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Abstract

Orofacial clefting represents the most common craniofacial birth defect. Cleft lip with or without cleft palate (CL/P)

is genetically distinct from cleft palate only (CPO). Numerous transcription factors (TFs) regulate normal

development of the midface, comprising the premaxilla, maxilla and palatine bones, through control of basic

cellular behaviors. Within the Pbx family of genes encoding Three Amino-acid Loop Extension (TALE)

homeodomain-containing TFs, we previously established that in the mouse, Pbx1 plays a preeminent role in

midfacial morphogenesis, and Pbx2 and Pbx3 execute collaborative functions in domains of coexpression. We also

reported that Pbx1 loss from cephalic epithelial domains, on a Pbx2- or Pbx3-deficient background, results in CL/P via

disruption of a regulatory network that controls apoptosis at the seam of frontonasal and maxillary process fusion.

Conversely, Pbx1 loss in cranial neural crest cell (CNCC)-derived mesenchyme on a Pbx2-deficient background results

in CPO, a phenotype not yet characterized. In this study, we provide in-depth analysis of PBX1 and PBX2 protein

localization from early stages of midfacial morphogenesis throughout development of the secondary palate. We

further establish CNCC-specific roles of PBX TFs and describe the developmental abnormalities resulting from their

loss in the murine embryonic secondary palate. Additionally, we compare and contrast the phenotypes arising from

PBX1 loss in CNCC with those caused by its loss in the epithelium and show that CNCC-specific Pbx1 deletion affects

only later secondary palate morphogenesis. Moreover, CNCC mutants exhibit perturbed rostro-caudal organization

and broadening of the midfacial complex. Proliferation defects are pronounced in CNCC mutants at gestational day

(E)12.5, suggesting altered proliferation of mutant palatal progenitor cells, consistent with roles of PBX factors in

maintaining progenitor cell state. Although the craniofacial skeletal abnormalities in CNCC mutants do not result

from overt patterning defects, osteogenesis is delayed, underscoring a critical role of PBX factors in CNCC

morphogenesis and differentiation. Overall, the characterization of tissue-specific Pbx loss-of-function mouse

models with orofacial clefting establishes these strains as unique tools to further dissect the complexities of this

congenital craniofacial malformation. This study closely links PBX TALE homeodomain proteins to the variation in

maxillary shape and size that occurs in pathological settings and during evolution of midfacial morphology.

Key words: cleft lip/palate (CL/P); cleft palate only (CPO); Pbx; transcription factor; craniofacial; morphogenesis;

skeleton; birth defect; tissue-specific.
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Introduction

Orofacial clefting represents the most common craniofacial

birth defect (Dixon et al. 2011; Leslie & Marazita, 2013).

Although not a major cause of mortality, this congenital

malformation imposes a psychological and financial burden

on affected individuals, their families and society (Zeytino-

glu & Davey, 2012). The phenotypic spectrum of this disor-

der ranges from microform lip defects to overt clefting that

can involve the primary and/or secondary palate (Kim et al.

2010; Howe et al. 2015). It is also believed that cleft lip with

or without cleft palate (CL/P) is genetically distinct from

cleft palate only (CPO; Lidral & Moreno, 2005). Whereas

facial clefting can be associated with syndromic conditions

with well characterized genetic mutations, non-syndromic

or isolated clefting involves complex interactions between

genetic and environmental risk factors (Marazita, 2012; Les-

lie & Marazita, 2013). Epidemiologic and genome-wide

studies of affected groups have led to the identification of

putative genetic determinants of facial clefting, some of

which have been evaluated in mouse models (Gritli-Linde,

2012). Conversely, molecular analyses of mouse-mutants

generated by gene targeting have helped the discovery of

new regulatory networks and candidate genes for human

clefting. As a result, numerous factors have been found to

contribute to development of the lip, primary and sec-

ondary palates (Kousa & Schutte, 2016; Tam et al. 2016).

Development of both primary and secondary palate

requires cranial neural crest cell (CNCC) specification, migra-

tion, proliferation and differentiation, a process that is

instructed by genetic networks whose regulatory topology

is becoming increasingly well defined (Martik & Bronner,

2017). In mammals, growth of the secondary palate follows

a stereotypical pattern (Ferguson, 1988; Lan et al. 2015).

The murine secondary palate becomes visible at E11.5 as

two parallel shelves that are rostro-caudally oriented and

grow vertically downwards from the maxilla on either side

of the tongue. Concomitantly, vertical outgrowth of the

shelves is also accompanied by growth along the anterior-

posterior (A–P) axis of the midface (comprising premaxilla,

maxilla and palatine bones). By E14.5, the shelves further

grow towards the midline and then adopt a horizontal dis-

position dorsal to the tongue. Subsequently, they fuse in

the sagittal plane as well as with the nasal septum dorsally

and the caudal border of the primary palate rostrally.

Development of the secondary palate involves various basic

cellular behaviors including proliferation, migration, apop-

tosis and differentiation (Cox, 2004; Bush & Jiang, 2012).

During morphogenesis of the upper lip, primary palate and

other organ systems, these behaviors have been shown to

operate, at least in part, under mechanisms that are con-

trolled by Pbx homeodomain transcription factors (TFs;

Capellini et al. 2011; Ferretti et al. 2011).

Mammalian Pbx genes (Pbx 1,2,3,4) encode Three Amino-

acid Loop Extension (TALE) homeodomain-containing TFs

(Moens & Selleri, 2006; Longobardi et al. 2014), which play

integral roles in the development of many organs in the

mouse, including axial and appendicular skeleton, lung,

heart, pancreas, spleen, kidney (Selleri et al. 2001; Kim et al.

2002; Capellini et al. 2006, 2008, 2010; Stankunas et al.

2008; Koss et al. 2012; Li et al. 2014; Hurtado et al. 2015;

McCulley et al. 2018) and craniofacial complex (Ferretti

et al. 2011). We reported that, among all the Pbx constitu-

tive compound mutants generated, only Pbx1�/�;Pbx2+/�

(Pbx1/2) and Pbx1�/�;Pbx3+/� (Pbx1/3) mutant embryos

show fully penetrant CL/P and Pbx1+/�;Pbx2+/�;Pbx3+/�

mutants die at birth with CPO. In contrast, single constitu-

tive mutants for Pbx1 die at midgestation but do not exhi-

bit orofacial clefting on a mixed genetic background (Selleri

et al. 2001). Notably, constitutive loss of Pbx2 alone does

not yield detectable phenotypes in the mouse (Selleri et al.

2004) and single constitutive loss of Pbx3 results in postnatal

lethality due to respiratory failure without craniofacial

defects (Rhee et al. 2004). Thus, we established that Pbx1

plays a preeminent role in the development of the midface

and other organ systems, and Pbx2 and Pbx3 execute col-

laborative functions in domains of coexpression (Capellini

et al. 2006, 2008, 2010; Ferretti et al. 2011; Koss et al. 2012;

Golonzhka et al. 2015). Furthermore, we described that

Pbx1 conditional loss from Foxg1-positive (and Crect-posi-

tive) cephalic epithelial domains, on a Pbx2- or Pbx3-defi-

cient background, results in CL/P via perturbation of

regulatory networks that control apoptosis and epithelial-

to-mesenchymal transition (EMT) at the seam wherein the

frontonasal processes fuse with the maxillary process (Fer-

retti et al. 2011; Losa et al. 2018). In contrast, we reported

that on a mixed genetic background, Pbx1 inactivation in

Wnt1-positive CNCC-derived mesenchyme on a Pbx2-defi-

cient background does not yield CL but CPO (Ferretti et al.

2011). However, the anatomical, cellular and molecular

basis of the latter craniofacial defects has not yet been char-

acterized.

Here, we provide detailed analyses of the tissue-specific

roles of PBX TFs in the murine CNCC and of the abnormali-

ties resulting from PBX loss in the embryonic secondary

palate. As opposed to the lip and primary palate defects

associated with Pbx1 epithelial loss, CNCC-specific loss dis-

rupts secondary palate morphogenesis and organization of

the craniofacial skeletal complex. Together, our findings

highlight distinct tissue-specific roles and iterative functions

of PBX TFs in the coordinated development of the midfacial

complex.

Materials and methods

Mice

The mutant alleles used in this study have been published previ-

ously and include: the Pbx1 constitutive and conditional mutant

alleles (Selleri et al. 2001; Koss et al. 2012), the Pbx2 constitutive

© 2018 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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knock-out allele (Selleri et al. 2004), the Wnt1-Cre transgene (Lewis

et al. 2013) and the Foxg1-Cre knock-in allele (Hebert & McConnell,

2000). The Foxg1-Cre deleter line was maintained on a pure Swiss

Webster genetic background and the Wnt1-Cre transgenic line was

kept on a mixed Swiss Webster/C57Bl6 genetic background.

Mouse embryos were harvested at the appropriate developmen-

tal stage from pregnant dams. The presence of a vaginal plug was

assessed as embryonic day 0.5 (E0.5). Mutant and control embryos

were either somite-matched (E10.0, E11.5) or matched by crown-

rump length (E12.5 onwards). Dams were euthanized by CO2

administration followed by cervical dislocation as approved by Weill

Cornell institutional and UCSF IACUC protocols.

Histological analysis

Embryos were harvested and fixed O/N at 4 °C in 0.1 M phosphate

buffer (PB) containing 4% (w/v) paraformaldehyde (PFA). Fixation

time varied from O/N (minimum) for E10.5–E12.5 embryos to longer

times as appropriate for larger embryos. Embryonic tissues were

dehydrated in serial alcohols before clearing in a proprietary clear-

ing agent (Histoclear-National Diagnostics) followed by paraffin

wax embedding. After sectioning, paraffin-embedded sections

were dewaxed, re-hydrated, stained with hematoxylin before being

counterstained with eosin. Images were obtained using a Zeiss

AxioPlan upright microscope.

Scanning electron microscopy

Embryos were harvested and fixed at 4 °C in 0.1 M phosphate buf-

fer containing 4% (w/v) paraformaldehyde (PFA) for several days.

Paired samples were then immersed in 2.5% glutaraldehyde, 4%

paraformaldehyde, 0.02% picric acid in 0.1 M phosphate buffer

O/N. Post fixation samples were treated with aqueous osmium-tetr-

oxide ferricyanide solution (1% OsO4-1.5%K-ferricyanide) O/N.

After dehydration through a graded ethanol series and critical

point drying through liquid CO2, samples were mounted on alu-

minum stubs and sputter coated with gold-palladium. Samples

were imaged using a ZEISS LEO 1550 Scanning Electron Microscope.

Immunofluorescence antibody staining

Embryos were harvested in cold phosphate-buffered saline (PBS)

and briefly fixed in 0.1 M phosphate buffer containing 4% PFA at

4 °C according to gestational age: (E10.5: 45 min; E11.5: 1 h; E12.5:

1.5 h; E13.5: 2 h). After washing in cold PBS, embryos were incu-

bated O/N at 4 °C in 30% Sucrose/PBS. Embryos were then embed-

ded in a 1 : 1 mixture of OCT and 30% Sucrose.

After cryosectioning at a standard thickness of 10 lm, slides were

washed with PBS and treated with a solution of sodium borohy-

dride (NaBH4) in PBS depending upon gestational stage: (E10.5/

E11.5: 0.01% solution for 10 min; E12.5: 0.1% solution for 5 min;

E13.5: 0.1% solution for 5 min). After three washes in PBS, slides

were immersed in TSP Buffer (0.5% Triton, 0.1% Saponin, 19 PBS)

for 10 min before blocking in 1% Normal Donkey Serum (NDS) in

TSP for 1 h at 37 °C with gentle rocking. Depending upon gesta-

tional age, primary antibodies were applied at the following con-

centrations and incubation times at 37 °C in 1% NDS/TSP: anti-

active Caspase-3 pAb (Promega), 1 : 200 for 1 h; anti-Pbx1 (Cell Sig-

naling) E10.5/E11.5, 1 : 100 for 1 h; E12.5, 1 : 75 for 2 h; E13.5,

1 : 50 for 2 h); anti-Pbx2 (Santa-Cruz) E10.5, 1 : 100 for 1 h; E11.5/

E12.5, 1 : 50 for 2 h. After washing, fluorescent secondary antibody

AlexaFluorTM647 (Invitrogen-ThermoFisher Scientific) was applied,

for 1 h at 37 °C in 1% NDS/TSP, at a dilution of 1 : 200. Slides were

then washed and counterstained with DAPI at 1 : 5000 for 10 min

prior to coverslipping.

MicroCT imaging and cephalometric analysis

Fixed, unstained E18.5 mouse embryos were scanned at 18 lm reso-

lution using a Zeiss Xradia Versa 520 XRM (Cornell University BRC

Imaging Facility; X-ray source 80 kV/7W, LE1 filter). 3D reconstruc-

tions of the data and rotational movies (200 frames/20 fps) were

rendered using OSIRIX software (Pixmeo SARL). The palatal region

and individual bones were isolated with the automated OSIRIX 3D

Segmentation tool followed by manual refinement (Rosset et al.

2004). The OSIRIX Crop tool was used to remove palatal structures

on the left side in ‘cropped’ views. Manual 2D bone measurements

were obtained using the OSIRIX Length tool. For 3D measurements,

landmarks were manually placed in OSIRIX, and EXCEL was used to

compute distances between the XYZ coordinates of each landmark.

All measurements were normalized to the rostral-caudal length of

the skull and made relative to the wild type average. P-values were

calculated using two-tailed Student’s t-tests with unequal variance.

Cell proliferation assays

The Click-iT EDU reaction assay was carried out according the manu-

facturer’s instructions (ThermoFisher Scientific). Pregnant dams

were administered EdU at 50 lg kg�1 by intraperitoneal injection

before sacrifice. Sacrifice was carried out after 30 min, 45 min or

1 h for E11.5, E12.5 and E13.5 stages, respectively. Embryos were

processed for cryosectioning as for immunofluorescence antibody

staining. After sectioning, slides were washed and permeabilized

with 0.5% Triton X-100 in PBS. The Click-iTTM reaction was prepared

and applied to slides as per the manufacturer’s instructions. After

development, slides were washed and counterstained with DAPI at

1 : 5000 for 10 min, followed by coverslipping. EdU-positive cells

were counted from three embryos per each time-point examined.

Three sections, corresponding to anterior, middle and posterior sec-

ondary palate, were examined for each embryo. Quantification of

the percentage of EdU-positive cells vs. total number of cells present

in each palatal domain was performed using algorithms generated

with MATLAB software (MathWorks). All cells within enclosed areas

were counted for all slides analyzed corresponding to anterior, mid-

dle and posterior domains. The percentage of proliferating cells at

each developmental stage examined was calculated by dividing the

number of EdU-positive cells by the total number of counted cells

(400–700) on each section.

Apoptosis assays

Embryos were harvested in cold PBS and cryopreserved as described

previously (see Immunofluorescence Antibody Staining). Anti-active

Caspase-3 primary antibody (Promega Corp.) was applied at 1 : 200

in 1% NDS/TSP for 1 h 37 °C with rocking. After washing, fluores-

cent secondary antibody, AlexaFluorTM647 (Invitrogen-ThermoFisher

Scientific) was applied, also at a dilution of 1 : 200. Slides were then

washed and counterstained with DAPI at (1 : 5000) for 10 min, fol-

lowed by coverslipping. Three pairs of embryos (control and

mutant) were analyzed for each time point (E11.5–E13.5). Palatal

sections were categorized as anterior, middle or posterior depend-

ing on their location and stereotypical morphology. Fluorescent
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images of palatal sections were obtained using a Hamamatsu

C4742-95 camera (Hamamatsu Corp.), mounted on a Nikon Eclipse

TE200 microscope (Nikon Corp.). Quantification of the percentage

of Caspase-three positive cells vs. total number of cells present in

each palatal domain was performed using algorithms generated

with MATLAB software, as described above for the Cell Proliferation

Assay. The total number of cells counted on each section was 400–

700.

Preparation of in situ hybridization probes

Murine cDNA probes for Msx1 (Hill et al. 1989) and Barx1 (Miletich

et al. 2005) were obtained from Drs Richard Maas and Paul Sharpe,

respectively. For murine Tbx22 and Alpl, a 1250-bp cDNA clone cor-

responding to nucleotides 307–1547 of RefSeq NM_145224 and a

1043 bp cDNA clone corresponding to nucleotides 1380–2422 of

RefSeq NM_001287172, respectively, were TA-cloned from E14.5

C57Bl6 cDNA and used to transcribe DIG-labeled antisense probes.

For murine Shox2, a 660-bp cDNA sequence within the Shox2

RefSeq NM_013665.1 was PCR-amplified with primers appended

with the recognition sequence for T7 RNA polymerase. The purified

PCR product was subsequently used as a template for in vitro tran-

scription and DIG labeling. All probes were labeled using a commer-

cially available in vitro transcription kit (Roche), following the

manufacturer’s instructions.

In situ hybridization

All embryos were dissected into cold PBS and fixed O/N in 4% PFA/

PBS. Embryonic heads were then dehydrated through a methanol-

PBT series, with gentle rocking at room temperature. Embryos were

stored at �20 °C in 100% methanol until processing.

After bleaching in 6% hydrogen peroxide for 20 min, embryos

were treated with Proteinase K (20 lg mL�1) for 10 min and then

quenched with glycine solution (2 mg mL�1) before being washed

twice in PBT. Embryos were then re-fixed in 4% PFA/0.2% glu-

taraldehyde in PBT for 20 min before being washed twice in PBT.

Embryos were then transferred to a prehybridization solution for

1 h at 70 °C. Riboprobes were added (1 lg mL�1) for incubation

overnight at 70 °C. Embryos were subsequently washed and treated

with anti-digoxigenin-AP antibody (Roche) at a concentration of

1 : 2000 to 1 : 4000 (dependent on probe) and incubated overnight

at 4 °C with rocking. Embryos were then washed extensively in TBST

buffer at room temperature, prior to colorimetric detection with

BM-Purple Chromogenic Reagent (Roche). Lastly, embryos were

washed and post-fixed with 4% PFA/0.2% glutaraldehyde. Embryos

were imaged using a Leica MZ75 Stereo Zoom Microscope and an

Omax A3590U 9MP digital camera. A minimum of three pairs (WT-

mutant) were used to assess the palatal expression pattern of each

reported probe.

Results

Dynamic spatiotemporal localization of PBX1 and

PBX2 in the developing primary and secondary palate

Previous studies have reported widespread expression of

genes encoding TFs of the PBX family in the developing

rodent embryo (Roberts et al. 1995), including the nascent

secondary palate (Schnabel et al. 2001). Because mouse

mutants with compound constitutive loss of Pbx1 and Pbx2

(Pbx1�/�;Pbx2+/�) display craniofacial phenotypes including

CL/P (Ferretti et al. 2011), we analyzed in detail the patterns

of PBX protein localization within the facial prominences,

as well as primary and secondary palate. By immunofluores-

cent antibody (Ab) staining, we detected PBX1 and PBX2

protein products in the cephalic epithelium and mes-

enchyme from early stages of facial development (E10.5)

(Supporting Information Figs S1 and S2). At the level of the

dorsal maxillary process (MxP), both PBX1 and PBX2 are pre-

sent at high levels in the epithelium and throughout the

underlying mesenchyme (Figs S1E,F and S2E,F), whereas in

the ventral MxP they are localized to the more rostral

epithelium and in a medially restricted band in the underly-

ing mesenchyme (Figs S1H,I and S2H,I).

By E11.5, during primary palate morphogenesis and

fusion, PBX1 is evident in the cephalic epithelium and exhi-

bits the highest levels at the lambdoidal junction where the

medial nasal process (MNP), lateral nasal process (LNP) and

MxP converge (Fig. 1A–D). These findings corroborate ear-

lier reports on the requirement for Pbx1 and Pbx2 cephalic

epithelial expression during lip and primary palate forma-

tion (Ferretti et al. 2011). At the site of primary palate

fusion, PBX1 also shows a mesenchymal enrichment

(Fig. 1A,B). Along the A–P axis of the developing secondary

palate, PBX1 is present in a restricted band that extends

medio-laterally from the forming palatal shelf (Fig. 1E,F,I,J)

to the epithelial invagination that will give rise to the naso-

lacrimal groove (de la Cuadra-Blanco et al. 2003). More pos-

teriorly, this band of mesenchymal PBX1 localization

appears to become dorsally restricted and to divide the

palatal field into dorsal and ventral (presumptive nasal and

oral) domains (Fig. 1M,N). At this stage, PBX2 largely over-

laps, albeit not as widely (Fig. 1C,D,G,H,K,L,O,P), the PBX1

spatial pattern.

At E12.5, PBX1 is excluded from the medial aspect of the

primary palate epithelium and is largely confined to the

region lateral to the developing incisor bud, where mes-

enchymal PBX1 is localized to the maxilla and extends medi-

ally into the dorsal aspect of the primary palate (Fig. 2A).

At the level of the anterior secondary palate, PBX1 is pre-

sent at high levels along the medial aspect of the palatal

shelf (both epithelium and mesenchyme) and extends

dorso-laterally into the maxillary primordium (Fig. 2C). In

the mid-secondary palate, PBX1 is confined to the mes-

enchyme of the dorsal aspect of the maxilla and palatal

shelf (Fig. 2E). The mesenchyme of the posterior secondary

palate exhibits a similar pattern of PBX1 mesenchymal local-

ization (Fig. 2G). As with earlier stages, in these domains

PBX2 shows a similar, although weaker and more diffuse,

pattern as PBX1 (Fig. 2B,D,F,H). This finding is consistent

with our previous genetic studies reporting that PBX1 plays

prominent roles in directing development of multiple organ

systems including limb, axial skeleton, visceral organs, brain

and midface, whereas PBX2 functions collaboratively with
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PBX1 in domains of coexpression (Capellini et al. 2006,

2008, 2010; Ferretti et al. 2011; Koss et al. 2012; Golonzhka

et al. 2015; reviewed in Capellini et al. 2011). Accordingly,

we focused our subsequent studies on PBX1 localization at

later gestational stages.

In particular, IF analysis at E13.5 demonstrates that

although PBX1 is absent from the premaxillary condensa-

tion of the primary palate, it continues to be localized to

spatial domains critically involved in secondary palate mor-

phogenesis (Supporting Information Fig. S3A–D). For exam-

ple, PBX1 shows marked enrichment within the medial

aspect of the palatal shelf along its entire A–P axis

(Fig. S3B–D). Conversely, PBX1 appears to be down-regu-

lated in lateral aspects of the more posterior maxilla. Simi-

larly, whereas epithelial PBX1 levels are high in the anterior

domain of the primary and secondary palate, they are

reduced in the epithelium of the more posterior secondary

palate (Fig. S3A–D). In summary, our findings establish that

PBX1 and PBX2 proteins are localized across the primary

palate and the entire A–P axis of the secondary palate, in

epithelial and CNCC-derived mesenchymal domains that are

critically involved in primary and secondary palatal morpho-

genesis. The dynamic spatiotemporal pattern of Pbx1 and

Pbx2 expression suggests that these genes play tissue-
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Fig. 1 Localization of PBX1 and PBX2 in the developing midface at E11.5. Representative micrographs of immunofluorescence with PBX1- and

PBX2-specific antibodies on coronal sections through the primary and secondary palate. Cartoons of primary palate and secondary palate (anterior,

mid, and posterior) are shown in left-most column. PBX1 and PBX2 proteins, fuchsia signal; DAPI highlighting the nuclei, blue. Primary palate:

(A–D) PBX1 and PBX2 are localized to the midfacial mesenchymal core where MNP, LNP and MxP converge (white arrowhead), as well as in the

overlying epithelium (pink arrowhead). High levels of PBX1 in epithelium of the olfactory pit (pink asterisk in B) with low levels of PBX2 (empty pink

asterisk in D). Anterior secondary palate: (E–H) Mesenchymal localization of PBX1 extends as a band from the naso-lacrimal groove (NLG; pink

arrowhead in E) into the palatal shelf primordium (white arrowhead in F) with PBX2 showing similar, albeit restricted, pattern (G,H). Both PBX1

and PBX2 also localize to the epithelium of the developing palatal shelf (F,H). Middle secondary palate: (I–L) Mesenchymal localization of both

PBX1 and PBX2 extends medially from the NLG (pink arrowhead in I,K) into the palatal primordia in compressed band (pink asterisk in I,K) and is

maintained in the mesenchyme and epithelium of the palatal shelf primordia (white arrowhead in J,L). PBX1 and PBX2 are localized to the tongue

mesenchyme and epithelium (white asterisk in I,K). Posterior secondary palate: (M–P) PBX1 extends from the maxillary primordia into the palatal

shelf primordia (pink asterisk in M), with sparser PBX2 mesenchymal expression (empty pink asterisk in O). In the overlying epithelium PBX1 is uni-

form (white arrowhead in N), with PBX2 restricted to the ventral-lateral epithelium of the shelf (white arrowhead in P). LNP, lateral nasal process;

Mb, mandible; MNP, medial nasal process; MxP, maxillary process; PS, palatal shelf; T, tongue. Magnification: columns 3 and 5, higher magnifica-

tions of the fields within red box in schemata of column 1. Scale bar: 200 lm.
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specific and iterative roles during critical phases of midfacial

morphogenesis.

Strikingly different phenotypes result from loss of

Pbx genes in cephalic epithelium or cranial neural

crest-derived mesenchyme

Development of both primary and secondary palate

requires CNCC specification, migration, proliferation, pat-

terning and differentiation through reciprocal interactions

between mesenchyme and overlying pharyngeal ectoderm

(Ferguson, 1984; Minoux & Rijli, 2010). Using compound

Pbx1/Pbx2 constitutively mutant alleles (Pbx1�/�;Pbx2+/�)
that develop fully penetrant CL/P, we previously reported

the absence of detectable differences in the expression

domains of Tfap2a (Ferretti et al. 2011) in the nascent mid-

facial prominences of E10.0 Pbx1�/�;Pbx2+/� mutants com-

pared with Pbx1+/�;Pbx2+/� control embryos, suggesting

that loss of PBX factors does not affect early craniofacial

development. In addition, we show here that Msx1

CNCC-specific expression is also grossly unchanged in E10.0

Pbx1�/�;Pbx2+/� constitutive mutant embryos vs. controls
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Fig. 2 Localization of PBX1 and PBX2 in the developing midface at E12.5. Immunofluorescent detection of PBX1 and PBX2 (fuchsia signal) on

coronal sections through the primary and secondary palate (DAPI, highlighting nuclei in blue). Cartoons of primary palate and secondary palate

(anterior, mid, posterior) in left-most column. Primary palate: (A,B) PBX1 and PBX2 in the oral epithelium, with higher levels lateral to the incisor

bud (white arrowhead in A,B) throughout the surface cephalic ectoderm. PBX1 present in the mesenchyme of the primary palate but excluded

from the condensation adjacent to the incisor bud (white empty asterisk in A). PBX1 also localized to the nasal epithelium (white arrow in A).

PBX2 detectable throughout the anterior midfacial mesenchyme (B). Anterior secondary palate: (C,D) PBX1 levels higher in dorsal aspect of the

MxP, palatal shelf proper (white arrowhead in C), and overlying epithelium (white arrow in C). PBX2 present at comparable levels in the palatal

shelf and at lower levels in MxP (D). Middle secondary palate: (E,F) Mesenchymal localization of PBX1 and PBX2 confined to the dorsal-most aspect

of the palatal shelf and MxP (white arrowhead in E,F). In the epithelium, low levels of PBX1 restricted to the medial domain of the palatal shelf

(white empty arrowhead in E) with broader distribution of PBX2 (F). Posterior secondary palate: (G,H) Weak mesenchymal levels of PBX1 and PBX2

in ventral palatal shelf mesenchyme (white empty asterisk in G,H), with band of higher PBX1 signal in MxP dorsal to shelf proper (white arrowhead

in G, H). Epithelial localization of PBX1 and PBX2 confined to the oral side (G,H). Mb, mandible; MxP, maxillary process; NS, nasal septum;

PP, primary palate; PS, palatal shelf; T, tongue. Scale bar: 200 lm.
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(Supporting Information Fig. S4). Collectively, these results

indicate that equivalent populations of CNCC are present at

the onset of midfacial morphogenesis in Pbx compound

mutants and controls and that craniofacial defects associ-

ated with PBX loss are not a consequence of perturbed

CNCC allocation or migration.

To inactivate Pbx1 conditionally in the surface cephalic

epithelium (SCE), we utilized the Foxg1-Cre knock-in allele

(Hebert & McConnell, 2000), which directs Cre-mediated

recombination in the cranial epithelium and telencephalon.

In contrast, to excise Pbx1 from the CNCC-derived mesenchy-

mal population of the developing midface, we employed a

Wnt1-Cre transgene (Lewis et al. 2013), which exhibits activ-

ity in the premigratory CNCC population. Although CL/P was

fully penetrant in Pbx1fl/fl;Foxg1Cre/+ epithelial mutants with

a single exception (hereafter referred to as epithelial

mutants), we used a Pbx2 sensitized genetic background, as

reported (Ferretti et al. 2011), to generate a robust and fully

penetrant midfacial phenotype in Pbx CNCC mutants. Thus,

all CNCC-specific Pbx1mutant embryos analyzed in this study

were heterozygous for a Pbx2 constitutive null allele on a

mixed genetic background (Pbx1fl/fl;Pbx2+/�;Wnt1-CreTg/+

embryos; hereafter referred to as CNCC mutants). We vali-

dated the activity of both Cre mouse strains via IF detection

of PBX1 protein in either epithelial or CNCCmutant embryos

(Supporting Information Figs S5A0–D0 and S6A0–D0). We

observed complete epithelial or CNCC mesenchymal loss of

PBX1 in bothmutant genotypes.

To characterize the tissue-specific functions of PBX1 dur-

ing morphogenesis of the primary and secondary palate,

we employed scanning electron microscopy (SEM) and his-

tological analyses to compare and contrast the phenotypes

resulting from epithelial (Pbx1 fl/fl;Foxg1 Cre/+) and CNCC-

derived mesenchymal (Pbx1 fl/fl;Pbx2+/�;Wnt1-Cretg/+) Pbx1

loss. Our gross morphological analysis demonstrated that

CNCC mutants display CPO with full penetrance and compa-

rable expressivity. In contrast, the epithelial mutants exhibit

clefting phenotypes of the lip and primary palate with vari-

able expressivity, confirming and expanding previously pub-

lished results on a Pbx2-sensitized background (Ferretti

et al. 2011; summarized in Supporting Information

Fig. S7A–E and Table S1). Briefly, the 21 epithelial mutants

examined exhibited either normal lip and primary palate,

with clefting of the secondary palate (33%) or unilateral or

bilateral clefting of the lip and primary palate accompanied

by clefting of the secondary palate (62%). A single epithe-

lial mutant displayed normal primary and secondary palate

with unilateral cleft lip (5%). In all cases except for one the

phenotype of the lip and primary palate were correlated.

Scanning electron microscopy (SEM) of the developing oral

cavity in epithelial mutants from E13.5 to E15.5 revealed

dysmorphic primary palate in conjunction with cleft lip

(Fig. 3, top rows for all gestational days). Specifically, at

E13.5, the primary palate appears broader, consistent with

lack of fusion of the facial prominences. For the secondary

palate, SEM also revealed a widening of the gap interven-

ing between the anterior-most aspects of the palatal

shelves, indicative of an overall broadening of the midface

(Fig. 3A–H). Both SEM and histology on serial coronal sec-

tions demonstrated relatively comparable morphologies of

the secondary palate in controls and epithelial mutants,

even though E14.5 mutants failed to elevate the palatal

shelves (Fig. 3I–P). Histology at E14.5 and E15.5 suggests

that failure to elevate can be unilateral or bilateral and can

be at least in part caused by trapping of the shelves below

the tongue (Fig. 3, second and third rows for all gestational

days). By E15.5 the net effect of these perturbations is cleft-

ing of the secondary palate with or without associated

clefting of the lip/primary palate.

Whereas excision of Pbx1 from the cephalic epithelium

results in lip and palatal clefting phenotypes, excision

from premigratory CNCC-derived mesenchyme, on a Pbx2-

deficient mixed genetic background, yields a strikingly dif-

ferent phenotypic outcome (Fig. 4 and Supporting Infor-

mation Fig. S8). At E11.5, SEM and histological analyses

demonstrated that control and mutant embryos were lar-

gely comparable as far as their gross morphology. Two

subtle morphological perturbations observed at this gesta-

tional day include a reduction in size of the embryonic

choanae and a narrowing of the inter-palatal shelf dis-

tance (Fig. 4A,B). However, by E12.5, marked morphologi-

cal abnormalities were obvious in the developing anterior

secondary palate (Fig. S8A,B). In controls, outgrowth of

the midfacial complex between E11.5 and 12.5 can be

Fig. 3 Epithelial loss of PBX1 results in clefting of the primary and secondary palate (CL/P). Scanning electron micrographs (SEM; top) and hema-

toxylin & eosin (H&E) stained coronal sections (bottom) of embryonic palate and oral cavity from E13.5–E15.5. Representative control: Pbx fl/+;

Foxg1Cre/+ (left) and mutant: Pbx1 fl/fl;Foxg1Cre/+ (right) embryos for each time point. E13.5: SEM shows dysmorphic primary palate in mutant

(empty white asterisk in B) as compared with control (white asterisk in A). Anterior palatal shelves appear to be more widely spaced in mutant

(white double-headed arrows in A,B). H&E illustrates mild outgrowth defects of anterior secondary palatal shelves in mutant (empty black arrow-

head in D) than in control (black arrowhead in C). Morphology of mutant middle and posterior secondary palatal shelves is otherwise comparable

to that of control. E14.5: SEM highlights bilateral clefting of lip and primary palate in mutant (J) vs. control (I). Secondary palatal shelves remain

unelevated and have not made contact medially (open white arrowhead in J), whereas in control they have elevated and made contact (white

arrowhead in I). H&E sections show failure to elevate secondary palatal shelves in mutant as a potential consequence of aberrant trapping of

shelves by tongue (empty black arrowhead in L,N,P), as compared with control (black arrowhead in K,M,O). E15.5: SEM shows complete clefting

of secondary palate in mutant (open white arrowhead in R) vs. control (white arrowhead in Q). H&E illustrates that mutant secondary palatal

shelves are cleft along entire A–P axis with aberrant contact with tongue (open black arrowhead in T,V,X), as compared with control (black arrow-

head in S,U,W). M, molar tooth bud; NS, nasal septum; PS, palatal shelf; T, tongue. Scale bar: 400 lm.
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visualized by the increasing separation of the primary

palate from the secondary palate, via the interposition of

an anterior palatal domain that will form the presumptive

hard palate adjacent to the nasal choanae. This domain

expands uniformly along the medial aspect of the elon-

gating secondary palatal shelf (Figs 4A,B and S8A,B). In

wild type embryos, a transient groove, visualized by SEM,

normally separates the presumptive hard palate from the

presumptive soft palate at E12.5. Anterior to this groove

will be the formation of the first palatal ruga (Welsh &

O’Brien, 2009). In CNCC mutants, by E13.5, there is a

marked exaggeration of this groove, which abnormally

persists, and a lateral displacement of the presumptive

hard palate, with consequent severe dysmorphology of

the secondary palatal shelf (Fig. 4I,J). Of note is the strik-

ing resemblance between this phenotype and the

reported palatal phenotype in Satb2-null mice (Britanova

et al. 2006; Dobreva et al. 2006). As a consequence of the

lateral positioning of the presumptive hard palate, the

forming mutant soft palate fails to be displaced posteri-

orly and maintains aberrant proximity to the primary

palate. This causes, at least in part, a reduction of the

embryonic choanae as compared with controls (Figs 4A,B,

I,J and S8A,B,I,J). From E12.5 onwards, the abnormal posi-

tioning of the presumptive soft palate in relation to the

primary palate and developing sinus cavities results in a

bridge of tissue that extends between the lateral aspect

of the nasal septum and the ipsilateral maxillary pri-

mordium. This aberrant bridge functionally separates the

oral and nasal cavities in CNCC mutants, as visualized in

H&E-stained coronal sections (Figs 4K,L,S,T andS8C,D,K,L),

similar to the phenotype observed in Tbx22-null mice

(Pauws et al. 2009). From E12.5 to E15.5, the mutant ante-

rior palatal shelves beneath this bridge are markedly

hypoplastic, whereas in CNCC mutants, clefting of the sec-

ondary palate is complete along the A–P axis, by E15.5

the posterior palatal shelves show evidence of medially

directed growth (Fig. 4W,X). Interestingly, the CNCC

mutant midface also appears overall shorter and wider

along the rostro-caudal axis (Figs 4 andS8).

Pbx CNCC mutants present secondary palate clefting

and more severe A–P disorganization of the

craniofacial skeleton compared with epithelial

mutants

We have integrated comprehensive lCT-based 3D imaging

with morphometry (Fig. 5, Supporting Information Fig. S9,

Supplementary Table S2, S3, S4) and genetic analyses of

E18.5 control and mutant crania, which has proven to be a

powerful approach for the quantitative assessment of phe-

notypes and for highlighting potential regulatory mecha-

nisms underlying craniofacial bone development (Percival

et al. 2014; Ho et al. 2015). Excision of Pbx1 from the cepha-

lic epithelium resulted inminor, albeit statistically significant,

differences inmeasurements of overall cranial structures and

palatal elements, including: (i) widening of the distance

between both the premaxillae and maxillae (Fig. 5B, mea-

surements 2 and 3; Supporting Information Table S3); (ii) ros-

tro-caudal shortening of the premaxilla (Fig. 5B0,
measurement 5); (iii) diagonal lengthening of the maxilla

(Fig. 5B0 0, measurement 7); (iv) reduction of the maxillary

width at the junction with the premaxilla (Fig. 5B, measure-

ment 8); (v) increase in the distance from the incisor alveolus

to the basisphenoid (Table S4). Interestingly, themorpholog-

ical changes observed in the maxillary bone are associated

with a near-complete loss of the palatine process of themax-

illa (Fig. 5A″,B″), a structure that forms the greater part of

Fig. 4 Pbx CNCC mutants result in isolated clefting of the secondary palate (cleft palate only; CPO). Scanning electron micrographs of developing

palate (SEM; top) and hematoxylin & eosin (H&E) stained coronal sections (bottom) of embryonic palate and oral cavity at E11.5, E13.5 and E15.5.

Representative control: Pbx1 fl/+;Pbx2+/�;Wnt1-CreTg/+ (left) and mutant: Pbx1 fl/fl;Pbx2+/�;Wnt1-CreTg/+ (right) embryos for each time point. E11.5:

SEM shows comparable morphology of nascent primary (white asterisk) and secondary (white arrowhead) palate in control (A) and mutant (B). In

mutant, smaller embryonic choanae (empty black arrowhead in B) vs. control (black arrowhead in A) and distance between palatal shelf primordia

subtly constricted (B). H&E confirms grossly comparable morphology of nascent palatal shelves in control and mutant (black arrowheads in C–H),

with mildly abnormal dorsal aspect of forming nasal septum in mutant (black asterisk in D). E13.5: SEM shows normal formation of primary palate

(white asterisk in I,J) in control and mutant with profound dysmorphology of mutant secondary palate, which exhibits aberrant organization of its

A–P domains separated by abnormal groove (white arrow in J). Specifically, in mutant, anterior palatal domain bearing rugae (presumptive hard

palate) (white empty arrowhead in J) is positioned more laterally and posteriorly than in control (white arrowhead in I). H&E highlights markedly

hypoplastic mutant anterior palatal shelves (black empty arrowhead in L) vs. control (black arrowhead in K). Aberrant A–P organization of mutant

secondary palate results in abnormal connection between nasal septum and maxilla (black asterisk in L). Sections of middle palate demonstrate

presence of epithelial thickenings (black arrows in N) consistent with presence of rugae in more posterior domains of mutant shelves as compared

with control (M). Posterior presumptive soft palate comparable in control and mutant (black arrowheads in O, P). E15.5: SEM illustrates reduced

outgrowth of midfacial complex in mutant vs. control (compare length of black and white bars along A–P snout in Q and R, respectively). Lack of

palatal shelf fusion evident in mutant (white empty arrowhead in R) as compared with control (white arrowhead in Q). H&E demonstrates that in

mutant vestigial anterior palatal shelves do not make contact medially (black empty arrowhead in T) vs. control (black arrowhead in S). In addition,

in mutant, abnormal tissue connection between nasal septum and maxilla persists (black asterisk in T). Mid-palatal sections show dysmorphic pala-

tal shelves and clefting at midline in mutant (black arrow in V). Posterior palatal sections demonstrate clefting of soft palate (empty black arrow-

head in X) as compared with control (black arrowhead in W). LNP, lateral nasal process; MNP, medial nasal process; M, molar tooth bud; Mx,

maxilla; MxP, maxillary process; NS, nasal septum; PS, palatal shelf; T, tongue. Scale bar: 400 lm.
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the hard palate (Richman et al. 2006). The palatine bone

itself shows altered morphology when compared with con-

trols (Fig. 5A0 0 0,B0 0 0); however, significant size differences

were not detected. Of all the above morphological abnor-

malities, rostro-caudal shortening of the premaxilla (Fig. 5B0,
measurement 5) was the most significant. Overall, our data
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Fig. 5 Tissue-specific deletion of Pbx genes results in distinct clefting defects with CNCC-specific loss concomitantly causing altered positioning

and proportions of midfacial skeletal elements. Morphometric analysis of premaxilla, maxilla, and palatine bones in E18.5 wild type and mutant

embryos with epithelial- and CNCC-specific loss of Pbx genes. (A–C) Ventral lCT reconstructions of palatal regions showing premaxilla (green),

maxilla (purple) and palatine bones (pale blue). Ventral and lateral views of individual bones shown in (A0–A0 0 0) wild type, (B0–B0 0 0) Pbx1fl/fl;Foxg1Cre/+

and (C0-C0 0 0) Pbx1fl/fl;Pbx2+/�;Wnt1-CreTg/+ embryos. In lateral views, ventral side oriented towards the right. (D) Diagram of wild type palatal region

illustrating location of individual measurements quantified in (E). (E) Morphometric measurements of palatal structures in Pbx1fl/fl;Foxg1Cre/+ (med-

ium gray; n = 3) and Pbx1fl/fl;Pbx2+/�;Wnt1-CreTg/+ mutants (dark gray; n = 3) relative to wild type controls (light gray; n = 4). Colors and numbers

correspond to those used in diagram shown in (D). Compared withd type and epithelial-specific loss of Pbx1, CNCC mutants exhibit significant

shortening and widening of maxilla (C0 0; see measurements 7,9,10). In addition, this mutant displays abnormally elongated structure comprising

palatal process of maxilla fused to palatine bone (C0 0 0; palato-maxillary process, see measurements 11,13). Data are reported as averages � SEM.

Statistical significance: *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. Scale bars: 1 mm.

© 2018 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

Cleft Palate due to Pbx loss in Cranial Neural Crest, I. C. Welsh et al.232



establish that Pbx1 deletion from the cephalic epithelium

does not disrupt the overall A–P organization of the midfa-

cial complex and results in CL/P with associated skeletal

defects limited to alterations in the premaxillary and maxil-

lary bones.

Excision of Pbx1 from premigratory CNCC-derived mes-

enchyme, on a Pbx2-deficient mixed genetic background,

yielded a fully penetrant CPO phenotype, rather than CL/P

(Fig. 4), together with a severe disruption of A–P craniofacial

skeletal organization (Fig. 5C). In contrast to epithelial

mutants, lCT-based morphometry highlighted major differ-

ences in measurements of overall cranial structures and pala-

tal elements in CNCC mutants. Statistically significant

alterations in these mutants include: (i) increase of the inter-

maxillary distance (Fig. 5C, measurements 1,2); (ii) increase

of premaxillary width (Fig. 5C0, measurement 4); (iii) pro-

found shortening and widening of the maxillae (Fig. 5C0 0,
measurements 7,9,10); (iv) elongation of the palatine bone,

as detailed below; (v) rostro-caudal shortening of the cranial

base, as measured from the basioccipital bone to the incisor

alveolus (Table S4, measurement q). The overall effect of

these perturbations is a dramatic broadening and shorten-

ing of the CNCC mutant midface (Fig. 5C, Table S3, S4). In

addition, the maxillary malformations in CNCC mutants

include a partial occlusion of the infra-orbital foramen,

where the maxillary branch of the trigeminal nerve egresses

the cranium (Fig. 5C0 0), as well as markedly abnormal caudal

palatine structures (Fig. 5C0 0 0). Specifically, there is a signifi-

cant rostro-caudal elongation of the presumptive palatine

bone, which is highly dysmorphic and positioned more ante-

riorly within the midfacial complex. Rostrally, the palatine

bone is ectopically fused with a small, elongated structure

that, based on morphology and topology, appears to be the

palatine process of the maxilla. This ectopic formation,

which also exhibits an additional fusion with the overlying

vomer, generates a neomorphic mutant skeletal element

that we call ‘palato-maxillary process’ (Fig. 5C,C0 0 0, Table S3,

Supporting Information Movies S1–S3). Lastly, in CNCC

mutants the spatial organization of the basisphenoid, ptery-

goid and palatine bones is altered. Specifically, the ptery-

goid bone, which is normally located ventral to the

basisphenoid, is shifted rostrally in CNCC mutants (Fig. S10C,

C0). This malformation has consequences for the functional

architecture of the caudal pharyngeal region and the associ-

ated musculature. Consequently, these defects could have a

deleterious impact on deglutition andmastication.

In summary, our findings establish that loss of PBX func-

tion in either the cephalic epithelium or CNCC-derived mes-

enchyme results in the orofacial clefting phenotypes CL/P or

CPO, respectively. Importantly, the CNCC-specific perturba-

tion also produces markedly more severe morphological

alterations of individual skeletal elements and overall A–P

organization of the midfacial complex as compared with

the epithelial-specific mutation. The presence of ectopic

bone formation and aberrant fusions in CNCC mutants

strongly suggests that PBX TFs function in the CNCC to con-

trol the spatiotemporal dynamics of osteoblast differentia-

tion during ossification of the craniofacial skeleton, a

hypothesis supported by the role we previously described

for PBX1 in endochondral ossification (Selleri et al. 2001;

Gordon et al. 2010, 2011).

Temporally restricted proliferation defects during

development of the secondary palate in CNCC

mutants are not accompanied by altered apoptosis

PBX TFs play integral roles in the regulation of mesenchy-

mal progenitor cell proliferation (Brendolan et al. 2005)

and subsequent differentiation (Gordon et al. 2011; Hur-

tado et al. 2015). Based on our observations that in CNCC

mutants the anterior palatal shelves appear hypoplastic

and dysmorphic starting at E12.5, we examined prolifera-

tion rates within the shelves and adjacent maxillae during

early-to-mid palatogenesis (E11.5–E13.5). Specifically, we

carried out detection of EDU-labeled S-phase cells (Buck

et al. 2008) on serial coronal sections of secondary palates

in control and mutant littermates (n = 3 per genotype,

per time-point). Shelves were assigned to one of three

anatomic levels along the rostro-caudal axis based on

stereotypical morphology. In control palates, we observed

a progressive reduction in the mitotic index from E11.5 to

E13.5 from approximately 30 to 20% of EdU-positive cells

(Fig. 6A–G, Supporting Information Fig. S11A,B). Whereas

at E11.5, proliferation rates in the developing secondary

palate of CNCC mutants were only moderately reduced as

compared with controls (Fig. S11A), at E12.5 the prolifera-

tive defect became pronounced in the mutants, which dis-

played around 20% of EdU-positive cells vs. 25% in

controls (Fig. 6G). However, by E13.5, differences of prolif-

eration were no longer evident in mutants compared with

controls, in both of which approximately 20% of mes-

enchymal cells were EdU-positive (Supporting Information

Fig. S11B). These results are consistent with a precocious

reduction of cell proliferation in CNCC mutant palatal pro-

genitor cells.

PBX loss is not typically associated with increased apopto-

sis in vivo and, indeed, absence of PBX TFs results in local-

ized suppression of apoptosis at the site of facial

prominence fusion in the mouse embryo (Ferretti et al.

2011). However, it has been reported that PBX loss from

specific cellular populations (Murphy et al. 2010; Grebbin

et al. 2016) results in impaired cell survival. For this reason,

we examined programmed cell death in the developing sec-

ondary palate from early- to mid-palatogenesis (E11.5–

E13.5) (Fig. S11C). Immunofluorescent Ab staining for acti-

vated Caspase-3 on serial coronal sections revealed no

detectable differences in numbers of Caspase-3-positive cells

between controls and mutant palates at all time-points

examined, with negligible apoptotic cells in either genotype

(Fig. S11C).

© 2018 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

Cleft Palate due to Pbx loss in Cranial Neural Crest, I. C. Welsh et al. 233



Normal patterning but altered positioning of the

presumptive anterior and posterior secondary palatal

domains in Pbx CNCC mutant embryos visualized by

marker gene expression

CNCC mutants exhibit significantly altered morphology and

A–P organization of individual skeletal elements of the

upper jaw, which is responsible for the shorter and wider

mutant midfacial complex. Many studies have established

that distinct regulatory networks are responsible for the

development of the anterior and posterior regions of the

secondary palate (Hilliard et al. 2005; Okano et al. 2006;

Gritli-Linde, 2007; Kousa & Schutte, 2016), which give rise to

its osseous and muscular components, respectively. To

determine whether loss of PBX in CNCC results in altered

A–P patterning of the secondary palate, we assessed the

spatial expression of a number of marker genes that define

the presumptive anterior and posterior palatal fields in

E12.5 control and CNCC mutant embryos (Fig. 7). Msx1, an

early marker of anterior secondary palate, is present in the

maxillary component of the first branchial arch (BA1) start-

ing at E9.5 and later in the developing lip, primary palate

and anterior secondary palate (Hill et al. 1989). Loss of

Msx1 results in CPO in mice (Satokata & Maas, 1994) due to

a proliferation defect in the anterior palatal mesenchyme

(Zhang et al. 2002). Furthermore, variants in Msx1 are
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associated with non-syndromic forms of CL/P in humans (Yu

et al. 2017). At E12.5, we observed comparable levels of

Msx1 expression in the upper lip and primary palate of con-

trol and mutant embryos (Fig. 7A–D). However, in the CNCC

mutant anterior secondary palate, Msx1 expression domain

was smaller than in controls and did not extend to the mid-

line; rather it was localized laterally to the groove separat-

ing the presumptive hard (anterior) from the soft

(posterior) secondary palate (Fig. 7A–D). The perturbation

of Msx1 expression patterns in CNCC mutant palates closely

mirrors the dysmorphology observed by SEM (see also

Fig. S7A,B).

We next assessed the expression pattern of short sta-

ture homeobox gene Shox2 (Blaschke et al. 1998). Loss

of Shox2 from the anterior palate results in proliferation

defects confined to the anterior palatal mesenchyme,

yielding CPO (Yu et al. 2005). Shox2 expression initiates

at E11.5 only in the mesenchyme of the anterior palate

and remains exclusively localized to the presumptive

hard palate of mice (Sun et al. 2013), whereas in

humans it is detected from Carnegie Stage (CS) 13

onwards (Clement-Jones et al. 2000). At E12.5, we

observed expression of Shox2 restricted to the anterior

domain of the CNCC mutant palate as in controls

(Fig. 7E–H). However, recapitulating the perturbed pat-

tern of Msx1, in CNCC mutant palates Shox2 expression

domain was laterally constricted and failed to extend

medially and anteriorly to the presumptive posterior

palatal shelf (Fig. 7E–H).

Because we observed a proliferation defect spanning the

entire secondary palate at E12.5, and given the altered ana-

tomic relationship between the anterior and posterior pala-

tal domains in our CNCC mutants, we examined the

expression of known markers of posterior palatal fate.

BarH-like homeobox 1 (Barx1) is expressed in both the ante-

rior and posterior palatal shelves with restricted epithelial

localization only to the anterior domain. Mesenchymal

Barx1 expression in the posterior palate complements the

anterior expression patterns of Msx1 (Welsh & O’Brien,

2009). In CNCC mutants, loss of PBX TFs from the CNCC-

derived mesenchyme did not result in marked alteration of

the spatial expression of Barx1; however, its anterior

boundary remained in closer proximity to the primary

palate as compared with controls (Fig. 7I–L). Moreover, in

CNCC mutant secondary palates, similar to the perturbed

expression of Msx1 and Shox2, the anterior epithelial

expression domain of Barx1 was lateralized vs. controls

(Fig. 7I–L). Loss of Tbx22, which exhibits restricted expres-

sion in the rostral-half of the presumptive posterior (soft)

palate (Fuchs et al. 2010), causes clefting of the posterior

soft palate and morphological alterations of the palatine

bones (Pauws et al. 2009). In CNCC mutants, Tbx22 mRNA

spatial levels did not appear significantly altered as com-

pared with controls, but the spatial domain and posterior

boundary of its expression was modestly altered (Fig. 7M–

P). Collectively, our expression analysis establishes that spec-

ification of the presumptive anterior and posterior sec-

ondary palatal domains is correctly established in Pbx CNCC

mutant embryos, despite their significantly perturbed and

dysmorphic A–P positioning (Fig. 7Q).

The findings reported above suggest that loss of PBX in

CNCC does not perturb A–P patterning, but rather alters

other morphogenetic behaviors (e.g. differentiation,

migration, oriented cell division) that drive the formation

of the midface. Accordingly, we examined the expression

of the alkaline phosphatase liver/bone/kidney (Alpl) gene,

an early marker of skeletal differentiation (Hessle et al.

2002), in control and CNCC mutant embryos. At E12.5,

Alpl expression, which is restricted to the medial aspect of

the posterior palatal shelf, was markedly decreased in

mutants vs. controls (Fig. 8A,B). At E13.5, Alpl mRNA levels

were still overall reduced throughout the secondary

palate. However, presaging the skeletal dysmorphology

observed at E18.5, in mutants the domains of Alpl expres-

sion were positioned more laterally in the anterior palate,

extended rostrally in the posterior palate, and highlighted

shortening and malpositioning of the presumptive vomer

(Fig. 8C,D). In summary, our characterization of CNCC

mutants shows reduced palate progenitor proliferation;

altered A–P positioning of the anterior secondary palate

and perturbed skeletal differentiation, demonstrated by

marker analyses; and perturbed A–P skeletal patterning

including ectopic ossification observed via lCT. All of

these findings are consistent with a role for PBX factors in

coordinating CNCC-dependent morphogenesis and skeletal

differentiation. Ultimately, the abnormalities caused by

CNCC-specific PBX loss result in reduced elongation and

concomitant broadening of the mutant midfacial com-

plex.

Discussion

In the midface, primary and secondary palate development

involves stereotypic morphogenetic processes (outgrowth,

proliferation, elevation, fusion; Bush & Jiang, 2012; Lan

et al. 2015). The identification of key regulatory factors

with restricted spatiotemporal expression that drive recipro-

cal tissue interactions between cephalic epithelium and

CNCC-derived mesenchyme (Hilliard et al. 2005) is critical to

our understanding of how coordinated midfacial develop-

ment is achieved (Lane & Kaartinen, 2014). Among multiple

TFs, our study establishes that PBX homeodomain proteins

function in a tissue-specific manner as well as iteratively to

govern the morphogenesis and fusion of the primary and

secondary palate.

High levels of PBX1 and PBX2 proteins are present in both

cephalic epithelium and CNCC-derived mesenchyme from

early stages of midfacial development, before primary and

secondary palatogenesis has occurred and before the facial

processes have fully developed, throughout subsequent
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midfacial morphogenesis. Notably, PBX1 and PBX2 exhibit

largely overlapping localization, with PBX2 consistently pre-

sent at lower levels in primary and secondary palatal

domains. This underlies collaborative roles and iterative

functions of these two family members in patterning and

morphogenesis of the midface, which complements previ-

ously reported genetic interactions of Pbx1 and Pbx2 in

directing the development of multiple organ systems

(Capellini et al. 2006, 2008, 2010; Ferretti et al. 2011; Koss

et al. 2012; reviewed in Capellini et al. 2011; Golonzhka

et al. 2015). Previous studies have shown preeminent roles

of PBX factors in the mesenchymal compartments of various

organs, including limb (Capellini et al. 2006), axial skeleton

(Capellini et al. 2008), spleen (Koss et al. 2012), pancreas

(Kim et al. 2002), kidney vascular mural cells and nephro-

genic mesenchyme (Hurtado et al. 2015), and lung (Li et al.

2014; McCulley et al. 2018). However, additional evidence

also supports important functions for PBX factors in the

epithelial compartments of vital organ systems, including

the frontonasal processes (Ferretti et al. 2011; Losa et al.

2018) and the pancreas (Kim et al. 2002), as well as ectoder-

mally derived tissues (Golonzhka et al. 2015; Grebbin et al.

2016; Villaescusa et al. 2016).

Consistent with the expression pattern of Pbx1 and Pbx2

in the midface, we observed striking but distinct pheno-

types in the primary and secondary palate of Pbx epithelial

and CNCC mutant embryos, respectively (Fig. 9). By studying

conditional loss of PBX factors in the cephalic epithelium,

here we expanded previous findings on the early roles of

these homeodomain proteins in upper lip and primary

palate morphogenesis and fusion (Ferretti et al. 2011).

Notably, in the present study, only epithelial mutant

embryos present CL/P with 67% penetrance. An earlier

report in epithelial mutants demonstrated the presence of

CL/P with 100% penetrance (Ferretti et al. 2011). However,

in that study, embryos were also heterozygous for a consti-

tutive null Pbx2 allele (Pbx1fl/fl;Pbx2+/�;Foxg1Cre/+), thus sen-
sitizing the genetic background so as to increase the

penetrance of this phenotype. In epithelial mutants with

unilateral cleft lip, we did observe a direct relationship

between clefting of the lip and clefting of the primary

palate with only one exception. In contrast, isolated cleft lip

is reportedly as high at 42% in some human populations

(Elahi et al. 2004), even though it was suggested that indi-

viduals diagnosed with CL may have underdiagnosed sub-

clinical palatal defects (Gosain et al. 1999). These findings
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Fig. 8 Spatiotemporal dynamics of

skeletogenic gene expression is altered in

CNCC mutant embryos. Comparison of Alpl,

a bone alkaline phosphatase, expression in

controls and mutants. At E12.5 (A,B) and

E13.5 (C,D) Alpl expression in posterior

palatal shelves is reduced in mutants (open

arrowheads) vs. controls (black arrowheads).

At E13.5, comparable expression in

developing incisors (white arrowheads) of

controls and mutants. Alpl mRNA levels are

reduced overall throughout secondary palate

of mutants, in which domains of Alpl

expression are positioned more laterally in

anterior palate (open arrowheads) vs. controls

(black arrowheads), and extend rostrally in

posterior palate (compare length of vertical

black bar in mutant vs. control; Fig. 8C,D).

Scale bar: 500 lm.
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give weight to the current notion that, whereas in mouse

models such variable defects may be interpreted as lack of

penetrance, in humans overt clefting phenotypes may be

part of a broad morphological spectrum (Marazita, 2012).

Here, we also demonstrate a high incidence (95%) of cleft

secondary palate in epithelial mutants. However, morphom-

etry shows that these mutants exhibit a broadening of the

midface. Given the observed widening of the primary

palate at the onset of secondary palate morphogenesis in

epithelial mutants, it is not unreasonable to assume that

overall disruption of normal midfacial proportions could

make clefting of the secondary palate a probable outcome.

Parallel characterization of CNCC mutant embryos,

revealed that loss of PBX from CNCC does not result in

clefting of the lip or primary palate. Rather, our analysis

revealed a later role for PBX factors in morphogenesis of

the midfacial complex and secondary palate. Indeed, CNCC

mutants exhibit fully penetrant CPO (Fig. 9). CNCC

mutants also display strikingly altered A–P positioning of

the presumptive anterior and posterior secondary palatal

domains and markedly more severe morphological alter-

ations of individual craniofacial skeletal elements than the

epithelial mutants do. All of the defects observed in CNCC

mutant embryos result in greatly perturbed A–P organiza-

tion and overall broadening of the midfacial complex.

Notably, the presumptive palatine bones are dysmorphic

and ectopically fused with the presumptive palatine pro-

cess of the maxilla and overlying vomer, forming a neo-

morphic structure, which could result from an earlier

perturbation of craniofacial skeletal differentiation. An

alternative interpretation of this phenotype is that the

dysmorphic palato-maxillary process represents a rostral

duplication of the palatine bone, consistent with potential

roles of PBX factors as homeotic proteins. However, the

absence of accompanying changes in A–P identity of the

domains comprising the presumptive secondary palate, as

shown by in situ hybridization experiments with select

gene markers, argue against this interpretation. Overall,

all of the described morphological perturbations result in

a striking widening and shortening of the CNCC mutant

midface.

Whereas in the upper lip and primary palate, apoptosis in

the cephalic epithelium is extensive and is PBX-dependent,

no significant alterations of programmed cell death were

identified in Pbx CNCC mutants as compared with controls

from early to mid-palatogenesis. In contrast, proliferation

rates in the developing secondary palate of CNCC mutants

were markedly reduced within a restricted developmental

time-window, which may suggest precocious differentiation

of mutant palatal progenitor cells. Accordingly, we

observed ectopic bone formation in the lateral maxilla, sig-

nificant reduction of the infra-orbital foramen partially

obstructed by ectopic bone, and an abnormal palato-maxil-

lary process, as noted above in Pbx CNCC mutants, all consis-

tent with a conserved role for PBX factors in governing the

dynamics of progenitor renewal vs. differentiation (Selleri

et al. 2001; Ficara et al. 2008, 2013; Gordon et al. 2010,

2011; Hurtado et al. 2015) during midfacial morphogenesis.

However, in contrast to loss of PBX in the developing axial

skeleton, which results in precocious endochondral ossifica-

tion (Selleri et al. 2001), Alpl expression indicates that

intramembranous skeletal differentiation appears to be

delayed and not precocious in CNCC mutants as compared

with controls. As a result, CNCC-specific PBX loss perturbs

morphogenesis and osteoblast differentiation, disrupting

normal rostral extension of the midfacial complex in CNCC

mutants.

Related to the phenotypes that we described upon tissue-

specific PBX loss, regulation of the morphogenetic events

that link primary and secondary palate formation is still

poorly understood. This study establishes that PBX factors

play critical and distinct tissue-specific roles in the sequen-

tial formation of the midfacial complex. The presence of

PBX TFs in both the epithelium and CNCC mesenchyme sug-

gests that additional tissue-specific cofactors provide con-

text-dependent functional output to PBX regulation of

target genes in these tissues. We envisage two possible

models whereby Pbx1 binding to regulatory elements has

either a primary instructive role in target gene transactiva-

tion in vivo or plays a permissive role as a pioneer factor

(Sagerstrom, 2004). The second model is in keeping with

reports that have proposed PBX and MEIS as ‘poising’ fac-

tors that penetrate chromatin and mark specific genes by

forming complexes with tissue-specific proteins/cofactors

that will modify the chromatin environment for activation

or repression (Berkes et al. 2004; Sagerstrom, 2004; Choe

et al. 2009; Grebbin et al. 2016). We therefore propose the

latter scenario as a possible mechanism by which PBX fac-

tors coordinate the sequential morphogenesis of the pri-

mary and secondary palate.

It is interesting to speculate how primary palate morpho-

genesis may influence secondary palate development as a

requirement for the coordination of midfacial growth. In

evolutionary contexts, it was reported that variation in the

outgrowth of the midfacial complex (comprising premaxilla,

maxilla and palatine bones) is driven by species-specific

mechanisms that act following primary palate formation

(Young et al. 2014). For example, in avians, midfacial length

is determined primarily by growth of the premaxilla and

palatine bones, whereas the intervening maxilla is rudimen-

tary and is associated with obligate clefting of the sec-

ondary palate. In contrast, in non-avians, variation in

midfacial outgrowth is determined primarily by differential

growth of the maxilla (Young et al. 2014). With direct rele-

vance to human disease, it is notable that studies in human

populations have shown the presence of broadening of the

faces in patients affected by CL/P (Manyama et al. 2014). In

this study, we have characterized two mouse models of oro-

facial clefting that result from PBX loss-of-function in

cephalic epithelium or CNCC-derived mesenchyme, both of
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which yield CL/P or CPO together with significant widening

of the midfacial complex, establishing these mouse strains

as unique models to dissect the complexities of orofacial

clefting further. Notably, midfacial broadening is more

striking in Pbx CNCC mutants, which is underpinned by

early perturbations in the positioning of A–P secondary

palatal domains and resulting marked widening of the max-

illa. These findings closely link PBX homeodomain proteins

to the variation in maxillary shape and size that occurs in

pathological settings, and further suggest possible involve-

ment of these transcription factors in an evolutionary con-

text of midfacial morphological diversity.
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