exhibited a positive 

correlation and 38 (76%) exhibited a negative correlation. NO2 and ozone showed similar 

seasonal trends, trending predominantly negative (Figure 3.2c). During summer, out of 48 

RAMN monitoring locations 11 were positively correlated, and 35 negatively correlated, in 

contrast with the degree of correlation observed at the reference monitor (r=0.18) (Tables 3.2 

and 3.3). In winter, NO2 and ozone showed similar seasonal trends to what was identified in the 

literature and at the reference monitor, trending predominantly negative (r=-0.44) (Figure 3.2f). 
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Of the 50 RAMN monitoring locations, 22 (44%) were positively correlated, and 28 (56%) were 

negatively correlated. When comparing the nearest roadway to the NO2 and ozone correlation, 

there is a positive correlation between NO2 and ozone and distance to roadway (r=0.38) (Figure 

3.7). Rho values for RAMN monitoring network can be found in Appendix 3A.  

WHO AQGs Exceedance Calculations 

Figure 3.3 shows the percent of days concentrations exceeded WHO AQGs thresholds for 

PM2.5, NO2, and ozone. Over the entire study period, the average percent of days exceeded for 

PM2.5, NO2, and ozone at the RAMN network (18%, 40%, and 5%, respectively) were greater 

than the percent of days exceeded at the reference monitor (12%, 8%, and 1.2% respectively) 

(Table 3.2). The WHO thresholds for PM2.5, NO2 and ozone were exceeded at 100%, 73%, and 

100 % of RAMN monitoring locations; and 90%, 86%, and 88 % RAMN locations exceeded 

WHO thresholds for PM2.5, NO2 and ozone more frequently than the reference monitoring site. 

The proportion of days exceeding threshold was greater at RAMN locations (Figure 3.4) and 

among residential and commercial locations rather than industrial ones. There is no strong 

correlation between the percent of days that PM2.5, NO2, or ozone were exceeded and the 

distance to the nearest roadway (Figure 3.8).  

Figure 3.5 shows locations within the community where two or more pollutants exceeded 

WHO AQGs on the same day. Figure 3.6 shows that most RAMN locations at a higher percent 

of days exceeding WHO short-term thresholds than the reference monitor. Tables 3.2 and 3.3 

show the average percent of days that two or more pollutants exceeded the WHO AQG 

thresholds. The average percent of days that both PM2.5 and NO2 exceeded at the RAMN 

network (8.4%) is greater than the percent of days that both PM2.5 and NO2 exceeded at the 
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reference monitor (1.8%). The average percent of days that both PM2.5 and ozone exceeded at the 

RAMN network (1.3%) is greater than the percent of days that both PM2.5 and NO2 exceeded at 

the reference monitor (0.5%). The average percent of days that both NO2 and ozone exceeded at 

the RAMN network (2%) is greater than the percent of days that both PM2.5 and NO2 exceeded at 

the reference monitor (0.1%). The average percent of days that all three pollutants: PM2.5, NO2 

and ozone exceeded at the RAMN network (0.7%) is greater than the percent of days that all 

three pollutants exceeded at the reference monitor (0.1%) (Tables 3.2 and 3.3). There is no 

strong correlation between the percent of days that PM2.5, NO2, or ozone were exceeded and the 

distance to the nearest roadway (Figure 3.9). 

 

 

 

 

 

 



 

58 
 

Figure 3.3: Percent of days 
concentrations exceeded WHO Air 
Quality Goals for: (a) PM2.5, (b), 
NO2, and (c) O3. 
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Figure 3.4: Percent of days concentrations exceeded WHO Air Quality Goals for: (a) PM2.5 
(b)NO2 (c) O3. “Reference” in black refers to the reference monitor. 
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Figure 3.5: Percent of days 
concentrations exceeded WHO Air 
Quality Goals for: (a) PM2.5 and NO2, 
(b)PM2.5 and O3, and (c) NO2 and O3 
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Figure 3.6: Percent of days concentrations exceeded WHO Air Quality Goals for: (a) PM2.5 and 
NO2, (b)PM2.5 and O3, (c) NO2 and O3, and (d) PM2.5, NO2 and O3 
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Figure 3.7: Relationship between pollutant Rho values and distance to roadway 
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Figure 3.8: Relationship between pollutant exceedance days and distance to roadway 
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Figure 3.9: Relationship between multiple pollutant exceedance days and distance to roadway 
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DISCUSSION 

 Mean daily concentrations were 10.4 µg/m3 for PM2.5, 14.4 ppb for NO2 and 25.5 ppb for 

ozone, which are similar for PM2.5 and ozone on average with analogous concentrations from the 

reference monitor over the same period (10.1 µg/m3 for PM2.5 and 26 ppb for ozone) but were 

higher than the average NO2 concentration at the reference monitor (7.2 ppb). Since there was no 

strong correlation between NO2 concentrations and distance to roadways, higher NO2 

concentrations can likely be attributed to the electrochemical sensors known and studied 

susceptibility to variability in performance (Cross et al., 2017; Zuidema et al., 2021). Despite 

these challenges, results of this study confirm the hypothesis that there would be a varying 

degree of correlation of multiple pollutants between the RAMN monitors and the reference 

monitor. PM2.5 and ozone, and NO2 and ozone correlation trends typically tracked well with the 

reference monitor, whereas most PM2.5 and NO2 correlations were negative, suggesting that the 

degree of correlation between pollutants differs from the reference monitor. Results of this 

portion of the study suggest that there may be variable co-exposures to pollutants within the 

Richmond-San Pablo community. Results also suggest that seasonal correlations track well with 

the reference monitor, but still show variability across the RAMN monitors (Tables 3.2 and 3.3).  

The results of this study did not support the hypothesis that if one pollutant increases, the 

other will increase. For example, I would expect to see that pollutant concentrations and distance 

to roadways to be correlated, but this was not always the case (Figures 3.6 through 3.8). 

However, these results suggest that community is still impacted by these pollutants, even when 

they are not right next to the sources, suggesting that there are other sources of emissions in the 

community that are being captured by RAMN. 
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The RAMN network also suggests that there are locations within the Richmond-San 

Pablo community with concentrations of PM2.5, NO2, and ozone that exceed health-based 

thresholds far more often than the reference monitor (Figures 3.4 and 3.6). Furthermore, results 

of the study also suggest that exceedances of two or more pollutants occur more frequently in the 

community than they do at the reference monitor (Figures 3.3 and 3.5), suggesting that there are 

locations of the community that are experiencing co-exposures of multiple pollutants that are not 

being captured by the reference monitor.  

Results of this study illustrate that relying on reference monitors to determine compliance 

with health-based air quality standards is not protective of the entire community. (Figures 3.4 

and 3.6 show that RAMN monitors have higher percentages of exceedance days than the 

reference monitors (labeled in black) suggesting that much more of the community is exposed to 

levels that exceeded health-based goals than what is being measured at the reference monitor. 

The number of exceedance days captured by the RAMN monitors highlight two key points. First, 

the exceedance of health-based standards for single pollutants demonstrate that the reference 

monitor is not capturing community variation and that communities may experience more 

adverse health impacts than anticipated or projected by the reference monitor’s concentrations, 

suggesting that there may be underreported health impacts from air pollution. Second, 

exceedances of two or more pollutants on the same day further demonstrate the concern with co-

exposures of multiple pollutants, supporting the urgent need for more research and action into 

the health impacts of co-exposures and policy reform.  

The desire to correlate low-cost sensors to the reference monitor is not the goal. The goal 

of using low-cost sensor data is to identify air pollution patterns at a specific location away from 

the reference monitor. If the low-cost sensors have been collocated with the reference monitor 
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and calibrated to account for over- or underestimation and/or sensor drift, we should expect to 

see differences between the reference monitor and the low-cost sensor since the low-cost sensor 

are not designed to measure what is happening regionally. The results of this study support the 

expectation of seeing different pollutant trends at different areas within the community. The 

significance of the finding of the differences in correlation between the regional monitor and the 

low-cost sensors provide evidence to support the hypothesis that air pollution variability within a 

community should be accounted for in air pollution management practices. Air quality 

management should work to include data from both reference monitoring equipment and low-

cost sensors to better characterize the entire community landscape and make effective decision 

that serve entire communities. 

There are limited studies demonstrating a positive correlation between co-exposures of 

multiple pollutants (Dedoussi et al., 2020; Ma et al., 2022; Riches et al., 2022; VN et al., 2015; 

Wei et al., 2020). A recent literature review of the health effects of co-exposures of pollutants 

showed an increase of non-accidental mortality observed with elevated concentrations of both 

PM2.5 and NO2. Furthermore, respiratory disease mortality, specifically by pneumonia and lung 

cancer was associated with a synergistic effect between PM2.5 and NO2 concentrations. Another 

study exploring short term simultaneous exposure to PM2.5 and NO2 concluded that NO2 

exposure may produce and exacerbate acute cardiovascular effects of PM2.5 (Huang et al., 2012).  

 Multiple studies exploring simultaneous exposures between PM2.5 and ozone found an 

increase between short-term exposure and increased deaths (Di et al., 2017; Yan Wang et al., 

2017; Wei et al., 2020). One study concluded that mortality associated with long-term PM2.5 and 

ozone exposure increased substantially at levels that were even below the NAAQS (Wei et al., 

2020). Another study explored the contributions to mortality from PM2.5 and ozone, suggesting 
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that future policies reducing PM2.5 and ozone are projected to reduce mortality from 

cardiovascular and respiratory related diseases, suggesting that current exposures to PM2.5 and 

ozone are contributing to mortality from cardiovascular and respiratory related diseases (VN et 

al., 2015). 

 There are limited studies assessing the impact of NO2 and ozone co-exposures. One study 

explored the short-term effects of NO2 and ozone and their combined oxidant capacity. Results 

suggested that short term exposures to NO2 and ozone were associated with mortality, especially 

in warmer seasons. Combined oxidative capacity were associated with high cerebrovascular and 

respiratory mortality, and slightly associated with cardiac mortality versus each individual 

pollutant (Faustini et al., 2019). Another study concluded that short term exposure to NO2 and 

ozone was positively associated with emergency room visits for respiratory diseases, especially 

in younger people (defined as less than 18 years of age). Exposure to NO2 and ozone its 

intermediary indicators (oxides) was positively associated with emergency room visits for total 

respiratory diseases and upper respiratory infections (Fu et al., 2022).  

 Further research is needed to understand the health effects of exposure to multiple 

pollutants. For example, a literature review of exploring co-exposures of PM2.5 and NO2 

identified only eight studies that explored the relationship between PM2.5 and NO2 (Mainka & 

Żak, 2022). Public health impacts of air pollutants are well known at the single pollutant level, 

yet are not being evaluated and regulated at the local level. Furthermore, despite the real-world 

exposure scenario that air always contains more than one pollutant at varying concentrations, 

regulatory structure is only addressing one pollutant at a time, identifying a fundamental need for 

assessment of real-world exposure scenarios. There are very few studies that have explored 

multi-pollutant evaluation approaches (Dominici et al., 2010; Johnson, 2009). One study found 
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short and long term PM2.5, ozone, and NO2 exposures were all associated with increased 

mortality risk (Wei et al., 2020). Studies cited by US EPA have even suggested that when 

exploring adverse health impacts from ambient PM2.5, NO2 and other gaseous components 

should also be considered (Huang et al., 2012). Furthermore, multiple studies have identified 

adverse health impacts at concentrations below the current NAAQS, suggesting that all standards 

need to be reevaluated at both an individual pollutant, and a co-pollutant basis (Di et al., 2017; 

Wei et al., 2020). New models are being explored in the literature for simultaneous evaluation of 

multiple pollutants, but nothing has been implemented to date (Gorrochategui et al., 2022). 

 This study contributes to environmental and public health fields in in two ways: (1) it 

utilizes high resolution measurements with dense spatial coverage to estimate co-exposures of 

pollutants at the local level, and (2) it uses highly spatially dense data to explore exceedances 

using WHO AQGs for individual pollutants, and combinations of two three pollutants, an 

analysis that has not been done previously. Variable relationships could be suggestive of 

different trends between pollutants at the local level where they may be closer to air pollutant 

emission sources. Areas where there is a measured positive relationship between pollutant 

concentrations may be exposing community members to multiple elevated ambient air pollutant 

concentrations over time, which have been studied exacerbate cardiovascular and respiratory 

illnesses, and contribute to increased mortality from co-exposures. This information is valuable 

to understanding where more community and regulatory enforcement efforts may be necessary 

and provides preliminary data to support prioritization of said efforts.  

Limitations 

Air quality professionals have raised concerned related to the data accuracy and variable 

data quality from low-cost sensors relative to reference monitoring. Limitations include siting 
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errors, low-shelf life of low-cost sensor and thus concerns with performance, and no standard 

guidelines for how to interpret results (Idaho Department of Environmental Quality, n.d.). While 

performance of low-cost sensors can vary widely, users can take actions to ensure accurate data 

quality, such as collocating the low-cost sensor with a reference monitor for a short period of 

time before the low-cost sensor is deployed. The data from the reference monitor can be used to 

track the accuracy of the low-cost sensor, and provide a calibration to the low-cost sensor such 

that when it is in the field, it is providing measurements as closely to the reference monitor as 

feasibly possible (Carvlin et al., 2017). Low-cost sensors have proven useful for hot spot 

analysis, better understanding where further monitoring and investigation can be helpful, and for 

citizen science projects. In a study evaluating the use of low-cost sensors for hot spot analysis, 

results suggested that the accuracy of low-cost sensors is sufficient to achieve the goal of 

identifying increased air quality concentrations to alert regulators to an area (Lagerspetz et al., 

2019). 

The results of this study rely on calibration, QA/QC, and data cleaning, such that the 

resulting dataset used this study are actionable and useful. The results of this study assume data 

accuracy based on the QA/QC done to the data before it was analyzed.  

These data provide many localized insights in Richmond, North Richmond, and San 

Pablo, California, but not without some challenges: (1) Not all monitors were deployed at the 

same time due to delays related to COVID-19 pandemic shelter-in-place restrictions. Thus, not 

all monitors had the same number of measurements. (2) Low-cost sensors can be more sensitive 

to atypical readings. For example, when calculating the 24-hour average for PM2.5, NO2, and 

ozone, I used the US EPA data completeness method to only include days with at least 75 

percent hourly data points. This excluded many measurements and ultimately, days with limited 
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data available were excluded. The 75 percent data completeness method was also used to define 

the number of days that the RAMN monitor was considered “operational” (Appendix 3B). For 

comparison, percent of days exceeded were also calculated by defining an “operational” day as a 

day having at least one measurement. However, in staying consistent with the fact that 

exceedance days were calculated using the 75 percent completeness assumption, I used the 75 

percent completeness to define the number of days that the RAMN monitor was operational. 

This comparison resulted in minor differences for PM2.5 and ozone, and more drastic differences 

with NO2. Similarly, exceedances of two or more pollutants were calculated using the least 

common value between the two pollutants as the numerator, and the number of days that two or 

three pollutants exceeded the WHO in the numerator. This comparative analysis resulted in 

minor changes with PM2.5 and ozone, and more drastic changes with NO2 (Appendix 3B), 

suggesting a higher variability of NO2 data when compared to the reference monitor. 

The literature has identified challenges with using low-cost NO2 sensors. Some studies 

suggest that the correlation between NO2 measurements with low-cost sensors and reference 

monitors is poor (Zuidema et al., 2021). The electrochemical sensor used in NO2 low-cost sensor 

technology is more suspectable to variability in performance based on environmental conditions, 

such as temperature, relative humidity, competing gas molecules that also undergo oxidation-

reduction reactions, and season, making it difficult to rely on specific concentration differences 

versus relative differences across sensors (Cross et al., 2017; Zuidema et al., 2021). As noted in 

Table 3.2, NO2 was operational for less days when compared to PM2.5 and ozone. To minimize 

these sensitivities, sensors must be collocated with a reference monitor in a location that is 

representative of the NO2 conditions for the study and undergo a robust calibration process to 

correct for potential interferences. One limitation of this study was that the sensors were initially 
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collocated with a reference monitor in Sacramento, CA (due to initial reference site access 

restrictions in the study area),which has different temperature, relativity, and pollutant 

conditions. This may have contributed to the accuracy of the sensors for use in Richmond and 

San Pablo, CA and thus the reliability of the NO2 data. While the frequency of calibration is 

essential to correct for the data, it does not account for all limitations of low-cost NO2 

monitoring, such as the reliability of the monitor to measure small NO2 concentration changes. 

This study relies on the performance of the NO2 sensor to estimate pollutant concentrations at 

~12-13 ppb (25 µg/m3), the WHO AQG for 24-hour NO2. Aeroqual’s specification sheet notes 

that the precision of NO2 readings is 8 ppb, suggesting that some of the NO2 data may be 

overreporting or underreporting exceedances and may skew the pollutant correlations (Aeroqual, 

n.d.-a). Electrochemical sensors can respond to other pollutants that undergo oxidation reduction 

reactions. If there are more oxidation reduction reactions with gases other than NO2, the sensors 

detect higher concentrations due to all reactions present, not necessarily NO2. Conversely, if 

there are less reactions occurring, the sensors may show lower or negative concentrations, which 

are filtered out. The cross-interference of NO2 may skew the concentrations, particularly 

underrepresenting concentrations if they are close to zero (Aeroqual, n.d.-b). Among the three 

pollutants evaluated in this study, the performance of NO2 was the most limiting, which should 

be taken into account when considering the results of this study. 

Concluding Paragraph/Path Forward 

This study contributes to existing research supporting spatial variability of air pollutants 

within a community and enhances it by relating the data to health-based standards and examining 

co-pollutant exposures. Regional air monitoring does not provide representative coverage of air 
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pollutant concentrations within a community and some areas within a community are more likely 

to experience pollutant concentrations that exceed health-based standards, therefore increasing 

the risk of adverse health outcomes. These results support policy needs to reform ambient air 

monitoring approaches that consider localized impacts and changes. Future policy development 

should focus on using a hybrid network of regional and low-cost air monitors to help inform 

locations for additional reference air quality monitoring equipment. The US EPA’s strict siting 

requirements for reference monitors would also need to be reformed to enable reference 

monitoring in additional locations. This could provide insight regarding hyperlocal community 

air quality landscapes as a whole, and be used to drive public health intervention, such as 

biomonitoring studies.   
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Appendix 3A: Co-exposures Rho values for RAMN Network (n=50) 
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Appendix 3B: Exceedances Data 

Appendix 3B.1: Exceedances for PM2.5 and Comparative analysis with data completeness 
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Appendix 3B.2: Exceedances for NO2 and Comparative analysis with data completeness 
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Appendix 3B.3: Exceedances for ozone and Comparative analysis with data completeness 
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Appendix 3B.4: Exceedances for PM2.5 and NO2 and Comparative analysis with data 
completeness 

 

 

 



 

79 
 

 

Appendix 3B.5: Exceedances for PM2.5 and ozone and Comparative analysis with data 
completeness 
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Appendix 3B.6: Exceedances for NO2 and ozone and Comparative analysis with data 
completeness 
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Appendix 3B.7: Exceedances for PM2.5, NO2, and ozone and Comparative analysis with data 
completeness 
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CHAPTER FOUR: Using Air Dispersion Modeling and Health Risk Assessment Methods 

to Evaluate Cumulative Impacts from Pesticides in California  

ABSTRACT 

California is one of the largest agricultural economies in the United States. To maintain 

production and crop yield, California uses pesticides, many of which are toxic, and highly 

volatile, and pose health risks to farmers and local communities. In California, the Department of 

Pesticide Regulation (DPR) is responsible for registering pesticides for sale in California at the 

state level, including restrictions. The County Agricultural Commissioners (CACs) are 

responsible for localized safe use of pesticides by growers. A CAC has the authority to impose 

restrictions and mitigation measures in pesticide permits based on local conditions if the CAC 

determines that pesticide use may harm public health and the environment. One such local 

condition is the use of other pesticides at or near the application site identified in a permit 

application.  

Although multiple pesticides are often applied within a community over the same day or 

week, neither DPR nor the CACs evaluate local community impacts from the resulting 

cumulative exposures. A review of the literature indicates there are multiple challenges to 

establishing tractable cumulative impact assessment methods for cumulative pesticide exposure. 

This chapter proposes applying air dispersion modeling and health risk assessment methods 

currently utilized for air pollution and air toxics to estimate pesticide dispersion and impacts. I 

demonstrate how DPR could use similar methods to estimate statewide impacts of pesticides, 

identifying specific areas of high concern for cumulative exposure. In reviewing permit 

applications relating to such areas, CACs could estimate localized cumulative impacts based on 
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local pesticide use data and , where appropriate, require additional mitigation or risk reduction 

strategies to minimize cumulative impacts. To demonstrate the feasibility of such an approach, I 

focus on 1x1 square mile grid cell in Merced County to perform air dispersion modeling and 

health risk assessment. 

INTRODUCTION  

California is one of the largest agricultural economies in the United States, supplying 

over a third of the country’s vegetables and two-thirds of the country’s fruits and nuts (CDFA - 

Statistics, n.d.). California uses a large number and quantity of pesticides with the goal of 

maintaining production and increasing efficiency of crop yield. In California, there are two 

entities that regulate pesticide registration and use: The California Department of Pesticide 

Regulation (DPR), and County Agricultural Commissioners (CACs). 

Before a pesticide can be sold or used in California, it must undergo a registration process 

through the DPR, the statewide regulatory body responsible for the public health and safety of 

pesticide use. DPR receives applications for pesticide registration, conducts a pre-market 

evaluation of the pesticide, registers the pesticide, and then the pesticide can be used by the 

grower. Before DPR registers a pesticide for use, staff conduct a premarket evaluation of the 

pesticide to determine if it can safely be used, including human health and ecological risk 

assessment for pesticides that present concern. Where necessary to protect human health or the 

environment, DPR may impose risk management requirements on the pesticide including use 

restrictions, buffer zones and worker protection standards. Existing pesticides that are already in 

use are also subject to reevaluation under certain circumstances (DPR, 2017).  
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The role of the CACs is to enforce the laws and regulations of the California Food and 

Agricultural Code (Agricultural Commissioner > Home, n.d.). Among many other roles, the 

CACs are responsible for pesticide use enforcement, with the goal to provide safe use of 

pesticides for the production of food and protection of public health. If a grower would like to 

use a pesticide, they must submit a restricted materials permit to their respective CAC prior to 

use. The CAC must evaluate the proposed restricted material use to decide if application of that 

pesticide has the potential to cause harm to public health or the environment. Permits, which are 

typically issued at the beginning of the year, do not specify timing of use and are active for one 

year. When the grower is ready to apply the permitted pesticide, the grower will submit a notice 

of intent (NOI) to the CAC prior to application of the pesticide in the field (Malloy et al., 2017). 

The NOI must include the location, address of the applicator, crop, acres to be treated, the 

method of application, what pesticides will be applied, application rate, date/time of intended 

application, and identify neighboring properties (e.g., schools, houses, water sources) and who 

could be adversely impacted by the application (Santa Cruz County Agricultural Commissioner, 

2015). The NOI gives the CACs another chance to review the proposed pesticide and provide 

additional restrictions. County staff can also do pre-site inspections to make sure the information 

is accurate (DPR, n.d.-b). Figure 4.1 provides a visual representation of the relationship between 

DPR and the CACs. 

Many pesticides used are toxic, and highly volatile, posing a health risk to workers 

applying the pesticides, nearby residents, and local communities. Cumulative exposures can 

occur in multiple ways: (1) exposure to both the pesticide’s active and non-active ingredients, (2) 

pesticides where there are multiple active ingredients, (3) pesticides that are mixed in a tank by 

certified pesticide applicators before they are applied to a field, and (4) pesticide applications 
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that occur close in space and time. This chapter focuses on pesticide applications that are close in 

space and time. Impacts from any mixture of these pesticide exposures may be additive (where 

the effect of two or more chemicals is equal to the sum of each of the agents when it is alone) 

(Christen et al., 2014; Zaunbrecher et al., n.d.), greater than additive (which assumed that the 

health response is greater than is observed when interaction is additive) (Rizzati et al., 2016), and 

independent (where exposure impacts different target sites) (Hernández et al., 2013). A meta-

analysis revealed that 47% of complied studies reported an additive effect between pesticides, 

ultimately leading to adverse health effects to the brain, endocrine, and lymphatic systems 

(Rizzati et al., 2016). One study highlighted from the meta-analysis suggests that certain 

fungicides interact in an additive-fashion that may disrupt the endocrine system (Christen et al., 

2014). Another study explored the combination of herbicides impacting the lymphatic system 

(Demsia et al., 2007). A literature review studying the toxicological evidence of interactions 

between multiple pesticides suggests that a number of commonly combined pesticides have been 

found to elicit greater than additive effects (Rizzati et al., 2016). A literature review by 

Hernandez et. al. compiled and reviewed research focusing on toxicological interactions in 

pesticide mixtures. Their research reported several examples of adverse health effects attributed 

to multiple insecticide exposure, such as the more than additive effects between two commonly 

applied pesticides, malathion and pyrethroids, neurotoxins that target the acetylcholinesterase 

enzyme responsible for regulating voluntary muscle movement (Hernández et al., 2013). Many 

communities in California continue to bear a disproportionate burden of environmental impacts 

from nearby sources, such as air pollution sources and agricultural sources. These communities 

also experience the additional burden of socioeconomic stressors and health conditions that make 
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them more vulnerable to environmental impacts (August et al., 2021). This chapter focuses on 

the impacts from chemical stressors only. 

 Figure 4.1: The California Pesticide Regulatory Process 

 

Cumulative impact assessment (CIA) is defined as the analysis, characterization, and 

possible quantification of the combined risks to health and the environment from multiple 

chemical agents or stressors (Zaunbrecher et al., n.d.). In most cases across programs and 

countries, regulators do not engage in cumulative risk assessment. Thus, current regulatory risk 

assessment methods do not represent real-world exposure scenarios; humans are continuously 

exposed to contaminants in environmental media such as air, water, and food. To date, the 

United States federal regulators have only recognized and adopted the Common Mechanism 

Group (CMG) method to assess cumulative impacts of pesticides (Zaunbrecher et al., n.d.). The 

CMG method groups two or more chemicals that have been identified to elicit the same toxic 

effect by the same, or similar biochemical events. Other agencies, such as the European Union 
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uses Cumulative Assessment Groups (CAGs) to identify the specific impacts on organ systems, 

hazard characteristics, and selection of index compounds allowable in food residues (Crivellente 

et al., 2019). Canada uses a Tiered Approach to estimate conservative assumptions for exposures 

and hazards to multiple pesticides. Depending on data available, higher tiers require more 

information to make cumulative impact decisions (Moretto et al., 2017).  

At present, neither DPR nor the CACs systematically engage in cumulative risk 

assessment. (Malloy et al., 2017; Zaunbrecher et al., n.d.). A National Academy of Science 

review of DPR practices concluded that it is unclear how DPR is considering cumulative 

impacts, and recommended that DPR stay up to date in current trends of exposure assessment 

(The National Academies Press, 2015). In registering new pesticides, DPR only evaluates risk 

from exposure to the new active ingredient contained in the product. The agency does not 

consider cumulative risks associated with the presence of other previously approved active 

ingredients or inert ingredients. DPR has conducted pesticide monitoring and modeling but has 

not developed consistent guidelines that it or CACs can use to evaluate the use of multiple 

pesticides. DPR has explored using air dispersion modeling as a first step in assessing 

concentrations of one pesticide, not for health risk assessment, and not for regulatory purposes 

(Luo, 2019). At the county level, in approving a restricted materials permit application, the CAC 

does not assess cumulative impacts associated with other pesticides applied by the applicant or 

nearby growers. CACs have limited capacity to effectively evaluate all permits consistently and 

need a simple, effective, and consistent method to evaluate cumulative impacts. 

Cumulative risk assessment methods are inherently complex; they require accounting of 

exposure to multiple environmental stressors, understanding the relationship between the 

stressors, and providing a clear explanation of how they translate into health impacts. In a 
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previous literature review, I identified four challenges with implementing CIA into regulatory 

processes such as registration and permitting. First, there are significant data gaps in 

toxicological and health effects data essential to evaluate pesticide pairings or groups. This is 

often the rationale to explain why cumulative impact assessment is not always feasible. Second, 

technological integration, such as geographic information systems, air dispersion modeling, or 

other computational methods have yet to be widely used to make the cumulative impact 

assessment process more efficient. Third, integration of principles, tools, and methods from 

various disciplines, including public health, epidemiology, predictive toxicology, and data 

science, to address pervasive data gaps and develop of widely accepted cumulative impact 

assessment methods is challenging. Finally, a lack of inclusion of a broad range of stakeholders, 

such as business interests, policy makers, and social groups, may be a major barrier to CIA 

development (C. F. Clark et al., 2003; Meek et al., 2011; Sexton & Linder, 2010, 2011). This 

chapter aims to fill a need from the second data gap/challenge: How can existing technologies be 

leveraged by local and state regulatory agencies to evaluate cumulative risks meaningfully and 

efficiently? 

This chapter focuses on the cumulative impacts the active pesticide ingredients when 

application occurs over close space and time. There are two important pieces to be considered: 

exposure and risk. It is important to note that exposure is modeled rather than measured, since 

this is used to assess the use of pesticides prior to application. The risk from exposure will 

depend on the pesticide applied and the local conditions. Additionally, since the toxicological 

testing of the ambient mixture is not practical, the risk is characterized using existing 

toxicological data regarding the active ingredients of the pesticide mixture.  
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Air dispersion modeling is the gold-standard method for evaluating impacts from air 

pollution. Air dispersion modeling is currently being widely implemented at other local, state, 

and federal agencies to estimate dispersion and concentration of pollutants and is cost-effective 

method that can be leveraged to estimate impacts from multiple pesticides. The South Coast Air 

Quality Management District uses air dispersion modeling to evaluate impacts from toxic air 

contaminants under Rule 1401 (South Coast AQMD, 2017). Air dispersion modeling is being 

implemented at the federal, state, and regional level, and thus is not foreign to pesticide 

regulators for pollution estimation, dispersion, or evaluation. DPR has also used air dispersion 

monitoring tools to estimate pollutant dispersion, but have not implemented this method for 

regulatory requirements (Reiss & Griffin, 2006) According to the State Legislature (Assembly 

Bill 1807, Food & Agricultural Code sections 14021-14027 (DPR, n.d.-c)), pesticides are also 

considered toxic air contaminants, suggesting that existing methods used to evaluate air toxics 

can translate into evaluating pesticide dispersion. Air dispersion modeling would provide 

conservative estimates of pesticides concentrations locally, which can be used to (1) estimate 

health risks from use of multiple pesticides and (2) identify locations where the CAC should 

recommend mitigation.  

The United States Environmental Protection Agency (US EPA) recognizes the American 

Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) as the 

preferred regulatory atmospheric model. AERMOD is a Gaussian steady-state plume model that 

incorporates dispersion based on geographical boundary structure, elevation, and terrain. 

AERMOD can provide both pollutant and non-pollutant specific air concentrations (Tao & 

Vidrio, 2019). Using non-pollutant specific AERMOD model outputs make it desirable for 

modeling pesticides, since the locations are unlikely to change, but the pesticide uses vary by 
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location, season, and crop. The AERMOD output can be post-processed to calculate pollutant-

specific ground level concentrations to decrease model run time and increase efficiency (CARB, 

2015). The US EPA’s Office of Pesticide Programs has used AERMOD to model concentrations 

of individual pesticides in ambient air to estimate human exposure and risk assessment (van 

Wesenbeeck et al., 2019), but has not provided guidance for regulatory implementation at the 

federal, state, or local level. 

Practices and tools used in complying with California’s Toxic Hot Spots program provide 

a model that can be implemented in the pesticide area. To conduct air dispersion modeling and 

health risk assessment for air toxics in California, many air quality experts use the California Air 

Resources Board’s Hot Spots Analysis and Reporting Tool (HARP2), an air dispersion modeling 

and risk assessment tool. HARP2 combines the US EPA’s AERMOD model using non-pollutant 

specific concentrations, and health risk assessment methods into a user-friendly software that 

walks the user (1) estimating non-pollutant specific air dispersion patterns, (2) calculating 

pollutant specific concentrations, and (3) using the pollutant specific concentrations to estimate 

health risk from one or more pollutants. HARP2 uses component-based risk characterization for 

non-carcinogenic pollutants. Component-based risk characterization assumes that chemicals with 

similar mode actions, or have closely related chemical structures, and occur together are 

combined to estimate a risk. This approach is best suited when quantitative information on 

toxicological interactions is available (Choudhury et al., 2000). Although the initial intent for the 

development for HARP2 was to support the Air Toxics Hot Spots Information and Assessment 

Act (1987), HARP2 can also be utilized for preparing risk assessments for other air related 

programs, such as ambient monitoring evaluations, or air toxics control measure development 

(CARB, 2015). The risk assessment methods in HARP2 would satisfy the National Academy of 
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Sciences recommendation for DPR and the CACs to (1) perform quantitative health risk 

assessments and (2) consider the risk of multiple pesticides (The National Academies Press, 

2015).  

My research proposes to (1) provide a framework for the role that DPR and the CACs 

would take to implement air dispersion modeling and risk assessment methods to conduct CIA, 

(2) demonstrate the feasibility of using air dispersion modeling to estimate pesticide dispersion 

by discussing both current practice and literature discussion, and (3) use the modeling results to 

conduct a cumulative health risk assessment using HARP2. To demonstrate the feasibility of 

using existing air dispersion modeling techniques and risk characterization tools for permitting 

decisions by CACs, I use historical pesticide use data from DPR to visualize how this tool could 

work. I demonstrate the capabilities of the tool assuming two pesticides that have been applied 

on the same day within a 1x1 square mile grid.  

This chapter will walk through how to identify communities of concern, estimate 

pesticide use spatially, set up an air dispersion model, use the air dispersion modeling results to 

calculate pesticide-specific ground-level concentrations, and estimate health risks to nearby 

communities.  

METHODS 

Identification of Communities with Multiple Pesticide Use 

The first task is to identify communities of concern. DPR had previously evaluated and 

ranked communities impacted by pesticide use by using geographic information systems (GIS) 

analysis to calculate the amount of each pesticide applied within the community, within one mile 

of the community, and within one to five miles of the community. (For this analysis, DPR used 
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geographic boundaries from the US Census Bureau’s 2015 TIGER/Line Place shapefile.) DPR 

used density in pounds per square mile (lbs/sq mi) determined by the pesticide, year, and zone, 

data from nearest California Irrigation Management Information System to understand wind 

speed, and Environmental Justice (EJ) factors from CalEnviroScreen 2.0 to select and prioritize 

these communities (DPR Identified Community) (DPR Environmental Monitoring Branch, 

2017). I requested the Shapefile for the DPR Identified Communities from staff at DPR, which 

were provided as a GIS file (Figure 4.2). The DPR Identified Communities were used as the 

receptor locations where the air dispersion model would estimate pesticide concentrations 

(Segawa et al., 2014). 

To estimate pesticide use spatially, I obtained data from DPR’s Pesticide Use Reporting 

(PUR) system that allows users to query historical pesticide use data, including the pesticide 

used, the date applied, the pounds applied per day in location only for agricultural use, and the 

user-designated spatial scale. PUR data from 2018 was retrieved at the highest spatial scale 

available by the US Bureau of Land Management: The Public Land Survey System (PLSS) 

sections (from herein referred to as “sections”), a grid of 1x1 square mile sections of land 

(CalPIP DPR, n.d.). For reference, California DPR refers to these as County code, Meridian, 

Township, Range and Section (COMTRS), and this is how the data is spatially identified from 

PUR (DPR, n.d.-a)). PUR data was joined with the section data in GIS to create a map.  
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Figure 4.2: DPR Identified Communities in California 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statewide Air Dispersion Modeling 

There are limited resources on using AERMOD and other air dispersion modeling 

techniques to evaluate pesticide dispersion, concentration, and risk assessment (De Leeuw et al., 

2000; Luo, 2019; van Wesenbeeck et al., 2019). DPR previously evaluated AERMOD to 
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simulate ambient concentrations of a single pesticide by modeling how well air dispersion 

modeling performs in comparison to ambient monitoring stations (Luo, 2019). Other studies 

evaluate models that estimate pesticide exposure, such as the Soil Fumigant Exposure 

Assessment (SOFEA) modeling system, and the AERFUM, integrated air dispersion modeling 

system for soil fumigants (Luo, 2019; van Wesenbeeck et al., 2019). However, these studies 

share several limitations for purposes of my research: a focus on a single pesticide – 1,3-

dichloropropene, failure to address air dispersion modeling on one specific day or time, and lack 

of integration with risk characterization. Furthermore, it is not clear how the studies accounts for 

variable emission rates, used to estimate how much pesticide may be applied during a single day 

(Luo, 2019). Existing studies are helpful to understand how to scale up estimation of pesticide 

concentrations in multiple locations but are limited in providing solutions to model cumulative 

exposures. Research revealed no studies that used multiple pesticide concentrations derived from 

air dispersion modeling as input for risk characterization software. To demonstrate how DPR 

could implement such an approach, I selected one section in Merced County to conduct an air 

dispersion modeling model run and health risk assessment.  

Demonstration of Air Dispersion Modeling Inputs and Outputs 

 Air dispersion modeling estimates how pollutants will disperse and predict concentrations 

at specific locations. The model must include information about the source: (type, size, emissions 

profile), receptors (where the model will estimate pollutant concentrations), meteorological 

information (temperature, relative humidity, wind speed and direction), and terrain (elevation 

will estimate potential dispersion and pollutant deposition) (CARB, 2015). For statewide air 

dispersion modeling, the 1 x 1 square mile sections will be used as the sources in the air 

dispersion model, and the DPR Identified Communities will be used as the receptors. I selected 
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four counties in Central California: Merced, Kings, Fresno, and Kern Counties and filtered 

sections within one mile of a DPR identified community (Figure 4.5) to demonstrate how DPR 

would model pesticide use.  

Sources: One section grid cell was selected and modeled as an area source to estimate 

pesticide emissions (Tao & Vidrio, 2019). To simulate ground field application, I set the release 

height to zero (Tao & Vidrio, 2019). To account for the fact that pesticides are applied over a 

shorter time than continuous emission sources, I used the variable emissions section to estimate 

the months in which these pesticides were applied. Variable emissions allows the model to 

weight when the emissions would occur and estimates dispersion modeling concentrations 

accordingly. The literature is not consistent on how to most effectively model dispersion for a 

single day. Based on my professional experience and assessment of air dispersion modeling, I 

used the Hour of Day, Day of Week emission profile. Between 7 AM and 7 PM were used to 

weight any pollutant emissions. Since not all of the pesticide will volatilize, assumptions were 

made to estimate the amount of pesticide emitted. See “Estimated Pesticide Specific 

Concentrations” section below. AERMOD is run at a default emission rate of 1 gram/second of 

emissions.  

Receptors: DPR Identified Communities represent the receptors where pollutant 

concentrations will be calculated. To reduce modeling runtime, sensitive receptor points were 

placed around the perimeter of each receptor community. If the edge of the receptor community 

is impacted by pesticides, and the edge is assumed to be the most vulnerable location of the 

community, it would demonstrate the potential maximum exposure from nearby pesticide use.  
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 AERMOD was run using unit emission rates to estimate non-pollutant specific (herein 

referred to as pesticide specific concentrations). Running a non-pesticide specific model reduces 

modeling run time. All the inputs used for the demonstration can be found in Table 4.1. Pesticide 

specific ground-level concentrations are calculated using the output of the model run, described 

in further detail below. 

Table 4.1: AERMOD Inputs 

AERMOD 
Pathway Inputs 

Pathway Input Input Explanation 

Project 
Information 

Facility/Project 
Origin  

Coordinates 
representing 
centroid of 
sections 

Set the center of the Modeling 
Domain 

Control Pathway Dispersion Options Regulatory 
Default Options 

Regulatory Default refers to the 
outputs of the model 
(concentration), the averaging 
times (1 hour and annual), as 
applicable to the project. 

Source Pathway 
 

Source Type AREAPOLY Area sources are used to model 
pollutant emissions that occur 
over an area(Cobbs & Mountain, 
2020). 

Polygon Vertices  Four corners of 
the sections 

Define the size of the area source 

Non-pollutant 
Specific Unit Rate 
Emission Factor 

4.01E-07 
g/s*m^2 

Pollutant emission rate divided by 
the area of the AREAPOLY 
source to calculate the emissions 
over the area(OEHHA, 2015a). 

Variable Emission 
Rates 

Emissions were 
weighted to 
only occur on 
one day of the 
week (e.g., 
Saturday). 

Emission rates can vary by 
month, hour of day, and day of 
the week. Currently, there is no 
way to designate a specific day of 
the year. This Variable Emission 
was used to estimate as close as 
possible to a single day.  

Receptor 
Pathway  

Receptor Types -Cartesian 
Receptor Grid 
-Sensitive 
Receptor  

The Cartesian Receptor Grid was 
drawn to determine where the 
greatest impacts to the 
community were. The sensitive 
receptors line the perimeter of the 
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AERMOD 
Pathway Inputs 

Pathway Input Input Explanation 

DPR Designated Communities. If 
the concentrations are elevated at 
the perimeter of the community, 
it is assumed that the entire 
community would be impacted  

Meteorology 
Pathway 

Meteorology Data Surface Met 
Data and 
Profile Met 
Data used 

Data used to estimate the 
atmospheric conditions, and layer 
parameters used in the dispersion 
calculations. Atmospheric 
conditions include wind speed, 
wind direction, temperature, and 
cloud cover (CARB, n.d.-a). 
Meteorological data was obtained 
from the San Joaquin Valley Air 
Pollution Control District(San 
Joaquin APCD, n.d.).  

Terrain Options Terrain/AERMAP Digital 
Elevation 
Model (DEM) 
Files for: 
Cressy, 
Atwater, Arena, 
Stevinson, 
Winton, 
Turlock, 
Turlock Lake, 
Monpeller, and 
Denair 

DEM files are used to calculate 
the elevation at the source and 
receptor locations, which will 
impact pollution dispersion. More 
than one DEM was needed to 
cover the entire modeling 
domain. DEM files were obtained 
from the California Air Resources 
Board(CARB, n.d.-b). 

 

Estimating Pesticide Specific Concentrations: To calculate the pesticide specific ground-

level concentrations at each receptor, HARP2 uses the AERMOD Output to calculate and sum 

the concentrations into one file for each pollutant. For example, if two adjacent sections 

impacting the receptors were using the same pollutant, the calculation of pollutant-specific 

ground-level concentrations would be summed to estimate the risk from both of the sections, 

resulting in a single set of data used to estimate risk. Note that in this example at this section 

location, these specific pesticides were not applied at the same time (See Discussion section 
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below). However, for demonstration purposes, the health risk assessment assumes that these 

pesticides were applied on the same day. 

The PUR data, retrieved in pounds per year (lbs/yr), was used to calculate the Max 

Hourly Emission (max lbs/hr). Although pesticides do not have a Max Hourly Emission, HARP2 

uses this calculation to estimate acute impacts (see Discussion section below for 

recommendation how HARP2 can be reformed to include pesticide use specific temporal 

parameters). HARP2 includes pollutant-specific information, such as molecular weight, and 

reference exposure levels. There are four pesticides that are currently co-listed as air toxics in 

HARP2: Acrolein, Methyl Bromide, Pentachlorophenol, and Phosphine. Since these are already 

incorporated into HARP2, Methyl Bromide and Pentachlorophenol were used to demonstrate 

feasibility of estimating risk from more than one pesticide at or near a location. It was assumed 

that both Methyl Bromide and Pentachlorophenol were applied on the same day. 

Total pounds of pesticide applied per day within the sections was used to set the 

emissions rate. To estimate the pesticide emissions, it was assumed that pesticides could be 

applied any time between 7 AM and 7 PM. A conservative estimate was made that the maximum 

amount of pesticide emitted in one hour was the total pounds of pesticide applied in a day 

divided by 12 hours (7 AM and 7PM). This value was used to estimate acute exposure and short-

term emission rates. Table 4.2 includes the pounds of Methyl Bromide and Pentachlorophenol 

applied in a specific day.  

Table 4.2: Pounds of Pesticide Applied and Assumed provided from DPR PUR 

Pesticide/Pollutant PUR (lbs/day) 
Maximum Hourly Emissions 

(lbs/hr) 
Methyl Bromide 15,008.1 1, 250.7 
Pentachlorophenol 0.0634 0.00528 
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Health Risk Assessment  

To estimate potential non-cancer health impacts from short-term, one-hour peak 

exposures to pollutants inhalation at a specific receptor, the Hazard Index Approach is 

incorporated into HARP2. The health impact calculation for a single substance is called the 

Hazard Quotient (HQ). Acute Reference Exposure Levels (RELs) are defined as acceptable 

exposure that is not likely to cause adverse health outcomes in human populations (OEHHA, 

2015b). The Acute HQ is calculated by dividing the concentration of the pesticide at the receptor 

by the REL. If the HQ is greater than 1, the probability of adverse human health impacts 

increases (OEHHA, 2015a). Because pesticides are applied over a short amount of time, using 

the acute hazard index calculation is the best estimate to assess exposure using HARP2. See 

Discussion section for recommendations to adapt this tool to assess pesticide use.  

𝐴𝑐𝑢𝑡𝑒	𝐻𝑄!"#$%&%'" =
1	𝐻𝑜𝑢𝑟	𝑀𝑎𝑥	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	 4𝜇𝑔𝑚(8

𝐴𝑐𝑢𝑡𝑒	𝑅𝐸𝐿	 4𝜇𝑔𝑚(8
 

To estimate the health risks from multiple pesticides, the HQs for all target organs are 

summed to calculate the Hazard Index (HI). For acute exposure, HARP2 only estimates health 

risk from inhalation to the respiratory pathway. The HQ for Methyl Bromide and 

Pentachlorophenol were summed to estimate the HI.  

𝐻𝑎𝑧𝑎𝑟𝑑	𝐼𝑛𝑑𝑒𝑥 = 𝐻𝑄)"$*+,	./01%'" + 𝐻𝑄!"2$3&*,0/04*"20, 
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RESULTS 

Results of this chapter visualize the issue with multiple pesticide use. I use 2018 

historical PUR data to show the location and prevalence of multiple pesticide uses, and the 

frequency in which it occurred in Merced County. I also visualize the air dispersion modeling 

results, and how the results are used to estimate risk to nearby communities.  

Visualization of Multiple Pesticide Uses within Merced County 

Figure 4.3 shows the locations adjacent or overlapping communities where at least two 

pesticides were applied on the same day in Merced County, California. Figure 4.4 shows section 

locations and the frequency of days where two or more pesticides were applied on the same day.  

Figure 4.3: Sections in Merced County with two or more pesticides applied on the same day in 
2018. 
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Figure 4.4: Frequency of days where two or more pesticides were applied in the same sections 
on the same day in 2018. 

 

Air Dispersion Modeling Results  

Figure 4.5 shows non-pesticide specific concentration estimates of dispersion and 

community impact from pesticide use, demonstrating that the highest estimated pesticide 

concentrations will overlap with a DPR designated community. Figures 4.6a and 4.6b show the 

maximum 1-hour pollutant-specific ground-level concentrations for Methyl Bromide and 

Pentachlorophenol, respectively from the single section. The highest concentration estimates 

(shown in Red and Orange) impact the nearby DPR Designated Community of Ballaco (to the 

northwest of the section).  
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Figure 4.5: Non-pesticide specific dispersion estimates 
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Figure 4.6: Maximum 1-hour ground level concentration estimates of (a) Methyl Bromide and 
(b) Pentachlorophenol. 
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Health Risk Assessment Results  

Figure 4.7 shows the Hazard Index risk to communities adjacent to the section. The 

numbers represent Acute HI’s. Both adjacent communities estimate Acute HIs at 10, which is 10 

times higher than the OEHHA recommended HI threshold of 1 (OEHHA, 2015a). Since the REL 

is the concentration at which populations are not expected to see adverse health outcomes, a, HI 

of 10 means that the concentration exceeds this “safe” level and may expose community 

members to higher pesticide concentrations. These results suggest that even the use of two 

pesticides in a single day significantly exceeds health risk reduction values.  

Figure 4.7: Acute Maximum Hazard Index. HI greater than 1 suggests a significant impact on 
the community from pesticide use. 
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DISCUSSION 

This chapter demonstrates how available modeling tools could be repurposed to meet 

DPR and CACs needs. The results showing elevated acute risk above the OEHHA recommended 

threshold justify the need for CIA methods that CACs can use when evaluating NOIs. This 

approach takes resource constraints and institutional competence into account to create a first-

generation CIA approach which can be further developed by the regulatory agencies as 

experience, technology and resources grow. 

To conduct such an approach state and local level, DPR could use its air dispersion 

modeling experience to run AERMOD to model default non-pesticide specific exposures from 

pesticides from sources nearby to vulnerable communities. DPR would use the default 1 

gram/second emission rate to generate non-pesticide specific concentrations from the relevant 

sections. DPR would provide a map of the model outputs: visualizing 1 x 1 square mile areas 

where pesticides would be applied and the estimated impacts to adjacent DPR identified 

communities. Figure 4.8 shows all of the sections within one mile of a DPR identified 

community and Figure 4.6 shows the non-pesticide specific concentrations that would be 

modeled for each section.  
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Figure 4.8: Sections within one mile of DPR Designated Communities in Merced, Kings, Kern, 
and Fresno counties. A visual representation of the area that DPR would conduct non-pesticide 
specific dispersion modeling.  

 

The CACs would then insert pesticide specific use data from the NOI to generate 

pesticide specific concentrations and use this visualization tool to identify where new pollutants 

plan to be used. Instead of using historic pesticide data, as was used in the demonstration, the 

NOIs include pesticide use within the area, what quantity be applied over a day or week, and at 

what location. Multiple NOIs would provide insight to the different pesticides applied over 

adjacent spatial areas. The CACs would enter pesticide uses in lbs/day to calculate pollutant-

specific ground-level concentrations (CARB, 2015). Using the built-in risk characterization tool, 

CACs would use ground-level concentrations to calculate risk from multiple pesticides. If the 

risk exceeds the Hazard Index/Hazard Quotient values determined by OEHHA, CACs would be 

responsible for requesting mitigation from the grower, and/or consulting with DPR as needed on 
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how to proceed. The CAC is required to determine if “a substantial adverse environmental 

impact may result from the use of such pesticides” and have the authority to deny applications or 

issue conditional approvals with required mitigation measures. The CACs can use this method to 

make data-driven decisions reduce the risk to localized communities, such as mitigation. 

Mitigation measures can include: buffer zones, use limits, personal protective equipment, or 

potential alternatives to use of that pesticide (Malloy et al., 2017).  

For future NOIs, CACs can quickly use this to visualize where multiple pesticides are 

already being used, and areas where pesticide use may have already. The CACs can identify 

instances where cumulative exposures to pesticides are already happening, and effectively assist 

them in making more informed decisions in advance of issuing NOIs (Malloy et al., 2017). This 

method acknowledges the capacity challenges CACs experience and provides them a consistent 

way to evaluate all NOIs. 

Implementing this method would require training and a dedicated team of air dispersion 

modeling experts at the state level. Conducting air dispersion modeling at this level requires 

expertise, time, and resources. While DPR would have access to many of these resources through 

other California state agencies, it would still require an investment to implement this process. 

One way to offset these costs would be to levy an additional expense on the pesticide companies 

or farmers/growers who would be submitting permits for their use. These costs would be used to 

establish and implement a program like this at the state level.  

In addition to DPR expertise and resources, HARP2 would need to be significantly 

revised to account for the challenges and limitations discussed. HARP2 is designed for use for 

continuously emitting sources. Because pesticides are applied only during a specific period of 
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time, HARP2 would have to be updated to account for pesticide application characteristics. For 

example, HARP2 should include a temporal scale that estimates 24-hour acute exposures or 

chronic exposures. Beyond methyl bromide and pentachlorophenol, HARP2 does not include 

other pesticides or their characteristics, such as chemical properties, and RELs. HARP2 would 

have to include all registered pesticide specific health reference exposure levels. To support this 

effort, DPR has published Health Screening Levels and Regulatory Targets for certain pesticides 

(see Table 4.3 below) (DPR Environmental Monitoring Branch, 2017). Screening levels could be 

used to calculate reference exposure levels that can then be input into a revised HARP2.  

Further research is needed to formalize AERMOD inputs for pesticide air dispersion 

modeling. There is still limited research on using AERMOD to estimate pesticide concentrations 

on a large spatial scale. To use existing air dispersion modeling techniques, I used my 

professional judgment to make assumptions about pesticide air emissions. For example, to 

calculate the maximum 1-hour pesticide emissions, I divided the daily amount of pesticides (in 

lbs/day) by the 12 hours during which pesticides were assumed to be applied. This is a both a 

conservative, and non-conservative estimate: it is conservative in that it assumes that the 

maximum amount of pesticide “emitted” in a single hour would impact the community but is not 

conservative in that it does not account for all exposure pathways, such as soil and water, and it 

does not estimate the risk after acute exposure. This further supports the need to revise HARP2 

to factor other exposure pathways for acute impacts from pesticides. To best assess short term 

pesticide use, only the Maximum 1-hour pesticide concentration was used to evaluate impacts. 

This does not conservatively estimate pesticide impacts that occur at 24-, 48- or 72 hours after 

application.  
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Table 4.3: DPR Health Screening Levels and Regulatory Targets for a Subset of Registered 
Pesticides (DPR Environmental Monitoring Branch, 2017) 
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There are limitations to using air dispersion modeling techniques to estimate dispersion 

of pesticides. This paper makes assumptions that pesticides are applied over a 1x1 square mile 

grid area, when the application is often times more granular than this. Additionally, this proposed 

method highlights the uncertainty in variable emission rates that can be used to estimate pesticide 

concentrations on the same day. It is challenging to estimate variable emissions – previous work 

has found unique ways to estimate short term and annual concentrations to pesticides (Costanzini 

et al., 2018; Tao & Vidrio, 2019; Teggi et al., 2018). Since this study focuses on cumulative 

exposures, it is imperative that the pesticide uses be modeled within a short amount of time 

between applications. Furthermore, air dispersion modeling does not address deposition, or 

exposures after initial dispersion. The dispersion of the chemical emitted is evaluated as an inert 

compound and does not model any reactions that may occur in the atmosphere or following 

deposition (OEHHA, 2015a). 

Finally, there are uncertainties of the environmental conditions during and after pesticide 

application. This method does not account for further volatility after application (Luo, 2019). 

Further research needs to be done on the downstream effects of pesticide use that may occur 

away from where humans would be exposed, as this is beyond the scope of this dissertation 

chapter. 

The intent of this chapter was to demonstrate that existing methods and tools can be 

harnessed to address cumulative risk. The approach is relatively simple and utilizes expertise 

from state agencies that DPR would have access to. Despite the fact that the method presented in 

this chapter relies on a set of assumptions, it is a transparent and meaningful approach that can be 

implemented now to protect public health and the environment as more refined tools and 

methods are developed and implemented at the regulatory level.  
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Appendix 4A: CIA Literature Review 

Appendix 4A.1: CIA Literature Review 

 

Article Title Author(s) Risk Assessment Method/Goal/Question Method/Framework/ 
Tool/Database

Short 
Description

Advantages Disadvantages (gaps, etc.) Next Steps

Chemical Risk Assessment: 
Traditional vs Public Health 
Perspectives

Maureen R. Gwinn 
PhD, Daniel A. Axelrad 
MPP, Tina Bahadori 
ScD, David Bussard BA, 
Wayne E. Cascio MD, 
Kacee Deener MPH, 
David Dix PhD, Russell 
S. Thomas PhD, Robert 
J. Kavlock PhD, and 
Thomas A. Burke PhD, 
MPH

Health Impact 
Assessment

Systems 
approach, 
integrating 
data sources 
and
analytic 
methods, and 
considers
input from 
stakeholders 
to determine 

 -organize various data
streams that can influence our 
understanding of a health effect
-inform potential multiple 
contributors to adverse health 
outcomes 
-provide recommendations to 
decision-makers
for monitoring and managing these 
outcomes.

 -incorporating these approaches, 
which are typically used in 
epidemiology, to animal and 
advanced toxicity testing data can 
be challenging
-Requires training on how to 
communicating risk in a way that 
acknowledges the influence of 
nonregulated factors.

Any single health outcome 
may be influenced by multiple 
factors beyond chemical 
exposures, such as nutrition, 
genetics, and social stressors. 
Because those
factors are not regulated, it is 
important for environmental
regulatory agencies to 
understand what fraction of 
the

Racial/Ethnic Disparities in 
Cumulative Environmental 
Health Impacts in California: 
Evidence From a Statewide 
Environmental Justice 
Screening Tool 
(CalEnviroScreen 1.1)

Lara Cushing, MPH, 
MA, John Faust, PhD, 
Laura Meehan August, 
MPH, Rose Cendak, 
MS, Walker Wieland, 
BA, and George 
Alexeeff, PhD

Methods are used to better reflect the 
cumulative impacts of environmental 
exposures and population vulnerabilities
and provide assessments that can support 
the incorporation of equity and 
environmental justice goals into 
policymaking.

CalEnviroScreen  - A screening 
tool that 
considers both
pollution 
burden and 
population 
vulnerability 
in assessing 
the potential 
for cumulative
impacts across 
California zip 
codes. It was

The tool  identifies communities that 
warrant
further attention and can help 
policymakers and
decision makers prioritize their 
activities to
the benefit of communities 
disproportionately
burdened by multiple environmental 
health
hazards

 -The tool does not quantify the 
probability of harm or health risk.
–The tool does not utilize local 
data, since it is a statewide tool. S6

 -Improve methods for 
addressing the sensitivity of 
environmental justice 
screening tools to the 
geographic unit of analysis; 
inform the approach to 
relative scoring, including the 
way variables are 
standardized, weighted, and 
combined; and, most 
importantly, identify specific 
ways that cumulative impact 
assessment can be most 

Tools and perspectives for 
assessing chemical mixtures 
and multiple stressors

Hans Løkkea,∗, Ad M.J. 
Ragasb,c,1,2, Martin 
Holmstrupa,

EU NoMiracle Mixture Experiments to 
explore Concentration 
Addition and 
Independent Action

Explore the 
application of 
two predictive 
models: 
concentration 
addition and 
independent 

Data from these models can be used 
to assess the probability that the two 
reference models fail to correctly 
describe the joint effects of chemicals, 
which is relevant information for risk 
assessors

Practically infeasible to test all 
mixture combinations. 
-Dose–response relationship of a 
certain combination is likely to 
depend on the dose ratios.

Tools and perspectives for 
assessing chemical mixtures 
and multiple stressors

Hans Løkkea,∗, Ad M.J. 
Ragasb,c,1,2, Martin 
Holmstrupa,

EU NoMiracle The Receptor Oriented 
Approach

This approach 
focuses on the 
receptor as an 
integrator of 
exposure and 
effects over 
space and 
time. 

Two 
Approaches 
for 
Description of 
Activity 
Patterns
1. Descriptive 
Approach -- 
data about 
activity 

Description Approach Advantage: 
simulates realistic activity and 
movement patterns and preserves 
correlations of different activities

Predictive Approach Advantages: 
large explanatory power of these 
models ,the activity pattern is an 
emergent property that depends on 
the characteristics of the rceptor, 
environment, and behavior rules

Description Approach 
Disadvantage: the exposure 
predictions only apply to the 
conditons reflected in the 
database and does not account for 
changes that may inflence the 
activity patterns such as the 
introduction of a new transport 
system or new food product on 
the market

Predictive Approach 
Disadvantages: the accuracy of the 
predictions strongly depends on 
the quality of the behavioral rules 
which rarely have been validated

Challenges include 
1. exploration of the impact of 

Wild life behavioral models 
can be a source of inspiration 
for human models when it 
comes to simulation of 
emergent activity patterns.
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Article Title Author(s) Risk Assessment Method/Goal/Question Method/Framework/ 
Tool/Database

Short 
Description

Advantages Disadvantages (gaps, etc.) Next Steps

International experience in 
addressing combined 
exposures: Increasing the 
efficiency of assessment.

M.E. (Bette) Meek∗ Updates to the WHO/IPCS Methodology 
(above)

Following 
publication of 
the WHO 
Framework, 
an 
international 
workshop was 
convened by 
WHO, the 
Organization 
for Economic 
hazardCoopera
tion and 

Review Article: Cumulative 
Risk Assessment Toolbox: 
Methods and Approaches for 
the Practitioner

Margaret M. 
MacDonell,1Lynne A. 
Haroun,2Linda K. 
Teuschler,3Glenn E. 
Rice,3Richard C. 
Hertzberg,4James P. 

PESTAN, Pesticide 
Analytical Model

A dose zone 
modeling of 
the transport 
of 
organicpestici
des. Models 

Location- and time-specific 
predictions for single
chemicals can be overlain for CRA 
groupings.

It does not predict interactions in 
environmental media.

Review Article: Cumulative 
Risk Assessment Toolbox: 
Methods and Approaches for 
the Practitioner

Margaret M. 
MacDonell,1Lynne A. 
Haroun,2Linda K. 
Teuschler,3Glenn E. 
Rice,3Richard C. 

STF, Soil Transport and 
Fate Database

Provides data 
on the 
behavior of 
organic/some 
inorganic 

This general-use tool can be used to
evaluate the physicochemical
properties of environmental
contaminants for CRAs.

The focus is
one chemical at a time; 
interactions are
not addressed.

Review Article: Cumulative 
Risk Assessment Toolbox: 
Methods and Approaches for 
the Practitioner

Margaret M. 
MacDonell,1Lynne A. 
Haroun,2Linda K. 
Teuschler,3Glenn E. 
Rice,3Richard C. 
Hertzberg,4James P. 
Butler,1Young-Soo 
Chang,1Shanna L. 
Clark,5Alan P. 
Johns,6Camarie S. 
Perry,7Shannon S. 
Garcia,8John H. 
Jacobi,1and 
Marcienne A. 
Scofield17

Exposure Factors 
Handbook

Provides 
extensive 
values and 
underlying 
bases for many 
factors that 
affect 
exposures.Exa
mples include 
exposure 
duration,frequ
ency, surface 
area, 
inhalation 
rate 
peractivity 
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Article Title Author(s) Risk Assessment Method/Goal/Question Method/Framework/ 
Tool/Database

Short 
Description

Advantages Disadvantages (gaps, etc.) Next Steps

Review Article: Cumulative 
Risk Assessment Toolbox: 
Methods and Approaches for 
the Practitioner

Margaret M. 
MacDonell,1Lynne A. 
Haroun,2Linda K. 
Teuschler,3Glenn E. 
Rice,3Richard C. 
Hertzberg,4James P. 
Butler,1Young-Soo 
Chang,1Shanna L. 
Clark,5Alan P. 
Johns,6Camarie S. 
Perry,7Shannon S. 
Garcia,8John H. 
Jacobi,1and 
Marcienne A. 
Scofield19

E-FAST, Exposure and 
Fate Assessment 
Screening Tool
(EPA)

Provides 
screening-
level estimates 
for general 
population, 
consumer, 
and 
environmental 
 exposures to 
concentration
s  of chemicals 
released to air, 
surface water, 
and landfills 
and released 
from 

Default exposure parameters are 
available, but the use of site-specific 
values is recommended. Can predict 
exposure concentrations for 
comparison to media-specific 
standards.

*possibly adaptable to 
pesticides

Review Article: Cumulative 
Risk Assessment Toolbox: 
Methods and Approaches for 
the Practitioner

Margaret M. 
MacDonell,1Lynne A. 
Haroun,2Linda K. 
Teuschler,3Glenn E. 
Rice,3Richard C. 
Hertzberg,4James P. 
Butler,1Young-Soo 
Chang,1Shanna L. 
Clark,5Alan P. 
Johns,6Camarie S. 
Perry,7Shannon S. 
Garcia,8John H. 
Jacobi,1and 
Marcienne A. 
Scofield23

Pesticides: Health and 
Safety, Common 
MechanismGroups; 
Cumulative Exposure 
and Risk Assessment;

Identifies 
health 
information 
to assess 
pesticide 
groups that 
share 
common 
mechanisms 
of toxicaction, 
with links for 
quantitative 
approaches(e.g
., RPF values) 
and 
qualitative 

Can be used to assess indexchemical-
equivalent doses and risksassociated 
with specific pesticide groupsthat 
share a common toxic mode ofaction.

Cumulative Risk Assessment 
(CRA): Transforming the Way 
We Assess Health Risks

Pamela  R.  D.  
Williams,*G.  Scott  
Dotson, and  Andrew  
Maier

US EPA Cumulative Risk Assessment Method limitation of screening-level risk 
assessments that rely on the 
default assumption of additivity of 
dose or risk for mixed stress or 
exposure, because in reality, 
interactions that increase the 
risk(i.e., synergism) or decrease the 
risk (i.e., antagonism) are possible

CRAs should follow a tiered 
approach, in which more 
refined data and sophisticated 
techniques are invoked only 
when simpler health-
protective methods and 
assumptions indicate a 
concern or impact decision-
making

For higher-tiered assessments, 
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Article Title Author(s) Risk Assessment Method/Goal/Question Method/Framework/ 
Tool/Database

Short 
Description

Advantages Disadvantages (gaps, etc.) Next Steps

Cumulative Risk Assessment 
(CRA): Transforming the Way 
We Assess Health Risks

Pamela  R.  D.  
Williams,*G.  Scott  
Dotson, and  Andrew  
Maier

US EPA Cumulative Risk Assessment Method Mixture-Based 
Approach

Combining 
the effects of 
chemicals in 
the same 
toxicological 
class based on 
the potencyof 
an index 

1. identifying relevant risk 
modifying factors and 
common effects, 2. 
integrating nonoccupational 
and occupational exposures 
and 3. developing and 
implementing a cohesive 
common metric or framework The Environmental 

Protection Agency's 
Community-Focused 
Exposure and Risk Screening 
Tool (C-FERST) and Its 
Potential Use for 
Environmental Justice Efforts

Valerie G. Zartarian, 
PhD, Bradley D. 
Schultz, MS, Timothy 
M. Barzyk, PhD, 
MaryBeth Smuts, PhD, 
Davyda M. Hammond, 
PhD,
Myriam Medina-Vera, 
PhD, and Andrew M. 
Geller, PhD

Provide to communities and individuals 
tools for advancing the science and 
understanding cumulative risk

US EPAs Community-
Focused Exposure and 
Risk Screening Tool (C-
FERST)

 -It 
incorporates 
what is known 
about high-
priority 
environmental 
 issues, 
provides a 
venue for 
communicatin
g cutting-edge 
science and 
solutions to 
communities, 
and helps to 
identify 
knowledge 
gaps. 
-The C-FERST is 
a geographic 
information
system and 
resource 
access Web 
tool that
supports 
multimedia 
community-

 -C-FERST could provide information 
for
assessments of cumulative impact
-C-FERST links to and builds on other 
community-focused tools, and it 
provides science approaches to 
charaterizing community exposures 
to environmental contaminants that 
lead to cumulative risks 
-Where cumulative research is not yet 
available, C-FERST will contain the 
best available
information and science on 
environmental
sources, concentrations, exposures, 
and risks
for individual issues of concern
-  it is an umbrella tool that organizes
EPA information and science by 
linking to,
building on, or including these other 
tools to
assist with conducting community 
environmental assessments (including 
within-the-interface
‘‘cross-walks’’ with available step-by-
step community assessment guidance
- a human exposure and

Assessing health risks from 
multiple sources
is challenging on the basis of the 
level of
information available and 
difficulties in accessing, 
integrating, and interpreting data

 -EPA scientists are working
on additional research that 
can populate C-FERST: 
developing a new census-tract 
level, multimedia childhood 
lead exposure screening tool; 
expanding previous 
research21 to generate local-
scale estimates for  residential 
pesticide 
-Information for community 
and environmental justice 
assessments on many issues is 
still
considerably lacking
**To fully develop C-FERST to 
inform EJ assessments, 
researchers need to
- research and disseminate 
cumulative
risk approaches and 
nonchemical stressors’
impacts on environmental 
stressors for vulnerable 
populations;
- research approaches for 
fostering sustainable
improvements to Cumulative Risk Assessment 

for Combined Health Effects 
from Chemical and 
Nonchemical Stressors

Ken Sexton ScD, and 
Stephen H. Linder, PhD

How to prioritize integrating existing data to 
evaluate health risks from chemical mixtures

2006 US EPA Guidelines 
for Evaluating Health 
Risks from Chemical 
Mixtures

First Priority: 
use evidence 
for the 
mixture of 
concern when 
it existed
Second 
Priority: Use 
information 
about a 
similar 



 

115 
 

 

Article Title Author(s) Risk Assessment Method/Goal/Question Method/Framework/ 
Tool/Database

Short 
Description

Advantages Disadvantages (gaps, etc.) Next Steps

Cumulative Risk Assessment 
for Combined Health Effects 
from Chemical and 
Nonchemical Stressors

Ken Sexton ScD, and 
Stephen H. Linder, PhD

Interactive Hazard 
Index Approach (most 
extensive data 
necessary)

Modifies the 
hazard index 
based on a 
specified 
function to 
describe 
empirical data 
for the 
combined 

Cumulative Risk Assessment 
for Combined Health Effects 
from Chemical and 
Nonchemical Stressors

Ken Sexton ScD, and 
Stephen H. Linder, PhD

Toxicity equivalency 
factor (TEF) approach 
(moderate data 
requirements)

Sums the 
toxicity of the 
individual 
mixture 
components Cumulative Risk Assessment 

for Combined Health Effects 
from Chemical and 
Nonchemical Stressors

Ken Sexton ScD, and 
Stephen H. Linder, PhD

Margin of exposure 
(MOE) approach  
(moderate data 
requirements)

uses toxicity 
equivalency 
factors to 
calculate the 
margin Cumulative Risk Assessment 

for Combined Health Effects 
from Chemical and 
Nonchemical Stressors

Ken Sexton ScD, and 
Stephen H. Linder, PhD

HI approach using 
NOAEL or BMD; 

Assumes 
additivity of 
effects for 
mixture 
constituents. 
NOAELs and 
BMDs used for 
comparison 

Cumulative Risk Assessment 
for Combined Health Effects 
from Chemical and 
Nonchemical Stressors

Ken Sexton ScD, and 
Stephen H. Linder, PhD

HI approach using RfD 
or RfC (RfC=reference 
concentration; 
RfD=reference dose;)

Assumes 
additivity of 
effects for 
mixture 
constituents.

 Simplest approach with least 
resource requirements, 

 -Depends on scientific judgment 
to translate NOAELs or LOAELs into 
RfDs or RfCs. 
-Not a true quantitative risk 
assessment, just a single 
comparison value that obscures 
scientific judgments about 
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Cumulative Risk Assessment 
for Combined Health Effects 
from Chemical and 
Nonchemical Stressors

Ken Sexton ScD, and 
Stephen H. Linder, PhD

US EPAs Community-
Focused Exposure and 
Risk Screening Tool (C-
FERST)

The EPA’s C-
FERST is a web-
based 
tool––with 
links to 
existing EPA 
information 
and 
techniques––t
hat is being 
developed or 
use by 
communities 
in identifying 
and 
prioritizing 
combined 
risks from 
chemical and 
non-chemical 

C-FERST offers legitimate promise as 
an accessible, transparent, and 
practical assessment tool for use by 
members of affected communities.

A workable system for assessing the 
severity of cumulative health risks in 
complicated, real-world situations 

It necessarily requires assumptions 
to sustain it

Cumulative Risk Assessment 
for Combined Health Effects 
from Chemical and 
Nonchemical Stressors

Ken Sexton ScD, and 
Stephen H. Linder, PhD

US EPAs Office of 
Enforcement and 
Compliance Assistance: 
Environmental Justice 
Strategic Enforcement 
Screening Tool (EJSEAT)

The EJSEAT is 
intended to 
provide 
consistent 
identification 
of geographic 
areas with 
disproportion
ately higher 
burdens of 
harmful 
environmental 
 features.It is 
composed of 
18 indicator 
variables 
divided into 
four 
categories: 
environmental

Recommend a coordinated 
research effort on targeted 
populations including 
laboratory field research 
aimed at 1. elucidating the 
magnitude, duration, 
frequency and timing of 
relevant exposures
2. determining whether 
mixture-related health effects 
are additive, antagonistic, or 
synergistic
3. explicating important 
interactive mechanisms of 
toxicity among mixtures of 
components



 

117 
 

 

Article Title Author(s) Risk Assessment Method/Goal/Question Method/Framework/ 
Tool/Database

Short 
Description
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Risk assessment of combined 
exposure to multiple 
chemicals: A WHO/IPCS 
framework

M.E. (Bette) Meeka, 
Alan R. Boobisb, Kevin 
M. Croftonc, Gerhard 
Heinemeyerd, Marcel 
Van Raaije,Carolyn 
Vickers

Tier Phase Approach
*Tier 1: summation of deterministic 
estimates of exposure for all components of 
the assessment group based on measured or 
modeled data, or both may suffice as a basis 
for comparison 
*Tier 2: refined with incorporation of 
increasing numbers of measured values. 
Definition of assessment group refined 
through considering more specific 
information on mode of action or modeling
○ Tier 3: exposure estimates are probabilistic 
in nature
§ Account for distributions of exposure 
factors or exposure data
§ Often include multiple-source pollutants
§ Includes more refined information on 
mode of action, including both kinetic and 
dynamic aspects
Physiologically based and biologically based 
dose response

Additional Information
• Include terminology to describe various 
aspects of exposure
○ Single chemical all routes-exposure to 
same substance by multiple pathways = 
aggregate exposure

Combined Exposure 
Assessment (Tiers)

• Questions to 
ask:
○ What is the 
nature of 
exposure
○ Is there a 
likelihood of 
co-exposure 
within a 
relevant 
timeframe
§ Do the 
compounds 
have short 
half-lives or 
effects of short 
duration
§ Is the time 
between 
initial and 
subsequent 
exposure
○ What is the 
rationale for 
considering 
compounds in 
an assessment 
group

***a variety of additional case 
studies would further illustrate, 
test, and develop the framework 
which is expected to evolve

***lack of regulatory requirement 
to consider combined exposure, 
or to a lack of their publication, 
need for advancement in this area 
is emphasized by stakeholders

Risk assessment of combined 
exposure to multiple 
chemicals: A WHO/IPCS 
framework

M.E. (Bette) Meeka, 
Alan R. Boobisb, Kevin 
M. Croftonc, Gerhard 
Heinemeyerd, Marcel 
Van Raaije,Carolyn 
Vickers

Tier Phase Approach Tier 0: Exposure 
Assessment

When margins 
between 
conservative 
estimates of 
exposure and 
points of 
department 

Semiquantitative estimates may be 
additionally refined through 
inclusion of information on 
physicochemical properties (e.g., 
information on vapor pressure 
provides an indication of whether or 
not particular uses are likely to lead to Risk assessment of combined 

exposure to multiple 
chemicals: A WHO/IPCS 
framework

M.E. (Bette) Meeka, 
Alan R. Boobisb, Kevin 
M. Croftonc, Gerhard 
Heinemeyerd, Marcel 
Van Raaije,Carolyn 
Vickers

Tier Phase Approach Tier 0:Hazard 
Assessment

As a 
conservative 
early 
assumption, 
based on an 
indication 
that 
components 
of an 
assessment 
group should 



 

118 
 

 

Article Title Author(s) Risk Assessment Method/Goal/Question Method/Framework/ 
Tool/Database
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Risk assessment of combined 
exposure to multiple 
chemicals: A WHO/IPCS 
framework

M.E. (Bette) Meeka, 
Alan R. Boobisb, Kevin 
M. Croftonc, Gerhard 
Heinemeyerd, Marcel 
Van Raaije,Carolyn 
Vickers

Tier Phase Approach Tier 0: Risk 
Characterization

 -Incorporate 
the individual 
health-based 
guidance 
values (e.g., 
reference 
dose, 
allowable 
operator 
exposure 
level, 
acceptable 
daily intake, Risk assessment of combined 

exposure to multiple 
chemicals: A WHO/IPCS 
framework

M.E. (Bette) Meeka, 
Alan R. Boobisb, Kevin 
M. Croftonc, Gerhard 
Heinemeyerd, Marcel 
Van Raaije,Carolyn 
Vickers

Tier Phase Approach Tier 1: Exposure 
Assessment

For a Tier 1 
assessment, 
summation of 
deterministic 
estimates of 
exposure for 
all 
components 
of the 
assessment 
group based 
unmeasured 

Risk assessment of combined 
exposure to multiple 
chemicals: A WHO/IPCS 
framework

M.E. (Bette) Meeka, 
Alan R. Boobisb, Kevin 
M. Croftonc, Gerhard 
Heinemeyerd, Marcel 
Van Raaije,Carolyn 
Vickers

Tier Phase Approach Tier 1: Hazard 
Assessment

Incorporates 
additional 
information 
on the 
potency of 
individual 
components Risk assessment of combined 

exposure to multiple 
chemicals: A WHO/IPCS 
framework

M.E. (Bette) Meeka, 
Alan R. Boobisb, Kevin 
M. Croftonc, Gerhard 
Heinemeyerd, Marcel 
Van Raaije,Carolyn 
Vickers

Tier Phase Approach Tier 1: Risk 
Characterization

Risk 
characterizatio
n can be 
undertaken by 
calculating 
the hazard 
index (i.e., 
sum of the 
ratios of 
estimated 
exposures to 
reference 
values for 

Risk assessment of combined 
exposure to multiple 
chemicals: A WHO/IPCS 
framework

M.E. (Bette) Meeka, 
Alan R. Boobisb, Kevin 
M. Croftonc, Gerhard 
Heinemeyerd, Marcel 
Van Raaije,Carolyn 
Vickers

Tier Phase Approach Tier 2: Exposure 
Assessment

In Tier 2 
assessments, 
the 
deterministic 
estimation of 
exposures 
refined with 

Models may incorpo-rate additional 
parameters, and, although estimates 
are still con-sidered conservative, 
they are believed to be more realistic, 
incorporating more data. Multiple 
sources are often taken into ac-count 
by summation.
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Risk assessment of combined 
exposure to multiple 
chemicals: A WHO/IPCS 
framework

M.E. (Bette) Meeka, 
Alan R. Boobisb, Kevin 
M. Croftonc, Gerhard 
Heinemeyerd, Marcel 
Van Raaije,Carolyn 
Vickers

Tier Phase Approach Tier 2: Hazard 
Assessment

In Tier 2 
assessments, 
the definition 
of an 
assessment 
group may be 
additionally 
refined 
through 
consideration 
of increasingly 
more specific 
information 
on mode of 
action or 
other factors 
on which to 
base the 
grouping (e.g., 
molecular Risk assessment of combined 

exposure to multiple 
chemicals: A WHO/IPCS 
framework

M.E. (Bette) Meeka, 
Alan R. Boobisb, Kevin 
M. Croftonc, Gerhard 
Heinemeyerd, Marcel 
Van Raaije,Carolyn 
Vickers

Tier Phase Approach Tier 2: Risk 
Characterization

Where it is 
possible to 
derive relative 
potency 
factors, risk is 
determined by 
expressing the 
sum of the 
relative 
potency 
factor-
adjusted 
exposures to 
all substances 
in the group as 
a percentage 

while the limited availability of 
case examples maybe a function of 
the lack of regulatory requirement 
to consider combined exposure 
or, alternatively, to a lack of their 
publication, the need for 
additional advancement in this 
area continues to be emphasized 
by stakeholders.

Risk assessment of combined 
exposure to multiple 
chemicals: A WHO/IPCS 
framework

M.E. (Bette) Meeka, 
Alan R. Boobisb, Kevin 
M. Croftonc, Gerhard 
Heinemeyerd, Marcel 
Van Raaije,Carolyn 
Vickers

Tier 3: Exposure 
Assessment

In Tier 3 
assessments, 
estimates of 
exposure are 
probabilistic 
in nature, 
taking into 

Models at this level of complexity 
often include multiple-source 
exposures.

This approach requires 
representative information on 
exposure for the scenarios of 
interest for the relevant 
populations for different uses and 
across populations. 
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Risk assessment of combined 
exposure to multiple 
chemicals: A WHO/IPCS 
framework

M.E. (Bette) Meeka, 
Alan R. Boobisb, Kevin 
M. Croftonc, Gerhard 
Heinemeyerd, Marcel 
Van Raaije,Carolyn 
Vickers

Tier 3: Hazard 
Assessment

Tier 3 
assessments of 
hazard 
incorporate 
increasingly 
refined 
information 
on mode of 
action, 
including 
both kinetic 
and dynamic 
aspects. These 
can include 
both 

These models, which incorporate 
both chemical-specific and more 
generic information on comparative 
physiology, biochemistry, etc., 
improve the characterization of 
interspecies differences and human 
variability (i.e., as a basis for 
extrapolation across species and 
among humans).

Risk assessment of combined 
exposure to multiple 
chemicals: A WHO/IPCS 
framework

M.E. (Bette) Meeka, 
Alan R. Boobisb, Kevin 
M. Croftonc, Gerhard 
Heinemeyerd, Marcel 
Van Raaije,Carolyn 
Vickers

Tier 3: Risk 
Characterization

In 
probabilistic 
assessments, 
risk can be 
estimated as 
the per-centile 
of the 
population 
exceeding the 
reference 
value, as the 
maximum 
exceedance of 
the reference 
value or as the 
percentage of 
the 
population at The Role of Cumulative Risk 

Assessment in Decisions 
about Environmental Justice

Ken Sexton and 
Stephen H. Linder

•Focus on multiple stressors
•Inclusion of both chemical and 
nonchemical (e.g., biological, 
radiological,physical, psychological, work 
life, lifestyle) stressors
•Assessment of aggregate exposures and risks 
(i.e., exposure to a single stressor by 
multiple routes)
•Assessment of combined risks for common 
effects (e.g., chemicals or stressorsthat have 
a common mechanism of toxicity)
•Population-based focus (i.e., assessment 
starts with the receptors orpopulations of 
interest and then determines which 

US EPA Cumulative Risk 
Assessment Framework
Phase 1: Planning, 
Scoping and Problem 
Formulation

In  the first  
phase,  risk  
assessors, risk  
managers,  
and  
interested  
stakeholders  
work  together  
 to  determine  
the goals,  
scope,  and  
focus  of  the  
assessment. 
The  products  
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The Role of Cumulative Risk 
Assessment in Decisions 
about Environmental Justice

Ken Sexton and 
Stephen H. Linder

US EPA Cumulative Risk 
Assessment Framework
Phase 2: Information 
and Data Analysis

The  second  
phase  
involves 
technical/scie
ntific 
activities such 
as developing 
exposure 
profiles, 
examining the 
nature and 
extent of 

The Role of Cumulative Risk 
Assessment in Decisions 
about Environmental Justice

Ken Sexton and 
Stephen H. Linder

US EPA Cumulative Risk 
Assessment Framework
Phase 3: Interpolation 
and Risk 
Characterization

In  the third 
phase, risk 
estimates  are 
explained and  
their 
significance 
described in  
terms  of  
reliability and 

Common Mechanism 
Groups, Cumulative 
Assessment Group, and 
Methods for Cumulating 
Toxicity (Appendix A)

Tim Brown, Ph. D., 
Susan Kegley, Ph. D.

Common Mechanism Group (CMG) - 
compounds acting at the same molecular 
target belong to the same CMG. US EPA 
States - CMG should be based on: similarities 
in chemical structures, mechanisms of 
pesticidal action, general mode/mechanism 
of mammalian toxicity, common specific 

Hazard Index Based on the 
simple ratio 
between the 
exposure level 
and reference 
toxicity value 
(such as acute Common Mechanism 

Groups, Cumulative 
Assessment Group, and 
Methods for Cumulating 
Toxicity (Appendix A)

Tim Brown, Ph. D., 
Susan Kegley, Ph. D.

Common Mechanism Group (CMG) - 
compounds acting at the same molecular 
target belong to the same CMG. US EPA 
States - CMG should be based on: similarities 
in chemical structures, mechanisms of 
pesticidal action, general mode/mechanism 
of mammalian toxicity, common specific 

Cumulative Risk Index 
(CRI)

Sum of the 
reciprocal 
hazard 
quotients for 
chemicals 
compromising 
the group, and Common Mechanism 

Groups, Cumulative 
Assessment Group, and 
Methods for Cumulating 
Toxicity (Appendix A)

Tim Brown, Ph. D., 
Susan Kegley, Ph. D.

Common Mechanism Group (CMG) - 
compounds acting at the same molecular 
target belong to the same CMG. US EPA 
States - CMG should be based on: similarities 
in chemical structures, mechanisms of 
pesticidal action, general mode/mechanism 
of mammalian toxicity, common specific 
toxic effects. 

Reference Point Index 
(RPI)

Uses 
uncorrected 
point of 
departure, 
such as 
Benchmark 
Dose 10 or No 
Observed 
Adverse Effect 
Level, rather 
than the 



 

122 
 

 

Article Title Author(s) Risk Assessment Method/Goal/Question Method/Framework/ 
Tool/Database

Short 
Description

Advantages Disadvantages (gaps, etc.) Next Steps

Common Mechanism 
Groups, Cumulative 
Assessment Group, and 
Methods for Cumulating 
Toxicity (Appendix A)

Tim Brown, Ph. D., 
Susan Kegley, Ph. D.

Common Mechanism Group (CMG) - 
compounds acting at the same molecular 
target belong to the same CMG. US EPA 
States - CMG should be based on: similarities 
in chemical structures, mechanisms of 
pesticidal action, general mode/mechanism 
of mammalian toxicity, common specific 

Margin of Exposure 
(MOE)

Similar to the 
relationship of 
CRI and hazard 
index, the 
MOE is the 
reciprocal of 
the RIP value.Common Mechanism 

Groups, Cumulative 
Assessment Group, and 
Methods for Cumulating 
Toxicity (Appendix A)

Tim Brown, Ph. D., 
Susan Kegley, Ph. D.

Common Mechanism Group (CMG) - 
compounds acting at the same molecular 
target belong to the same CMG. US EPA 
States - CMG should be based on: similarities 
in chemical structures, mechanisms of 
pesticidal action, general mode/mechanism 
of mammalian toxicity, common specific 
toxic effects. 

Target-organ Toxicity 
Dose (TTD)

refined 
method of 
hazard index, 
developed to 
accommodate 
the 
assessment of 
mixtures of 
chemical 
compounds 
that do not 
share the same 
critical toxic 
effect. this is 
calculated 
using 
appropriate 
minimum risk Common Mechanism 

Groups, Cumulative 
Assessment Group, and 
Methods for Cumulating 
Toxicity (Appendix A)

Tim Brown, Ph. D., 
Susan Kegley, Ph. D.

Common Mechanism Group (CMG) - 
compounds acting at the same molecular 
target belong to the same CMG. US EPA 
States - CMG should be based on: similarities 
in chemical structures, mechanisms of 
pesticidal action, general mode/mechanism 
of mammalian toxicity, common specific 
toxic effects. 

Weight of Evidence 
(WOE)

Addresses the 
need for 
information 
on 
interactions 
among 
components 
of a mixture. 
This method 
incorporates 
an uncertainty 
factor (UF) to 
modify the 
hazard index 
to account for 
synergistic, 
potentiating 
or 
antagonistic 
interactions 

This method is best used for 
predicting whether hazard may be 
greater or less than indicated by the 
HI determined assuming additivity. 

The BINWOE indicates the expected 
direction of an interaction (i.e., 
greater than additive, less than 
additive, additive, or indeterminate). 
It also scores the data qualitatively 
using an alphanumeric scheme that 
takes into account mechanistic 
understanding, toxicological 
significance, and relevance of the 
exposure duration, sequence, 
bioassay (i.e., in vivo versus in vitro), 
and route of exposure.

Previous experiences using the 
algorithm for specific mixtures to 
generate the interaction-adjusted 
Hazard Index have revealed that 
the method does not generally 
handle changes in proportions of 
mixture components.



 

123 
 

 

Article Title Author(s) Risk Assessment Method/Goal/Question Method/Framework/ 
Tool/Database

Short 
Description

Advantages Disadvantages (gaps, etc.) Next Steps

Common Mechanism 
Groups, Cumulative 
Assessment Group, and 
Methods for Cumulating 
Toxicity (Appendix A)

Tim Brown, Ph. D., 
Susan Kegley, Ph. D.

Common Mechanism Group (CMG) - 
compounds acting at the same molecular 
target belong to the same CMG. US EPA 
States - CMG should be based on: similarities 
in chemical structures, mechanisms of 
pesticidal action, general mode/mechanism 
of mammalian toxicity, common specific 
toxic effects. 

Relative Potency Factor 
(RPF) OR Potency 
Equivalency Factor (PEF)

Potencies of 
all chemicals 
in the 
common 
assessment 
group are 
normalized to 
a single 
potency scale 
relative to the 
index 
chemical. 
Once RPF has 
been 
determined 
for individual 
chemicals, the 
activity of the 
CAG is 

General , used for compounds such as 
polycyclic aromatic hydrocarbons 
and pesticides such as 
organophosphates. 

RPF and other component-based 
approaches are considered “bottom-
up” because they are built by 
incorporating data from individual 
chemicals into additivity models.  

Because data for the complex mixture 
or a sufficiently similar mixture is 
rarely available, the Relative Potency 
Factor (RPF) method of dose 
additivity may be the rule, not the 
exception with the current state of 
the science. 

as shown that risk assessments for 
some classes of toxic organic 
compounds, such as the polycyclic 
aromatic hydrocarbons (PAHs), 
may not accurately predict the 
potential for genotoxicity and 
immunotoxicity. 

Common Mechanism 
Groups, Cumulative 
Assessment Group, and 
Methods for Cumulating 
Toxicity (Appendix A)

Tim Brown, Ph. D., 
Susan Kegley, Ph. D.

Common Mechanism Group (CMG) - 
compounds acting at the same molecular 
target belong to the same CMG. US EPA 
States - CMG should be based on: similarities 
in chemical structures, mechanisms of 
pesticidal action, general mode/mechanism 
of mammalian toxicity, common specific 

Physiologically Based 
Pharmokinetic/pharma
codynamic (PBPK/PD) 
Model

Model can be 
used to 
describe the 
mechanisms 
of action and 
tissue 
responses for 

Although progress has been made 
in this area, relatively few 
examples of PBPK/PD models for 
pesticide mixtures exist in the 
peer-reviewed literature.

Review of California's Risk-
Assessment Process for 
Pesticides

National Research 
Council

California Pesticide Use 
Reporting Program 
(PUR)

All 
agricultural  
pesticide  use  
must  be  
reported  
monthly  to  
county  
agricultural  
commissioners
,  who  report 
the data to 
DPR. The 
reporting 
requirements 
also include 
pesticide 

PUR and ARB data have been used by 
DPR and other researchers to evaluate 
the agricul-tural use of pesticides and 
ambient concentrations (e.g., Harnly 
et al. 2005; Li et al. 2005) and to 
evaluate  the  predictive  capability  of  
exposure  models  (e.g.,  Cryer  2005;  
van  Wesenbeeck  et  al.  2011). Most 
recently, the California 
Environmental Health Tracking 
Program studied agricultur-al 
pesticide use near public schools 
(CEHTP 2014). PUR data have also 
been used by researchers to 
investigate the relationship between 
pesticide exposure and a variety of 

Pesticide applica-tions in home 
and garden use and in most 
industrial and institutional uses 
are excluded from the reporting  
requirements  (DPR  2013).  
Although  it  would  be  difficult  to  
 obtain  accurate  infor-mation  on  
personal  home  use,  it  might  be  
possible  to  collect  some  
information  by  expanding  PUR 
reporting requirements to cover 
all licensed pesticide appliers, 
including those who perform 
applications for nonagricultural 
purposes at homes, institutions, 
and industries. There appears to be 
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Critical assessment and 
integration of separate lines 
of evidence for risk 
assessment of chemical 
mixtures

Antonio F. Hernandez, 
Aleksandra Buha,  
Carolina Constantin, 
David R. Wallace, 
Dimosthenis 
Sarigiannis, Monica 
Neagu, Biljana 
Antonijevic, A. Wallace 
Hayes, Martin F. 
Wilks,Aristidis Tsatsakis

These include new
in vitro models: omics-related tools, organs-
on-a-chip and 3D cell culture, and in silico 
methods. Taken together, all these
modern methodologies improve the 
understanding of the multiple toxicity 
pathways associated with adverse outcomes 
(e.g., adverse outcome pathways), thus 
allowing investigators to better predict risks 
linked to exposure to chemical mixtures.

Component Based 
Approach

 requires 
identifcation 
of the 
chemicals 
present
in the mixture 
of concern 
(e.g., 
concentration, 
 mode of 
action (MoA) 
and toxicity of 

A robust body of experimental
evidence indicates that the basic 
assumption of additivity ofers a 
reasonable expectation of mixture 
toxicity assuming that the 
components of the mixture do not 
interact with each other, which can 
modify the magnitude and even the
nature of the toxic efect 

However, component-based 
approaches
can potentially lead to 
underestimations of hazard when
the composition of a mixture is 
not fully known, which is
usually the case, except for clearly 
defned, intentionally
manufactured products (e.g., 
pesticide formulations), or
chemicals present in foodstuf (e.g., 
multiple residues of

Critical assessment and 
integration of separate lines 
of evidence for risk 
assessment of chemical 
mixtures

Antonio F. Hernandez, 
Aleksandra Buha,  
Carolina Constantin, 
David R. Wallace, 
Dimosthenis 
Sarigiannis, Monica 
Neagu, Biljana 
Antonijevic, A. Wallace 
Hayes, Martin F. 
Wilks,Aristidis Tsatsakis

 New methodological developments that 
improve the scope and quality of 
epidemiological data on chemicals

1. hypothesis-free, 
environment-wide 
association studies 
(EWAS)
2. pooled data from
multiple existing 
studies
3. markers of disease 
processes as
an outcome (SAPEA 
(Science Advice for 
Policy by European 
Academies

1. EWAS assess 
simultaneousl
y the 
relationships 
between 
health 
outcomes and 
a wide range 
of chemicals, 
thus allowing 
the 
identifcation 
of chemical 
mixtures 
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Appendix 4B: 2018 DPR PUR Data 

Appendix 4B.2: 2018 DPR PUR Data at Sections Selected 

DATE COUNTY NAME SECTIONS CHEMICAL_NAME 
POUNDS 

CHEMICAL 
APPLIED 

4/25/18 MERCED 24M05S11E35 METHYL BROMIDE 1172.5 
4/26/18 MERCED 24M05S11E35 METHYL BROMIDE 2814 
9/19/18 MERCED 24M05S11E35 METHYL BROMIDE 1172.5 
9/21/18 MERCED 24M05S11E35 METHYL BROMIDE 2814 
4/30/18 MERCED 24M05S11E35 METHYL BROMIDE 1688.4 
3/29/18 MERCED 24M05S11E35 METHYL BROMIDE 4020 
9/19/18 MERCED 24M05S11E35 METHYL BROMIDE 1172.5 
9/21/18 MERCED 24M05S11E35 METHYL BROMIDE 2814 
3/30/18 MERCED 24M05S12E35 METHYL BROMIDE 8832 
10/3/18 MERCED 24M05S13E17 METHYL BROMIDE 6541.32 
9/27/18 MERCED 24M05S13E22 METHYL BROMIDE 1765.86 
10/29/18 MERCED 24M05S13E31 METHYL BROMIDE 3154.95 
10/31/18 MERCED 24M05S13E31 METHYL BROMIDE 1008.9 
4/3/18 MERCED 24M05S13E35 METHYL BROMIDE 1872.45 
4/23/18 MERCED 24M06S10E03 METHYL BROMIDE 1172.5 
4/25/18 MERCED 24M06S10E03 METHYL BROMIDE 1172.5 
4/27/18 MERCED 24M06S10E03 METHYL BROMIDE 2345 
4/25/18 MERCED 24M06S10E12 METHYL BROMIDE 11585.64 
5/3/18 MERCED 24M06S11E01 METHYL BROMIDE 46.9 
4/14/18 MERCED 24M06S11E01 METHYL BROMIDE 1172.5 
4/23/18 MERCED 24M06S11E01 METHYL BROMIDE 1172.5 
4/16/18 MERCED 24M06S11E01 METHYL BROMIDE 1172.5 
4/21/18 MERCED 24M06S11E01 METHYL BROMIDE 1172.5 
4/28/18 MERCED 24M06S11E02 METHYL BROMIDE 1641.5 
4/26/18 MERCED 24M06S11E02 METHYL BROMIDE 1172.5 
5/7/18 MERCED 24M06S11E02 METHYL BROMIDE 70.35 
4/24/18 MERCED 24M06S11E02 METHYL BROMIDE 1102.15 
3/27/18 MERCED 24M06S11E02 METHYL BROMIDE 1172.5 
5/3/18 MERCED 24M06S11E02 METHYL BROMIDE 398.65 
5/7/18 MERCED 24M06S11E02 METHYL BROMIDE 4690 
5/4/18 MERCED 24M06S11E02 METHYL BROMIDE 1172.5 
4/30/18 MERCED 24M06S11E02 METHYL BROMIDE 2345 
3/29/18 MERCED 24M06S11E02 METHYL BROMIDE 1172.5 
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3/30/18 MERCED 24M06S11E05 METHYL BROMIDE 3172.05 
4/21/18 MERCED 24M06S11E05 METHYL BROMIDE 2171.7 
3/26/18 MERCED 24M06S11E12 METHYL BROMIDE 1172.5 
3/28/18 MERCED 24M06S11E12 METHYL BROMIDE 1172.5 
3/30/18 MERCED 24M06S11E12 METHYL BROMIDE 1407 
5/30/18 MERCED 24M06S11E15 METHYL BROMIDE 522.08 
6/1/18 MERCED 24M06S11E15 METHYL BROMIDE 682.72 
11/6/18 MERCED 24M06S12E05 METHYL BROMIDE 407.55 

8/28/18 MERCED 24M06S12E05 
PENTACHLOROPHEN
OL 0.0634248 

10/31/18 MERCED 24M06S12E05 METHYL BROMIDE 4911.12 
5/7/18 MERCED 24M06S12E05 METHYL BROMIDE 5057.04 
4/20/18 MERCED 24M06S12E05 METHYL BROMIDE 15008.1 
4/18/18 MERCED 24M06S12E07 METHYL BROMIDE 1172.5 
4/20/18 MERCED 24M06S12E07 METHYL BROMIDE 539.35 
3/29/18 MERCED 24M06S13E05 METHYL BROMIDE 114 
11/9/18 MERCED 24M07S11E16 METHYL BROMIDE 36441.3 
2/16/18 MERCED 24M07S11E23 METHYL BROMIDE 5172.75 
3/30/18 MERCED 24M07S11E24 METHYL BROMIDE 5360 
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CONCLUSION 

As presented, this dissertation identified technologies and tools available to evaluate 

environmental impacts at the local level. Understanding environmental impacts are critical to 

taking action to protect public health and the environment. This dissertation contributes to the 

literature by combining real-world experiences with environmental work with research/analytical 

methods that provide real world solutions to tackle environmental science challenges. 

The work presented in this dissertation requires further research to enhance and optimize 

the findings. Further research is needed to enhance or reform policy to address these localized 

impacts, to better understand the health impacts from exposure to multiple pollutants and how it 

contributes to cumulative health impacts, and implementation of research findings into practice.  

  For low-cost sensor network design, it will be important to develop a better 

understanding of how low-cost sensors can be used to supplement reference monitoring.  This 

will support policy development that considers the data that low-cost sensors can provide in 

making regulatory decisions and reforming current environmental monitoring regulations to 

include new technologies that provide hyper localized air quality data. 

For health impacts from co-exposures to multiple pollutants, it will be important to 

conduct further research on how exposure to multiple air pollutants can further exacerbate health 

outcomes, and how these co-exposures should be factored into regulatory decision-making. 

Future work should focus on how co-exposures play a role in protecting public health. 

For air dispersion modeling pesticide use, further research should focus on 

implementation and operationalization of both new and repurposed methods to better evaluate 

local impacts from pesticides. Furthermore, future research should focus on better understanding 
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health impacts from multiple pesticide exposure, which should play a role in how pesticides are 

registered, and permitted for use.  
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DISCLAIMER 

The views, conclusions, opinions, and positions expressed are my own, and do not necessarily 

represent the views, position or opinions of the South Coast Air Quality Management District, 

Clarity Movement, or any of their components. 
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