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Multislice motion modeling for MRI-guided radiotherapy gating
John S. Ginn,a) Dan Ruan, Daniel A. Low, and James M. Lamb
Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
90095, USA

(Received 23 August 2018; revised 15 November 2018; accepted for publication 13 December 2018;
published 15 January 2019)

Purpose: On-board magnetic resonance imaging (MRI) greatly enhances real-time target tracking
capability during radiotherapy treatments. However, multislice and volumetric MRI techniques are
frame rate limited and introduce unacceptable latency between the target moving out of position and
the beam being turned off. We present a technique to estimate continuous volumetric tissue motion
using motion models built from a repeated acquisition of a stack of MR slices. Applications including
multislice target visualization and out-of-slice motion estimation during MRI-guided radiotherapy
are demonstrated.
Methods: Eight healthy volunteer studies were performed using a 0.35 T MRI-guided radiotherapy
system. Images were acquired at three frames per second in an interleaved fashion across ten adjacent
sagittal slice positions covering 4.5 cm using a balanced steady-state–free precession sequence. A
previously published five-dimensional (5D) linear motion model used for MRI-guided radiotherapy
gating was extended to include multiple slices. This model utilizes an external respiratory bellows
signal recorded during imaging to simultaneously estimate motion across all imaged slices. For com-
parison to an image-based approach, the manifold learning technique local linear embedding (LLE)
was used to derive a respiratory surrogate for motion modeling. Manifolds for every slice were
aligned during LLE in a group-wise fashion, enabling motion estimation outside the current imaged
slice using a motion model, a process which we denote as mSGA. Additionally, a method is devel-
oped to evaluate out-of-slice motion estimates. The multislice motion model was evaluated in a single
slice with each newly acquired image using a leave-one-out approach. Model-generated gating deci-
sion accuracy and beam-on positive predictive value (PPV) are reported along with the median and
95th percentile distance between model and ground truth target centroids.
Results: The average model gating decision accuracy and PPV across all volunteer studies was
93.7% and 92.8% using the 5D model, and 96.8% and 96.1% using the mSGA model, respectively.
The median and 95th percentile distance between model and ground truth target centroids was 0.91
and 2.90 mm, respectively, using the 5D model and 0.58 and 1.49 mm using the mSGA model, aver-
aged over all eight subjects. The mSGA motion model provided a statistically significant improve-
ment across all evaluation metrics compared to the external surrogate-based 5D model.
Conclusion: The proposed techniques for out-of-slice target motion estimation demonstrated accu-
racy likely sufficient for clinical use. Results indicate the mSGA model may provide higher accuracy,
however, the external surrogate-based model allows for unbiased in vivo accuracy evaluation. © 2018
American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13350]
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1. INTRODUCTION

Respiratory motion during radiotherapy reduces the accuracy
of radiation delivery. Passive methods that consider motion
as a component of uncertainty and active methods that
address motion by compensation have been used to mitigate
such impact.1 Methods of active respiratory motion compen-
sation include breath hold techniques, abdominal compres-
sion, gantry or multileaf collimator (MLC) target tracking,2

and radiotherapy gating.3 Radiotherapy gating can be based
on internal or external motion surrogates4,5 or on tumor
motion measured directly in images.6

Magnetic resonance image (MRI)-guided radiotherapy is
an emerging technology that enables respiratory motion

compensation based on images that have excellent soft-tissue
contrast.7,8 The ViewRay MRIdian (ViewRay, Inc. Oakwood
Village, OH) is a commercially available device that performs
radiotherapy gating based on target position measured
directly in real-time MR images. MRIdian gating images can
be acquired in a single sagittal slice at four frames per second
(FPS), or across three sagittal slices at 2 FPS.9 The time
between image frames contributes to the gating latency, or
overall latency between when a target moves across a gating
boundary and when the beam state changes. Unfortunately,
current fast MRI techniques are unable to acquire volumetric
images or two-dimensional (2D) images across multiple slice
positions quickly enough to avoid introducing unacceptable
gating latency. For that reason, at our institution single slice
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target tracking is used. This approach suffers from poor abil-
ity to capture out-of-slice target motion, target deformation,
and limited visualization of dynamic relationships between
adjacent mobile anatomical structures, such as the pancreas,
duodenum, and stomach.

Surrogate-based motion models provide mathematical
frameworks that can be used to estimate anatomical motion
using a respiratory surrogate. Motion models have been used
in the context of MRI-guided radiotherapy to estimate motion
in a three-dimensional volume from a single imaging
slice,10,11 orthogonal imaging planes,12,13 or sequentially
acquired adjacent sagittal slices,14 as well as to predict motion
to reduce gating latency.15,16 We recently developed a model-
interpolated gating (MI gating) technique to reduce the image
frame rate required for accurate gating using a continuously
updated biomechanically inspired motion model and external
respiratory surrogate.17 In this manuscript, we present an
extension of our technique that allows estimation of target
motion across multiple slice positions for MRI-guided radio-
therapy gating. Additionally, we compare the external surro-
gate-based model to an image-based alternative. Image-based
surrogates present two advantages: (a) the use of an external
respiratory surrogate is associated with additional setup effort
and potential for operator error, which could be avoided using
an image-based surrogate and (b) image-based surrogates are
potentially more representative of internal anatomical
motion, increasing the accuracy of modeling. Our method
was adapted from a simultaneous group-wise manifold align-
ment (SGA) motion model developed by Baumgartner
et al.,14 and modified to improve computational efficiency to
make clinical implementation feasible. Additionally, we pro-
pose a method to evaluate the accuracy of out-of-slice motion
estimation using this model. We term our method modified
SGA (mSGA) for distinction.

2. MATERIALS AND METHODS

2.A. Motion modeling techniques

2.A.1. Motion modeling: 5D model

Motion modeling was performed using a 5D linear motion
model, originally developed in the context of computed
tomography imaging.18–21 The MRI-based 5D motion model-
ing process was described in detail our recent publication17

and is briefly summarized as follows. A respiratory pneu-
matic bellows (Lafayette Instrument, Lafayette, IN, USA) sig-
nal was recorded simultaneously during imaging studies on
an external computer using LabVIEW (Austin, TX). Regis-
tration-derived deformation vector fields were fit along the
respiratory bellows surrogate to the 5D linear motion model:

x~¼ a~vþ b~f þ x~0 (1)

where x~ is the model-estimated tissue position, x~0 is the initial
tissue position and a~ and b~ are parameters which correlate tis-
sue position to the surrogate amplitude v (voltage amplitude)

and surrogate velocity f (time derivative of voltage). In the
present study, the model was fit at each imaged slice position
using the 10 most recently acquired images. We explored the
use of more images for model fitting, varying the number of
training images from 10 to 50 in intervals of 10, but deter-
mined that using the 10 most recently acquired images
resulted in the most accurate motion modeling. This result
agrees with our findings in our previous work.17

Our previous publication evaluated the accuracy of this
model’s ability to generate gating decisions between images
acquired at a slow frame rate (≤1 FPS) in a single slice. This
technique could enable gating based on pulse sequences that
require long delays between image acquisitions (e.g., T2
weighted imaging). The present work uses a 2D multislice
image acquisition that repeatedly acquires a set of 10 images
across adjacent slice positions in a little over 3 s. In this way
a multislice model-based representation of the subject’s anat-
omy in a region of interest (ROI) about the target is built,
continuously updated and validated with each newly acquired
image. A schematic depicting the 5D modeling workflow is
shown in Supporting Information Fig. S1.

2.A.2. Simultaneous group-wise manifold
alignment (SGA) image surrogate

Locally linear embedding (LLE), originally described by
Roweis and Saul, learns a nonlinear manifold structure using
series of locally linear fits.22 Baumgartner et al.23 showed
that LLE can be used to extract a motion surrogate from
images acquired across various respiratory phases by learning
how the images relate to one another. In LLE, each high
dimensional data point is approximated by the weighted sum
of its nearest neighbors. In the present application the high
dimension data point is a 2D image and the nearest neighbor
images are identified by sum of squared pixel-wise intensity
differences. The weights are found by minimizing the embed-
ding error given by

eðWÞ ¼
X
i

X~i �
XK
j¼1

WijX~j

�����
�����
2

(2)

where X~i a high-dimensional data vector (e.g., of voxel image
data) X~j is a high-dimensional neighbor of X~i;Wij is the
reconstruction weight associated with neighbor X~j and K is
the number of nearest neighbors. Specifically, least squares
minimization is performed under the constraint that all
weights sum to one as described by Roweis and Saul.24 Then,
a set of vectors of reduced dimensionality d is found such that
the weighting and nearest neighbors identified in the high
dimensional space are preserved. This is performed by fixing
the reconstruction weights Wij defined in the high-dimen-
sional space and minimizing the cost function

UðYÞ ¼
X
i

Y~i �
XK
j¼1

WijY~j

�����
�����
2

(3)
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where Y~i is the low-dimensional data vector correspond-
ing to X~i (i.e., Y~i 2 Rd where d is the selected final
dimensionality of the manifold) and Y~j is the low-dimen-
sional neighbor corresponding to X~j. This method preserves
the locally linear relationships of the high-dimensional data,
while providing a low-dimensional representation of the
dataset.

In addition, SGA incorporates an interslice penalty term
to establish a correspondence between adjacent slices by
aligning the surrogates during LLE. The two high-dimen-
sional datasets for adjacent slices are denoted as X1, X2 where
an image in each set is expressed as X~

ð1Þ
, X~

ð2Þ
, respectively.

The corresponding sets of low-dimensional embeddings are
Y1, Y2 with individual data points Y~

ð1Þ
, Y~

ð2Þ
. The combined

cost function to find the aligned low-dimensional embed-
dings of two adjacent imaging slices simultaneously is
defined as

Utot Y1;Y2ð Þ ¼ U1 Y1ð Þ þ U2 Y2ð Þ þ l � U12 Y1;Y2ð Þ (4)

where Φ1(Y1) and Φ2(Y2) are the intradataset costs for each
set of images given by the standard LLE cost function [Eq.
(3)] and l is a parameter which controls the interdataset cost
weighting Φ12(Y1, Y2) in the total cost function.

The interdataset cost function is given by

U12ðY1;Y2Þ ¼
XN
i1;i2

Y~
ð1Þ
i1 � Y~

ð2Þ
i2

��� ���2Ui1;i2 (5)

where N is the total number of images in each dataset, i1 and
i2 are the index in each image set and U is a Gaussian similar-
ity kernel which defines the relative penalty associated with
each grouping of surrogate values. The similarity kernel
weightings are given by

Ui1;i2 ¼ exp �
fL2 X~

ð1Þ
i1 � X~

ð2Þ
i2

� �
2r2

0
@

1
A (6)

where r is a kernel parameter and eL2 is the normalized
square root of sum of squared voxel-wise intensity differ-
ences between the images (i.e., Euclidean distance). The
connections between the images across slice positions
were sparsified while maximizing the total similarity in
terms of the normalized Euclidean distance such that each
high-dimensional data point was connected to only one
other data point at the adjacent slice position. This sparsi-
fication was performed with an algorithm proposed to
solve the assignment problem.25 Including the interdataset
penalty term discouraged images that had low sum of
squared voxel-wise intensity differences from having
different surrogate values.

The method above outlines SGA for two image sets. In
our study, we acquired images across a stack of ten adjacent
slices. We extended the SGA procedure to compute the low-
dimensional embedding for all slice positions simultaneously.
Specifically, SGA manifold learning was performed by mini-
mizing the cost function

Utot Y1;Y2; . . .;Y10ð Þ¼
X10
i¼1

UiðYiÞþl �U12 Y1;Y2ð Þ

þl �U23 Y2;Y3ð Þþ . . .

þl �U9 10 Y9;Y10ð Þ

(7)

where the subscript i indicates the relative position of the
image slices. Occasionally, a slice-dependent translational
shift remained between some of the manifolds. This dis-
crepancy was removed by extracting a rotation and transla-
tion between the manifolds using Procrustes method.26 This
extension resulted in a smaller out-of-slice motion error
estimated using the back-propagated surrogate described
below.

Prior to performing SGA, the images were processed with
a 6 9 6 averaging convolution filter to reduce the influence
of noise and a ROI was manually selected for SGA to exclude
bowel regions which exhibited nonrespiratory motion-related
changes due to digestive processes. We explored the use of
the deformation vector fields (DVF)s in place of the images
during the mSGA modeling process (i.e., SGA surrogate gen-
eration), but observed that the images produced the most
accurate modeling results.

2.A.3. Modified SGA (mSGA) weighted nearest
neighbor motion model

Motion modeling using manifold learning was
performed by combining the DVFs obtained from image
registration and the nonparametric out-of-sample extension
for LLE proposed by Saul and Roweis.27 The goal of the
out-of-sample extension is to provide a generalization of
the learned manifold to estimate a new low-dimensional
data point Y~ from a new image X~ (i.e., estimate a surro-
gate value for a newly acquired image). This extension is
performed by identifying the K nearest neighbors in the
training dataset X, computing reconstruction weights W
using constrained least squares minimization of the error
defined in Eq. (2), and computing the weighted sum of
the low-dimensional embeddings in X. This process is
summarized by

Y~ ¼
XK
j¼1

WjY~j (8)

where Y~j is the low-dimensional embedding corresponding to
each nearest neighbor and, Wj is the same reconstruction
weight associated with each neighbor identified in the high-
dimensional space. Since adjacent slice manifolds are aligned
by SGA, the nearest low-dimensional neighbors in the adja-
cent slices are directly identified. The nearest neighbor surro-
gate weights are computed from members of the adjacent
slice using least-squared minimization of a cost similar to Eq.
(2) in the low-dimensional manifold. In order to obtain
motion information, the new DVF D~ is estimated using these
weights Wj and the DVFs corresponding to the images in X.
This is expressed by
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D~ ¼
XK
j¼1

WjD~j (9)

where D~j is the DVF corresponding to each nearest neighbor.
Since each slice is aligned with its adjacent slices, this pro-
cess can be repeated until a motion estimate is obtained in
every slice, as illustrated in Fig. 1).

The mSGA model is used to estimate motion in every slice
for each newly acquired image until 10 new images are avail-
able at each slice position. The model is then updated using
the most recent set of images at each slice position. The
model is not updated each time a new image is acquired due
to computation time constraints. The SGA surrogate genera-
tion and mSGA modeling process is summarized in Support-
ing Information Fig. S2.

2.B. Evaluation study

2.B.1. Imaging protocol

All imaging studies were performed under an IRB-
approved research protocol using the ViewRay MRIdian.9,28

Briefly, MRIdian combines three 60Co treatment heads with
a 0.35 T split bore MRI. All MRI software and hardware
were provided by Siemens Medical Systems (Erlangen, Ger-
many) with the exception of the gradient and surface coils
which were designed by ViewRay. All imaging was per-
formed using research mode, in which the MRI system is

operated independently from the radiotherapy system. A bal-
anced steady-state–free precession sequence was used to con-
duct eight healthy volunteer studies following informed
consent.29 Images were obtained at approximately 3 FPS
with a 400 9 400 mm2 field of view, 2 9 2 mm2 in-plane
resolution, 556 Hz/Px bandwidth, 4.5 mm slice thickness,
1.38 ms echo time, 3.26 ms repetition time, 60° flip angle,
generalized autocalibrating partially parallel acquisition
acceleration30 factor of 2, partial Fourier factor of 6/8. Ten
adjacent sagittal slice positions were imaged in an interleaved
fashion repeatedly until 200 images were acquired at each
slice position. Additionally, volunteers were instructed to
hold their breath at a normal exhale breathing phase while a
breath hold image was obtained at each slice location
(approximately 3.3 s in duration).

2.B.2. Image registration

Image registration-derived DVFs were used in two ways in
this study: for building/fitting the mSGA and 5D models and
to deform contours for ground truth target tracking. Image
registration was performed using a multi-level b-spline
deformable registration with mutual information as a similar-
ity metric using the elastix registration software.31–33 The
influence of noise on image registration accuracy was
reduced by using a bilateral filter prior to registration. Refer-
ence images for registration were obtained from natural
exhale breath hold images in cooperative volunteers (3) or
selected from free-breathing images when a natural exhale

FIG. 1. Schematic representation of surrogate propagation from an image acquired at slice 1 (blue “x”) across to slice 4. The surrogate is estimated in each slice
as a weighted sum of the five most similar surrogate values in the aligned adjacent slice (slice 2). Since the same images are included in the next group (group 2),
the weights can be used to estimate the surrogate in the next group of aligned manifold surrogates (connection between Group 1 and 2). The process is repeated
until reconstruction weights are obtained in every slice. [Color figure can be viewed at wileyonlinelibrary.com]
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breath hold phase was unavailable (2) or when the range of
motion was large (3) and using a mid-exhale breathing phase
improved registration accuracy. The range of motion in the
volunteer studies with large motion was 25.6, 48.0, and
52.9 mm.

Registration accuracy was evaluated by performing a land-
mark evaluation in a similar manner to that described in our
previous publication where the same anatomical features
tracked as radiotherapy targets served as landmarks.17 The
location of the landmark in the first 50 images acquired at
each slice position, as well as the location in the reference
image used in registration was manually identified. The dis-
tance of the landmark from the location in the reference
image and from the mean landmark position in the registered
images served to evaluate registration accuracy and consis-
tency, respectively.

2.B.3. Model gating evaluation

The model gating studies were conducted offline using
software developed in the MATLAB programming environ-
ment (Mathworks, Natick, MA). For each volunteer, a normal
anatomical feature subject to respiratory motion that spanned
multiple slices (e.g., a blood vessel in the liver) was used to
simulate a radiation therapy target. Contours of the target
were manually drawn in the set of reference images used for
image registration. The target contour was expanded automat-
ically by a 3-mm gating margin and generated at the end
exhale breathing phase to form a gating boundary. When
greater than 10% of the target contour moved outside this
boundary, a “beam-off” gating decision was made. The 10%
threshold was used because the same threshold is used in
clinical gating at our institution.

The model was evaluated in the same imaging slice
corresponding to each newly acquired image. Only the
portion of the model describing the currently imaged slice
was used to generate a gating decision. Model-derived gat-
ing decisions (“beam-on” and “beam-off”) were compared
to the ground truth gating decisions obtained from imag-
ing. All model gating studies were prospective and utilized
a leave-one-out approach. Only previously acquired images
were used to fit the model and the current surrogate value
was used to generate model gating decisions. Since the
mSGA model fitting duration takes a substantial amount
of time, the model was updated after 10 new images were
acquired at each slice position. The 5D model on the
other hand can be updated more rapidly, thus the model
was updated after a new image was acquired at each slice
position. Model-derived gating decisions were quantita-
tively evaluated by computing the gating accuracy and
positive predictive value (PPV). Gating accuracy was
defined as the proportion of total gating decisions that
were correct. Gating PPV was defined as the proportion
of “beam-on” model gating decisions that were correct.
Additionally, the positions of the model-tracked and
image-tracked target centroids were compared. The median
and 95th percentile distances between these centroids are

reported. The gating results using the mSGA and 5D
motion models were compared using a paired t-test
between the gating evaluation metrics obtained with each
model.

In the comparison procedure described above, the same
image was used for gating accuracy evaluation and for
mSGA surrogate generation. In a practical clinical imple-
mentation, the model would presumably be used to form
gating decisions from volumetric or multislice motion, rather
than motion only in the currently imaged slice. Therefore, a
full evaluation of the accuracy of the model must include
the motion propagation step. Since only one imaging slice
can be acquired at each time point, the accuracy of motion
propagation outside the currently imaged slice could not be
measured directly against a ground truth. Instead, the surro-
gate was propagated to each of the nine unimaged slice posi-
tions and then back in reverse to generate “back-propagated”
surrogates. These back-propagated surrogates were used
with the model at the currently imaged slice to compute the
same evaluation metrics as described above. We report the
average result across back-propagated surrogates from all
nine other slices. Back-propagating the surrogate implies
that the motion information is transferred twice the number
of slices required for motion modeling (e.g., motion estima-
tion in the adjacent slice only requires transferring the
motion information across one slice, but back-propagation
requires that the surrogate to be propagated again back to
the original slice). Propagation error may compound with
the number of times the surrogate has been propagated.
Additionally, propagation error also depends on the specific
relationships between each group of images. Therefore,
back-propagation to and from every slice was included in
the evaluation (as opposed to only the slices nearest to the
current imaging slice).

2.B.4 mSGA model parameter selection

The mSGA requires the selection of five parameters: the
number of training images, final dimensionality of the surro-
gate d, interdataset penalty term l, similarity kernel parame-
ter r, and number of nearest neighbor images K. The
possible ranges of parameters were constrained to ensure
computation times consistent with a real-time system. All
parameters were selected empirically by performing a number
of gating studies and evaluating the effect of each parameter
on gating accuracy and PPV. The final selected parameters
used in our study were 50 training images, d of 3, l of 1, r of
1, and 25 K nearest neighbor images.

3. RESULTS

3.A. Registration accuracy

The accuracy and consistency of deformable image regis-
tration was similar to that in our previous studies.17 Across all
volunteer studies the median registration accuracy and con-
sistency was 1.26 and 0.71 mm, respectively.
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3.B. Model evaluation

The average model gating accuracy across the eight volun-
teer studies was 93.7% for the 5D model, 96.8% for the
mSGA model, and 93.4% with the back-propagated surrogate
and mSGA model. The corresponding PPVs were 92.8%,
96.1%, and 92.3%, respectively. The median and 95th per-
centile distance between the model-tracked and image-
tracked target centroids were 0.91 and 2.90 mm for the 5D
model, 0.58 and 1.49 mm for the mSGA model, and 0.97
and 2.76 mm for the back-propagated surrogate and mSGA
model, respectively, averaged across all volunteer studies.
Figure 2 shows the individual results of each model evalua-
tion obtained across all volunteer studies.

A paired t-test revealed that the mSGA model outper-
formed the 5D model by yielding statistically significant dif-
ferences across all evaluation metrics. However, there were
no statistically significant differences comparing the back-
propagated surrogate and mSGA model to the 5D model.

An example of the proportion of the target in the gating
margin and distance between the image-tracked and model-
tracked gating target centroids are shown for a portion of vol-
unteer study 8 in Fig. 3.

4. DISCUSSION

The inability to visualize and respond to three-dimen-
sional (3D) motion is a limitation of current MRI-guided
radiotherapy technology.34 In this work, we evaluated a tech-
nique to perform radiotherapy gating based on a motion

model and a series of 2D images acquired across 10 slice
positions. An example comparison between tracking a target
in the acquired image and using the mSGA model is shown
in Fig. 4. This figure also shows how the model can be used
to enable multislice target visualization in the axial and coro-
nal planes. A video corresponding to this example can be
found in the Supporting Information associated with this
manuscript.

In the present manuscript, we use in vivo studies to esti-
mate the accuracy of the proposed multislice tracking tech-
nique as applied to respiratory gating. The present work does
not quantify the benefit of multislice gating in terms of dosi-
metric accuracy relative to single-slice gating. Such potential
benefits could be estimated using a simulation to provide 3D
ground truth motion. Additionally, simulations could be used
to assess the proposed back-propagated surrogate out-of-slice
motion error evaluation. However, simulation studies are sub-
ject to limitations and are beyond the scope of the present
manuscript. These studies should be the topic of future work.

Two motion models were evaluated: mSGA based on the
work of Baumgartner et al.,14,23 and the 5D model. Our tech-
nique applied with both of these models is likely sufficiently
accurate for clinical use. One of the key differences between
the two models is the use of an image-based or external surro-
gate. Use of an external surrogate introduces an additional
setup step and is associated with the possibility of human
error. However, because the external surrogate is acquired
completely independently of the images, each newly acquired
image represents an opportunity for an unbiased test of the
model against ground truth information. In the case of

FIG. 2. The model gating decision accuracy (a), positive predictive value (b), and median (c) and 95th percentile (d) distance between the model-tracked and
image-tracked target centroids for each volunteer study and motion model. The average value across all volunteer studies using each model is shown in the legend.
[Color figure can be viewed at wileyonlinelibrary.com]
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mSGA, since the surrogate and the ground truth are obtained
from the same image, a completely unbiased ground truth test
is not possible. We evaluated the accuracy of the model in the
currently imaged slice, and estimated model accuracy outside
the currently imaged slice using the back-propagated surro-
gate. We observed that error was both slice specific and
dependent on the distance of propagation as shown in Sup-
porting Information Fig. S3. This indicates that propagation
error is specific to the relationship between the images in
each group of adjacent slices and increases with the number
of propagations. The mSGA model without surrogate back-
propagation was statistically significantly more accurate than
the 5D model across all evaluation metrics. However, none of
the gating statistics derived from the 5D model and the
mSGA model using the back-propagated surrogate were sta-
tistically significantly different. Notably, the motion models
performed worst in volunteer study 6. Breathing pattern
changes (e.g., chest vs abdominal breathing) were observed
during this volunteer’s study, as well as an extremely deep
inspiration breath that may have been associated with stretch-
ing during the study (the volunteer was observed stretching
during another study in the same imaging session).

Although the mSGA was found to be more accurate, use
of the 5D model may still be sufficiently accurate and holds
some advantages. The use of an external surrogate with the
5D model means that every newly acquired image can be
used for an unbiased evaluation of model accuracy prior to

model updating. The mSGA model uses each newly acquired
image for surrogate generation, and thus a strictly unbiased
evaluation of model accuracy is not possible in vivo. Second,
the respiratory bellows is continuously available (sampled at
100 Hz), reducing gating latency. Additionally, use of the res-
piratory bellows could enable other imaging studies to be
acquired during gated treatments.17 Third, the 5D model
requires fewer images for model fitting reducing fitting time
and potentially allows for more rapid adjustment to breathing
pattern changes. In our study, ten images acquired at each
slice position were used to fit the 5D model, whereas 50 were
used for mSGA modeling. As mentioned previously, using
more images to fit the 5D model reduced the accuracy of
motion modeling. An implementation of the technique with
the clinical imaging protocol (4 FPS) would require 25 and
125 s of imaging prior to gated treatment with the 5D and
mSGA models, respectively. Fourth, the 5D model is less
computationally demanding than the mSGA model. In our
MATLAB-based, largely single-threaded implementation,
refitting the 5D model required 8.1 ms and a model gating
decision for the entire gating target volume was obtained in
42 ms on average across all volunteer studies. For the mSGA
model, model refitting occurred after ten new images were
acquired at each slice position and took 4.7 s. A gating deci-
sion for the target volume was obtained on average in 60 ms
with the mSGA model. Model gating accuracy and PPV can
be improved further using the mSGA model with more train-
ing images, more nearest neighbors, and more frequent
model refitting. For example, increasing the number of train-
ing images to 100 images, using 50 nearest neighbors to fit
the mSGA model, and updating the model after a new image
is acquired at each slice position did not increase the average
gating accuracy, but increased the average PPV from 96.1%
to 96.8% and reduced the median and 95th percentile cen-
troid distance from 0.58 to 0.51 mm and from 1.49 to
1.24 mm, respectively, across all volunteer studies. However,
the computation time associated with larger datasets could
cause practical challenges in a clinical implementation of the
technique (model fitting took on average 34 s and target vol-
ume gating decisions required 81 ms).

The results reported in this work are subject to some limi-
tations. In this study, ten adjacent slice positions were
imaged. This region spans 4.5 cm laterally, which may be too
large or too small for some tumors. Since motion propagation
error compounds with the distance that the motion is propa-
gated, the results may be worse for tumors that span more
than 4.5 cm laterally. Conversely, for smaller tumors, it is
possible that the motion propagation would be more accurate
than the results we report in this work. In our study, we
imaged regions subject to substantial respiratory motion. The
selected regions excluded the heart as well as the lateral
periphery of the volunteers. The models may perform differ-
ently in regions subject to differing effects of respiratory
motion.

The mSGA model evaluated in this report differs from and
expands upon the work reported by Baumgartner et al.23 in a
few key ways. The group-wise simultaneous manifold

FIG. 3. Proportion of the target within the gating margin derived from the
images directly and using each model (a) and distances between the image-
tracked and model-tracked target centroids (b) for a portion of volunteer
study 8. [Color figure can be viewed at wileyonlinelibrary.com]
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alignment technique was originally developed for retrospec-
tive sorted slice-based four-dimensional (4D) MRI, and was
later applied to positron emission tomography (PET) motion
correction. Specifically, motion-corrupted PET acquisitions
were simulated and motion corrections were derived from
registrations of the selected 4D MRI images obtained using
the manifold learning technique.35 The method was further
developed by Baumgartner et al.14 enabling motion estimates

to be obtained across many slice positions using a weighted
sum of deformation vector fields. The group evaluated their
model using a simulation study as well as an in vivo study
that compared an acquired navigator to a navigator derived
from a 3D volume generated from their motion model. In our
work, we developed a method to evaluate the accuracy of
motion modeling outside the currently imaged slice using the
back-propagated surrogate. Additionally, we modified SGA

FIG. 4. An example of an acquired image and image-tracked target (a), the corresponding mSGA model-generated image and model-tracked target at the same
slice position (b) and the coronal (c) and axial (d) model-generated images and cross section of the model-tracked target volume. Model-generated images were
obtained by combining the first 50 images used to fit the model using the registration information, then deforming them according to the motion obtained from
the model. [Color figure can be viewed at wileyonlinelibrary.com]
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to address computational challenges relevant to a clinical
implementation of the technique. First, we elected to refit the
model using only the most recent set of training images in
order to avoid increasing the computation time as the study
progressed. Second, we updated the model only after 10
images were acquired. Since model refitting requires an
appreciable amount of time in our largely single-threaded
MATLAB implementation, the radiation beam may need to
be held while the model is updated (approximately 4 s). The
model update duration could be reduced by a parallel compu-
tation of the sum of squared distance between the images, as
well as by changing the algorithm used to sparsify the con-
nections between images across slice positions. Specifically,
instead of solving the assignment problem across slice posi-
tions from scratch each time the model is updated, the previ-
ous optimization result could be incorporated to speed up the
new optimization. This could be performed using an alterna-
tive algorithm to speed up computation time.36,37 Finally, we
acquired the current image-based surrogate using the out-of-
sample extension for LLE rather than refitting the manifold
weights as performed by Baumgartner et al.

The MRI-guided radiation therapy provides the opportu-
nity to conduct radiotherapy gating by tracking targets in
images acquired during treatment. However, the current
imaging technology is not able to acquire 3D images or
images across multiple locations without introducing unac-
ceptable gating latency. As a result, only a portion of the
tumor is typically tracked in a single slice. Several
approaches have been developed to address this limitation.
Harris et al.,10,11 and separately Stemkens et al.,12 created a
motion model based on an initial 4D-MRI and estimated 3D
motion by fitting the model to 2D cine images. This
approach is limited by the fact that motion estimation out-
side the imaged slice(s) is constrained to the initial model
which is not updated and may not accommodate changes in
breathing patterns, irregular breaths, digestive motion, or
pose changes. Furthermore, the cine images are used to
instantiate the modeled positions and thus cannot be used
for real-time ground truth comparison. Li et al.38 estimated
high-spatial resolution 3D cine images by registering and
deforming an initial high-spatial resolution breath hold
image to 3D cine images with 5 mm isotropic resolution
acquired at 2 Hz. The utility of this technique is limited by
the time necessary to perform 3D deformable registration (at
least several seconds according to the authors). Furthermore
the 0.5-s 3D cine acquisition period would introduce pro-
hibitive gating latency and the 5-mm spatial resolution of
the cine imaging would potentially limit the accuracy of tar-
get tracking. Seregni et al.13 developed a feature tracking
model with temporal prediction and, separately, an internal
to external correlation model similar to the 5D model. Using
interleaved orthogonal 2D images acquired every 0.25 s,
they demonstrated an ability to increase the effective frame
rate of feature tracking which would potentially reduce gat-
ing latency. A key difference of our technique is that it
involves reducing the imaging frame rate in any given slice
well below what is necessary for direct image radiotherapy

gating (i.e., 1 frame every 3 s or slower). We have shown in
our previous work17 that a reduced frame rate could expand
the set of pulse sequences that can be used for gating, and in
the present report demonstrate the use of multiple cyclically
imaged sagittal slices can be used to build a multislice motion
model.

5. CONCLUSION

We have demonstrated a technique for multislice real-time
motion estimation for MRI-guided radiotherapy based on a
continuously updated motion model and a cyclic 2D multi-
slice image acquisition. The accuracy of the technique has
been demonstrated in a simulated radiotherapy gating experi-
ment with in vivo images acquired at 0.35 T. Two specific
motion models were evaluated: the mSGA model, which
potentially maximizes motion estimation accuracy using an
image-based surrogate, and the external surrogate-based 5D
motion model, which enables continuous unbiased ground
truth evaluation, maximizing clinical confidence during
treatment.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Fig. S1. A schematic representation of the 5D modeling
workflow.
Fig. S2. A schematic representation of the mSGA modeling
workflow.
Fig. S3. The slice position dependence of gating accuracy
(a), gating positive predictive value (b), distance between the
model-tracked and image-tracked target centroids (c), and
proportion of the model-tracked target overlapping the
image-tracked target (d) using the mSGA model and back-
propagated surrogate in volunteer study 1. The slice number
indicates the position of the imaged slice relative to all other
slices. The evaluation slice is the location where the model
and image gating statistics are compared. The origin slice
refers to the location where the back-propagated surrogate
originates. For example, the dark blue line (Origin Slice #1)
is located at one of the lateral ends of the imaged volume and
is the furthest imaged slice from evaluation slice 9. Note that
only a subset of the 10 imaged slices were “evaluation slices”
since the tracked target did not span all imaged positions.
Increasing error associated with propagation distance is indi-
cated by a relatively small median distance between modeled
and tracked target centroids for nearby slice positions com-
pared to distant slice positions. The proportion of the model-
tracked contour overlapping the image-tracked contour is also
larger for nearby slice positions compared to distant slice
positions. Slice-specific model gating performance is indi-
cated by the fact that model gating performance may improve
or worsen as the volume is traversed (e.g., moving from eval-
uation slice #3 to evaluation slice #9).
Video S1. A video showing the image-tracked target in the
sagittal images acquired across multiple slice positions dur-
ing a healthy volunteer study. The model generated images
and model-tracked target corresponding to each acquired
image are shown in the sagittal, coronal and axial planes.
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