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Temperature-Mortality Relationship in North Carolina, USA: 
Regional and Urban-Rural Differences

Hayon Michelle Choi1, Chen Chen1, Ji-Young Son1, Michelle L. Bell1

1. School of the Environment, Yale University, New Haven, Connecticut, USA

Abstract

Background—Health disparities exist between urban and rural populations, yet research on 

rural-urban disparities in temperature-mortality relationships is limited. As inequality in the 

United States increases, understanding urban-rural and regional differences in temperature-

mortality association is crucial.

Objective—We examined regional and urban-rural difference of the temperature-mortality 

association in North Carolina (NC), USA, and investigated potential effect modifiers.

Methods—We applied time-series models allowing nonlinear temperature-mortality associations 

for 17 years (2000–2016) to generate heat and cold county-specific estimates. We used second-

stage analysis to quantify the overall effects. We also explored potential effect modifiers (e.g. 

social associations, greenness) using stratified analysis. Analysis considered relative effects 

(comparing risks at 99th to 90th temperature percentiles based on county-specific temperature 

distributions for heat, and 1st to 10th percentiles for cold) and absolute effects (comparing risks at 

specific temperatures).

Results—We found null effects for heat-related mortality (relative effect: 1.001 (95% CI: 0.995–

1.007)). Overall cold-mortality risk for relative effects was 1.019 (1.015–1.023). All three regions 

had statistically significant cold-related mortality risks for relative and absolute effects (relative 

effect: 1.019 (1.010–1.027) for Coastal Plains, 1.021 (1.015–1.027) for Piedmont, 1.014 (1.006–

1.023) for Mountains). The heat mortality risk was not statistically significant, whereas the cold 

mortality risk was statistically significant, showing higher cold-mortality risks in urban areas than 

rural areas (relative effect for heat: 1.006 (0.997–1.016) for urban, 1.002 (0.988–1.017) for rural 

areas; relative effect for cold: 1.023 (1.017–1.030) for urban, 1.012 (1.001–1.023) for rural areas). 

Findings are suggestive of higher relative cold risks in counties with less social association, higher 

population density, less green-space, higher PM2.5, lower education level, higher residential 
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segregation, higher income inequality, and higher income (e.g., Ratio of Relative Risks 1.72 (0.68, 

4.35) comparing low to high education).

Conclusion—Results indicate cold-mortality risks in NC, with potential differences by regional, 

urban-rural areas, and community characteristics.

Graphical Abstract
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Introduction

Nearly 60 million people in the US live in rural areas (Census 2016). This represents 20% of 

the US total population, and rural populations experience significant health disparities 

(HRSA 2019). The mortality risk difference between urban and rural regions has increased 

from 1999 through 2015 for all-cause age-adjusted mortality (Singh and Siahpush 2014, 

HRSA 2019). In the US, nonmetropolitan areas had a higher percentage of excess deaths for 

the 5 leading causes of death than did metropolitan areas (HRSA 2019). Life expectancy in 

rural nonmetropolitan areas is 3 years less than in large metropolitan areas, and the disparity 

is growing (Singh and Siahpush 2014, Singh, Daus et al. 2017). Reducing the growing 

inequalities in urban-rural health is a critical national health initiative goal for the US 

(DHHS 2010). Scientific evidence on disparities for temperature and health associations has 

been highlighted as an area of needed research (Gronlund 2014, Vargo, Stone et al. 2016, 

Marí-Dell’Olmo, Tobías et al. 2019, Son, Liu et al. 2019).

Many studies have examined the association between extreme temperature (e.g., heat and 

cold) and risk of mortality (Medina-Ramón, Zanobetti et al. 2006, Anderson and Bell 2009, 

Lee, Choi et al. 2018). The temperature-mortality risk may vary by region, population 

characteristics, air quality, green space, climatic conditions, population density, air 

conditioning, and healthcare facilities (Stafoggia, Forastiere et al. 2006, Schifano, Leone et 

al. 2012, Hondula, Davis et al. 2015, Ingole, Kovats et al. 2017). However, most studies have 

been conducted in urban areas (e.g., cities) or overlook the heterogeneity within a region by 

aggregating across large areas (Curriero, Heiner et al. 2002, Lee, Nordio et al. 2014, Kinney 

2018). Few studies focused on rural areas or on regional differences within a region that 

included non-urban areas (Sheridan and Dolney 2003, Hashizume, Wagatsuma et al. 2009, 

Henderson, Wan et al. 2013, Wang, Zhang et al. 2018). Also, most studies assumed the same 

exposure-response relationship for the entire population (Ballester, Robine et al. 2011, 
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Huang, Barnett et al. 2011), which could obscure differences in the mortality-temperature 

association by subpopulations, including by region, urban/rural differences, race/ethnicity, 

socio-economic status, etc.

The association between temperature and mortality can vary by location as the population 

experiences different climates and can have different demographics (Baccini, Biggeri et al. 

2008, Gasparrini, Guo et al. 2015, Heo, Lee et al. 2016). The association between cold and 

mortality is higher in decreasing latitude or mild winter climate region, whereas heat-related 

mortality is higher in higher latitudes (Curriero, Heiner et al. 2002, Ma, Chen et al. 2014). 

The spatial heterogeneity in temperature-mortality risk indicates that a single exposure-

response relationship may not apply across a large region such as a state (Iñiguez, Ballester 

et al. 2010, Armstrong, Chalabi et al. 2011, Li, Cheng et al. 2014, Chen, Li et al. 2017). 

Also, these findings suggest different adaptations of the community with local weather 

conditions (Curriero, Heiner et al. 2002, Turner, Barnett et al. 2012). This could relate to 

different housing conditions, behaviors, or other factors.

The few studies on temperature-health relationships in rural areas showed a higher mortality 

risk for rural settings than in the urban areas (Lippmann, Fuhrmann et al. 2013, Berko, 

Ingram et al. 2014, Heaviside, Macintyre et al. 2017, Dang, Van et al. 2018, Adeyeye, Insaf 

et al. 2019). The rural population is vulnerable to extreme temperatures, and the risk needs 

to be evaluated and characterized (Hashizume, Wagatsuma et al. 2009, Loughnan, Nicholls 

et al. 2010, Henderson, Wan et al. 2013). While many factors are relevant, such urban-rural 

disparities in temperature-health relationships may contribute to the lower life expectancies 

in US non-metropolitan areas, compared to metropolitan areas, when stratified by gender, 

race, and income (Singh and Siahpush 2014). The inequality between rural and urban 

populations is increasing over time in the US (Singh and Siahpush 2006). These trends in 

health differences relate to different characteristics in rural settings, such as the lack of 

access to health care and public services, differences in environmental factors such as air 

quality and population characteristics (Mirabelli and Richardson 2005).

Although analysis is limited, a few studies have compared the temperature-mortality or 

temperature-morbidity relationship among subregions within a large region such as a state or 

have considered differences in urban-rural areas (Henderson, Wan et al. 2013, Lippmann, 

Fuhrmann et al. 2013, Madrigano, Jack et al. 2015, Sugg, Konrad et al. 2016, Dang, Van et 

al. 2018). In British Columbia, Canada, the heat-related attributable mortality was higher in 

the Mountain region, which has a cooler climate zone, compared to the Dry Plateau region 

with a higher mean temperature (Henderson, Wan et al. 2013). In California, US, the 

northern part of the state had the lowest heat-mortality risk compared to the other climate 

zones (e.g., Coastal and Dry Plateau), which have higher temperatures (Joe, Hoshiko et al. 

2016). The risk of emergency department visits from heat-related illness in North Carolina 

was significantly higher in the Coastal Plain than in the Piedmont and Mountain regions 

(Sugg, Konrad et al. 2016). In another study assessing the incidence rate ratio of heat-related 

illness emergency department visits in North Carolina, the rates were highest for the Coastal 

Plain and Mountain regions (Lippmann, Fuhrmann et al. 2013). These studies compared 

differences in heat risk by region but did not analyze the cold mortality risk in those regions. 

In the northeastern US, urban counties had a higher mortality risk from heat than did non-
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urban counties (for temperature increase from 21.2°C to 32.2°C) for urban: 8.88%, 95% PI: 

7.38–10.41; non-urban: 8.08%, 95% PI: 6.16–10.05) (Madrigano, Jack et al. 2015). On the 

other hand, some studies suggested that the less urban areas were more susceptible to 

extreme temperature than are urban areas (Lippmann, Fuhrmann et al. 2013, Bai, 

Cirendunzhu et al. 2014, Chen, Zhou et al. 2016, Lee, Shi et al. 2016). Of the existing 

studies that compared weather-related mortality risk in urban and rural areas, most used 

binary urban-rural classifications.

Most studies on the temperature-mortality association focused on heat. However, of the 

studies that did investigate cold, most found cold to be associated with a higher risk of 

mortality than heat (Huynen, Martens et al. 2001, Dixon, Brommer et al. 2005, Gasparrini, 

Guo et al. 2015). Also, many temperature-mortality studies assessed temperature using data 

from monitoring sites (Curriero, Heiner et al. 2002, Dang, Van et al. 2018), which has 

benefits of using actual measurements, but also could result in exposure measurement errors 

for locations further from monitors even though temperature is relatively homogenous across 

nearby communities.

Many studies have reported that individual factors such as age, sex, income, and education 

modify temperature’s effect on mortality and morbidity (Stafoggia, Forastiere et al. 2006, 

Harlan, Declet-Barreto et al. 2013, Benmarhnia, Deguen et al. 2015, Kovach, Konrad et al. 

2015, Shi, Liu et al. 2016, O’Lenick, Winquist et al. 2017). A study of Italian cities found 

that the heat mortality risk increased with age and was higher for women than men 

(Stafoggia, Forastiere et al. 2006). Similarly, the association for emergency department visits 

from heatstroke in North Carolina increased among elderly patients during the June heat 

event in 2007 to 2011 (Fuhrmann, Sugg et al. 2016). A study in China found suggestive 

evidence of increased heat mortality risks in communities with low socioeconomic status 

(Huang, Lin et al. 2015), and in Worcester, Massachusetts, the association between extreme 

heat and acute myocardial infarction was higher for people below the poverty line 

(Madrigano, Mittleman et al. 2013). In North Carolina, heat-related illness rates were higher 

for those living below the poverty line and in areas with less forested land (Kovach, Konrad 

et al. 2015). In Germany, ozone but not PM10 was an effect modifier for the temperature-

mortality relationship (Breitner, Wolf et al. 2014). Urban green space had a protective effect 

on heat-related mortality in the elderly population in Lisbon (Burkart, Meier et al. 2016). 

There was no evidence of effect modification related to the social connectivity of the 

community.

The temperature-related mortality risk varies by geographical region, socio-economic 

conditions, and urbanization (Luber and McGeehin 2008, Wang, Liu et al. 2016). Heat-

related mortality risk vary widely between cities within the same country due to differences 

in summer heat intensity (Michelozzi, De Sario et al. 2006, Iñiguez, Ballester et al. 2010). 

Cities with warmer climates tended to have lower mortality risk, suggesting that populations 

that are more exposed to heat may be better able to cope with heat (Chung, Honda et al. 

2009, Morabito, Crisci et al. 2012, Li, Cheng et al. 2014). However, most studies focus on 

the risk of heat-related mortality between regions with different climates, and less 

information is known on the differences in cold-mortality relationship and on the differences 

in temperature-mortality associations by socioeconomic and urbanization factors.
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In this study, we address these research gaps for the state of North Carolina, US, which has 

different climatic regions and rural-urban heterogeneity. We used temperature estimates with 

a high spatial resolution to assess the entire state, which allows investigation of regional and 

urban-rural differences in mortality risks for both heat and cold. We further consider effect 

modification by social association, a measure of connectivity in communities; greenness; air 

pollution; education; residential segregation; income inequality; and income.

Methods

Study Site

North Carolina is located in the southeastern region of the US, with more than 10.4 million 

residents at about 80.6 people/km2 in 2019 (Census 2019). North Carolina’s 100 counties 

are mostly in the humid subtropical climate zone, experiencing hot and humid summers and 

cold to mild winters. However, the western side of North Carolina lies in the subtropical 

highland climate, with mountainous areas experiencing cool summers.

We selected this state for several reasons. First, the state has a large population and is rapidly 

growing (top 10 US states for population size and population growth). Second, due to North 

Carolina’s various land cover characteristics, this region allows the investigation of multiple 

important research questions for this study. The three principal regions of North Carolina are 

the Mountain, Piedmont, and Coastal Plain (from west to east) (Sayemuzzaman and Jha 

2014). The diversity of North Carolina in terms of regional characteristics allows the study 

of the possible health disparities that might relate to heat- and cold-related mortality risks. 

Finally, the study area has demographic diversity allowing the study of effect modification 

of heat and cold mortality associations.

Data

Mortality dataset—We obtained individual-level mortality data for North Carolina from 

2000 to 2016 from the North Carolina State Center for Health Statistics, Vital Statistics 

Department. For each participant, mortality data included date of death and residential 

county. We categorized mortality data as total deaths for all causes of death excluding 

external causes (International Classification of Diseases, ICD-10, A00-R99). We excluded 

participants with incomplete data for any variable.

Meteorological dataset—Due to the lack of measured daily weather data at all study 

locations, we used estimated gridded weather data to provide coverage for the entire state 

and then converted that data to the county level. The gridded weather data using Parameter-

elevation Regressions on Independent Slopes Model (PRISM) interpolation method are 

reported for daily estimates and at high spatial resolution (4×4km grid) (PRISM Climate 

Group). The algorithms and further details are described elsewhere (Daly, Halbleib et al. 

2008, Thornton, Thornton et al. 2014). A previous study showed good agreement between 

measured and gridded weather data (Mourtzinis, Rattalino Edreira et al. 2017). We used 

daily estimates of temperature and dew point temperature at the county level. County-level 

values were calculated as the average of values for all grid cells with centroids within each 

county. For sensitivity analysis, data on daily relative humidity for weather stations across 
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North Carolina were analyzed. Data on daily relative humidity from 172 weather stations 

were averaged to generate estimates for each county.

Urbanization and Regional dataset—Data on the designations of urbanicity were 

obtained from the Census Bureau, which classified urbanization into three types: urbanized 

areas, urban clusters, and rural. Urbanized Areas are areas with 50,000 or more people, 

Urban Clusters are areas with at least 2,500 but fewer than 50,000 people and rural areas 

have less than 2,500 people in a census block (Ratcliffe, Burd et al. 2016). In this study, we 

used the US Census dataset containing the urbanization classification at the county level 

(Census 2010).

List of potential effect modifiers—To assess potential disparities in the temperature-

mortality relationship, we included several county-level environmental and socio-economic 

factors based on the previous literature (Son, Lane et al. 2020). We considered county-level 

regional characteristics: 1) social associations, 2) population density (persons/km2); 3) 

greenness, as measured by Normalized Difference Vegetation Index (NDVI); 4) particulate 

matter with aerodynamic diameter no larger than 2.5m (PM2.5); 5) education level, measured 

as the percentage of people with a high school degree; 6) residential segregation, assessed as 

the dissimilarity index between non-White and White residents; 7) income inequality, 

calculated as the ratio of the household income at the 80th percentile to the income at the 

20th percentile, and 8) income, computed as the median household income for each county. 

We stratified variables for effect modification by the median value; this approach has been 

used in previous studies of temperature-mortality effect modification (Goggins, Chan et al. 

2012, Luo, Li et al. 2017). We used the mean value of the effect modification instead of the 

median as sensitivity analysis.

1) Social Associations: We considered social associations, which is the number of 

membership associations per 10,000 population. This variable reflects social or community 

support, which relates to social connectedness. Social association data for each county were 

obtained from the County Health Rankings (CHR), created by the University of Wisconsin 

Population Health Institute and the Robert Wood Johnson Foundation (CHR&R 2021). CHR 

has been used in identifying the relationship between various factors and health outcomes 

(Anderson, Saman et al. 2015, Hood, Gennuso et al. 2016). We used the average values of 

social associations by county from 2000 to 2016. We categorized the social association for 

each county as above or below the median across counties (≥12.8 associations/10,000 

persons or <12.8 associations/10,000 persons).

2) Population Density: Population density (persons/km2) data were obtained from US 

Census Bureau and were averaged at the county level based on available Census data (for the 

year 2000, and for the year 2010, represents the years 2006 to 2016). We classified the 

population density by county using the median value to distinguish the high population 

density group (≥43.46 people/km2) and low group (<43.46 people/km2).

3) Normalized Difference Vegetation Index (NDVI): Greenspace was assessed as 

vegetation using NDVI derived from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) sensor aboard the Terra satellite image from NASA’s Earth Observing System for 
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years 2000 to 2016. We used the global MODIS product MOD13Q1 version 6, which has 

been corrected for atmospheric contamination from water, clouds, and aerosols. This product 

is a 16-day composite at a spatial resolution of 250 m. We calculated the average of NDVI 

for each county by averaging pixel values across the remote sensing image files of NDVI 

through all 16-day composites from January 1, 2000 to December 19, 2016. The gridded 

data were converted into points using ArcGIS and then spatially joined at the county level 

for the study period. NDVI values range from 0 to1 with higher values reflecting higher 

levels of vegetation. We calculated the median NDVI and categorized the greenness as above 

or below (≥0.61 or <0.61).

4) Particulate matter with aerodynamic diameter no larger than 2.5μm 
(PM2.5): Ambient daily PM2.5 concentrations (μg/m3) for North Carolina by county were 

obtained for 2002 to 2016 from the downscaler output from the US Environmental 

Protection Agency (EPA) at 12×12 km grid cell resolution (Son, Lane et al. 2020). Long-

term averages were generated for each county by averaging values from 2002 to 2016 and 

converting the gridded estimates to county values using area-weighted averaging. The 

overall median value of PM2.5 for North Carolina was used to categorize counties (<10.3 

μg/m3 or ≥10.3 μg/m3). O3 was also examined as a potential effect modifier for air pollution. 

The daily 8-hour maximum O3 concentrations (ppb) were also obtained from the downscaler 

output from the US Environmental Protection Agency (EPA) at 12×12 km grid cell 

resolution (Son, Lane et al. 2020), and the daily average values for each county were 

calculated based on these estimates in the same manner as PM2.5. The overall median value 

of O3 for North Carolina was used to categorize counties (<41.1 ppb or ≥41.4 ppb).

5) Education Level: The overall education level for each county was assessed as the 

percentage of people with at least a high school degree. The education level data were 

obtained from the County Health Rankings (CHR) (CHR&R 2021). Values were averaged 

for each county for the period 2000 to 2016. The education level for each county was 

categorized as above or below the median value across counties (≥86 percent or <86 

percent).

6) Residential Segregation: We obtained the dissimilarity index between non-White and 

White county residents as residential segregation. A higher value represents greater 

residential segregation between non-White and White county residents. The residential 

segregation index values were obtained from the County Health Rankings (CHR) (CHR&R 

2021) and were averaged for the period 2010 to 2014. The overall median value of the 

residential segregation was used to categorize counties (<30 or ≥30).

7) Income Inequality: Income inequality was defined as the ratio of the household 

income at the 80th percentile to the income at the 20th percentile. A higher value indicates 

greater division between the highest and the lowest income range within a county. Income 

inequality was assessed from the County Health Rankings (CHR) (CHR&R 2021) and was 

averaged for the period 2012 to 2016 for each county. Counties were divided into two 

categories by the median value for income inequality (<4.6 or ≥4.6).

Choi et al. Page 7

Sci Total Environ. Author manuscript; available in PMC 2022 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8) Income: The median annual household income ($) was examined for each county and 

was averaged during the study period (2000–2016) for each county. Income data were 

obtained from the County Health Rankings (CHR) (CHR&R 2021). The overall median 

annual income was used to categorize the counties into two groups above or below the 

median value (<$41,701 or ≥$41,701).

Statistical Analysis

Two-stage hierarchical time-series analyses—We excluded counties with less than 

10,000 total population based on the average value of 2000 and 2010 US Census, due to 

potential convergence issues; this excluded 6 counties, leaving a total of 94 counties for 

analysis. Sensitivity analysis was conducted including all 100 counties.

We applied a two-stage hierarchical model. In the first stage, we used a time-series quasi-

Poisson generalized additive model (GAM) to link daily mortality with daily average 

temperature, producing an overall exposure–response curve for each county. The model 

allows a nonlinear relationship between temperature and risk of mortality. We adjusted for 

day of the week, daily dew point temperature, and temporal trends accounting for long-term 

and seasonal trends. The model structure is:

log Y t
c β0

c + β1 ∗ ns T lag
c , 3 + β2 ∗ ns timet, 7/year + β3 ∗ DOWt + β4

∗ ns Dt
c, 3 ,

(1)

where Y t
c= expected mortality rate for county c on day t; β0

c= model intercept for county c; 

ns(Tlag
c )= natural cubic spline of a temperature metric for county c for a specific lag from 

day t, with 3 degrees of freedom (df) and knots at quantiles; ns (timet)= natural cubic spline 

of time, with 7 df per year; DOWt= categorical variable for the day of the week for day t; 

ns(Dt
c) = natural cubic spline of adjusted dew point temperature for county c on day t, with 3 

df.

Equation 1 provides an estimate of a nonlinear association between temperature and risk of 

mortality for each county. To compare the effects across counties, we estimated the effect of 

relative and absolute temperature changes from the temperature-mortality response curves 

by county. Relative temperature change compares risk effect estimates at two temperatures 

based on percentiles, allowing these percentile-based temperatures to differ by community. 

Absolute temperature change compares risk effect estimates at two specific temperatures 

using the same specific temperatures across all counties (Anderson and Bell 2009). The 

effects of relative temperature change were calculated by comparing risks at the 1st and 10th 

percentiles (cold effect) and 99th and 90th percentiles (hot effect) of each county’s 

temperature distribution (i.e., allowing different percentile-based temperatures by county). 

The effects of absolute temperature change were calculated by comparing risks at 28.2°C 

and 25.5°C (heat effect) and −3.7°C and 2.9°C (cold effect) for all counties with temperature 

data available in this range (83 counties for heat effect and 94 counties for cold effect). 

These temperatures (−3.7°C, 2.9°C, 25.5°C, and 28.2°C) are the approximate average for the 

1st, 10th, 90th, and 99th percentiles of mean daily temperature across counties. Effects based 

on absolute temperatures compare risks at the same temperature across counties, whereas 
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effects based on relative temperatures compare risks at temperatures relative to each 

county’s temperature distribution and weather conditions.

In the second stage of the analysis, we pooled the county-specific estimates of absolute and 

relative heat and cold effects, and estimates of their uncertainty, for overall, regional, and 

urban-rural categories using Bayesian hierarchical modeling with Two-Level Normal 

independent sampling estimation (TLNise) (Everson and Morris 2000). This statistical 

analysis has been widely used in studies of temperature and health (Anderson and Bell 2009, 

Son, Bell et al. 2014). Sensitivity analyses were performed using a variable for relative 

humidity instead of the dew point temperature, and another model was run excluding the 

variable for the day of week.

Different lag days for heat and cold: Previous studies showed that mortality risk at low 

temperatures (i.e., cold effect) persists for a longer time, with more lag days than does 

mortality risk at high temperatures (i.e., heat effect) (Anderson and Bell 2009, Huang, Wang 

et al. 2014). We modeled the heat and cold effects separately, using lag 0–1 days (same day 

and previous day) for heat and lag 0–25 days for cold. This lag selection for heat and cold 

has been used in other temperature-mortality US studies (Anderson and Bell 2009, Chen, Du 

et al. 2019).

Effect modification analysis and statistical significance: We examined whether county 

characteristics modify the temperature-mortality associations, based on social association, 

population density, greenness, particulate matter, education level, residential segregation, 

income inequality, and income. We performed stratified analyses by county-level factors and 

then tested the statistical significance of the differences between the effect estimates of each 

potential effect modifier strata (low and high) by calculating the 95% confidence interval as 

(Q1 − Q2) ± 1.96 SE1
2 + SE2

2, where Q1 and Q2 are the estimates for the two strata of the 

potential effect modifier (e.g., low PM2.5 and high PM2.5 group) and SE1 and SE2 are their 

respective standard errors. For effect modification, we tested dividing counties by the mean 

rather than median as sensitivity analysis. The correlations between potential effect 

modifiers are provided in Table S1. All analyses were conducted using SAS (9.4, SAS 

Institute, Cary, NC, US) and R (version 3.5.1, R Core Team).

Results

Descriptive characteristics

Table 1 shows summary statistics of daily meteorological variables and daily mortality 

counts for all the counties, by region and urban-rural categories in North Carolina. The 

Coastal region has more counties than other regions at 37 counties. Within the state, 53 

counties were categorized as Urban Cluster. The average daily mean temperature was 

highest in the Coastal region and lowest in the Mountain region (16.43°C and 12.62°C, 

respectively). Urban Area counties’ average temperature was 1.39°C higher than that of 

Rural counties. The dataset includes a total of 1,208,766 deaths (all non-accidental causes), 

with 659,594 in the Piedmont, and 631,905 in Urban Area counties (Table 1). Figure 1 

represents the geographic distribution of the mean temperature for each county and region 
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(Mountain, Piedmont, Coastal Plain). The mean temperature increases from the Mountain 

region to the Coastal Plain. The distribution of the urban-rural categories within the same 

region was fairly evenly distributed.

Exposure-response curve and temperature histogram

Figure 2 provides the overall non-linear association between temperature and risk of 

mortality across the state; this figure displays the estimated relative risk for a given 

temperature compared with the minimum mortality temperature (MMT), which is 22.4°C. 

This figure shows both cold and heat impacts for the state. Figure 2 also provides a 

histogram of the 1st, 10th, 90th, and 99th temperature distributions among the 94 counties, 

which indicate variation in the temperature distributions across counties.

Relative and Absolute effect of temperature-mortality relationship

Slopes of the exposure-response curves for heat and cold were summarized by comparing 

the risk of relative and absolute temperature changes (Table 2). The estimated relative effect 

of mortality risk was 1.001 (95% CI: 0.995–1.007) comparing the 99th and 90th percentiles 

for Tlag0–1 (relative heat effect). The overall estimated relative effect for mortality risk 

comparing the 1st and 10th percentiles of Tlag0–25 (relative cold effect) was 1.019 (95% CI: 

1.015–1.023). The estimated relative risk for mortality was 0.998 (95% CI: 0.993–1.004) at 

28.2°C compared to 25.5°C for Tlag0–1 (absolute heat effect) and 1.018 (95% CI: 1.013–

1.022) comparing −3.7°C to 2.9°C for Tlag0–25 (absolute cold effect). Figure S1 shows the 

forest plot of relative and absolute cold and heat effects for each county, showing the range 

of estimates across counties. Sensitivity analysis including the additional 6 counties that 

were excluded in the original analysis provided similar results (Table S2). Also, the overall 

results were similar when a variable for relative humidity was included in the model instead 

of dew point temperature (Table S3). The model without a variable for day of week also 

resulted in similar relative and absolute heat and cold effects (Table S4).

Regional Disparity in Temperature-Mortality Relationships—Table 2 provides the 

estimated relative and absolute effects for heat and cold by region. The Coastal Plain region 

had the lowest heat effect for both relative and absolute temperature; results for this region 

did not suggest an association between heat and mortality. The Piedmont region had the 

highest heat relative risk and the Mountain region the highest heat absolute risk, although 

neither were statistically significant. The cold relative and absolute effect risks were 

statistically significant in all three regions. The cold relative and absolute effects were higher 

in the warm regions (Piedmont and Coastal Plain) and lowest in the coldest region 

(Mountain region). The pooled regional temperature-mortality curves for heat and cold risk 

by different regions are shown in Figure S2. Sensitivity analysis showed that the relative and 

absolute effects for each region were similar when including the 6 previously excluded 

counties (Table S2).

The geographic distributions of heat and cold effects of each county for relative (comparing 

risk across each county’s temperature percentile) and absolute (comparing risk at specific 

temperatures) effects are mapped in Figures 3 and 4. The estimated relative and absolute 

heat effects were statistically significant in two counties, which were located in the 
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Piedmont and Coastal regions (Anson and Martin), with lower mortality risk with 

heat(Figure 3). There were no counties with a statistically significant risk of higher mortality 

risk from heat (Figure 3). On the other hand, several counties had statistically significant 

estimated effects for the relative and absolute cold effects, with higher mortality risk with 

cold (Figure4).

Urban-Rural Disparity in Temperature-Mortality Relationships—When we 

examined the temperature-mortality association by urbanization (Table 2), Urban Area 

counties had the highest relative and absolute heat effects, although neither was statistically 

significant. All three levels of urbanization had statistically significant associations for cold 

for relative and absolute effects, both of which were highest for Urban Area counties. Figure 

S3 shows the pooled temperature-mortality curves for heat and cold risk by urban-rural 

categories. Sensitivity analysis found similar results when the remaining 6 counties were 

included (Table S2).

Potential Effect Modification of Temperature-Mortality Relationships—We 

assessed whether the temperature-mortality association differed by county-level 

characteristics of social associations, greenness, particulate matter, education level, 

residential segregation, income inequality, or income. Summary statistics of these potential 

effect modifiers are shown in Table S5. The correlations between potential effect modifiers 

were low, with the highest for population density and PM2.5 (0.45) (Table S1). Stratified 

analyses showed that associations between relative heat and mortality were statistically 

higher in counties with low social association and low NDVI (below the median compared 

to counties with social association or NDVI above the median) (Figure 5, Table 3). Most 

estimated relative heat and cold effects were not statistically different between regional and 

urban-rural categories, and the mortality risk showed a similar pattern among regional and 

urban-rural categories for heat and cold effects (Figure 5). We found higher estimated 

relative heat mortality risk in counties with higher population density, lower education level, 

and higher residential segregation, although estimates were not statistically different. The 

relative cold effect estimates were statistically higher for counties with higher population 

density, higher PM2.5, lower education level, higher residential segregation, higher income 

inequality, and higher income value overall across the counties.

Population density groups were statistically different for total, Urban Cluster, and Coastal 

relative cold effects. The estimated risk for both the high NDVI group and the low NDVI 

group were statistically different for total, Urban Cluster, and Coastal heat effects. The high 

and low PM2.5 groups had statistically different estimated relative cold effects overall (all 

North Carolina) and the Coastal region. Results for potential effect modifiers were similar 

when dividing into groups based on the mean value rather than the median (Table S6). The 

sensitivity analyses for O3 were conducted for state overall and separately the three different 

regions (Table S7). Results showed a different trend among different regions for the heat 

relative risk. The heat relative risk was higher in groups with higher ozone levels in the 

urban areas, although results were not statistically different. The cold relative risk was 

higher in groups with lower ozone levels among the different regions, although results were 

not statistically different.
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Discussion

Our results suggest both regional and urban-rural disparities for cold temperature-mortality 

risks. The Coastal Plain had significant associations for cold-related mortality. We also 

found that the urban areas had a higher central estimate for the estimated mortality risk 

associated with cold, compared to the rural areas. Lower population density, lower PM2.5, 

higher education level, lower residential segregation, lower income inequality, and lower 

income level was associated with a lower central estimate for the cold relative effect.

Our results are consistent with other temperature-mortality studies conducted in various 

climate conditions (Henderson, Wan et al. 2013, Joe, Hoshiko et al. 2016). Although results 

were not statistically significant, the central estimate of the absolute heat effect was highest 

in the Mountain region, where the overall temperature is low compared to the other regions. 

On the other hand, the Coastal Plain, which had the highest mean temperature, had a lower 

central estimate for heat-mortality risk. This pattern is consistent with cold effects. The 

central estimates for the relative and absolute cold effects were higher in the Piedmont and 

Coastal Plain, which have high mean temperature, and the cold-mortality risk was lower in 

the Mountain region, which has a cooler climate. This suggests that the populations living in 

hot or cold conditions adapt to those temperatures to some degree. Furthermore, the 

estimated absolute cold and heat effect esitmates differed among counties indicating that the 

populations’ responses differ for a given temperature.

Previous findings on the urban-rural difference in temperature-mortality relationships vary 

across studies. Our result is consistent with studies conducted in Ho Chi Minh City, Vietnam 

(Dang, Van et al. 2018), the northeastern part of the US (Madrigano, Jack et al. 2015), the 

United Kingdom (Hajat, Kovats et al. 2007), Germany (Gabriel and Endlicher 2011), and 

Greece (Katsouyanni, Pantazopoulou et al. 1993). In Ho Chi Minh City, the estimated heat 

mortality risk was higher in the central area than in the outer area (Dang, Van et al. 2018). In 

the northeastern part of the US, urban counties had a higher estimated percent increase in 

mortality in relation to heat than did non-urban counties (Madrigano, Jack et al. 2015). 

However, in Zhejiang Province, the urban areas had a lower estimated heat-mortality risk 

than rural areas (Hu, Guo et al. 2018). Furthermore, a nationwide US study reported that the 

urban-rural temperature-mortality risk differs by region (Berko, Ingram et al. 2014). The 

inconsistency of previous results suggests that the heat effect of urban-rural categories varies 

by region and nation, and likely by population. For these reasons, although general 

conclusions can be drawn, the estimates of weather and mortality in one area may not be 

generalizable to another. In particular, our findings indicate that urban and rural areas may 

require different analysis.

The urban-rural difference for cold effects is not well studied. Our results suggest 

differences in the urban-rural mortality risk for cold (relative effects of 1.023 (95% CI: 

1.017, 1.03) and 1.012 (95% CI: 1.001, 1.023) for urban and rural areas, respectively), 

which were higher than the heat effects (relative effects of 1.006 (95% CI: 0.997, 1.016) and 

1.002 (95% CI: 0.988, 1.017), for urban and rural areas, respectively). This result is 

consistent with a previous study in Zhejiang Province, China (Hu, Guo et al. 2019). This 

could relate to high temperatures in urban areas during wintertime, which may expand the 
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urban-rural difference in heat-mortality risk, whereas the low vulnerability for high 

temperatures in the summer could decrease the risk gap between urban and rural.

We found evidence of adaptation in high-temperature counties; however, we did not observe 

adaptation to cold-related mortality risk in colder counties. For instance, even though the 

urban cluster counties had a high mean temperature, they had a lower heat effect and a 

higher cold effect (0.996 (95% CI: 0.987, 1.004), 1.017 (95% CI: 1.011, 1.023) for relative 

temperature effect for heat and cold, respectively). In addition, we did not observe 

statistically significant estimated effects for heat risk, whereas cold-related mortality risks 

were statistically significant. These findings support the various study findings that urban 

areas are more adjusted to heat effects than cold effects (Rocklöv, Forsberg et al. 2014, 

Arbuthnott, Hajat et al. 2016, Martínez-Solanas and Basagaña 2019).

Counties with lower social association and lower NDVI had a higher estimated mortality 

risk from heat than did other counties. For the cold effect, counties with higher population 

density, higher PM2.5 value, lower education level, higher residential segregation index, 

higher income inequality, and higher income value were associated with increased mortality 

risk. We conclude that social and environmental factors affect the temperature-mortality 

relationship, which is consistent with results in prior studies. A previous study found that 

increases in green space are expected to prevent attributable deaths related to heat (Dang, 

Van et al. 2018). In Korea, higher social isolation was associated with increased heat risk for 

the elderly living in an urban environment (Kim, Lee et al. 2020). Social isolation is a risk 

factor that could increase mortality (House 2001), whereas populations in areas with high 

social connections are more likely to have improved health (Kawachi, Kennedy et al. 1999). 

Estimated heat effects were higher in more densely populated cities (Medina-Ramón and 

Schwartz 2007), and a decrease in PM2.5 levels was associated with lower mortality risk 

(Wu, Braun et al. 2020). A study in the US found that heat-related mortality risk decreases 

as the education level increases (Lee, Shi et al. 2016). Also, higher residential segregation 

was associated with higher heat risk-related land cover (Jesdale, Morello-Frosch et al. 2013) 

and urban heat risk index (Mitchell and Chakraborty 2018) in the US. A study of 14 

European countries found a significant association between the cold effect and elderly 

mortality with poverty, income inequality, and deprivation rate (Healy 2003). In 50 US 

states, the median income was negatively associated with mortality in people aged 25 to 64 

(Backlund, Rowe et al. 2007). Similarly, a study in US found higher heat effects in higher 

income communities (Anderson and Bell 2009). These previous study results are consistent 

with our study results. There are few studies on effect modification by community-level 

factors, and most of them focus on heat effect (Son, Liu et al. 2019). Our study results 

provide evidence of effect modifications on both heat and cold mortality risk.

The Healthy People 2020 initiative has identified goals to improve community health over 

the next decade (DHHS 2010). This includes goals to attain high-quality and longer lives, 

achieve health equity and eliminate disparities, and improve the health of all persons (DHHS 

2010). These goals pose a challenge to North Carolina (Mansfield, Kirk et al. 2001) since 

the average life expectancy in this state is 77.86 years, which is 1.22 years lower than the 

average life span in the US (UW 2014). To extend life expectancy in North Carolina, efforts 
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are needed to identify a way to bridge the health gap and achieve health equity for all 

populations (Dwyer-Lindgren, Bertozzi-Villa et al. 2017).

While mortality rates have declined in the US (Woolf and Schoomaker 2019), populations 

living in rural areas have maintained higher mortality rates than metropolitan areas for more 

than 10 years (Singh and Siahpush 2014, Gong, Phillips et al. 2019). Rural areas in North 

Carolina have higher rates of years of life lost, injury, uninsured patients, and preventable 

hospitalizations (HRSA 2016, Holmes 2018). However, social association, which measures 

social capital, was higher in rural regions than metropolitan areas in North Carolina (Julie L. 

Marshall 2017, Holmes 2018). Health outcomes can be improved by identifying North 

Carolina’s existing urban and rural gaps in various population health indicators (Gong, 

Phillips et al. 2019).

Assessment of the temperature-mortality risk in rural and isolated areas is challenging due to 

the small population and data availability limitations. In this study, we examined the 

temperature-mortality risk within those populations and specified different ecoregions (e.g., 

Mountain, Piedmont, and Coastal Plain) and urban-rural categories. We explored North 

Carolina, which consists of diverse microclimate conditions and urban-rural populations. 

This approach could be applied to other states in the US and other areas with different 

climate conditions and with various population distributions.

This study had several limitations. First, we analyzed at the county level, which could 

obscure heterogeneities within counties. Second, exposure measurement error may occur, as 

in all environmental epidemiological studies (Zeger, Thomas et al. 2000). Also, this study 

was conducted in one state in the US, and the most rural counties with a population of less 

than 10,000 were excluded from the analysis. Further areas need to be investigated, 

including urban-rural and regional disparities. Analysis at the sub-county level examining 

neighborhood-level and individual-level characteristics would further elucidate how 

temperature impacts mortality. Lastly, effect modifiers analyzed in this study should be 

interpreted and applied in the light of wider research. Additional factors, not addressed here, 

may also modify the temperature-mortality relationship.

We found suggestive evidence that higher social association and high NDVI values were 

associated with lower heat relative effect. The greenspace metric used (NDVI) does not fully 

characterize the complex pathways through which greenspace could influence the 

temperature-mortality relationship. Tree canopy cover, land cover characteristics, different 

types of vegetation, and Enhanced Vegetation Index (EVI) could be explored (Ziter, 

Pedersen et al. 2019, Fong, Mehta et al. 2020). EVI is also used to measure high-density 

vegetation (Chen, Fedosejevs et al. 2006), but NDVI is primarily used to compare green 

areas (Son, Lane et al. 2016). Future work could investigate different aspects of green space 

such as EVI as well as different types of vegetation, access to green space, seasonal patterns, 

etc.

The socio-economic effect modifiers analyzed in this study warrant careful interpretation, 

and other factors relating to socioeconomic status should be further studied in the future. In 

future analysis, social cohesion or social networks could be considered in characterizing 
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social interaction, with more detail regarding which types of social networks are most 

impactful. In this study, education level was defined as the percentage of people with high 

school degrees. Education attainment could be defined in other ways (e.g., completed 

college), and actual socioeconomic status relates to income, history of income, 

socioeconomic status during childhood, and other factors. We analyzed race/ethnicity and 

analyzed residential segregation, however, further distinctions of race/ethnicity examining 

additional categories of populations of color are needed. Similarly, further analysis for 

economic effect modifiers (e.g., poverty ratio, gross domestic product (GDP), and 

unemployment rates) could be examined. In addition, other factors such as population 

change should be discussed further, considering the temporal trend of the effect modifier. In 

the study, we investigated several metrics of social or environmental justice (income, income 

inequality, residential segregation, education), however there exist a wide array of other 

metrics. The variables we selected reflect different aspects of socio-economic position and 

demographic patterns and are related in complex ways. For example, we used the percentage 

of people with a high school diploma as an indicator of educational attainment. Previous 

studies have found that lack of high school education is associated with lack of health 

insurance and working in high-risk jobs (Muller 2002). Lack of high school education may 

also indicate a lifelong impact of socioeconomic deprivation. There exists no gold standard 

for what social or environmental justice metric is most appropriate, and they each represent 

different aspects of complex and interrelated social, cultural, political, and environmental 

systems. Future research could investigate other metrics such as a direct measure of income, 

other measures of race/ethnicity, etc., which may reflect different underlying pathways 

through which the association between weather and risk of mortality could differ by 

subpopulation.

Despite these limitations, this study identified regional and urban-rural differences in the 

mortality risk for cold. The estimated cold effect was higher for high-temperature regions 

than the cooler region. Urban counties had higher central estimates for heat and cold 

mortality risk than did the rural counties of North Carolina. Also, this study suggests that 

higher social connectedness, higher green space, lower population density, lower air 

pollution level, higher education level, lower residential segregation, lower income 

inequality, and low income are associated with lower temperature-mortality risk. Previous 

temperature-mortality studies primarily focused on hot temperatures and few explored rural 

settings. In conclusion, future temperature-mortality studies should account for regional and 

urban-rural differences in mortality risk. Our findings suggest that local health plans and 

implementations to address heat and cold would be most effective if they account for 

regional and urban-rural differences. Furthermore, the social and environmental factors we 

identified as effect modifiers could be used to diminish the health burden from heat or cold.
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Highlights

• Results suggest potential regional and urban-rural disparities for high and low 

temperature-mortality risks in North Carolina, USA.

• The Piedmont region had the highest cold-mortality risks, whereas the 

Mountain region had the lowest cold mortality risks.

• Although not statistically different from rural temperature-mortality risks, 

urban areas had higher estimated mortality risk associated with both heat and 

cold.

• Findings suggest that high social association and high NDVI value were 

associated with lower heat relative effects, and that low population density, 

low PM2.5, higher education level, lower residential segregation, and lower 

income inequality were associated with a low cold relative effect.
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Figure 1. 
Geographic temperature distribution by county. Note: The green lines divide the state into 

three regions: Mountain, Piedmont, Coastal Plain (left to right), and the dot in each county 

indicates Urban Area (White), Urban Cluster (Grey), and Rural (Black).
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Figure 2. 
Cold and heat exposure-response curve: estimated relative risk for a given temperature 

compared to the minimum mortality temperature (MMT). Note: Each histogram displays the 

temperature distribution for 94 counties at the 1st, 10th, 90th, and 99th (left to right) 

percentiles. Dotted vertical line indicate the mean across counties for temperature value for 

each percentile (−3.7°C, 2.9°C, 25.5°C and 28.2°C).
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Figure 3. 
Geographic distribution of the estimated relative heat effect (a) and absolute heat effect (b) 

by county
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Figure 4. 
Geographic distribution of the estimated relative cold effect (a) and absolute cold effect (b) 

by county
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Figure 5. 
Estimated mortality increases due to the relative effect for heat and cold by: (A): social 

association, (B) population density, (C) NDVI, (D) PM2.5, (E) education level, (F) 

residential segregation, (G) income inequality, and (H) income. Note: Low and high levels 

represent counties above and below median values.
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Table 1.

Average temperature and mortality count by region and urban-rural categories (2000–2016).

Variables Total
Region Urban/Rural classification

Piedmont Mountain Coastal Plain Urban Area Urban Cluster Rural

Total number of counties 94 34 23 37 22 53 19

Total mortality count 1,208,766 659,594 192,731 356,441 631,905 452,993 123,868

Mortalities/day [mean (SD)] 2.95 (2.72) 3.89 (3.54) 2.21 (1.71) 2.33 (1.63) 4.96 (3.75) 2.05 (1.29) 2.04 (1.44)

Mean temperature °C [mean 
(SD)] 15.11 (8.76) 15.2 (8.79) 12.62 (8.47) 16.43 (8.59) 15.5 (8.72) 15.16 (8.78) 14.11 (8.7)

Dew point temperature °C 
[mean (SD)] 8.64 (9.8) 8.27 (9.88) 6.49 (9.73) 10.27 (9.47) 8.86 (9.78) 8.73 (9.81) 7.84 (9.78)

Note: Urban Area= Urbanized areas with 50,000 or more people, Urban Cluster= Urban clusters with at least 2,500 but fewer than 50,000 people, 
and Rural= rural areas with less than 2,500 people
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Table 2.

Estimated relative risk for the relative and absolute heat and cold effect for different regions and urban/rural 

categories

Heat (lag 0–1 days) Cold (lag 0–25 days)

Relative Absolute Relative Absolute

Temperature comparison 99th to 90th percentiles 28.2°C to 25.5°C 1st to 10th percentiles −3.7°C to 2.9°C

Overall 1.001 (0.995, 1.007) 0.998 (0.993, 1.004) 1.019 (1.015, 1.023) 1.018 (1.013, 1.022)

Region

Piedmont 1.004 (0.995, 1.012) 1.001 (0.993, 1.009) 1.021 (1.015, 1.027) 1.021 (1.015, 1.027)

Mountain 1.000 (0.988, 1.012) 1.014 (0.988, 1.041) 1.014 (1.006, 1.023) 1.012 (1.005, 1.020)

Coastal Plain 0.997 (0.987, 1.007) 0.996 (0.987, 1.004) 1.019 (1.010, 1.027) 1.018 (1.009, 1.027)

Urbanization

Urban Area 1.006 (0.997, 1.016) 1.004 (0.995, 1.013) 1.023 (1.017, 1.030) 1.023 (1.016, 1.030)

Urban Cluster 0.996 (0.987, 1.004) 0.993 (0.985, 1.001) 1.017 (1.011, 1.023) 1.016 (1.009, 1.022)

Rural 1.002 (0.988, 1.017) 0.999 (0.984, 1.014) 1.012 (1.001, 1.023) 1.011 (1.002, 1.021)
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