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Traditional moment-closure methods need to assume that high-order cumulants of a probability
distribution approximate to zero. However, this strong assumption is not satisfied for many biochem-
ical reaction networks. Here, we introduce convergent moments (defined in mathematics as the
coefficients in the Taylor expansion of the probability-generating function at some point) to over-
come this drawback of the moment-closure methods. As such, we develop a new analysis method
for stochastic chemical kinetics. This method provides an accurate approximation for the master
probability equation (MPE). In particular, the connection between low-order convergent moments
and rate constants can be more easily derived in terms of explicit and analytical forms, allowing
insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In
addition, it provides an accurate and efficient way to compute steady-state or transient probability
distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large
differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial
stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient
bimodality and amplify transient signals, and slow switching between promoter states can increase
fluctuations in spatially heterogeneous signals. The overall approach has broad applications in model-
ing, analysis, and computation of complex biochemical networks with intrinsic noise. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4950767]

I. INTRODUCTION

Intracellular processes are often depicted using biochem-
ical reaction networks.1 A main task of Systems Biology
is to develop mathematical models that faithfully describe
the dynamics of these networks. In general, an intracellular
reaction network has three common properties: (i) the
reactions in the system are stochastic due to discrete nature
of chemical species;2,3 (ii) the reactions take place far
from thermodynamic equilibrium;4 and (iii) the system is
nonlinear either due to feedback5 or the cooperative binding
of transcription factors (TFs) to binding sites in the regulatory
regions6 or due to other nonlinear mechanisms.7 Those
properties require analyzing the stochastic features of the
network, e.g., in terms of the joint probability distribution.8

Since Poisson statistics cannot be assumed to be valid
for living systems, characterizing the stochastic properties
of biochemical reaction networks with intrinsic noise is
challenging.

To capture precisely stochastic properties of a biochem-
ical reaction system where intrinsic fluctuations may produce
profound effects and even induce extra dynamics,9–11 it is
needed to analyze the master probability equation (MPE)

a)Author to whom correspondence should be addressed. Electronic mail:
mcszhtsh@mail.sysu.edu.cn.

of this system, which describes the time evolution of the
probability distribution for all the different components in
the system.12 In some cases, the MPE can be analytically
solved, often under simplified conditions, and some analytical
methods have been developed.13–18 In most cases, however,
it needs to be numerically solved using methods developed
based either on direct integration19–22 or on Monte Carlo
sampling.23–25 The question with these numerical methods is
that they are computationally expensive, and in particular,
they become infeasible as the number of reactive species is
large. This is because the number of equations in the MPE
grows exponentially with the number of reactive species, thus
making the stochastic analysis difficult even for empirical
networks of moderate size.26,27

As an approximation to the MPE, moment equations28–34

are gaining increasing attention in modeling stochastic
behaviors of reaction systems (see a recent work Ref. 35
and references therein). In moment formulations, however,
the equations for low-order moments depend on high-order
moments, implying that the resulting moment equations
are not a closed system and truncation is required.
In many moment-closure schemes, including linear noise
approximation (LNA),36 only the first- and second-order
moments are included, thus providing only the partial
information on a system’s stochastic properties.28 Other
complex moment-based schemes have been proposed as
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well, e.g., a recently developed moment expansion method,29

which needs to use the lower-order moments to approximate
higher-order moments (e.g., a combination of the first- and
second-order moments is used to approximate the third-order
moment). In a word, how to efficiently truncate the infinite
hierarchy of moment equations generated by the MPE is a
key challenge in a moment formulation. Typically, there are
no efficient methods to control errors in truncation since
original or central moments (called ordinary comments)
do not converge to zero when their orders tend to infinity.
Another main shortcoming of the ordinary moments is that
they cannot be used to reconstruct the corresponding joint
probability distribution unless it is Poissonian. However,
this reconstruction is frequently needed to capture stochastic
effects of reaction networks precisely.

Another useful kind of moment formulation is the one
based on binomial moments.33,34 When used to stochastic
analysis of a reaction system, the binomial moment formu-
lation has a remarkable advantage: it can greatly reduce
computational complexity from the exponential growth of the
master equation to the polynomial growth of the binomial
moment equations with regard to the number of reactive
species. For some reaction networks, however, binomial
moments cannot be guaranteed to converge to zero as
their orders go to infinity,37 similar to the case of ordinary
moments. To overcome the drawback of this formulation
but motivated by this pioneering work, here, we propose
convergent moments (CMs) to replace binomial moments for
stochastic analysis of reaction networks, which are defined as
coefficients in the Taylor expansion of a probability-generating
function at some point (see Sec. II for details). A key point of
our CMs is that we introduce a parameter vector in binomial
moments. As a result, the CMs can be guaranteed to converge
to zero as their orders go to infinity (just because of it, they
are called as convergent moments). Based on the MPE of a
reaction network, we derive a linear set of ordinary differential
equations (ODEs) for CMs (called the moment-convergence
equations: MCEs). In contrast to Refs. 33 and 34, however, the
MCEs are derived in a mathematically rigorous manner. Other
important differences between our work and that work include
that we elucidate the physical meaning of the first-order
MCEs, present an explicit but useful formula for calculating
the time-evolutional joint probability distribution using CMs,
and discuss sufficient conditions that ensure that MCEs are
effectively truncated to become a closed system.

This new formulation, which explicitly captures the
reaction network structure in terms of rate laws and stoichi-
ometries, allows for fast and efficient characterization of the
stochastic properties of a reaction network. Other advantages
include that (i) unlike ordinary moment equations in which
the inclusion of high-order moments would be prohibitively
complicated, the MCEs can be easily constructed to include
moments up to any desired order; (ii) CMs can be conve-
niently used for fast computation of a time-evolutional joint
probability distribution up to a pre-specified accuracy as
well as even for analytical derivation of the steady-state
distribution; (iii) in contrast to the exponential growth of the
MPE with regard to the species number (M), the number of the
MCEs increases polynomially with M , thus greatly reducing

computational cost and enabling stochastic simulation of
even complex reaction networks involving a large number
of reactive species beyond the feasibility limit of any existing
method. Accuracy and efficiency are the most important
features of this new method in modeling intrinsic noise in
biochemical reaction networks.

We will first describe our moment-convergence method,
and then analyze several reaction networks of simple structures
to demonstrate its applicability. All examples are chosen
such that numerical simulations are easily carried out in a
personal computer. We will show that this method can be
used to determine the effects of parameters on the stochastic
properties of each system. In addition, we will uncover several
new mechanisms on genetic regulations driven by stochastic
effects, which would be difficult to obtain through direct
numerical simulation of the MPE. Finally, we will describe
how one uses our method for other more complex reaction
networks in the Discussion.

II. CONVERGENT MOMENT THEORY

A. Introduction of convergent moments

Before introducing convergent moments, let us analyze
two simple examples. The first example is used to show that
common moments (raw moments and central moments) do
not converge to zero as their orders go to infinity. The second
example is used to show the intuitive physical meaning of
the first-order convergent moments. First, consider a birth-
death process of one single reactive species: ∅

g
−−−−−→ X

and 2X
d−−−−−→ ∅. From the corresponding MPE, it is not

difficult to show that the steady-state raw moments satisfy

nk+1� >



nk
�

for any k ∈ {1,2, . . .}, implying that the original
moment



nk
�

does not converge to zero as k goes to infinity.
Furthermore, according to the expansion formula for the
polynomial (a − b)k, we have

(n − ⟨n⟩)k = k
i=0

(−1)k−i *
,

k
i
+
-
⟨n⟩k−i 
ni

�
,

k = 1,2, . . . (1)

Thus, by mathematical induction and using the known fact

ni+1� >



ni
�

for any positive integer i, we can show that the
central moment

(n − ⟨n⟩)k does not tend to zero as k is
large. In a word, neither the raw moments nor the central
moments for this example tend to zero as their orders go to
infinity. Numerical simulation also verifies this fact, referring
to the empty circles (central moments) and the triangles (raw
moments) in Fig. 1.

Then, consider another toy example, which is mainly
used to show how the differential equations for the first-order
CMs are written directly based on reactions and how they
depend on the higher-order CMs. This example contains the

following reactions: ∅
k1−−−−−→ A,∅

k2−−−−−→ B, A + A
k3−−−−−→

C, A + B
k4−−−−−→ C,C

k5−−−−−→ ∅. Note that every reaction rate
(ki) represents the transition probability per time. Thus,

the transition rate for reaction ∅
k1−−−−−→ A is given by k1,
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FIG. 1. An example used to show that both raw moments and central mo-
ments do not tend to zero but the convergent moments introduced in this
paper tend to zero as their orders go to infinity. This example contains only

two reactions ∅
g
−−−−−→ X and 2X

d−−−−−→ ∅, where parameter values are set as
g = 20, d = 1.

whereas the transition rate for reaction A + A
k3−−−−−→ C by

k3A (A − 1). If the symbol
(
Y
X

)
represents the common

binomial coefficient, then the transition rate for ∅
k1−−−−−→ A

can be expressed as k1

(
A
0

) (
B
0

) (
C
0

)
, whereas the transition rate

for A + A
k3−−−−−→ C can be expressed as k3 (2!) (A2 ) (

B
0

) (
C
0

)
.

Similarly, we can express transition rates for other reactions.
Also note that the deterministic equations for this example
can be expressed as

d
dt


*
,

A
1
+
-
*
,

B
0
+
-
*
,

C
0
+
-


= k1 *

,

A
0
+
-
*
,

B
0
+
-
*
,

C
0
+
-
− 2k3 *

,

A
2
+
-
*
,

B
0
+
-
*
,

C
0
+
-

− k4 *
,

A
1
+
-
*
,

B
1
+
-
*
,

C
0
+
-

d
dt


*
,

A
0
+
-
*
,

B
1
+
-
*
,

C
0
+
-


= k2 *

,

A
0
+
-
*
,

B
0
+
-
*
,

C
0
+
-

− k4 *
,

A
1
+
-
*
,

B
1
+
-
*
,

C
0
+
-

d
dt


*
,

A
0
+
-
*
,

B
0
+
-
*
,

C
1
+
-


= 2k3 *

,

A
2
+
-
*
,

B
0
+
-
*
,

C
0
+
-
+ k4 *

,

A
1
+
-
*
,

B
1
+
-
*
,

C
0
+
-

− k5 *
,

A
0
+
-
*
,

B
0
+
-
*
,

C
1
+
-
.

(2)

We will see that the term, e.g.,
(
A
1

) (
B
0

) (
C
0

)
is nothing

but the first-order CM of reactive species A. Other terms
can be explained similarly. Thus, the above equations imply
that the time change rate of the first-order CM is equal
to the algebraic sum of the CMs for all the reactions that
the corresponding reactive species involves, where the “+”
symbol represents the positive contribution of one reaction to
this species, whereas the “–” symbol represents the negative
contribution of a different reaction to the species. Similarly, we
can write differential equations for higher-order CMs. In this

sense, our CMs have definite physical meanings. Note that the
equations for lower-order CMs depend on higher-order CMs,
so truncation is required to obtain a closed system. One main
task of this paper is to solve this truncation issue.

We can extend the above first-order moment equations
for a particular example to a general reaction network (see
contents in Subsection II B). In this subsection, however, we
focus on introducing convergent moments.

Let N = (N1,N2, . . . ,NM) represent the state vector of
a reaction network at time t (hereafter bold letters stand
for vector or matrix). Then, there is a time-evolutional joint
probability distribution for state variable vector N, denoted
by P (N; t). As has been seen by example, the cumulants
of this distribution may not tend to zero but may be
divergent. To understand the essential reason behind it, let
us examine the probability-generating function defined by
G (z; t) = 

k zkP (k; t), where we define zk ≡ zk1
1 · · · z

kM
M for

any real vector z = (z1, . . . , zK). Apparently, this function is
the sum of a power series with coefficients P (N; t), and
the convergence radius of this series, denoted by R, is at
least 1 due to G (1; t) = 

N P (N; t) ≡ 1, i.e., R ≥ 1. Note
that R ≥ 1 does not mean that all the derivatives of G (z; t)
at z = 1 exist. On the other hand, cumulants are actually
functions of these derivatives, e.g., in the one-dimensional
case, the second-order central moment can be expressed
as

(N − ⟨N⟩)2 = ∂2G/∂z2�
z=1 − (∂G/∂z |z=1)2 + ∂G/∂z |z=1

and the mean as ⟨N⟩ = ∂G/∂z |z=1. The nonexistence of
some derivatives would mean that cumulants are divergent.
In spite of this, for any point z0 in the convergent region
D = {z | ∥z∥ < R }, we know that all the derivatives of G (z; t)
always exist since G (z; t) can be expanded into a power series
at this point. If we denote by bk (z0; t) the coefficients of this
series, then simple calculation yields

bk (z0; t) = 1
k!

∂kG (z; t)
∂zk

�����z=z0

=

N≥k

zN−k
0

*
,

N
k
+
-

P (N; t) , (3)

where we define ∂kG/∂zk = ∂k1+· · ·+kMG/∂zk1
1 · · · z

kM
M for

any configuration k = (k1, . . . , kM), k! = k1! · · · kM!, zk
0

= zk1
10 · · · z

kM
M0, and

(
N
υ

)
=

M
i=1

(
Ni

υi

)
for two vectors N and

υ, each
(

Ni

υi

)
representing a common binomial coefficient

(owing to this coefficient, bk (z0; t) with z0 = 1 are sometimes
called as binomial moments,33,34 which however cannot be
guaranteed to converge to zero as their orders go to infinity,
for some reaction networks. See the content in Section II C
below). Sometimes, we omit z0 in bk (z0; t) for convenience,
unless the confusion arises.

We emphasize that in Eq. (3), the parameter vector z0 is
introduced for a rigorous derivation. A more important point
is that this introduction is to guarantee that bk (z0; t) converges
to zero as its order tends to infinity (in the case of zero
convergence, bk (z0; t) is called as a convergent moment (CM)
with |k| = M

i=1 ki, representing the order of this moment).
Note that a point z0 for zero convergence of bk (z0; t) definitely
exists in any case. In fact, if z0 = 0, then bk (t) = P (k; t),
which tends to zero as |k| → ∞ due to lim

|N|→∞
P (N; t) = 0.

According to Eq. (3), we know that bk (z0; t) is continuous
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with regard to z0. Therefore, there is a small neighbor of z0
such that lim

|k|→∞
bk (z0; t) = 0. In a word, we can always select

z0 , 0 such that lim
|k|→∞

bk (z0; t) = 0. In particular, for many

biochemical networks (e.g., gene regulatory networks), we
can choose z0 = 1 (note that the case of z0 = 1 corresponds to
the binomial moment formulation33,34) but still can guarantee
that bk (t) → 0 as |k| → ∞. See the examples shown in Figs. 1
and 2, wherein CMs approach to zero after their orders are
large enough. For some peculiar reaction networks, however,
z0 , 1 should be chosen. See the example analysis shown
in Fig. 3. Regarding the choice of z0, we will give more
discussions in Subsection II C, wherein we also propose a
simple strategy to find an “optimal” z0.

Apart from the zero convergence, another important
advantage of CMs is that they can be conveniently used to
calculate the probability distribution. In fact, according to the
relationship P (N; t) = (1/N!)  ∂NG (z; t) /∂zN�

z=0


combined

with the expansion G (z; t) = 
k bk (z0; t) (z − z0)k from which

∂NG (z; t) /∂zN�
z=0 =


k (−z0)k−Nk (k − 1) · · · (k − N + 1) bk

(z0; t) can be derived, we have

P (N; t) =

k≥N

(−z0)k−N *
,

k
N
+
-

bk (z0; t) . (4)

This will provide a method for reconstructing a probability
distribution based on CMs, where the latter can be easily
obtained by a numerical method (see the following content).

FIG. 2. Zero convergence of convergent moments (CMs) and the distribution reconstructed using CMs. (a) Schematic diagram for a stochastic model of gene

expression. All the reactions are listed below: G1
λ21−−−−−−→ G2, G2

λ32−−−−−−→ G3, G3
λ13−−−−−−→ G1, G3+P

λ′13−−−−−→ G1+P, G1
µ1−−−−−−→ G1+P, and P

δ−−−−−→ ∅, where
G1 represents the active state of the gene promoter, whereas G2 and G3 represent two inactive states; (b) and (c) CMs tend to zero as their orders are
large enough, where bk= b(k1,k2,k3,k4) represents a CM with k1, k2, k3, k4 corresponding, respectively, to G1,G2,G3,P, and “error” represents the absolute
difference between the first-order CM of the P species obtained by a closed system of CMEs (implying that truncation is made), denoted by b(0,0,0,1)MCE, and
the first-order CM obtained by the Gillespie algorithm denoted by b(0,0,0,1)simul. Parameter values are set as λ21= λ32= λ13= λ

′
13= 5, µ = 10, δ = 1; (d) and

(e) CMs approximate well the probability distribution, where “prob.” represents the gene-product distribution, and “Error of Prob.” represents the Euclidean
distance between the distribution reconstructed using the CMs obtained by a closed system of CMEs and the distribution obtained by the Gillespie algorithm,

i.e., Error of Prob=
m

i=0[PMCE(i)−Psimul(i)]2. Parameter values are set as λ21= λ32= λ13= λ
′
13= 10, µ = 5, δ = 1. In panels (b)-(e), |k| = k1+k2+k3+k4

represents the CM order, and initial values are set as (G1,G2,G3,P)= (1,0,0,0).
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FIG. 3. Dependence of the largest real part of the characteristic values of
A j (z0) (denoted by λlargest) on z0 in the microscopic Lotka-Volterra model

described by A+X
k1−−−−−→ 2X , X +Y

k2−−−−−→ 2Y , Y
k3−−−−−→ P. Here, z0

= z10= z20 is set and parameter values are set as ak1= 1 and k2= k3= 1.

As an example, Figs. 2(d) and 2(e) show that CMs can well
approximate the distribution as their orders are large. Further
advantages of CMs will be demonstrated afterwards.

B. Derivation of moment-convergence equations

Although we have introduced CMs above, an unsolved
question is how they are used to stochastic analysis of a
general reaction network. Here we derive a linear set of
ordinary differential equations (ODEs) for CMs. Assume
that this network consists of M interacting species Xi

(1 ≤ i ≤ M) that undergo a series of reactions in such a

general form:
M

i=1 riXi →
M

i=1 siXi with reaction constant
rate denoted by cs

r, where the stoichiometric coefficients
ri and si are non-negative integers. For convenience, let
r → s represent this reaction, where r = (r1, . . . ,rM) and
s = (s1, . . . , sM). More precisely, we let r → s with reaction
rate constant cs

r represent
M

i=1 riXi →
M

i=1 siXi with the
same rate constant. Let N = (N1,N2, . . . ,NM) represent the
state of this system, where Ni is the number of copies of
species Xi.

First, we derive a partial differential equation for
probability-generating function G (z; t). Note that if we
introduce a shift operator, which is defined as Φα f (N)
= f (N + α), where f is any function of the state N and
α is a vector of integers, then the MPE can be expressed in

the form ∂P (N; t) /∂t =


r→ s
(cs

r · r!) (Φ−sΦr − I)
(

N
r

)
P (N; t).

By differentiating both sides of the equality G (z; t)
=


N zNP (N; t) with regard to t and using this new form

of the MPE, we can derive

∂G (z; t)
∂t

=

r→ s

cs
r (zs − zr) ∂

rG (z; t)
∂zr , (5)

which is a partial differential equation with free boundary
conditions, where we have omitted the reaction rate constant
cs

r for the reaction r → s. See the Appendix for derivation of
Eq. (5). This equation itself would be very useful since it can
be numerically or analytically solved using partial differential
equation theories in textbooks. In turn, the resulting G (z; t) =

N zNP (N; t) can be used to give the distribution according to
the formal relationship P (N; t) = (1/N!) ∂NG (z; t) /∂zN�

z=0.
Second, differentiating both sides of Eq. (5) with regard

to z at the z = z0 and using Eq. (3), we can further derive the
following linear MCEs:

dbk (t)
dt

=

r→ s

(cs
r · r!)



k
i=0

*
,
*
,

s
i
+
-

zs−i
0 − *

,

r
i
+
-

zr−i
0
+
-
*
,

r + k − i
r

+
-

br+k−i (t)

, (6)

which holds for any configuration k, namely, each component ki in k = (k1, k2, . . . , kM) may be any non-negative integer.
Equation (6) with all the possible k constitutes a linear ODE group of bk (t) with constant coefficients. We point
out that Eq. (6) is derived through the MPE, but it can be written directly based on a given reaction network since
Eq. (6) has captured network structure in terms of rate laws and stoichiometries. In particular, when writing Eq. (6)
for a given reaction network, one may first consider individual reactions appearing in this system and then integrate the
MCEs for all the reactions. In addition, if the system volume, denoted by Ω, is considered, then Eq. (5) should be
rewritten as

dbk (t)
dt

=

r→ s

(
cs

r · r!
Ωr

) 
k

i=0

*
,
*
,

s
i
+
-

zs−i
0 − *

,

r
i
+
-

zr−i
0
+
-
*
,

r + k − i
r

+
-

br+k−i (t)

. (6′)

To help understand the above general formulation,
e.g., Eq. (6), let us consider a simpler reaction system:
∅

g
−−−−−→ X

d−−−−−→ ∅, which models the birth and death
of one single species. Let k represent the number of
molecules for species X . Then, the corresponding MCEs (5)
become

dbk (t)
dt

= g [(z0 − 1) bk + bk−1]
− d [(z0 − 1) (1 + k) bk+1 + kbk] , (7)

where k = 0,1,2, . . .. Owing to b0 =


n P (n; t) ≡ 1 and
since Eq. (6) holds for k = 0, we have b1 = g/d, which is
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independent of the choice of z0. Now, we consider the steady-
state solution of Eq. (7). In this case, we have the following
iterative relation:

(1 − z0)

(1 + k) bk+1 −

g

d
bk


= kbk −

g

d
bk−1,

k = 0,1,2, . . . . (8)

If z0 = 1, then we obtain bk =
1
k!

� g
d

�k due to b0 = 1 and
b1 = g/d. If z0 , 1, then it follows from Eq. (8) that

bk+1 =
(g/d)k
(k + 1)! b1 +

(
b1 −

g

d
b0

)
×

k−1
i=0

i! (k − i)!
(k + 1)!

(
g

d

) i ( 1
1 − z0

)k−i
(9)

from which we still obtain the same expression of bk

due to b1 − (g/d) b0 = 0. Thus, using Eq. (3), we obtain
the analytical steady-state probability distribution given by
P (n) = � g

d

�n e−g /d
n! , which is a Poisson distribution. This

indicates that for the above birth-death process, steady-state
CMs are independent of the choice of z0. We conjecture
that for a reaction system with only one stable steady state,
z0 = 1 can be chosen. In fact, numerical results support this
conjecture (data not shown).

C. On truncation of MCEs and choice of parameter z0

While Eq. (6) is complex in form, it can be rewritten as
follows:

db( j)

dt
= b̃ + A( j) (z0) b( j) + A′ (z0) b′, (10)

where b( j) =
�
b1,b2, . . . ,bj

�T is the vector of CMs up to a
desired order ( j). On the right hand side of Eq. (10), b̃ is a
constant vector either due to the conservative condition for
probability (i.e.,


N P (N; t) = 1 for any t) or due to constraint

conditions on some reactions (e.g., the total molecular
numbers for some species are fixed) or both; A( j) (z0) is a

coefficient matrix of b( j); the vector b′ represents higher-
order moments with coefficient matrix A′ (z0). Note that when
writing Eq. (10) in the case of multiple species, rearrangement
is required. Eq. (10) indicates that for a given reaction network,
low-order CMs depend in general on higher-order CMs. Thus,
to obtain a closed system, reasonable truncation is required.
To guarantee feasibility of truncation, the choice of z0 is a
key. According to the ODE theory, if z0 is chosen such that
the real parts of all the eigenvalues of A( j) (z0) are negative,
then b( j) converges to zero as the time goes to infinity. In this
case, b( j) (in particular, stationary b( j), which is of common
interest) will converge to zero as j → ∞ (note: if the real part
of some eigenvalue of A( j) (z0) is zero, then the truncation
question is actually a famous Jacobi conjecture that has not
been solved until now, i.e., whether an infinity-dimensional
dynamical system like Eq. (10) can be approximated by a
finite-dimensional one). If z0 is chosen in such a manner,
then the real parts of all the eigenvalues of A′ (z0) will be
non-positive, mainly due to the particular form of the function
on the right hand side of Eq. (6) (referring to the following
example analysis). This result looks like intuitive, but its
rigorous proof would be very difficult. In a word, suitably
choosing z0 can guarantee that MCEs are effectively truncated.

To help understand Eq. (10) and the above analysis on
the choice of z0, let us examine the above birth-death process
again. Note that for this example, we have b0 = 1 and b1 = g/d,
which imply db0/dt = 0 and db1/dt = 0, respectively. Thus,

b j =
�
b2,b3, . . . ,bj

�T
, b′ =

�
0, . . . ,0,bj+1

�T
,

b̃ =

g2

d
,0, . . . ,0

T
,

A′ (z0) =



0 · · · 0
...

. . .
...

0 0
0 0 −d(1 − z0)(1 + j)



,

and

A( j)(z0) =



−[(1 − z0)g + 2d] 3(1 − z0)d
g −[(1 − z0)g + 3d] 4(1 − z0)d

g
. . .

. . .
. . . ( j + 1)(1 − z0)d
g −[(1 − z0)g + jd]



.

Apparently, the structure of matrix A′ (z0) is simpler than
that of matrix A( j) (z0) (the feature holds also for other reaction
systems). Note that the characteristic equation of A( j) (z0)
takes the form

λ j−1 + ( j − 1)

(1 − z0) g + ( j + 2) d

2



× λ j + · · · + (−1) j−1 det
(
A( j) (z0)

)
= 0. (11)

It is not difficult to prove that the real parts of all the roots of this
algebraic equation are negative for 0 ≤ z0 ≤ 1. In particular,
if z0 = 1 is chosen, then all the ( j − 1) characteristic values
of A( j) (z0) are real and given by λl = −ld, 2 ≤ l ≤ j. Also
note that apart from one zero characteristic value, the other
characteristic values of A′ (z0) are all equal and negative.

For the case that z0 , 1 must be chosen, let us
consider another example: the microscopic Lotka-Volterra
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model,38 which contains three reactions: A + X
k1−−−−−→ 2X ,

X + Y
k2−−−−−→ 2Y , Y

k3−−−−−→ P. Here the molecular number
of species A, denoted by a, is assumed as a fixed constant.
One will see that for this example, choosing z0 = 1 cannot

guarantee that the real parts of all the characteristic values of
matrix A( j) (z0) in Eq. (9) are negative. In fact, let n1 and n2
represent the molecule number of species X and Y , respec-
tively. Then, the corresponding MCEs take the following
form:

dbn1,n2

dt
= ak1

�
z10n1bn1,n2 + (n1 − 1)bn1−1,n2 + (z2

10 − z10)(n1 + 1)bn1+1,n2

�

+ k2
�(z2

20 − z10z20)bn1+1,n2+1 + (2z20 − z10)(n1 + 1)n2bn1+1,n2 + (n1 + 1)(n2 − 1)bn1+1,n2−1
�

− k2
�
n1(n2 + 1)bn1,n2+1 − n1n2bn1,n2

�
+ k3

�(1 − z20)(n1 + 1)bn1,n2+1 − n2bn1,n2

�
, (12)

where b0,0 = 1 and we define bn1,n2 = 0 if n1 < 0 or n2 < 0.
To simplify our analysis, we set z0 = z10 = z20. Denote

by λlargest, the largest real part of all the characteristic values
of coefficient matrix A( j) (z0) in Eq. (10). Figure 3 plots the
dependence of λlargest on z0, showing that there is a critical
value of z0 (denoted by z̃0) such that λlargest is negative if z0 is
below z̃0 and positive if z0 is beyond z̃0. A positive real part
implies that the MCEs cannot be efficiently truncated. Analysis
of this example actually provides a strategy for finding a
suitable z0. This strategy can be also extended to other reaction
systems. As a result, computational complexity can be greatly
reduced.

D. Computational cost and statistical quantities

First, recall that the number of equations in the MPE
increases exponentially with the reactive species number.
This property greatly limits the application range of the MPE.
Here, we simply show that the number of MCEs increases
only in polynomial with the reactive species number M .
In fact, there exists a positive integer M0 such that bk ≈ 0
as |k| > M0 because of bk → 0 as |k| → ∞, as mentioned
above. Note that the number of different CMs of order

|k| is given by the binomial coefficient
( |k| + M − 1

|k|
)
.

Therefore, the number of MCEs truncated up to order M0

is given by N B =
M0

|k|=1

( |k| + M − 1
|k|

)
, which is apparently a

polynomial of the number of reactive species (M). Owing to
this property, MCEs can have broader applications than the
MPE.

In general, the choice of M0 depends on the largest one
of the multiplicities of individual reactive species (e.g., the
multiplicity of species X in reaction X + Y → Z is 1, whereas
the multiplicity of species X in reaction 2X + Y → Z is 2).
Moreover, the larger the chosen M0 is, the higher is the order
of the polynomial. For most of common biochemical reaction
networks, we may choose M0 = 5 or less, and the approximate
results have become very good or have well approached to the
exact solutions.

Second, as has been mentioned above, if z0 = 0 is
chosen, then bk (t) = P (k; t), implying that the number of
the corresponding MCEs grows exponentially with regard

to the number of reactive species. If z0 = 1 can be chosen,
then we know from the above analysis that the MCE number
grows polynomially. Thus, we should choose z0 in such a
manner that it approaches to 1 as much as possible, so that
the computational complexity can be reduced at the most.
A general conclusion is that the computational complexity
for any reaction network is in between exponential and
polynomial growths of the species number. In addition, an
ideal z0 can be quickly found by dichotomy combined with
an optimal principle, where by “ideal” we mean that z0
approaches to 1 as much as possible. Some details for
finding z0 are stated as follows. Set z0 = z10 = · · · = zM0,
where zi0 are components of vector z0. If CMs are convergent
for z0 = 1, then we choose z0 = 1. Otherwise, we examine
the case of z0 = 0.5. If the CMs are convergent, then
we further examine the case of z0 = 0.75. If the CMs
are still convergent, then we further examine the case of
z0 = 0.875. This process continues until an optimal z0 is
found.

Third, analyzing stochastic properties of a reaction system
directly based on the MPE is in general difficult. Therefore,
most previous works were focused on analysis of statistic
quantities such as mean, variance, noise intensity, Fano factor,
skewness, and kurtosis. These statistics can capture stochastic
properties of some simple reaction networks such as birth-
death processes but would mask useful information on other
complex reaction networks. It should be pointed out that the
LNA gives only approximate results of the first four statistics
for nonlinear reaction networks, and in particular, skewness
and kurtosis are zero due to the assumption of Gaussian
variables in the LNA. For many other nonlinear reaction
systems, however, the latter two indices are not equal to zero.
See the following example.

Before analyzing the example, we provide exact formulae
for calculating all the above quantities based on CMs. For
clarity, let us consider only the case of one variable. The mean
and variance are calculated according, respectively, to

⟨m⟩ = b1 (t)σ2 (t) = 2b2 (t) + b1 (t) − b2
1 (t) . (13)

With these, the noise strength and the Fano factor are given
by
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η2 (t) = 2b2 (t) + b1 (t) − b2
1 (t)

b2
1 (t)

,

Fano =
2b2 (t) + b1 (t) − b2

1 (t)
b1 (t) ,

(14)

which are applicable to both linear and nonlinear reaction
networks. These two indices are the most common metrics
of noise in, e.g., gene expression37 and will be alternatively
used in analysis of our examples below. Since the first- and
second-order moments frequently cannot well characterize
a distribution, one needs to evaluate the skewness of
this distribution over the time denoted by γ1 (t), which
characterizes the degree of the asymmetry of the distribution
around its mean, and the kurtosis, denoted by γ2 (t), which
measures the degree of peakedness of the distribution. They
are calculated according, respectively, to

γ1 (t) = µ3 (t)
µ3/2

2 (t) , γ2 (t) = µ4 (t)
µ2

2 (t)
− 3, (15)

where the k-order central moment is given by

µk(t) = (−b1(t))k +
k−1
i=0

k−i
j=1

R(k, i, j)( j!)(b1(t))ibj (t) (16)

in which R(k, i, j) = (−1)i
(

k
i

)
S(k − i, j) with S(n, k)

=
k

i=0(−1)k−i
(

k
i

)
in being the Stirling number of the second

kind.39 Equation (16) establishes the relationship between
central moments and CMs. Formulae (13)-(16) are easily
extended to multivariate cases. We stress that all the above
formulae expressed by CMs are exact if the CMs are exactly
given and can be applied to any complex reaction networks.

To help understand skewness and kurtosis, let us consider
the above system of nonlinear degradation again, i.e., consider
the system consisting of two reactions ∅

g
−−−−−→ X and

2X
d−−−−−→ ∅. The MCEs corresponding to the choice

of z0 = 1 are given by dbk/dt = gbk−1 − 2dk (k + 1) bk+1
− dk (k − 1) bk, where b0 = 1. Note that b1 =

√
S is known,34

where S = g/d represents the system size. Therefore,
according to the first formula in Eq. (15), it is not difficult
to show γ1 (t) = 1

S

(
1 −
√

S
)
< 0. Similarly, we can show that

γ2 (t) is not equal to zero for any S. This example indicates
that skewness and kurtosis needs to be analyzed for better
characterizing the corresponding distribution. In addition,
for this example, we have rigorously proved that ordinary
moments do not tend to zero as their orders are large, seeing
Eq. (2). Here we mathematically show that CMs tend to zero
as their orders go to infinity. In fact, steady-state CMs can be
expressed as

bk+1 =
⟨(n + 1) (n + 2) · · · (n + 1 + k)⟩

(k + 1)! =
1

(k + 1)!



nk+1� + (k + 1) (k + 2)
2



nk
�
+ · · · + (k + 1)!


, k = 1,2, . . . , (17)

which tend to zero as their orders go to infinity, due to


nk+1� = 1

k

k−1
i=0


S

(
k
i

) 

ni
�
+ (−1)k−i+1

(
k + 1

i

) 

ni+1�


,

k = 1,2, . . .. This indicates that CMs are indeed superior
to common moments from the view of convergence.

Finally in this section, we point out that it is known
from solving the moment equations in extensions of the
linear noise approximation that the equations would become
more and more ill-conditioned mainly due to the assumption
of Poisson variables that would lead to the ill-conditioned
Jacobian matrix. However, our CM method can overcome this
drawback mainly since MCEs may incorporate moments of
any orders as well as since CMs approach to zero as their
orders are large.

III. APPLICATIONS

Since the number of MCEs increases only polynomially
in terms of the reactive species number and since truncating
MCEs through suitably choosing parameter z0 is feasible, the
above formulation can be in principle applied to stochastic
analysis of any complex biochemical reaction network. In
this section, we demonstrate its power in stochastic analysis
of gene regulatory networks. More applications of MCEs

to other biochemical reaction networks will be published
elsewhere.

A. Analytical distributions

Here, we demonstrate how MCEs are used to derive
analytical distributions as well as how parameter z0 , 1 in
Eq. (6) is chosen. For this, we analyze a simple example:
a gene auto-activating circuit. This example was previously
studied.5

The corresponding biochemical reactions read

Doff
λ


γ

Don,Doff + X
a−−−−−→ Don + X

Don
µ

−−−−−→ Don + X,X
δ−−−−−→ ∅,

(18)

where Doff and Don stand for inactive and active states of the
gene promoter, respectively, and X for gene product (mRNA
or protein). Parameters λ and γ are transition rates between
the states of the promoter. The symbol a represents the
feedback strength. Parameters µ and δ are transcription and
degradation rates, respectively. Let P0 and P1 be the probability
distribution of the X species molecule number at Doff and Don

states, respectively. Let G0 and G1 be the corresponding
probability-generating functions. Denote by P = P0 + P1, the
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total probability distribution and by G = G0 + G1, the total
generating function.

As is previously pointed out, a CM is actually a
coefficient in the Taylor series of function G expanded at
point z0, i.e., bk (t) = 1

k! G
(k)
z (z0; t). Thus, we first write the

corresponding partial differential equations for G0 and G1

∂G0

∂t
= −λG0 + γG1 − az

∂G0

∂z
+ δ (1 − z) ∂G0

∂z
∂G1

∂t
= λG0 − γG1 + az

∂G1

∂z
+ µ (z − 1)G1

+ δ (1 − z) ∂G1

∂z

(19)

and then derive the following ODEs for G at steady state

δ (a + δ)
µ


z − δ

a + δ



G′′ −

(a + δ)

(
z − δ

a + δ

)
− (λ + γ) δ

µ


G′ − λG = 0.

(20)

Choosing z0 =
δ

a+δ
and Taylor expanding G (z) at z0, we

obtain the following analytical expressions for steady-state
CMs:

bk =
b0

k!

(
µ

δ

)k (λ/ (a + δ))k
((λ + γ) / (a + δ))k , k = 1,2,3, . . . , (21)

where (c)k is the Pochhammer symbol defined as (c)k
= Γ (c + k) /Γ (c), and b0 is determined by the probability
conservation and given by b0 = 1F1

(
λ

a+δ
; λ+γ
a+δ

; aµ
δ(a+δ)

)
, where

1F1 (a; b; z) is a confluent hypergeometric function. Using the
relationship (3), we thus obtain the analytical steady-state
distribution

P (m) = 1
m!

(
µ

δ

)m �
λ

a+δ

�
m(

λ+γ
a+δ

)
m

×
1F1

(
m + λ

a+δ
; m + λ+γ

a+δ
;− µ

a+δ

)
1F1

(
λ

a+δ
; λ+γ
a+δ

; aµ
δ(a+δ)

) . (22)

Similarly, we can derive the analytical steady-state distribution
in the case of gene auto-repression. Such analytical distri-
butions can be further used to explore the relationship between
expression noise and feedback as well as effects of the
upstream promoter dynamics on the downstream transcription
dynamics including bursting dynamics.5,40

In contrast to the case of the above example, we can
always choose z0 = 1 for the examples analyzed in Sec. III B
due to special structures of the corresponding reaction
networks.

B. Nontrivial effects of intrinsic noise
in gene expression models

In this subsection, we analyze two models of gene
expression using the above moment-convergence method,
showing that intrinsic noise can play a nontrivial role in
controlling genetic information flows. The first model is a
small system, which contains only 4 reactions. Interestingly,
we show that stochastic fluctuations can induce transient
bimodality and amplify signals although the steady-state

distribution is unimodal. The second model is a larger system,
which contains 32 stochastic variables and 115 reactions.
Interestingly, we find that slow switching between promoter
states can increase fluctuations in spatially heterogeneous
signals. For the first model, traditional methods such as
the Gillespie stochastic simulation algorithm23 and the finite
state projection19 can well solve the corresponding MPE,
but for the second model, solving the corresponding MPE
using the traditional methods seems difficult and is at least
very time-consuming. In contrast, our proposed moment-
convergence approach can be easily used to calculate the
distributions in these gene models, and the computational cost
is comparatively low.

To analyze the models in a united framework using
MCEs, we simply introduce a more general model of gene
expression at the transcriptional level,41 which contains the
above two models as its particular cases. Assume that
the promoter has N states, L states of which are active
(denoted by Ai) and the other K = N − L states are inactive
(denoted by I j). Denote by λi j, the transition rate from
state- j to state-i (λi j = 0 means that no transition occurs),
which altogether constitutes a N × N matrix A =

�
λi j

�

(termed as the promoter’s state transition matrix). Let matrix
Λ = diag (µ1, . . . , µN) (transcription matrix) describe exits
of transcription with µi representing the transcription rate
of mRNA in state-i (µi = 0 means that no transcription
takes place). Then, these two matrices A and Λ altogether
characterize the promoter structure. Denote by m, the number
of mRNA molecules. Let Pk (m) represent the probability
that mRNA has m molecules at the k-th state of promoter,
thus having a column vector of probability density states
P = (P1, . . . ,PN)T. Denote by bk =

(
b(1)
k
, . . . ,b(N )

k

)T
, where

each b(i)
k

represents the CM of order k corresponding to Pi.
Then, according to Eq. (6), we can write the MCEs for the
full system in a straightforward way

d
dt

bk = Abk + Λbk−1 − kbk, (23)

where all the parameters are rescaled by δ and k = 1,2, . . ..
Let bk represent the total CM, i.e., bk = uNbN =

N
i=1 b(i)

k
,

where uN = (1,1, . . . ,1) is a row vector. Thus, three terms on
the right hand side of Eq. (23) well capture structure of the
underlying reaction network, namely, the first term describes
promoter kinetics, the second describes transcription, and the
third describes degradation.

1. Stochastic fluctuations can induce transient
bimodality and amplify signals

Most previous studies on stochastic effects of gene
expression have been carried out only through analyzing
steady-state distributions or statistical quantities due to
technical difficulty.42 In many cases, transient dynamics of
gene expression may be quite different from the stationary
ones.43 Here, we analyze dynamic behaviors of a gene
regulatory model using our moment method (Fig. 4).

Assume that the promoter contains only one ON state
and one OFF state but a TF dynamically (more precisely,
in an enzyme-catalyzed manner) regulates the transition rate
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FIG. 4. Stochastic fluctuations can induce transient bimodality and amplify signals. (a) Schematic diagram for a gene model, where the promoter is assumed
to have one active state and one inactive state and the transient transcription factor regulates the transition rate from OFF to ON states. The reactions are listed

below: TFC
kt−−−−−→ TFN, TFC

δC−−−−−−→ ∅, TFN
δN−−−−−−→ ∅,G1+TFN

λ21


λ12

G2, where TFC and TFN represent a regulator protein in the cytoplasm and in the nucleus,

respectively, and G1
µ1−−−−−−→ G1+P, G2

µ2−−−−−−→ G2+P, P
δP−−−−−−→ ∅; (b) the time evolution of mean expression, where the solid lines describe the mean mRNA

number obtained using the distribution corresponding to the right peak along the mRNA axis; (c) the time evolution of expression noise strength; (d) transient
mRNA probability distribution, exhibiting different dynamic characteristics (unimodal or bimodal). The parameter values are kt = 0.01, δC = 0.01, δN = 0.01,
λ21= 0.5, λ12= 0.1, µ1= 100, µ2= 200, and δP = 10; The initial condition is (TFC,TFN,G1,G2,P)= (5,0,1,0,0); the order of the truncated CMs is set as k = 5.
In (b)–(d), empty circles represent the results obtained by the Gillespie algorithm, whereas lines represent the results obtained by our moment-convergence
method.

from OFF to ON (Fig. 4(a)). Interestingly, we find that the
steady-state distribution is unimodal (see time-evolutional
probability distributions in Fig. 4(d)). However, the dynamic
distribution may be either unimodal or bimodal (see the curves
of moderate times in Fig. 4(d)). From this transient bimodality
in which one peak corresponds to a small mRNA number,
whereas the other to a large mRNA number, we see that
stochastic fluctuations amplify signals (the solid lines shown
in Fig. 4(b)). In addition, different from the case of steady state,
the mRNA’s mean level exhibits one single peak at a finite
time and the noise strength demonstrates two different peaks at
two different finite times (Figs. 4(b) and 4(c)). Moreover, the
moment for the peak of the mean level is different from that for
each of the peaks of the noise intensity (Figs. 4(b) and 4(c)).
These indicate that different-order moments can exhibit
different dynamic characteristics and only the first-order
moment cannot capture the complete information on transient
stochastic behaviors of this system. This transient bimodality
induced by stochastic fluctuations would be important for the
activation of signals in the downstream networks since the
activation of the downstream signals depends often on the size
and frequency of the upstream signals.43,44

2. Slow switching between promoter states increases
fluctuations in spatially heterogeneous signals

Here, we consider an application of CM to multiple
compartments with interaction among them through diffusion.
Transport through diffusion is important for developmental
processes,45 nanoclusters of signaling proteins,46 and cell
polarization.47 Previously, stochastic branching diffusion

models for gene expression have been developed.48 Here,
we analyze a reaction-diffusion version of a two-state gene
model (Fig. 5(a)) using the CM approach. In particular, we
divide the spatial domain into 24 = 16 compartments, leading
to 32 stochastic variables and 115 reactions. Traditional
computational methods, such as the Gillespie algorithm23 and
the finite state projection method,18 may become prohibitively
expensive for such a case. Direct application of our moment
method can efficiently provide the joint distribution for all the
reactants and its statistics.

First, we observe that the CM approach gives the similar
result as the standard Gillespie algorithm (Fig. 5(b)), and
that the steady-state number of protein molecules forms a
gradually decreasing gradient with respect to the position of
compartments (more precisely, the further the position is, the
smaller is the number of synthesized protein molecules).

Then, to investigate the effect of promoter fluctuations
on diffusion of signals, we study two cases: fast and slow
switching between the promoter’s two states, where the ratio
of λOFF→ON/λON→OFF = kon/koff remains invariant but both
kon and koff take very large values for the fast switching
whereas very small values for the slow switching. It seems
difficult to deal with such a large difference in scale by existing
methods (at least they are very time-consuming when handling
the case of this slow switching). Our moment method shows
that the protein noise intensity (Fig. 5(c)) has an inverse
relationship with the spatial gradient (Fig. 5(b)). This is
because the fewer proteins generated at a further position
imply larger protein fluctuations at this position. In addition,
the fast promoter switching (the green line in Fig. 5(b)) leads
to smaller fluctuations at the locations where the signal level
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FIG. 5. Application of CM approach to spatial dynamics of gene expressions. (a) Schematic for a gene model with diffusion, where the promoter has one
active state and one inactive state, and the gene products, mRNA, and protein diffuse inside a cell; (b) the mean protein number as a function of the spatial
compartments shown in (a). The red line is obtained by the CM method, whereas the grey curves are obtained by the Gillespie algorithm; (c) the Fano factor
as a function of compartments in space in two cases: fast promoter switching and slow promoter switching. The parameter values are Dm = 5, Dp = 50, km
= 0.1, kp = 0.1, δm = 0.005, δp = 0.001; fast promoter fluctuation: kon= 0.8, koff = 0.2; slow promoter fluctuation: kon= 0.008, koff = 0.002.

is low than the slow promoter switching (the red line in
Fig. 5(b)). This is partially because at the first compartment,
the slow switching results in larger fluctuations in protein than
the fast switching and partially due to the particular structure
of the network shown in Fig. 5(a).

IV. SUMMARY AND CONCLUSION

Biochemical networks in single cells can display large
fluctuations in molecule numbers. Mesoscopic approaches,
such as MPE, are often used for stochastic analysis of such
systems. Here, we have introduced an approximate approach
for MPE through MCEs. By using this method, one is able
to analyze stochastic properties of biochemical networks in a
more convenient way both analytically and computationally.
Our CM method is linear and converges as the order of
truncation of moment equations increases. In particular, the
number of CMEs is substantially reduced compared to the
MPE.

Our CMs have a clear physical meaning. For a
biochemical reaction system or network, the propensity
function of every reaction represents the mean probability that
the reactive molecules in this reaction collide. In mathematics,
this function is equal to the reaction rate times some CM.
Therefore, a CM in essence represents a mean probability. In
particular, a high-order CM represents the mean probability
that multiple reactive molecules collide. Since this probability
tends to zero with the increase of the reactive molecule
number, it is not strange that CMs also tend to zero as their
orders go to infinity. This would lay a physical foundation for
our convergent moment theory.

The moment-convergence method introduced here has
more advantages in contrast to the existing methods for
stochastic analysis, which can be divided into two classes.

The first class is so-called moment-closure approximations
(MCAs), e.g., normal MCAs (also called cumulant neglect
MCAs),28,31,49–51 the Poisson MCA,52 the log-normal MCA,53

and the maximum entropy-based MCA.29 Usually, these
approximation methods are obtained by setting some
cumulants as zero, and we have established an analytical
relationship between cumulants and convergent moments
(see Eq. (16)). Therefore, the methods can be viewed as
our particular cases. We point out that in general, these
approximate methods are efficient only for those reaction
systems either with small fluctuations or with particular
structures, thus having limited applications. The other class
is the direct approximations to the MPE (but they do not
belong to moment-closure schemes), e.g., the finite state
projection algorithm23 and the quantized tensor train method.22

In general, however, these two methods can only deal with
those reaction systems of small scale. In contrast to the above
two classes of methods, our CM method in principle can be
applied to stochastic analysis of any reaction networks. In
particular, it has no constraints for fluctuations and network
structures.

The CM method is mainly designed to work where other
moment-closure approaches cannot (perhaps, yet) be applied.
Nevertheless, when it is used to address any challenging
problem, our method would also be computationally
expensive, especially for some reaction networks of complex
stochastic behavior (e.g., intricate attractors) or those with
very high-order reactions. In addition, the more accurate the
reconstructed distributions from CMs, the more challenging
the reconstruction would become and models with many
reactive species would defy serious analysis by the CM
method or, indeed, by any other moment-closure approaches.
Although beyond the scope of the current study, more efficient
algorithms with improved or guaranteed error involving
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distribution reconstruction by CMs can be developed. The CM
method may then supplant the Gillespie stochastic simulation
algorithm23 for stochastic chemical simulations, especially for
large reaction networks.

The CM method has been used for stochastic analysis of
several representative gene regulatory networks, revealing
several novel stochastic mechanisms on gene expression
dynamics. In general, the CM method can be broadly applied
to modeling, analysis, and simulations on biochemical reaction
networks of more complex stochastic properties, such as
those with bimodal, multimodal probability distributions,
or the probability distributions possessing other intricate
structures. For such application, our CM method, although
still efficient in computing probability distribution, would
encounter difficulties associated with, e.g., stiffness of the
MPE due to large differences in sizes of rate constants,
since in this case the corresponding CM is likely to require
higher order of truncations, which leads that the errors
become very large due to factorial manipulations involved. For
complex networks or the peculiar reaction network analyzed
above, one needs to carefully choose the parameter z0 such
that the truncations of MCEs can be effectively made. We
have proposed a strategy for choice of z0 by analyzing an
example, but the optimal strategy on choice of z0, although
existing in theory, needs to be further explored for fast
calculation.

Finally, the CM method can also be used for a systematic
search for the minimal set of all possible reactions that
lead to a particular dynamical property such as bistability,
multimodality, oscillation, or excitability. This is because
a biochemical reaction network is typically composed of
fundamental reaction modules of finite number. This will
be very useful in developing design principles of synthetic
networks, along with many other interesting and powerful
applications.

ACKNOWLEDGMENTS

This work was supported by Grant Nos. 91230204,
91530320, and 11475273 from the Natural Science Foun-
dation No. 2014CB964703, from Science and Technology
Department No. 2012J2200017, from the New Star of Science
and Technology Project of Zhujiang, Guangdong Province,
P. R. China. Q.N. was supported by National Institutes
of Health Grant Nos. R01GM107264, R01NS095355, and
P50GM76516 and National Science Foundation Grant Nos.
DMS1161621 and DMS1562176.

APPENDIX: DERIVATION OF A PARTIAL
DIFFERENTIAL EQUATION
FOR PROBABILITY-GENERATION FUNCTION

For the master probability equation mentioned in the main
text

∂P (N; t)
∂t

=

r→ s

(cs
r · r!) �Φ−s

Φ
r − I

� *
,

N
r
+
-

P (N; t)
(A1)

we introduce the probability-generating function G (z; t)
for the probability P (N; t): G (z; t) = 

N zNP (N; t), where
we denote z = (z1, . . . , zM) and define zN ≡ zN1

1 . . . zNM
M .

Differentiating G (z; t) with regard to t and using Eq. (A1)
yields

∂G (z; t)
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=

r→ s

(cs
r · r!)


N
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Φ
−s
Φ

r − I
� *
,

N
r
+
-

P (N; t) .
(A2)

By changing the order of terms in the summation and
switching the signs of the shift operators, then Eq. (A2)
will become

∂G (z; t)
∂t

=

r→ s

(cs
r · r!)


N

*
,

N
r
+
-

P (N; t) �Φ−r
Φ

s − I
�

zN.

(A3)

Note that Φ−sΦrzN = zN+r−s and

1
r!
∂rG (z; t)

∂zr ≡ 1
r!
∂r1+· · ·rKG (z; t)
∂zr1

1 · · · ∂zrKK
=


N≥r

*
,

N
r
+
-

zN−rP (N; t) .
(A4)

Thus, Eq. (A3) can be rewritten as Eq. (6) in the main text.
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