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An Information-Based Theory

of Time-Varying Liquidity

BRENDAN DALEY and BRETT GREEN∗

ABSTRACT

We propose an information-based theory to explain time variation in liquidity and link it to

a variety of patterns in asset markets. In “normal times,” the market is fully liquid and gains

from trade are realized immediately. However, the equilibrium also involves periods during which

liquidity “dries up”, which leads to endogenous liquidation costs. Traders correctly anticipate such

costs, which reduces their willingness to pay. This foresight leads to a novel feedback effect between

prices and market liquidity, which are jointly determined in equilibrium. The model also predicts

that contagious sell-offs can occur after sufficiently bad news.
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Asset markets are susceptible to periods of illiquidity. Recent examples of this phenomenon include

real estate (Clayton, MacKinnon, and Peng (2008)), mortgage-backed securities (Gorton (2009),

Acharya and Schnabl (2010), Dwyer and Tkac (2009)), the repo market Gorton and Metrick (2012),

structured credit (Brunnermeier (2009)), commercial paper (Anderson and Gascon (2009)), and

money market funds (Krishnamurthy, Nagel, and Orlov (2012)). In conjunction with this evidence,

a literature has developed that exogenously specifies time variation and risk in the ability to trade

securities and then explores the implications for asset prices. Examples include Longstaff (2001,

2009), Acharya and Pedersen (2005), Watanabe and Watanabe (2008), Gârleanu (2009), Ang,

Papanikolaou, and Westerfield (2014). Yet the underlying mechanism driving this phenomenon is

not well understood. What can explain dramatic changes in the amount of liquidity in markets?

What are the implications for asset prices? What is the nature of the interaction between prices

and liquidity? For instance, do asset prices affect liquidity in ways that models with exogenously

specified illiquidity risk cannot capture? In this paper, we propose answers to these questions by

developing a theory in which time variation in market liquidity arises endogenously.

Our theory is developed within a dynamic economy with rational, risk-neutral agents. The

model features three key elements. First, traders have private information about the future cash

flows generated by their assets. Second, the market receives information about these cash flows,

which we refer to as news stochastically over time. And third, all agents are subject to idiosyncratic

preference shocks (e.g., financial/liquidity constraints); a trader who is hit by a shock has a reason

to sell, though she is not forced to do so. This last ingredient implies that a trader who purchases

an asset today cares about the expected liquidity of that asset in the future, which we refer to as

an (exogenous) demand for future liquidity.

We indeed find that the risk of future illiquidity has important implications for asset prices.

Consider two traders, A, is the current owner of an asset, and B, is a potential buyer. Trader B,

when considering the purchase of the asset, realizes that his ability to sell it in the future may be

limited by endogenous frictions stemming from asymmetric information. This foresight reduces his

willingness to pay for the asset today. As a result, prices are driven below fundamentals, leading

to an illiquidity discount, which varies over time with the degree of the information asymmetry.

However, because prices and liquidity are jointly determined in our theory, the story does not end

here. The reduction in asset prices feeds back into determining liquidity in the market. Trader
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A, when considering the sale of the asset, is now less inclined to sell at the depressed prices if

she has positive (private) information about the asset. This in turn makes Trader B even more

hesitant to offer a pooling price, which exacerbates the adverse selection problem and leads to

further deterioration in market liquidity. In short, the information friction generates illiquidity,

and the demand for future liquidity amplifies the consequences. These forces negatively feed back

on one another until the price function and degree of liquidity reach a fixed point.

Our formal analysis begins in a single-asset, two-period environment in which we highlight

the intuition underlying the mechanism. Then, building on the framework developed in Daley

and Green (2012) (hereafter DG12), we extend our analysis to a continuous-time, infinite-horizon

model in which news is revealed via a diffusion process, and observable shocks arrive according to

a Poisson process. We construct an equilibrium in which the amount of liquidity in the market

crucially depends on the market belief about the asset value, which evolves over time. As in DG12,

the equilibrium partitions the belief space into three distinct regions: (1) when the belief about the

asset’s type is favorable, efficient trade occurs immediately at a “fair” price; (2) when the market is

pessimistic about the asset, the owner is forced to either sell at a low price or wait (a trader with a

low-value asset mixes over these two alternatives, whereas one with a high-value asset waits), and

(3) when the market completely breaks down, both sides of the market wait until either sufficient

good news restores confidence to (1) or enough bad news forces (2).

Figure 1 illustrates a sample path of the equilibrium dynamics. To elaborate, suppose Trader

A owns a share of the asset, and she experiences a shock while the market belief happens to be

favorable. In this case, which we interpret as “normal times,” the market is fully liquid ; Trader

A sells immediately to, say, Trader B, without affecting the market belief. While Trader B is

in possession, bad news arrives such that the belief drifts down into the middle region, at which

point Trader B experiences a shock. In this case, the market is fully illiquid ; Trader B will be

unwilling to sell at the highest price buyers are willing to offer, and inefficient delay will ensue.

These equilibrium dynamics can explain what is often referred to as “liquidity drying up”.1 If the

asset is of low quality and sufficient bad news arrives, Trader B may capitulate and sell at a low

price. Or she may hold out, waiting for sufficient good news to arrive and market liquidity to be

restored. If the asset is of high quality, Trader B will wait until enough good news restores market

liquidity, meaning that not selling at a low price is a positive signal to the market.
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— Insert Figure 1 here —

After demonstrating the existence of an equilibrium that features these dramatic changes in

market liquidity, we study the implications. First, what are the implications for asset prices? One

immediate implication is that during normal times (i.e., when the belief is above β in Figure 1),

the asset trades at a discount relative to its fundamental value because potential buyers correctly

anticipate the future risk of illiquidity. As the market belief increases further above β, the risk of

future illiquidity decreases, and so too does the discount. Another implication is that the price

process exhibits excess volatility in response to news, because news provides information not only

about fundamentals, but also about future illiquidity risk. That is, bad news decreases the belief

about fundamentals as well as the expected future liquidity of the asset. This additional consequence

exaggerates the price reaction to news, adding additional volatility.

Second, what is the nature of the interaction between prices and illiquidity? The equilibrium

exhibits an important feedback channel between asset prices and the degree of market illiquidity.

Illiquidity leads to lower prices, which makes owners of high-value assets less eager to sell. Because

high-type owners are less likely to sell, buyers face more severe exposure to the lemons problem.

This exacerbates the consequences and further reduces liquidity, which in turn further reduces

prices, and so on. This feedback channel leads to a somewhat perverse implication: the more

traders demand future liquidity, the more difficulty they will have in consummating a trade today.

Intuitively, when traders have greater demand for liquidity, the risk of illiquidity lowers the prices

they are willing to pay, setting off the feedback loop just discussed, thereby amplifying the degree

of illiquidity.

Part of the rationale for this finding is that greater demand for liquidity increases the severity

of the adverse selection problem because an asset owner’s private information pertains not only

to the underlying cash flows, but also to the future liquidity of the asset. This additional private

information arises because future market liquidity depends on the realization of news, which is

correlated with the asset’s type.

We next extend these results to a setting in which the asset has identical shares, held by N > 1

different privately informed owners. Hence, N measures the dispersion of the asset’s ownership,

which is taken as an exogenous feature of the environment.2 Ownership dispersion leads to an
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informational externality among shareholders: the trading behavior of one owner affects the market

belief about the asset’s type and therefore the payoffs and behavior of other owners. We analyze

how this externality affects both trading dynamics and allocative efficiency. One manifestation of

this feature is the possibility of a contagious sell-off.

A sell-off is often said to occur when a rapid increase in supply coincides with trading activity at

low prices. Wall Street traders and analysts also refer to this event as “market capitulation.”3 In our

model, sell-offs occur because one seller’s willingness to accept a low price reveals information about

the asset’s type to the market, which reduces the information asymmetry and induces other traders

to sell their shares contemporaneously. Because private information is revealed through this trading

behavior, the sell-offs in our model lead to higher future liquidity and improve efficiency. These

implications are in contrast to the typical view of “fire sales,” which can exhibit similar patterns

but are often thought to reduce market efficiency and to be driven by accounting standards or large

haircuts that “force” owners to sell.4

We conclude our analysis by investigating parameterized examples. Doing so allows us to

attach magnitudes to our findings and explore implications for trade volume and efficiency. Using

parameters targeted at fixed-income securities (e.g., asset-backed securities, corporate debt), the

model suggests that even a modest amount of uncertainty can generate severe episodes of illiquidity;

the market becomes fully illiquid when the market belief place a 5% to 10% probability on the assets

being “bad” (e.g., defaulting), with the possibility of a sell-off occurring at an implied default

probability in the range of 20% to 30%. The model generates an illiquidity discount on the order

of 2% to 5% in normal times and volatility that can be several times larger than what can be

explained by fundamentals.

The allocative inefficiency is most severe when the market belief is just above the lower boundary

(α in Figure 1) and accounts for a 6% to 8% loss in total expected surplus. Our results also indicate

that a market with dispersed ownership is more efficient; a greater number of informed traders

means more trade behavior from which the market can learn, which facilitates efficient trades.

Interestingly, this increase in efficiency due to additional information contrasts with the effect of an

exogenous increase in the informativeness of the news, which may increase or decrease efficiency.

Interpreted literally, our model is best suited to describe markets with informationally sensitive

assets that represent an idiosyncratic component of the economy. For example, the asset could refer
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to a mortgage-backed security (MBS), where both the issuer and certain investors have access to

private information about the underlying collateral, which was not reliably disclosed. Allegations

along these lines were made against numerous banks and asset managers in the aftermath of the

financial crisis.5 Within this environment, it also seems natural to think that shocks are observable

and/or verifiable. For example, in the recent financial crisis, it was not difficult to identify financially

constrained firms (e.g., Bear Stearns, Lehman Brothers, AIG).

Another natural application is residential or commercial real estate markets. One could inter-

pret owners’ private information as pertaining to the quality of the “neighborhood,” with news

corresponding to information about its relevant characteristics. In the case of residential real es-

tate, news could include school quality rankings or crime reports, with N corresponding to the

number of homes with similar observable characteristics within the neighborhood.6 Indeed, Kurlat

and Stroebel (2014) provide evidence that private information about neighborhood characteristics

affects home prices. Naturally, prospective real estate buyers are more eager to engage with owners

who have a credible reason for selling, such as job relocation or financial distress (i.e., an observable

shock). Finally, the “observability” of shocks need not be literal, but can arise in equilibrium due

to standard disclosure/unraveling arguments (e.g., Milgrom and Roberts (1986)).7

More broadly, the economic forces we identify could apply to a variety of asset markets. For

example, in equities or corporate bond markets, a trader in our model can be interpreted as a large

stakeholder, with greater access to management and company information, whose decision to sell

may influence the market’s perception of firm value. Regardless of the application, the illiquidity

risk our model generates is not diversifiable despite the fact that exogenous shocks are idiosyncratic.

The impact on prices is not driven by aversion to risk, but rather by an inefficient allocation that

depresses the expected discounted value of future cash flows.8

Our continuous-time model builds on DG12, who consider a setting in which there is a single

seller and news about the seller’s asset is revealed gradually over time. They construct analyze

an equilibrium with a similar three-region structure. However, in their model, the asset is traded

only once and at a price equal to the fundamental value–buyers do not face resale considerations.

Inherently, such a model cannot address the questions we ask in this paper (e.g., How do resale

considerations affect prices? How does demand for liquidity in the future affect the market today?).
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A necessary theoretical advancement in the present paper is to incorporate demand for future

liquidity in order to derive prices endogenously from forward-looking traders. By doing so, we are

able to develop a theory in which equilibrium prices and liquidity are jointly determined and vary

over time with the market belief. This theory helps us understand not only how liquidity affects

prices, but also how prices feed back into determining liquidity. Another theoretical contribution of

this paper is to incorporate multiple shares of the asset, which generates a realistic feature of many

markets: trading behavior of one seller can reveal information to the market that may facilitate or

inhibit the trades of other agents.

Illiquidity can also arise from a variety of other frictions, such as exogenous trading costs

(Amihud and Mendelson (1986), Constantinides (1986)), inventory risk (Amihud and Mendelson

(1980)), and search (Duffie, Gârleanu, and Pedersen (2005), Duffie, Gârleanu, and Pedersen (2007),

Vayanos and Wang (2007), Vayanos and Weill (2008)). A key difference in the exogenous-trading-

cost and search literatures is that the “amount” of illiquidity is generally constant over time and is

determined by the size of the transaction cost or the arrival rate of a trading partner.9 Our friction

is non-institutional in that nothing in the form of the environment prevents efficient trade. Rather,

the information asymmetry combined with the strategic considerations of forward-looking traders

is what endogenously generates illiquidity, with gradual revelation of information leading to time

variation in its degree.

One of our insights is to show that time-varying liquidity naturally leads to excess volatility

in prices and returns. Of course, a variety of existing theories can generate excess volatility. To

our knowledge, however, all of these channels rely on some additional source of systematic (or

non-infinitesimal) risk coupled with risk aversion.10 By contrast, the shocks in our model are

idiosyncratic, and traders are risk neutral. Excess volatility obtains not because of aversion to

systematic risk, but because of the information friction that inhibits market liquidity and generates

an endogenous source of price volatility.

Our model differs from classic papers studying liquidity and asymmetric information in the

microstructure literature (Kyle (1985), Glosten and Milgrom (1985)) in several important respects.

First, we do not have noise traders, which facilitates our investigation of allocative efficiency.

Second, our model features gradual arrival of information, or news. These two features, along

with strategic traders, also distinguish our model from the noisy rational expectations approach
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(Grossman and Sitglitz (1980)). Wang (1993) features gradual information arrival but in a setting

with risk-averse, competetive traders and noisy supply.

Our work is also related to the growing literature studying adverse selection in dynamic envi-

ronments Janssen and Roy (2002), Hörner and Vieille (2009), Fuchs and Skrzypacz (2014), Fuchs,

Green, and Papanikolaou (2014). We differ from these papers in that our model features both resale

considerations and news, which leads to a different equilibrium structure, dynamics, and feedback

effects. Guerrieri and Shimer (2014) consider an environment with many different market prices

existing simultaneously. In their model, both trading behavior and the degree of liquidity remain

constant over time. Another important aspect of our model is that the information that agents

possess is “long lived.” This feature creates a source of persistence; liquidity tomorrow is likely to

be similar to liquidity today. A number of other papers investigate liquidity in the presence of

short-lived private information (Gârleanu and Pedersen (2003), Eisfeldt (2004), Wanatabe (2008),

Biais, Bossaerts, and Spatt (2010)).

The remainder of the paper is organized as follows. In Section I, we present the two-period

model to illustrate the key mechanisms behind our results. Section II presents the continuous-

time model with a single share. Section III presents the main theoretical implications. Section IV

extends the analysis to an arbitrary number of shares. Section V presents quantitative implications.

Section VI discusses extensions and concludes.

I. Two-Period Model

In this section, we present a two-period model that illustrates the main ideas of the paper. The

model features a single indivisible security that can be traded in a spot market, which is open for

two periods. It contains three key ingredients:

• The security’s owner has private information about the future value of its cash flows.

• After the first period, the market observes a noisy signal about these cash flows.

• An agent who buys the asset in the first period may want to resell the asset in the second

period.

To motivate this setting, consider a credit-constrained bank looking to raise capital by selling

an asset-backed security. The bank is privately informed about the quality of the underlying pool
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of collateral and therefore has private information about the cash flows the security will generate.

Moreover, any trader who purchases the security gains access to this private information, whereas

the market observes only a noisy signal of the performance of the underlying assets.

Within this section, we illustrate several points. First, news generates variation in the market’s

belief about the value of the security, which leads to stochastic variation in its liquidity. Second,

because buyers in the first period foresee the liquidity risk in the second period, their willingness

to pay for the security decreases. Third, because an owner with a high-value security is optimistic

about future liquidity (she expects good news to arrive), she is less inclined to trade in the first

period, especially at a depressed price. As a result, buyers are less likely to offer the pooling price,

which amplifies the degree of illiquidity in the first period. These considerations lead to the finding

that the larger is the demand for liquidity in the second period, the more illiquid the market is in

the first period.

A. Formal Setup

The model involves three dates, t ∈ {0, 1, 2}, and a spot market that is open for two periods.

At dates 0 and 1, the security can be traded in a competitive market where multiple potential

buyers compete in Bertrand fashion by submitting offers. For simplicity, we assume offers are made

privately, using pure strategies, and each potential buyer can make at most one offer. We refer to

the bid in a given period as the highest offer submitted in that period. At t = 2, the cash flow from

the security, denoted by C, is realized. Discounting takes place between dates 0 and 1 and again

between dates 1 and 2. Due to financial constraints, the initial owner has a per-period discount

factor of δ < 1. Therefore, her payoff from exchanging the security for a price of w at date t ∈ {0, 1}

is δtw. If the initial owner does not trade the security in either period, she consumes the cash flow

realized at t = 2, meaning her payoff is δ2C.

Ex ante, buyers are more patient than the seller; their discount factor between dates 0 and

1 is normalized to one. However, each buyer faces an idiosyncratic risk of becoming financially

constrained. Specifically, after date 0 but prior to date 1, a buyer experiences a shock with prob-

ability λ that causes her to discount cash flows by the factor δ between dates 1 and 2. Let δ̃i be

the independent random variable representing buyer i’s potential of getting shocked. It is realized

immediately before date 1, and takes a value of δ with probability λ, and a value of one otherwise.
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The payoff to a buyer i who purchases the security for a price of w (at either date) and retains it

through date 2 is δ̃iC −w. A buyer who purchases the security at t = 0 for w0 and then sells it at

t = 1 for w1 receives a payoff of w1−w0. Finally, the payoff to a buyer who does not trade is zero.

Notice that if a buyer purchases the security at t = 0 and experiences a shock, there are gains

from reselling the security in the market at t = 1 to another buyer who did not experience a shock.11

If she is not hit by a shock, the buyer’s discount rate remains equal to one and there are no gains

from resale. We assume that past trades and shocks are publicly observed, meaning that whether

there are gains from trade in each period is common knowledge.12 Figure 2 summarizes the timing

of the two-period model.

–Insert Figure 2 here–

The quality of the assets backing the security is θ ∈ {L,H}, and players share a common

prior p0 = Pr(θ = H) ∈ (0, 1). If θ = H, the assets are of high quality and the security pays a

cash flow of one at t = 2. If they are of low quality (θ = L), the cash flow at t = 2 is κ > 0.

The assumption κ < δ2 means that credit constraints are less detrimental than having low-quality

assets, and precludes the trivial outcome in which the market is always fully liquid. For analytic

convenience, we employ a more restrictive parametric assumption: κ <

√
2
δ
δ2−1√
2
δ
−1

.13 The security’s

owner knows the quality of the assets, whereas potential buyers do not. Between dates 0 and 1,

the market observes news about the quality of the underlying assets. For convenience, suppose

the news is a normally distributed random variable, s̃ ∼ N(µθ, σ). The information content of

the signal is completely summarized by the signal-to-noise ratio µH−µL
σ . Therefore, we normalize

µH = −µL = 1.

B. Equilibrium Analysis

The key determinate of equilibrium trade is the market belief about the value of the security.

Let pt denote the probability that buyers assign to θ = H at the beginning of period t. For any

belief p, let V̄ (p) ≡ p · 1 + (1 − p) · κ denote the undiscounted expected cash flow of the security.

We refer to V̄ (p) as the (expected) fundamental value of the security because, given the belief, it

is the (expected) value the security generates if efficiently allocated. The strategy of an owner is

a mapping from θ and the history (inclusive of the current offers) to a probability of acceptance.
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We restrict attention to Perfect Bayesian Equilibria (PBE), satisfying a mild refinement on off-

equilibrium-path beliefs known as belief monotonicity, which requires that an unexpected rejection

cannot cause buyers to decrease the weight their belief puts on θ = H.14

As we will see, equilibrium behavior at t = 1 corresponds to that of the familiar static model.

Our primary interest, therefore, is to characterize the equilibrium trading behavior at t = 0 and

how it depends on λ. We do so using backward induction.

At t = 1: The owner of the security may be constrained or unconstrained.15 When the owner

is unconstrained, we refer to her as a holder ; because there are no gains from trade, without loss

of generality (in terms of payoffs in either period and equilibrium play at t = 0), we specify that

trade does not occur.16 When the owner is constrained, we refer to her as a seller and the viability

of trade depends on the market belief p1. If the market belief is sufficiently low, p1 < p̄ ≡ δ−κ
1−κ , a

familiar “market for lemons” arises: only the low-value security trades, and the price is κ. On the

other hand, if p1 > p̄, the market is fully liquid and the security trades, regardless of θ, at a price

of V̄ (p1). We summarize the key aspects of equilibrium trading behavior at t = 1 in the following

lemma. The proofs for all formal results in this section are located in Appendix A.

LEMMA 1: When the owner at time t = 1 is a seller, the unique equilibrium outcome for p1 6= p̄

is as follows:17

• If p1 < p̄, the bid from buyers is κ. The low type accepts this offer with probability one. The

high type rejects this offer with probability one.

• If p1 > p̄, the bid is V̄ (p1) and both seller types accept with probability one.

If the t = 1 owner is a holder, then in any equilibrium she weakly prefers to reject the bid.

We note two features of trading at t = 1. First, any trade occurs at a price equal to the

fundamental value of the traded security. Second, the structure of a seller’s payoff at t = 1 as it

depends on θ and p1, denoted Fθ(p1), is given by

FH(p1) ≡ max{V̄ (p1), δ} and FL(p1) ≡ κ+ I{p1≥p̄}(V̄ (p1)− κ). (1)

Importantly, FH is convex in the market belief; it is flat for p1 < p̄ and linearly increasing for p1 > p̄

(see Figure 3(a)).
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At t = 0: The seller chooses between accepting the bid or retaining the security until the next

period. Similar to t = 1, the bid will either be κ or buyers’ unconditional expected value for the

security, which is denoted by B(p0).

To derive B(p0), define q(s, p) to be the posterior belief updated from an arbitrary prior of

p given a realization of the signal, s.18 Next, notice that a buyer faces the following potential

outcomes. If he acquires the security at t = 0, then with probability 1− λ he will not be shocked

at t = 1 and will therefore consume the (unconditional) expected cash flow E[V̄ (q(s, p0))] = V̄ (p0)

(by linearity of V̄ and the martingale property of beliefs). On the other hand, with probability

λ, he will be shocked. In this case, the value he can expect to enjoy at t = 1 is E[Fθ(q(s, p0))].

Therefore, a buyers value is given by

B(p0) ≡ (1− λ)V̄ (p0) + λE [Fθ(q(s, p0))] . (2)

Notice that when λ = 0, B is simply equal to the fundamental value because buyers do not

have demand for future liquidity. On the other hand, when λ > 0, a buyer is not willing to pay the

fundamental value (B < V̄ ) even if both seller types are willing to sell, because he anticipates the

potential for a reason to resell at t = 1, at which point the market may not be fully liquid (Lemma

1)–that is, he faces liquidity risk. The magnitude of the risk can be measured by

V̄ (p0)−B(p0) = (1− δ) ·
(
λp0 Pr

(
q(s, p0) < p̄|θ = H

))
. (3)

The difference between V̄ and B is easily interpreted: it is the probability that (i) the buyer will

be hit by a shock, (ii) the security is of high value, and (iii) the realized signal is sufficiently low

that he will be unable to resell it, multiplied by the lost value from this occurrence.

Turning now to the seller’s decision, let Cθ(p) denote the continuation payoff to the seller given

the market belief is p after observing a rejection but prior to observing the signal:

Cθ(p) ≡ δE [Fθ(q(s, p))|θ] .

Equilibrium behavior at t = 0 will be characterized by two belief thresholds. One threshold,

denoted by b, is the belief level such that the high type is indifferent between selling at a price of
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B(b) or waiting until the next period. That is, b is defined implicitly by B(b) = CH(b).

LEMMA 2: There exists a unique b ∈ (0, 1) that solves B(b) = CH(b), where CH(p) is strictly

greater than B(p) for all p < b and strictly less than B(p) for all p > b.

This lemma essentially implies that for p0 < b, the market cannot be fully liquid; the high type’s

option to wait (recall the convexity of FH) is more valuable than accepting B(p0). On the other

hand, for p0 ≥ b, the high type is willing to trade at the buyers’ value and a fully liquid market

remains feasible.

For a given p0, if the high-type seller is not trading, the low type can either trade at κ or retain

the security and hope for good news. Thus, the second relevant threshold, denoted by a, is the

belief at which a low type is indifferent between these two options. That is, a is defined implicitly

by κ = CL(a).

LEMMA 3: There exists a unique a ∈ (0, 1) that solves κ = CL(a), where CL(p) is strictly less than

κ for all p < a and strictly greater than κ for all p > a.

Together, Lemmas 2 and 3 imply that if a < b and p0 ∈ (a, b), any offer the seller finds acceptable

yields negative expected profit to the buyer. Hence, in this region, trade occurs with probability

zero. Further, this fully illiquid region corresponds to intermediate belief levels, meaning that

market liquidity is nonmonotonic in the market belief. On the other hand, if a > b, then similar

to t = 1, the equilibrium structure involves two regions, with higher p0 corresponding to higher

liquidity.19 These results are summarized by the following proposition.20

PROPOSITION 1: Equilibrium behavior at t = 0 is characterized as follows:

(i) If p0 > max{a, b}, the market is fully liquid, meaning that the bid is B(p0) and both types

accept with probability one.

(ii) If p0 < min{a, b}, the market is partially liquid, meaning that the bid is κ, the high type rejects

with probability one, and the low type accepts with probability a−p0
a(1−p0) .

(iii) If a < b and p0 ∈ (a, b), the market is fully illiquid, meaning that the bid is weakly below

CL(p0) and both types reject with probability one.

(iv) If b < a and p0 ∈ (b, a), there exists c ∈ (b, a) such that the market is fully liquid for all

p0 ∈ (c, a). For p0 ∈ (b, c), there are two equilibrium outcomes (fully liquid or partially
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liquid).

We note three features of the equilibrium. First, the amount of liquidity in the market can look

quite different from one period to the next, as it depends on the initial belief and the realization of

the signal. Second, because of illiquidity risk, traders shade their offers downward at t = 0. This

drives the equilibrium price below the fundamental value when the market is fully liquid, which

we interpret as an illiquidity discount and is characterized by (3). Third, a fully illiquid region is

possible at t = 0. In what follows, we illustrate another key insight: greater demand for liquidity

at t = 1 has a feedback effect that further reduces the amount of liquidity in the market at t = 0.

— Insert Figure 3 here —

C. Role of Resale Considerations

Consider the comparative static effect of λ. When λ = 0, buyers do not have demand for future

liquidity and hence illiquidity in the market at t = 1 is irrelevant for their value at t = 0. As a

result, there is no discount (i.e., B = V̄ ). As λ increases, so too does traders’ demand for future

liquidity. Because the market is not fully liquid in all states at t = 1, higher λ depresses traders’

value at t = 0. At this new lower value, a high type is no longer willing to accept B(b) (recall that

CH is independent of λ); hence buyers are no longer willing to offer it and b increases. Thus, an

increase in λ affects not only the price level, but also the viability of trades as summarized by the

following proposition.

PROPOSITION 2: As traders’ demand for future liquidity (λ) increases, the following hold:

(i) B(p) strictly decreases for all p ∈ (0, 1).

(ii) The high type’s indifference threshold, b, strictly increases, whereas the low type’s threshold,

a, is unchanged.

(iii) The probability of trade in equilibrium at t = 0 weakly decreases for all p0 and strictly decreases

for some p0.

For perhaps the starkest illustration of (iii), consider the case in which λ1 < λ2 leads to

b1 < a < b2 (recall that a is unchanged by λ). Then for λ1, the market is always either partially
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or fully liquid. However, for λ2, the increased demand for future liquidity creates a fully illiquid

region when one did not exist for λ1.

Intuitively, adverse selection becomes more severe as λ increases because the seller’s private

information is not only about the underlying cash flows, but also about the future liquidity of the

security. This additional private information arises because market liquidity at t = 1 depends on

the realization of the signal, which is correlated with the seller’s type. That is, conditional on

θ = H, the market is more likely to be fully liquid at t = 1 than if θ = L. Hence, a high type

expects more favorable market conditions than does a low type. When λ = 0, this information is

irrelevant since buyers have no value for future liquidity, but as λ increases, so too does its relevance

and the adverse consequences.

D. Connection to the Continuous-Time Model

With intuition for the key mechanism established, in Section sec:model we develop an infinite-

horizon, continuous-time model. Among other things, this model delivers a richer and more

tractable characterization of the illiquidity discount and its implications for price dynamics. It

also allows us to clearly illustrate several results that obtain only in a model with a longer horizon

and that are difficult to conceptualize within a non-stationary setting.21 An overview of how the

continuous-time model enriches the present two-period version is as follows:

• There is an infinite horizon and the security delivers cash flows continuously, rather than a

finite horizon with a cash flow in the final date. Constrained traders have positive holding

costs relative to unconstrained ones, which generates gains from trade.

• The market is open continuously rather than at discrete periods of time; news is revealed

according to a diffusion process with type-dependent drift; and shocks, which increase an

owner’s holding costs, arrive according to a Poisson process.

In Section IV, we illustrate how informational externalities among owners affect trading behav-

ior. To do so, we generalize the model and extend our results to a setting where

• There are N > 1 shares of the security. Each agent can own at most one share.
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II. Continuous-Time Model

There is a single asset in the economy, which has a fixed type θ ∈ {L,H}. At every moment in

time t ∈ [0,∞), an agent who is privately informed of θ owns the asset. We refer to this agent as

the owner at time t, formally denoted by At.
22 The asset generates a cash flow to its current owner

that depends on θ and the owner’s (financial) status, which is either constrained or unconstrained.

An unconstrained owner of a type-θ asset obtains an instantaneous cash flow of vθ, whereas a

constrained owner has positive holding costs and obtains only kθ < vθ.
23 All agents are risk neutral

and discount future payoffs at rate r. Let Vθ = vθ
r and Kθ = kθ

r denote the value of a share being

held ad infinitum by an unconstrained and constrained agent, respectively. We assume KH > VL,

meaning that the potential for a lemons problem exists.

Any owner is subject to an observable shock that arrives according to a Poisson process, with

intensity λ > 0; if At is unconstrained at time t, then the arrival of the first shock after time t

induces a positive holding cost, thereby transforming the owner into a constrained agent. As in the

previous section, we refer to an owner as a seller if she is constrained, and as a holder otherwise.

For simplicity, the seller is unaffected by subsequent arrivals and maintains a positive holding cost

indefinitely. Let It be an indicator that is equal to one if and only if At is a seller at time t.

The market opens at t = 0, with the asset owned by A0, whose status is commonly known. At

every t ≥ 0, buyers in the market generate an outstanding bid, and the seller can accept the bid

in exchange for ownership rights to the asset. If the asset trades, its new owner learns the asset’s

type, and the previous owner exits the economy. If a seller rejects the current bid, she retains the

asset, receives the flow payoff, and can entertain future bids.

The bid process is a convenient modeling device for aggregated buyer behavior, and is motivated

by multiple potential buyers always being in the marketplace. In this setting, the precise mechanism

for trading is largely unimportant. In each of the following trading mechanisms, it can be shown

that there exists an equilibrium with trading behavior identical to the one on which we focus.24

EXAMPLE 1 (Decentralized or Over-the-Counter Markets): At every t ≥ 0, the owner is ap-

proached by multiple buyers who can each make a purchase offer. The owner observes offers and

decides if, when, and to whom to sell.25

EXAMPLE 2 (Posted Prices): At every t ≥ 0, the owner posts a price at which she is willing to
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sell. Buyers observe posted prices and choose if and when to buy.

Though it is perhaps more appropriate for the model with multiple shares (see Section IV), we offer

a third example here in which a market maker facilitates trade.

EXAMPLE 3 (Facilitation by a Market Maker): There is a market maker privy to the public history.

At every t ≥ 0, the market maker generates a bid price at which he will buy (shares of) the asset,

and an ask price at which he will sell (shares of) the asset to buyers. He obtains weakly lower flow

value from the asset than a seller and aims to maximize his own expected profit, but competitive

pressures drive this profit to zero.

A. Public Information

A key feature of the model is that news about the asset’s type is continuously and publicly

revealed via a diffusion process, X, where for all t ≥ 0,

Xt = µθt+ σBt,

and B is a standard Brownian motion. Define the signal-to-noise ratio φ ≡ µH−µL
σ , which we

assume to be strictly greater than zero. Larger values of φ imply higher quality news; φ = 0 would

correspond to a model without informative news.

To formalize the information structure, we introduce the probability space (Ω,F ,Q) in which

θ, B, and the shock process, denoted L = {Lt : 0 ≤ t ≤ ∞}, are mutually independent. The public

history at time t, which also corresponds to the information set of buyers at time t, contains:

• The initial status of the original owner: {I0}.

• The arrival times of shocks: {Ls : 0 ≤ s ≤ t}.

• The history of news: {Xs : 0 ≤ s ≤ t}.

• The history of all past trades.

Let {Ft}t≥0 denote the filtration generated by the public history. Finally, it will be convenient to

keep track of the set of times at which the asset trades, which we denote by T .26
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B. Bid Process and Owner Strategies

The bid process W is a real-valued stochastic process, progressively measurable with respect

to Ft. To prevent trades based solely on the expectation of ever-increasing prices, we impose the

standard transversality condition.27

An owner’s information set contains the public history, the asset type, and a randomization

device to allow for mixing. Let {Gt}t≥0 denote the filtration generated by the information sets

of owners. A strategy for an owner of a type-θ asset who becomes a seller at time t, hereafter a

“(θ, t)-seller,” is a stopping time adapted to Gh and denoted by τ θ,t ≥ t. It will be convenient to

represent a seller’s strategy by the distribution it induces over Fh-adapted stopping times. Thus,

let Sθ,t =
{
Sθ,th , t ≤ h ≤ ∞

}
denote the progressively measurable process with respect to Fh, where

Sθ,th (ω) ≡ Pr
(
τ θ,t(ω) ≤ h|Fh

)
.

From the buyer’s perspective, Sθ,th keeps track of how much probability mass the (θ, t)-seller has

“used up” as of time h by assigning positive probability to accepting bids at times s ∈ [t, h]. An

upward jump in Sθ,t corresponds to the (θ, t)-seller accepting with an atom of mass. For any given

sample path, Sθ,t is a CDF over a (θ, t)-seller’s acceptance time.

C. Market Beliefs

Naturally, we will require that the market belief about θ be consistent with the public history

and the sellers’ strategies in equilibrium (see Definition 1 below). It will be convenient to derive

the belief process consistent with arbitrary strategies as a prerequisite to discussing the equilibrium

concept in the next subsection. We begin with the belief process that updates based only on news

and then incorporate the information content from the public history due to strategic effects into

a second component. Using a convenient change of variables, the market belief can be represented

by the sum of these two processes.

The market begins with a common prior P0 = Pr(θ = H) ∈ (0, 1). Let fθt denote the density

function of type θ’s news at time t, which is normally distributed with mean µθt and variance σ2t.

Define P̂ to be the belief process for a Bayesian who updates based only on news starting from the
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prior (i.e., P̂0 = P0):

P̂t ≡
P̂0f

H
t (Xt)

P̂0fHt (Xt) + (1− P̂0)fLt (Xt)
. (4)

It is useful to define a new process Ẑ ≡ ln(P̂ /(1 − P̂ )), which represents the belief in terms of its

log-likelihood ratio. Because the mapping from P̂ to Ẑ is injective, there is no loss in making this

transformation. By definition,

Ẑt = ln

(
P̂t

1− P̂t

)
= ln

(
P̂0

1− P̂0

)
︸ ︷︷ ︸

Ẑ0

+ ln

(
fHt (Xt)

fLt (Xt)

)
︸ ︷︷ ︸
φ
σ

(
Xt−

t(µH+µL)

2

)
,

and thus

dẐt = − φ

2σ
(µH + µL)dt+

φ

σ
dXt. (5)

Now define P = {Pt, 0 ≤ t < ∞} to be the equilibrium market belief process. Note that

Pt differs from P̂t because it accounts for information contained in trades, or the lack thereof,

before time t. Define Z ≡ ln(P/(1 − P )). As before, there is no information lost in making this

transformation. Because Bayes rule is linear in log-likelihoods, we can decompose Z as Z = Ẑ+Q,

where Q is the stochastic process that keeps track of the information conveyed by the history of

past acceptances and rejections. For example, because the market belief is consistent with seller

strategies, along the equilibrium path and for all h ∈ (ti, ti+1), where ti ∈ T denotes the time of

the ith trade,28

Zh = Zti + ln

(
fHh−ti(Xh −Xti)

fLh−ti(Xh −Xti)

)
︸ ︷︷ ︸

Ẑh−Ẑti

+ ln

(
1− SH,ti

h−

1− SL,ti
h−

)
︸ ︷︷ ︸

Qh−Qti

. (6)

The third term on the right-hand side of (6) shows how beliefs can update over time due to strategic

effects, even if trade does not occur. For example, suppose that in equilibrium, the likelihood of

trade at time t is larger if θ = L than if θ = H. Then if trade occurs at t, Q decreases while if

trade does not occur at t, Q increases.
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D. Equilibrium Definition

Given W , the problem a (θ, t)-seller faces is to select a stopping rule that for all h ≥ t solves

sup
τ≥h

Eθ
[∫ τ

h
e−r(s−h)kθds+ e−r(τ−h)Wτ |Gh

]
. (SPθ,t)

Let Sθ,t = supp(Sθ,t). We say that Sθ,t solves (SPθ,t) if each τ ∈ Sθ,t solves (SPθ,t). Now define

Fθ,t(h, ω) to be the expected payoff to the (θ, t)-seller, who chooses a τ that solves (SPθ,t), starting

from time h ≥ t. In addition, because a holder waits to become a seller at some future time t when

the shock arrives, let

Gθ(s, ω) ≡ Eθ
[∫ t

s
e−r(x−s)vθdx+ e−r(t−s)Fθ,t(t, ω)|Gs

]
(7)

denote the expected payoff to the holder of a type-θ asset starting from time s.

DEFINITION 1: An equilibrium consists of {SL,t, SH,t}t∈R+ ,W, and Z such that

(i) Owner Optimality: Given W , for all (θ, t), Sθ,t solves (SPθ,t).

(ii) Belief Consistency: For any t and history such that Ft 6= ∅, Zt satisfies Bayes rule.

(iii) Zero Profit: If Ft ∩ {t ∈ T } 6= ∅, then

Wt = E[Gθ(t
+, ω)|Ft, t ∈ T ].

(iv) No Deals: If It(ω) = 1, there does not exist y ∈ R such that

E
[
Gθ(t

+, ω)|Ft, Fθ,h(t, ω) ≤ y,At 6= At+
]
− y > 0.

The first two conditions, Owner Optimality and Belief Consistency, represent standard criteria:

a seller in possession of the asset at time t must choose a strategy that maximizes her payoff, and

beliefs must follow from Bayes rule along the equilibrium path (i.e., Ft 6= ∅). The interpretation of

Zero Profit is that any executed trade must deliver zero expected surplus to the purchasing buyer

due to the presence of competing buyers. If No Deals does not hold, then there exists an offer

that will earn a buyer a positive expected payoff; hence, this condition reflects the equilibrium

requirement that no buyer can profitably deviate by making an offer y that the seller would be
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willing to accept with positive probability.

III. Equilibrium: Liquidity, Prices, and Volatility

In this section, we present formal results demonstrating the existence of an equilibrium featur-

ing stochastic, time-varying liquidity. We further show that these features generate an illiquidity

discount, which in turn leads to excess volatility in prices and returns as well as feedback effects

that further deteriorate market liquidity. To focus on the main results and their implications, we

relegate the details of the equilibrium construction to Appendix B.

The equilibrium, formally characterized by Definition 2 and Theorem 1, is a natural extension

of the t = 0 behavior in the two-period model and the equilibrium of focus in DG12 (see Benchmark

2 in Section III.A). It is stationary with respect to the current market belief, z, and owners’ status,

i.29 Equilibrium play can be characterized by a pair of belief thresholds (α, β) ∈ R2, α < β, and an

increasing function B : R→ [VL, VH ], where B(z) represents a buyer’s expected value for the asset

given the belief z. For states in which the owner is a seller (i = 1), the equilibrium is characterized

as follows:

• When z > β, the market is fully liquid. The bid is B(z) and both seller types accept with

probability one.

• When z < α, the market is partially liquid. The bid is VL, the low-type seller accepts with

positive probability, and the high type rejects with probability one. If trade occurs, the

market belief jumps immediately to z = −∞. If trade does not occur, it jumps to α.

• When beliefs are intermediate, the market is fully illiquid. For all z ∈ (α, β), the asset is not

traded. The bid is unacceptable to either type of seller, and both sides of the market wait for

more information to be revealed.

For states in which the owner is a holder (i = 0), trade cannot occur because it is common knowledge

that there are no gains from trade and the seller is privately informed.

Intuition for the trading dynamics is similar to that at t = 0 in the two-period model with

(α, β) corresponding to (a, b). When the owner is a seller, the market belief evolves according to

both news and trading behavior with α forming a lower boundary of the belief process unless a sale

at Wt = VL reveals θ = L. Conversely, when the owner is a holder, beliefs evolve only according to
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the news and may drift below α.

Notice that α < β, meaning that a fully illiquid region always exists, in contrast to the equi-

librium of the two-period model. This difference is due to the increased frequency of trading

opportunities. In either model, there are beliefs at which the market is partially liquid, meaning

the low type is indifferent between trading or waiting. To maintain this indifference, the low type

must expect a nontrivial delay before a better price will be offered. In the two-period model, this

feature is built directly into the discrete-time formulation. However, in continuous time, there is

no delay until the next trading opportunity, meaning it must be part of the equilibrium structure.

That is, the possibility of a > b in Proposition 1 is an artifact of the discrete-time environment.

The following definition formalizes the description provided above.

DEFINITION 2: For any pair (α, β) ∈ R2, α < β, and measurable B : R → [VL, VH ], define

mt = sup{s ≤ t : Is = 1}, Qαt = max{α − infs≤mt Ẑs, 0}, Qα0− = 0, and Ξ(α, β,B) to be the belief

process and strategy profile such that for all t, h ≥ 0,

Zt =

 −∞ if there exists s < t when the asset sold and Zs ≤ α

Ẑt +Qαt− otherwise

SH,th =

 1 if there exists s ∈ [t, h] such that Zs ≥ β

0 otherwise

SL,th =

 1 if there exists s ∈ [t, h] such that Zs ≥ β

1− e−
(
Qαh−Q

α
t−

)
otherwise

Wt =


VL if Zt ≤ α

KL + ELt [e−rT (β,t)](B(β)−KL) if Zt ∈ (α, β)

B(Zt) if Zt ≥ β,

where ELt is the expectation with respect to the probability law of the process Z conditional on Ft

and θ = L, and T (β, t) ≡ inf{s ≥ t : Zs ≥ β}.

Our informal description of the equilibrium did not specify the bid in states where trade does

not occur, because it is not uniquely pinned down. In such states, the definition above specifies W

to be the highest bid consistent with the candidate being an equilibrium.30
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THEOREM 1 (Existence): There exists an (α∗, β∗, B∗) such that Ξ(α∗, β∗, B∗) is an equilibrium.

The theorem is established by construction. The main challenge is that the price a buyer is

willing to pay in the fully liquid region z ≥ β, B(z), depends on the degree of future liquidity risk

he faces, as captured by (α, β). At the same time, the boundaries that jointly solve the seller’s

stopping problem depend on the prices buyers are willing to pay, B. The key steps in the proof of

the theorem involve formally deriving this interdependence and demonstrating that a fixed point to

the system exists. Appendix B derives necessary conditions that any candidate Ξ must satisfy. The

Internet Appendix demonstrates that these conditions are also sufficient and proves existence.31

Having established its existence, we turn to characterizing properties of the fixed point relative

to several benchmarks. Equilibrium value functions play a key role in the subsequent analysis. For

each θ, let Fθ and Gθ denote the value function of a type-θ seller and holder, respectively (see

Figure 4 below). Because the equilibrium is stationary, each function depends only on z.

REMARK 1 (Multiplicity): We have verified numerically that for a broad range of parameters,

there is a unique (α, β,B) satisfying the necessary and sufficient conditions for Ξ(α, β,B) to be an

equilibrium. However, without additional equilibrium restrictions, there exist other equilibria that

are not of the Ξ form. One reason for the multiplicity is that the seller’s decision can signal her

private information, and signaling games canonically have multiple equilibria without restrictions

on off-path beliefs.32 Motivated by their relative simplicity and, more importantly, the economic

predictions they generate, we focus on equilibria of the Ξ form.

A. Benchmark cases

In this section, we establish properties of two natural benchmark cases that will be useful

for comparison to the equilibrium described above. We first adapt the definition of the asset’s

fundamental value to the continuous-time model.

DEFINITION 3 (Fundamental Value): For any belief Zt, let p(Zt) ≡ eZt

1+eZt
denote the probability

assigned to θ = H given Zt, and V̄ (Zt) ≡ E[Vθ|Zt] = VL + p(Zt)(VH − VL) denote the fundamental

value of the asset.

—Insert Figure 4 here—
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Benchmark 1: The symmetric information model. Consider an economy in which owners have

no private information.33 In this symmetric information setting, equilibrium behavior is straight-

forward: (i) Zt = Ẑt , because nothing can be learned from trading behavior, (ii) buyers are always

willing to pay the fundamental value of the asset, Wt = V̄ (Zt), and (iii) if At is hit with a shock

at time t, she sells immediately. Therefore, the asset value to both sellers and holders is equal to

V̄ . Because the asset spends zero time in the possession of constrained agents, the equilibrium is

fully efficient and the price aligns perfectly with the fundamental value. These statements hold re-

gardless of the value of λ; because no institutional frictions exist (e.g., search or transaction costs),

shocks in isolation do not generate inefficiency or cause prices to deviate from fundamentals.

Benchmark 2: The model without resale. Restoring the information asymmetry, consider the

model without demand for future liquidity (i.e., λ = 0). A holder is never shocked, never becomes

a seller, and therefore retains the asset in perpetuity. Hence, a type-θ holder’s value, Gθ, is simply

Vθ. Further, buyers face no desire to resell in the future. Correspondingly, given any belief Zt, their

expected value of possessing the asset, which we have denoted by B(Zt), is simply the fundamental

value, V̄ (Zt). This is the situation considered in DG12, in which the main result is as follows.

THEOREM 2 (DG12): If λ = 0, there exists a unique Ξ-equilibrium. It has the following properties:

• Gθ(z) = Vθ for all z.

• B(z) = V̄ (z) for all z.

Further, this is the unique stationary equilibrium satisfying belief monotonicity (i.e., Q is non-

decreasing).

The key takeaway is that without shocks, when a share trades, it does so at its fundamental

value. Thus, future liquidity considerations are necessary, though not sufficient (recall Benchmark

1), for the divergence of prices from fundamentals.

B. Effect of Illiquidity on Prices and Volatility

Notice that in both benchmarks, buyers do not face future liquidity risk. In Benchmark 1, the

market is always fully liquid. In Benchmark 2, a buyer never faces a need to resell the asset. For

this reason, in both benchmarks, (i) B(z) = V̄ (z) for all z, and (ii) whenever the asset trades, the

price equals the fundamental value (conditional on trade). Both (i) and (ii) fail when a demand
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for future liquidity is combined with asymmetric information and news.

We now demonstrate how this liquidity risk creates an illiquidity discount and excess price

volatility even during “normal times” (i.e., a fully liquid market).

PROPOSITION 3 (fully liquid prices): In any Ξ-equilibrium, B(z) < V̄ (z) for all z. In particular,

in the fully liquid region, B is of the form

B(z) = V̄ (z)− γ(1 + ez)−1e
− 1

2

(√
1+r/φ2−1

)
z
, (8)

where γ > 0 is a constant that is determined by parameters.

Hence, even while the market is fully liquid, buyers anticipate the potential for illiquidity in the

future, causing their value to drop below fundamentals. Recalling that in the fully liquid region,

the asset trades at a price of B(z), the following corollary is immediate.

COROLLARY 1 (Illiquidity discount): In the fully liquid region, the asset trades at a price strictly

less than its fundamental value.

The illiquidity discount is characterized by the second term in equation (8)—just as was done

by equation (3) in the two-period model. Having identified its functional form, a few properties

are immediate. First, the discount is decreasing in z; as the market belief increases from β, the

probability of getting enough bad news to reach the fully illiquid region decreases. Second, the

illiquidity discount goes to zero as informational asymmetry disappears (i.e., as z →∞); just as in

Benchmark 1, without an informational asymmetry, the market is always fully liquid.

To establish the effect on the volatility of equilibrium prices, a comparison to Benchmark 1 is

again useful. Recall that in this case, the price is equal to the fundamental value V̄ , and therefore

the fundamental volatility of prices is given by φV̄ ′(z), which follows directly from Ito’s Lemma

and the law of motion of Ẑ. Similarly, in the fully liquid region of Ξ, the price is B(z), and because

trades reveal no information, the law of motion of Z is the same as that of Ẑ. Therefore, the

volatility of equilibrium prices is given by φB′(z). Using (8), we arrive at the following additional

corollary.

COROLLARY 2 (Excess volatility): In the fully liquid region, the volatility of both equilibrium

prices and returns is strictly greater than the fundamental volatility of prices and returns.
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The intuition for this result is that bad news about fundamentals means two things: lower

expected cash flows and higher expected liquidation costs. To see this, consider any z > β. Over

the next short interval of time, bad news would move the belief downward toward β, which increases

the probability of future illiquidity. Similarly, good news would increase the belief further away

from β, which decreases the illiquidity risk. Hence, the effect of news gets compounded, which

leads to higher price volatility in equilibrium than can be justified based solely on fundamentals.

Because B < V̄ , the volatility of equilibrium returns (i.e., the volatility of dB(Zt)/B(Zt)) is also

strictly greater than the fundamental volatility of returns (dV̄ (Zt)/V̄ (Zt)).

C. How Does Demand for Future Liquidity Affect Market Liquidity Today?

Having explored the impact on prices, it is natural to ask how the demand for future liquidity

interacts with the information asymmetry and affects the resulting market liquidity today. In the

two-period model, we found that an increase in the probability of wanting to resell at date 1 leads

to an increase in b and hence negatively affects the market illiquidity at date 0. The intuition is that

an owner with a high-value asset is optimistic about future liquidity relative to buyers because she

expects good news to arrive. She is therefore less inclined to trade in the initial period, especially

at a depressed price. As a result, buyers are less likely to offer the pooling price, which amplifies

illiquidity in the initial period. The same force is at play within the continuous-time model; the

possibility of becoming constrained in the future increases β and hence shortens the duration of

normal times. Unlike the two-period model, these considerations extend beyond just liquidity in

the “next period.”

There is also a secondary effect through which market liquidity is affected that was not present

in the two-period model. In particular, because of the increase in β, a low-type seller now has

to wait longer (in expectation) to get the pooling price. If α were to remain fixed, a low type’s

payoff would drop below VL, violating the No Deals condition. Therefore, α must also increase to

compensate the low type, which therefore increases the probability of trade in “abnormal” times.

However, such trades entail substantial price impact since they occur at a price of VL. As we show

in the following proposition, the first effect tends to dominate the second in that the overall size of

the fully illiquid region increases.
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PROPOSITION 4 (Amplification): Fix all parameters except λ. Let Ξ(α0, β0, V̄ ) denote the Ξ-

equilibrium with λ = 0, and Ξ(α1, β1, B) be any Ξ-equilibrium with λ > 0. Then β1 > β0 and

β1 − α1 ≥ β0 − α0.

Note that without an information asymmetry, λ has no effect on prices or market liquidity

(Benchmark 1). Hence, the interaction between the demand for future liquidity and the strategic

considerations of asymmetrically informed traders drives the result. Our finding here is also quite

different from what obtains if shocks are of the Diamond and Dyvbig (1983) flavor, which effectively

force a trader to sell (regardless of the bid) upon their arrival. Shocks of this nature eliminate sellers’

strategic considerations and thereby lead to immediate trade. Hence, equilibrium trading behavior

and prices would be identical to those in Benchmark 1 (i.e., full efficiency and prices equal to

fundamentals).

IV. Markets with Multiple Shares

In this section, we extend our analysis to a setting in which the asset has multiple identical

shares and multiple informed owners. The key additional consideration in this environment is that

the trading behavior of one owner may affect the market belief about θ, and therefore the value

derived by, and consequently the behavior of, other owners. In other words, there is an informa-

tional externality among owners. We first show that the externality gives rise to the possibility of

“contagious sell-offs” in any equilibrium (Proposition 5), and then investigate the extension of Ξ

with these new considerations.

A. Extending the Model

Extending the model is a straightforward exercise in which the key components are as follows.

Let there be N ∈ {1, 2, ...,∞} shares, and let n refer to a generic share. Each share n endows a

cash flow of kθ or vθ depending on the owner’s status, with kθ and vθ satisfying the same conditions

as in Section II;34 Ant denotes the owner of share n at time t, and we assume each agent can own at

most one share; Ln = {Lnt : 0 ≤ t ≤ ∞} is the publicly observable shock process for the owner of

share n, where the processes are assumed to be mutually independent; and Int denotes the status

of the owner of share n at time t. Because the shares are derived from a common underlying asset,
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there remains just one type, θ, common to all shares, one news process, one market belief about

θ, and one bid process available to all sellers. We let {Ft}t≥0 continue to denote the filtration

generated by the public history, and let {Gt}t≥0 denote the filtration generated by the information

sets of owners, which for technical reasons (see the discussion following Theorem 3) contains a

randomization device that allows for correlated mixed strategies. Finally, our equilibrium notion

(Definition 1) generalizes in a straightforward way by requiring the conditions to hold for all shares.

As discussed in the introduction, larger N can be interpreted as more dispersed ownership,

provided that the marketplace is transparent. Small N may correspond either to markets for

obscure, heterogeneous products (e.g., private-label MBS), in which only a few securities are backed

by the underlying collateral, or to assets with a large number of identical physical shares but

a decentralized marketplace (e.g., corporate bonds prior to the introduction of TRACE).35 In

the latter case, N should be interpreted as the number of shareholders for which agents have

information. Conversely, large N corresponds to markets for assets with both dispersed ownership

and transparent trading (e.g., corporate bonds after the introduction of TRACE).

B. Contagious Sell-Offs

Our first result is perhaps the starkest illustration of the informational externality among own-

ers. For simplicity, consider N = 2 and fix any equilibrium (i.e., not necessarily one resembling

Ξ). Suppose that at time t, both owners are sellers (I1
t = I2

t = 1) and, given the history, the

equilibrium calls for at least one of them to trade with positive probability if and only if θ = L.

By the Zero Profit condition, Wt must be VL. The key element is, of course, that if one seller does

accept the bid at time t, the asset’s type is perfectly revealed to be L. The other seller then has

no further incentive to delay trade, and immediately follows suit. This logic extends to arbitrary

N > 1. Hence, the trade of one share at a low price is contagious, inducing a sell-off of other shares

at low prices over a short period of time.

Formally, because the model is posed in continuous time, “immediately follows suit” translates

to “instantaneously,” and both shares trade at time t. In addition, contagious sell-offs are not just

a possibility, they must occur with positive probability in any equilibrium if beliefs are sufficiently

unfavorable.
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PROPOSITION 5 (Contagious sell-offs): Fix arbitrary N > 1. If, in any equilibrium, any share n

trades at time t at a price Wt < KH , then:

(i) That price is Wt = VL.

(ii) Any other share m in the possession of a seller, Imt = 1, also trades at time t.

Further, there exists a nondegenerate z∗ such that for any equilibrium and history in which Zt < z∗,

the probability that a contagious sell-off occurs at some t′ ≥ t is strictly positive.

C. ΞN -Equilibrium

We now describe the generalization of Ξ to the case of multiple shares. For arbitrary N , let

ΞN (α, β,B) be the strategy profile and belief process in which each seller follows the strategy

described in Ξ(α, β,B), with the acceptance/rejection behavior of all contemporaneous low-type

sellers being perfectly correlated, where Z is the belief process that is Bayesian consistent with this

strategy profile, and W is as in Ξ(α, β,B) (note that Ξ and Ξ1 are synonymous). A ΞN -equilibrium

is described by a system of equations, SN , that is derived in Appendix B.

THEOREM 3: For arbitrary N ∈ {1, 2, . . . ,∞}, an equilibrium of the form ΞN (α, β,B) is charac-

terized by the system of equations SN as defined by B32 in Appendix B. That is, a solution to the

equations is both necessary and sufficient for an equilibrium of this form.

Notice that ΞN specifies that the mixing behavior of contemporaneous low-type sellers is per-

fectly correlated: if θ = L and z ≤ α, either all current sellers trade or none of them do. In fact,

the probability that they trade is independent of the number of sellers, because regardless of the

number of sellers, a unique aggregate probability of trading is needed for the Bayesian-consistent

posterior belief to jump to α conditional on no trades occurring.

The necessity of this correlation is merely an artifact of continuous time. As discussed in

Section IV.B, if a share of the low-type asset trades at price VL, it reveals θ = L, meaning any

remaining sellers will wish to trade at their next opportunity. In continuous time, there is no “next”

opportunity. This results in an existence problem, which is resolved by the correlation. If time

periods were discrete but short, mixing behavior could be independent across sellers: to keep the

probability that at least one seller trades constant, the mixing of each individual seller would put
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less weight on selling as the number of sellers increases. If the realization of this mixing induces a

trade, all remaining sellers trade in the next period. As time periods become arbitrarily short, the

observed trading behavior converges in distribution to that specified by ΞN .

The analytic characterization of the equilibrium candidate becomes somewhat more involved for

arbitrary finite N > 1. Doing so requires an additional state variable because, as discussed below,

the value to a holder depends on whether other sellers are in the market (see Appendix B). This

contingency is irrelevant for fully liquid states (i.e., z ≥ β) and matters most when z ≤ α as this is

when the behavior of sellers affects the evolution of the belief.36 Unlike the N = 1 case, we do not

analytically prove the existence of a solution to SN for N > 1. We have verified numerically that a

solution, and hence (by Theorem 3) a ΞN -equilibrium, exists for a wide range of parameters. It is

also straightforward to verify that in any such equilibrium, the essential properties of each of the

benchmark cases investigated in Section III.A obtain, and that Proposition 3 and its subsequent

corollaries (i.e., illiquidity discount and excess volatility) hold for any N .

D. Informational Externalities in ΞN

Clearly, if θ = L, contagious sell-offs (Proposition 5) are a feature of ΞN . However, these sell-

offs are not the sole manifestation of multi-share informational externalities. For example, consider

the owner of share 1 who is a holder at time t (I1
t = 0). When N = 1, there are no other traders

whose behavior the market might learn from, and hence beliefs evolve only based on news. When

N > 1, the evolution of the market belief, and therefore the holder’s continuation value, depends

on the status of other owners. If no sellers are present, the belief continues to evolve based only

on news. But if a seller is present in the market (Int = 1, for some n 6= 1), her trading behavior

has information content. Specifically, if z ≤ α, a trade reveals that θ = L and, inversely, no-trade

increases the belief beyond what is revealed by news alone (all while I1
t = 0). By contrast, if the

owner of share 1 is a seller (I1
t = 1), the presence or absence of other sellers in the market has

no effect on her value because, as just discussed, the evolution of the market belief is the same in

either case.

To explicitly capture the dependence of holder values on the presence of sellers in the stationary

equilibrium ΞN , let in denote the status of the owner of share n and~i = (i1, i2, ...). A type-θ holder’s

value function depends on both z and max(~i) ∈ {0, 1}, denoted Gθ(z,max(~i)). Our next result

30



illustrates that the total effect of the additional information gleaned from the trading behavior of

sellers is beneficial to holders on average, which offers insight regarding the efficiency consequences

of the informational externalities.

PROPOSITION 6: For any ΞN -equilibrium, N /∈ {1,∞}, and z, E[Gθ(z, 1)|z] ≥ E[Gθ(z, 0)|z].

We can build on this result to generate intuition about the effects of increased N . Proposition 6

says that holders gain, on average, from the presence of sellers. Of course, the larger N is, the more

likely at least one other owner will become a seller by any point in time. Hence, we would expect

average holder value to increase with N . Because buyers become holders upon purchase, their value

for a share of the asset depends on average holder value and would then likewise increase with N ,

also raising prices (and therefore, seller values), liquidity, and efficiency.

In Section V, we substantiate this intuition by comparing the two polar cases: N = 1 and

N = ∞. Note that these two cases are excluded from Proposition 6 because, when N = 1, there

is never simultaneously a holder and a seller, and when N = ∞, a seller is (effectively) always

present. So, in the former case holders never experience the presence of sellers, and in the latter

case, holders always experience it. These two cases therefore represent the extrema for investigating

this force.

In sum, the key difference with multiple shares is in the information available in the market and

hence the evolution of market beliefs. When N = 1, there are periods of time in which information

is revealed only by news, whereas when N is arbitrarily large, the economy is always learning

from the trading behavior of sellers in addition to news. In this way, beliefs evolve based on more

information for larger N . In Section V.D, we contrast these findings with the effect of increasing

news quality, φ, which has surprisingly different implications for allocative efficiency.

V. Quantitative results

In this section, we parameterize the model to explore the quantitative significance of our main

results. In addition, we explore comparative statics with respect to news quality, number of shares,

and the frequency of shocks, as well as the model’s predictions for trade volume and market ef-

ficiency. Before doing so, we briefly discuss our choice of parameters, which is summarized in
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Table I.

A. Parameterization

The selection of cash flow parameters depends on the type of asset markets under consideration.

For example, one might expect the severity of the adverse selection problem (i.e., vH − vL) to be

larger for more obscure securities. Thus, we consider two different sets of parameters to represent

two different asset markets.

First, we set N = 1 and choose cash flow parameters consistent with over-the-counter markets

for assets such as MBS or corporate debt by setting vH = 10% and vL = 5% with a holding cost

of two percentage points (kθ = vθ − 0.02). To motivate these parameter values, suppose “type”

corresponds to whether the security will default. Low-type securities eventually default, whereas

high-type securities do not.37 This parameterization is consistent with a 50% recovery rate on

defaulted securities as estimated by Moody’s for Ba to A rated tranches of mortgage-backed CDOs

(Gluck and Remeza (2000)). It is also in line with average recovery rates for defaulted corporate

bonds reported by Acharya, Bharath, and Srinivasan (2003) and Altman et al. (2005).

Next, we let N =∞ and select cash flow parameters consistent with shares in a firm that makes

a new investment of uncertain type. The current operations of the firm generate dividends of 3%.

A “good” investment (θ = H) will increase dividends in perpetuity by 0.5% (vH = 3.5%), whereas

if θ = L, dividends remain constant (vL = 3%). The holding cost is set to 0.5% (kθ = vθ − 0.005).

—Insert Table I here —

Of particular interest is how changes in the demand for future liquidity (measured by λ) and

news quality (measured by φ) affect prices, liquidity, and efficiency. Therefore, for each of the

parameterizations above, we consider two values for both λ and φ. In our base specification, we

set λ = 1
4 , which is consistent with a trader experiencing a shock once every four years. We also

consider the case in which λ = 1, which means that traders have greater demand for future liquidity.

For news quality, we consider φ = 0.2 and φ = 0.5. If we interpret the news process as being the

cash flows (see footnote 23), then µθ = vθ and the two φ values are consistent with cash-flow

volatility of σ = 25% and σ = 10% (respectively) for the N = 1 parameterization. For the N =∞

parameterization, in which the news process is the firm’s realized dividends, these φ-values would
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imply unrealistically low values for dividend volatility (2.5% and 1%, respectively). In this case,

the parameter values for φ can be justified by the fact that firms with a large number of shares

will typically be associated with additional sources of information beyond realized dividends (e.g.,

analyst coverage).

More generally, one may expect the appropriate choice of λ and φ to depend on the type of

asset and characteristics of its participants. For example, hedge funds may be more susceptible to

shocks than large institutional investors; blue-chip stocks should be associated with higher quality

news than an obscure pool of collateral. Nevertheless, for reasons articulated above, we believe the

chosen values for these two parameters are of an appropriate order of magnitude across a variety

of markets and asset classes.

B. Regions of Illiquidity

In Section III, we provide a descriptive characterization of how liquidity varies over time with

the market belief. One way to quantify the amount of liquidity in the market is through the

region boundaries, α and β, which we compute for each parameter configuration. For ease of

interpretation, we convert the boundaries from log-likelihoods to probabilities, denoted a and b,

respectively, and report them in Table II.

—Insert Table II here —

Focusing on the first row of the N = 1 parameterization, the implied default probability at

which the market becomes fully illiquid is 11% (i.e., b = 0.89).38 This order of magnitude is

broadly consistent with (corporate) default rates during financial crises as reported by Jurek and

Stafford (2013). An interesting empirical exercise for future work would be to compare the model-

implied estimates to the ex-post performance of MBS, the market for which collapsed during the

recent financial crisis.

For an increase to λ = 1, the fully illiquid region occurs at a lower implied default probability.

This is consistent with feedback effects demonstrated in Propositions 2 and 4; when resale consid-

erations are more imminent, less uncertainty about fundamentals is needed for liquidity to “dry

up.” For the N = ∞ parametrization, a larger degree of uncertainty can be sustained before the

market becomes illiquid, primarily because the spread between high- and low-quality investments
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is smaller. As a result, an owner of a high-value asset has less to gain by waiting, and buyers worry

less about being stuck with a low-value asset.

C. Illiquidity Discount and Excess Volatility

The results in Section III.B illustrate that even when the market is fully liquid, time variation

in future liquidity leads to an illiquidity discount and excess volatility. To quantify these effects,

we measure the illiquidity discount, denoted by D(z), as the amount, in percentage terms, that the

price deviates from fundamentals in state z ≥ β:

D(z) =
V̄ (z)−B(z)

V̄ (z)
. (9)

Similarly, we measure equilibrium volatility, σe, in percentage terms (i.e., σe = φB′/B) and compare

it to fundamental volatility, σf = φV̄ ′/V̄ . For expositional convenience, we present the illiquidity

discount and excess volatility at z = β, where their values are greatest. The results are given in

Table III.

For our base set of parameters, the illiquidity discount is 3.7% for N = 1 and 1.9% for N =∞.

Illiquidity risk also leads to volatility that is more than double that based solely on fundamentals.

Notice that the comparative statics on D and σe/σf are similar. Intuitively, if the discount is

higher, the cost of getting bad news, and hence the risk due to illiquidity, increases. As λ increases,

so does D; because traders face costly liquidation more frequently, they require a larger discount,

which feeds back into greater illiquidity, and so on (see Section III.C). Higher-quality news “speeds

things up,” which reduces the liquidity premium at β as equilibrium beliefs spend less time in the

fully illiquid region.

—Insert Table III here —

D. Implications for Volume and Efficiency

An integral part of our theory is that the level of trading activity is determined endogenously,

and, further, that trade volume is intimately related to market efficiency. Because it is never

efficient for a share to remain in the possession of a constrained agent, the uniquely efficient trade

pattern is for every share to trade the moment its owner experiences a shock. Of course, we have
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seen that informational frictions cause illiquidity, which creates an inefficiency. We now turn to

investigating how volume and efficiency vary with key parameters of the model.

D.1. Scaled Trade Volume

With regard to trade volume, both N and λ have two effects. First, fixing the equilibrium

structure, a greater number of shares or more frequent trading needs would mechanically produce

higher trade volume. Second, and more interestingly, both N and λ affect the equilibrium structure.

To focus on the latter effects, we calculate the expected number of times that an arbitrary share

of the asset is traded over any length of time, normalized by the (expected) frequency with which

shocks arrive, λ−1, which we refer to as scaled volume. Let νnt denote the counting process, which

keeps track of the number of trades that occur in [0, t] for an arbitrary share n. That is,

dνnt = 1{Ant 6=Ant+}
, where νn0− = 0.

Clearly, the turnover of a share depends on the status of its owner, denoted by i. We let f̄ and ḡ

denote the functions mapping (t, z) to expected scaled trade volume conditional on the share being

owned by a seller (in = 1) and holder (in = 0), respectively. That is, f̄(t, z) ≡ λ−1E[νnt |(Z0, I
n
0 ) =

(z, 1)] and ḡ(t, z) ≡ λ−1E[νnt |(Z0, I
n
0 ) = (z, 0)]. In Appendix C (Proposition C.4), we derive the

system of interdependent PDEs that fully characterize these functions. Using this result, we then

solve the system of PDEs for our parameterizations. In Figure 5, we plot scaled volume over a

unit interval of time beginning with a holder. In this case, the first-best/symmetric information

benchmark level is equal to one for all z. As expected, the model predicts that the information

asymmetry reduces volume and the structure of the equilibrium implies that volume is lowest for

intermediate beliefs and highest in the extremes.

More interestingly, Figure 5(a) illustrates the amplifying feedback effect of resale considerations

on scaled volume. The increase in λ leads to both a decrease in the overall level and a “shift”

rightward. That is, the amplification effect causes scaled volume to decrease dramatically for higher

beliefs (since β increases, see Table II), but perhaps surprisingly, leads to slightly larger volume for

lower beliefs since α also increases. This pattern also obtains for the N = 1 parameterization (not

pictured).
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On the other hand, the effect of news quality differs across the two parameterizations. Higher φ

increases the rate at which the uncertainty about θ is resolved, which tends to increase the overall

level of volume. This in turn has general equilibrium effects: the incentives of the sellers and hence

the boundaries of the fully illiquid region also shift. In both cases, higher φ decreases volume for

higher beliefs (again because β increases), but volume increases for lower beliefs in Figure 5(b)

whereas it actually decreases slightly in Figure 5(c). This discrepancy arises because news quality

has an ambiguous effect on the lower boundary, α. In the N = ∞ parametrization, the increase

in β makes low types more willing to trade, and therefore α and volume increase with φ. In the

N = 1 parameterization, however, the faster resolution of uncertainty makes low types more willing

to wait, and therefore α and volume decrease with φ.

—Insert Figure 5 here —

D.2. Efficiency

If the market is always fully liquid, then the asset is always efficiently allocated and the expected

discounted value derived from a share of the asset is V̄ . Our measure of efficiency compares the

value derived from a share of the asset in equilibrium to this benchmark. Because all buyers earn

zero profit, the discounted expected value of a share is E[Fθ(z)|z] or E[Gθ(z)|z], depending on

whether the current owner is a seller or a holder. We look at the percentage efficiency loss per

share by defining

LF ≡ V̄ (z)− E[Fθ(z)|z]
V̄ (z)

and LG ≡ V̄ (z)− E[Gθ(z)|z]
V̄ (z)

.

Figure 6 shows that both measures of efficiency loss are positive for all z (which follows from

Proposition 3), single peaked with maximal inefficiency occurring in the fully illiquid region, and

tend to zero as z → ±∞.39 Intuitively, when z is in the fully illiquid region, not only are any efficient

trades postponed today, but the likelihood of future periods of illiquidity is also higher. Conversely,

as z → ±∞, the information asymmetry that impedes efficient trading, both now and in the

future, is removed. Except when otherwise noted, efficiency figures use the first parameterization

from Section V.A, with λ = 0.25 and φ = 0.5. Below we discuss how inefficiency varies with the

key parameters.
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–Insert Figure 6 here —

News quality (φ): Because the market is always fully liquid, and hence fully efficient, under

symmetric information, one might think that increasing news quality will bring the market closer

to the efficient benchmark and improve efficiency. As shown for LF in DG12 (i.e., if λ = 0) and

replicated in Figure 7(a) for LG and λ > 0, this is not necessarily the case.40 As φ increases, the

inefficiency decreases for lower states but increases in higher states. Increasing φ generates two

offsetting effects on efficiency. First, beliefs move more quickly through the fully illiquid region,

reducing the amount of time shares are inefficiently allocated. Second, high-type sellers expect good

news to be revealed more quickly and therefore have more incentive to wait; both β and the size

of the fully illiquid region increase. Whether increasing news quality leads to more or less efficient

markets depends on both the initial state and the initial quality.

—Insert Figure 7 here —

Number of shares (N): As we discuss in Section IV, the key difference as N varies pertains to the

information available to uninformed market participants. When N =∞, sellers are always present,

providing an additional channel through which learning can take place. By contrast, when N = 1,

periods exist during which no sellers are present and the market relies solely on news. In line with

the discussion following Proposition 6, Figure 7(b) suggests that the informational externality from

higher N aids efficiency for lower z (for which the market is not fully liquid) but has little impact

for higher beliefs (for which the market is fully liquid).

Note that the efficiency consequences of a greater number of shares and of higher news qual-

ity are different, despite the fact that both generate information for the market. The different

circumstances under which the information is revealed explains the difference in their effects. In

the case of greater N , additional information is revealed only for z ≤ α (i.e., when the market is

functioning poorly), which has a nontrivial level effect for efficiency but an insignificant effect on a

seller’s marginal consideration of whether to sell at z = β, thereby not disturbing the market when

it is already well functioning.41 In the case of higher φ, additional information is revealed in all

states and therefore has first-order consequences on the expected benefit to the seller of waiting for

a higher price. Although improved news quality does increase efficiency when the market is func-

tioning poorly, because it gives the high-type seller increased incentive to delay trade, increasing
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β, it disturbs what would otherwise have been a well-functioning market in these states.

Demand for future liquidity (λ): As Figure 7(c) depicts, inefficiency increases with the demand

for future liquidity. Recall that λ affects neither the efficient value of a share, V̄ , nor the ability of

a symmetrically informed economy to achieve this value. Hence, the result follows from the equi-

librium behavior of the agents in the economy, introducing periods of illiquidity in which shares

remain in the hands of constrained owners. Such periods occur more frequently as λ increases, both

directly decreasing allocative efficiency and depressing asset prices, which feeds back to amplify the

amount of illiquidity, generating even greater inefficiency.

Borrowing costs (c): In each of the figures thus far, kθ = vθ − c, where c = 0.02. That is, the

shock induces an additive holding cost of two percentage points. Let us maintain the additivity

assumption and consider the effect of varying c.42 Two countering forces arise. An increased holding

cost means that sellers receive lower net cash flows while in possession of the asset, hurting their

welfare and reducing efficiency. However, the increased holding cost also implies that the high-type

seller is more willing to sell, decreasing β, which in turn makes the equilibrium more efficient for

high levels of z (Figure 7(d)). These results imply that government policies aimed at “easing” credit

constraints of distressed financial institutions can have detrimental side effects. Indeed, part of the

motivation for Federal Reserve credit easing during the financial crisis was aimed at “preventing a

liquidation of assets at distressed prices to avoid destabilizing affects” (Carlson et al. (2009)). Our

results suggest that mitigating destabilization may come at the cost of slower reallocation.

VI. Discussion of Assumptions

The model entails a number of simplifying assumptions, which are made primarily to facilitate a

tractable analysis and to keep the intuition for the main forces accessible. Below we interpret these

assumptions and discuss the robustness of the predictions to various generalizations and extensions.

Shocks. That shocks are observable (or verifiable; see footnote 7) is an important feature

of both the model and its application. Although this assumption is restrictive, we believe it is
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natural in certain applications. One possible interpretation is that observable shocks correspond

to a marketplace dominated by large institutional traders or banks whose financial constraints

are transparent. Investors must be able to discern between traders with a credible reason for

trading and speculators. For example, in the recent financial crisis, it was not difficult to identify

constrained firms (e.g., Bear Stearns, Lehman Brothers, AIG). A model with unobservable shocks

could correspond to either a marketplace dominated by private firms (e.g., hedge funds) or one in

which the identity of trading partners remains anonymous (e.g., dark pools), where the motivation

for trading is often unclear. If shocks were unobservable, then in favorable market conditions, the

holder of a share of a low-value asset would prefer to sell before being hit by a shock, exacerbating

buyers’ exposure to the lemons problem.

To formally demonstrate the consequences of unobservable shocks, modify the two-period model

(Section I) so that shocks are no longer publicly observed. Consequently, if the asset traded at t = 0,

then at t = 1 the owner privately knows her type-status pair (e.g., high-type seller, low-type holder,

etc.).43 Obviously, because in this case buyers no longer know the owner’s status, the bid price

cannot be conditioned on it, as in Lemma 1.

Next, notice two things. First, a high-type holder has no gains from trade and buyers face

an adverse selection problem, therefore a high-type holder will not trade in equilibrium. Second,

because κ < δ, a low-type holder strictly prefers to accept any bid the high-type seller is willing to

accept. Hence, equilibrium play is determined by the buyers’ belief that the security is high value,

conditional on the owner being either a high-type seller or a low type (holder or seller). Denote this

belief as p̃1. Using p̃1, the equilibrium trading behavior is analogous to that in Lemma 1. If p̃1 > p̄,

then a high-type seller and both low types (holder and seller) trade, meaning that the market is

fully liquid (i.e., all surplus-enhancing trades are realized); if p̃1 < p̄, then only low types trade,

meaning that the market is only partially liquid.

Of course, our interest lies in how the unobservability of shocks affects market liquidity at t = 0.

Because the original owner’s status is common knowledge, if trade does not occur at t = 0, buyers

know the owner is a seller at t = 1, and the market equilibrium at t = 1 is identical to that in

Lemma 1. Hence, the continuation values for the original owner (CL, CH) also remain the same.

What remains is to determine how the unobservability of shocks affects a buyer’s (unconditional)

value for the asset at t = 0, which we denote by Bun. To account for the changes at t = 1 discussed
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above, we replace the q(s, p0) term in equation (3) with

q̃(s, p0) ≡ λp0fH(s)

λp0fH(s) + (1− p0)fL(s)
=

λq(s, p0)

λq(s, p0) + (1− q(s, p0))
. (10)

Noting that q̃ < q when p0 and λ are interior, it is clear that the risk of illiquidity at t = 1 is greater

when the shock is unobservable, which leads to the following result.

PROPOSITION 7: In the two-period model, when the shock is unobservable, a buyer’s (uncondi-

tional) value for the asset at t = 0 is given by

Bun(p0) = V̄ (p0)− (1− δ) ·
(
λp0 Pr

(
q̃(s, p0) < p̄|H

))
,

which is strictly lower than B(p0) for all λ and p0 both in (0, 1).44

Proposition 7 says that the effect of unobservable shocks is much like the effect of an increase in

λ in Proposition 2. Since buyers’ value is lower, the high-type seller’s threshold at t = 0 will increase

while the low type’s threshold remains unchanged, which endogenously generates less liquidity (i.e.,

a lower probability of trade). The moral is that an observable shock provides the owner with a

credible reason to liquidate. Without this credibility, buyers face even more severe exposure to the

lemons problem, which exacerbates the forces studied in this paper.

Finally, we limit attention to shocks that increase the holding cost of the owner. Including

“reverse” shocks—shocks that turn sellers back into holders—would change little qualitatively.

Doing so would simply decrease the gains from trade, because the seller may return to being a

holder if she rejects bids, which would, of course, sometimes happen on the equilibrium path. In

addition, our modeling of the buyer side of the market makes no mention of the possibility that

some buyers may be constrained. Provided sufficiently many unconstrained buyers are present, the

presence of constrained buyers is irrelevant.

Learning. In our model, the asset type is fixed, and a new owner learns the type perfectly upon

purchasing a share. We make these assumptions primarily for tractability. Allowing the asset type

to switch over time would reduce high types’ incentive to delay, increase low types’ incentive to

pool, and change the evolution of market beliefs, but the key forces would persist. In addition,

an analysis similar to ours would apply to a model in which the purchasing buyer obtains some
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noisy, binary signal of asset quality that is subsequently, gradually revealed to the market through

news. The model would become more complicated, though, if asset owners obtain a noisy signal

and subsequently learn additional information from news, because one would need to keep track of

multiple sets of beliefs. In such a model, enough bad news could induce even a “high-initial-signal”

owner to sell at low prices.

Risk Neutrality. One can interpret the assumption that agents are risk neutral either literally or

as an “as if” stand-in for risk-averse traders that have hedged their idiosyncratic risk in this asset

with a portfolio of other holdings. If, instead, agents were averse to the risk imbued by this asset,

there would be two off-setting effects. On the one hand, risk aversion incentivizes sellers to trade

more quickly, shrinking the no-trade region and reducing the effect of information asymmetry. On

the other hand, sufficient good news becomes more valuable as it not only increases the mean of

traders’ expectations, but also reduces the variance, providing more incentive for sellers to delay

trade. Which of these forces dominates, and the implications for the interaction of risk premia and

liquidity, seems an interesting question for subsequent work.

Binary Types. Our results are derived from a setting with binary asset types; yet the key forces

would persist in a more general environment. Regardless of the number of types, trade remains

inefficient, provided holding costs are not overly punitive—higher-type sellers have incentive to wait

for news when beliefs are not favorable—and thus prices remain below fundamentals, and selling

at a low price reveals negative information about θ, which can facilitate future trades.

VII. Conclusion

In this paper, we present a model that features news arrival and idiosyncratic shocks in a mar-

ket with asymmetrically informed traders. The combination of these three features generates time

variation in liquidity in an environment without institutional frictions. We elucidate an important

feedback effect between illiquidity and asset prices that reduced-form models do not capture: en-

dogenous liquidation costs cause the asset to trade at a discount relative to its fundamental value,

which feeds back to amplify illiquidity, which further depresses prices, and so on. These forces also

generate excess volatility, reduced trade volumes (even when normalized to account for trading

needs), and more allocative inefficiency. The presence of other informed traders has informational
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externalities, which can lead to contagious sell-offs. The framework provides a unified setting from

which one can derive implications for asset prices, volatility, illiquidity, trade volume, and efficiency.
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Appendix A. Proofs for Section II

Throughout this appendix we employ the following notation: following an arbitrary public history,45

denoted ht, w
j
t is the offer of an individual buyer j, wt is the bid (i.e., highest offer), w′t is the second-highest

offer (ties inclusive), and ytθ is the probability with which the type-θ seller trades. Finally, pr is the market
belief following rejection at t = 0, but prior to the realization of the signal. The following four observations
will be useful for characterizing behavior in the two-period model.

LEMMA A.1: In any equilibrium and for any public history ht, the seller plays a reservation strategy: the
seller rejects if the bid is below, and accepts if the bid is above, a reservation value rtθ, which is equal to her
continuation value. Further, rtL < rtH , except if pr = 1, in which case r0

L = r0
H = δ.

Proof. If t = 1, the lemma is immediate with r1
L = δκ and r1

H = δ. If t = 0, any equilibrium specifies a
post-rejection, pre-signal-realization belief pr. Since offers are private, pr does not vary if a buyer deviates
to an off-path offer. Hence, the type-θ seller strictly prefers to reject if w0 < Cθ(p

r), strictly prefers to
accept if w0 > Cθ(p

r), and is indifferent if w0 = Cθ(p
r). For the final claim, note that for all pr < 1,

δE[FH(q(s, pr))|H] = CH(pr) > CL(pr) = δE[FL(q(s, pr))|L], since FH ≥ FL are both increasing and
q(s, pr|H) first-order stochastically dominates q(s, pr|L), and that CH(1) = CL(1) = δ.

LEMMA A.2: In any equilibrium and for any public history ht, if the owner is a seller, wt > rtL, and
wt 6= rtH , then w′t = wt.

Proof. Fix an equilibrium candidate and history ht, and without loss of generality, let wjt = wt ≥ w′t.
If wt ∈ (rtL, r

t
H), then ytL = 1 and ytH = 0 (Lemma A.1). If, however, w′t < wt, then buyer j can profitably

deviate by lowering his offer to w ∈ (max{rtL, w′t}, wt) and pay a lower price without changing the probability
with which he trades with either type. An analogous argument applies if wt > rtH .

LEMMA A.3: In any equilibrium, all buyers make zero (expected) profit.

Proof. For t = 0, 1, a buyer earns zero by not trading, which he can guarantee himself by offering wjt = 0.
If at time t = 1 the owner is a holder, the result is immediate since a seller’s willingness to accept the bid
implies that the common value for the security is no greater than the bid.

Now consider an arbitrary history ht in which the owner is a seller. Suppose that buyer j is making
positive profits in equilibrium by offering wjt = wt < rtH . Letting ρ be the value a buyer gets from acquiring
the low-type security at time t in this equilibrium, this implies that ρ − wt > 0, and the total payoff to
buyers is no greater than (1 − pt)(ρ − wt). Hence, there must be at least one buyer k whose payoff is less
than 1

2 (1− pt)(ρ−wt). For ε > 0 small enough, by deviating to wkt = wt + ε, buyer k attracts the low type
w.p.1 so improves his payoff to (1− pt)(ρ− wt − ε), contradicting the equilibrium. An analogous argument
demonstrates that no buyer can earn positive profits in equilibrium with a bid of wjt ≥ rtH .

LEMMA A.4: Let x0 ≡ B(p0) and x1 ≡ V̄ (p1). Fix any equilibrium and public history ht. If the owner at
time t is a seller, then at least one of the following holds: (i) wt ≤ rtL and ytL = ytH = 0; (ii) wt = κ; or (iii)
wt = xt and ytL = ytH = 1.

Proof. First, suppose rtL < rtH . Lemma A.1 rules out that both ytH > 0 and ytL < 1. Hence, three
possibilities remain.

(1) ytL = ytH = 0, which implies wt ≤ rtL by Lemma A.1, and therefore (i).
(2) ytL > 0, ytH = 0, which, noting that in either period a buyer grosses κ by trading only with the low

type in equilibrium, implies (ii) by zero-profit (Lemma A.3).
(3) ytL = 1, ytH > 0. Note that total buyer profits are increasing in ytH . Suppose wt > xt; total buyer

profits are no greater than xt − wt < 0, violating zero-profit. Suppose instead that wt < xt; by
zero-profit, ytH ∈ (0, 1) and xt − wt > 0. But then for ε > 0 small enough, a buyer k can deviate to
wkt = wt + ε, attracting both types w.p.1 and hence a payoff of xt − wt − ε > 0. Therefore, wt = xt,
and zero-profit implies ytL = ytH = 1, and thus (iii).
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Next, suppose that rtL = rtH , meaning that t = 0, pr = 1, and rtL = rtH = δ (Lemma A.1). For pr = 1, it
must be the case that y0

L = 1 and either y0
H = 1 (rejection is off-path) or y0

H < 1 (rejection is on-path). In
the former, zero-profit implies w0 = x0 and hence (iii). In the latter, the same argument given for (3) above
shows that this is inconsistent with zero-profit.

Proof of Lemma 1. Consider first the case in which the owner at t = 1 is a seller. Recall that the seller
reservation values are r1

L = δκ < r1
H = δ (Lemma A.1).

• Suppose p1 < p̄. The optimality of the proposed seller play follows from Lemma A.1. Further, no
buyer j can profitably deviate. Deviating to wj1 < κ will be ignored because w′1 = κ (Lemma A.2).

Deviating to wj1 ∈ (κ, δ) attracts only the low type (i.e., y1
L = 1, y1

H = 0) and therefore earns negative

profits. Deviating to wj1 ≥ δ leads to y1
L = 1, y1

H ≤ 1, and hence a payoff no greater than V̄ (p1)−δ < 0
since p1 < p̄. For the uniqueness claim, note that since κ ∈ (r1

L, r
1
H), Lemma A.1 implies that the

equilibrium outcome just verified is the unique one in which w1 = κ. We need to rule out (i) and
(iii) of Lemma A.4. If (i), buyer j can deviate to wj1 ∈ (δκ, κ), which will attract the low type w.p.1
and, therefore, positive profits. Finally, (iii) is inconsistent with Lemma A.1, since p1 < p̄ implies
V̄ (p1) < δ = r1

H .
• Suppose p1 > p̄. The optimality of the proposed seller play follows from Lemma A.1. Further, no

buyer j can profitably deviate. Deviating to wj1 < V̄ (p1) will be ignored because w′1 = V̄ (p1) (Lemma

A.2). Deviating to wj1 > V̄ (p1) leads to y1
L = y1

H = 1, and hence a payoff of V̄ (p1)− wj1 < 0. For the
uniqueness claim, note that since V̄ (p1) > r1

H > r1
L, Lemma A.1 implies that the equilibrium outcome

just verified is the unique one in which w1 = V̄ (p1). We need to rule out (i) and (ii) of Lemma A.4. In
either case, a buyer j can deviate to wj1 ∈ (δ, V̄ (p1)), which will attract both types w.p.1 and therefore
earns positive profits.

Finally, suppose the owner at t = 1 is a holder, which can only happen if the security traded t = 0. Hence, by
Lemma A.1, the post-acceptance, pre-signal belief is no greater than p0 and therefore less than one. Because
the signal is never perfectly informative, it also holds that p1 < 1. Further, the low- and high-type values for
retaining the security are κ and one, respectively. Hence, any w1 ≥ 1 earns no more than V̄ (p1)− 1 < 0, so
cannot be the equilibrium bid. Any w1 ∈ (κ, 1) attracts only the low type and earns κ− w1 < 0, so cannot
be the equilibrium bid. Hence, w1 ≤ κ, which both types weakly prefer to reject.

Proof of Lemma 2. Note first that both CH(p) and B(p) are continuous with B(0) = κ < CH(0) = δ2

and CH(1) = δ < B(1) = 1. Existence of b such that CH(b) = B(b) follows from the intermediate value
theorem.

For uniqueness of b, define F̄ (p) = E [Fθ(q(s, p))] and note that (i) B is a convex combination of V̄ and
F̄ , (ii) F̄ < V̄ on (0, 1), and (iii) letting p be implicitly defined as V̄ (p) = δ2, we have CH(p) ≥ δ2 > V̄ (p)
for all p < p. To prove uniqueness of b and the claimed rankings of B and CH , it is therefore sufficient to

show C ′H(p) < V̄ ′(p) and C ′H(p) < F̄ (p) for all p > p, since this implies that B must be strictly steeper at
any point of intersection and thus can intersect CH at most once.

To demonstrate C ′H(p) < V̄ ′(p) for p > p, let R(s) = fL(s)
fH(s) denote the likelihood ratio of the signal s,

and let r̄(p) be the likelihood ratio such that a Bayesian updates a prior of p to a posterior of p̄ based on a
signal realization with likelihood ratio r̄(p) (i.e., p

p+(1−p)r̄(p) = p̄). Note that both r̄(.) and R(.) are strictly

monotone and thus we can define s̄(p) = R−1(r̄(p)) = − 1
2σ

2 log(r̄(p))—the level of the signal above which
the posterior will be above p̄. With this notation, we can write

CH(p) = δ

(
κ+

∫ s̄(p)

−∞
(δ − κ)fH(s)ds+ (1− κ)

∫ ∞
s̄(p)

p

p+ (1− p)R(s)
fH(s)ds

)
,

and therefore

1

δ(1− κ)
C ′H(p) =

∫ ∞
s̄(p)

1

(p+ (1− p)R(s))2
fL(s)ds =

∫ r̄(p)

0

1

(p+ (1− p)r)2

(
σ2

2r
fL(S(r))

)
︸ ︷︷ ︸

qL(r)

dr, (A1)
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where the second equality uses a change of variables: r = R(s), dr = −2r
σ2 ds. Integrating by parts with

u = 1
(p+(1−p)r)2 and dv = qL(r)dr, we get

1

δ(1− κ)
C ′H(p) = QL(r)

1

(p+ (1− p)r)2

∣∣∣∣r̄(p)
0

− 2

σ2

∫ r̄(p)

0

QL(r)
r(1− p)

(p+ (1− p)r)3
dr

≤
(

1− p̄2QL(r̄(p))

p2

)
−QL(r̄(p))

2

σ2

∫ r̄(p)

0

r(1− p)
(p+ (1− p)r)3

dr

=
1−QL(r̄(p))

p2
.

For p > p̄, note that 1−QL(s̄(p)) = Pr(s > s̄(p)|θ = L) < p, which implies that C ′H(p) ≤ δ(1− κ) 1
p < 1− κ

since p̄ > δ. For p < p̄, note that QL(s̄(p)) ≥ 1
2 , so we get that C ′H(p) ≤ δ(1−κ)

2p2 < 1 − κ, where the

second inequality employs the parametric assumption δ
2 < p2 (or equivalently, κ <

√
2
δ δ

2−1√
2
δ−1

). Noting that

V̄ ′(p) = 1− κ for all p, we have V̄ ′ > C ′H for p > p.

To demonstrate F̄ ′ > C ′H for p > p, note that F̄ ′ − C ′H = FH − FL + (p− δ)F ′H + (1− p)F ′L, which by
inspection is strictly positive for all p > δ. For p ∈ [p, δ], we have that

F̄ ′(p)− C ′H(p) > (1− κ)

∫ r̄(p)

0

(
p

p+ (1− p)r
(qH(r)− qL(r)) +

(1− p)qL(r)− (δ − p)qH(r)

(p+ (1− p)r)2

)
dr

> (1− κ)

∫ r̄(p)

0

p2 − r(1− p)2

(p+ (1− p)r)2

(
qH(r)− qL(r)

)
dr.

We claim that p2 − r(1 − p)2 is strictly positive for p ∈ [p, p̄] and r ∈ [0, r̄(p)]. To see this, note first that

p2 − r(1− p)2 is increasing in p and decreasing in r and therefore

p2 − r(1− p)2 > p2 − r̄(p)(1− p)2 = p2 −
p

p̄
(1− p̄)(1− p) > 0,

where the last inequality uses the parametric restriction κ <

√
2
δ δ

2−1√
2
δ−1

.

Proof of Lemma 3. Note first that CL(p) = δE [FL(q(s, p))|θ = L] is continuous and strictly increasing
in p, with CL(0) = δκ < κ < CL(1) = δ. Existence of a such that CL(a) = κ follows from the intermediate
value theorem. The remaining claims follow from the monotonicity and boundary values of CL.

Proof of Proposition 1. For each of the four cases, we rule out outcomes that do not satisfy the claims,
and then demonstrate the existence of an equilibrium that does. For any p0, note that pr must be weakly
greater than p0 by Lemma A.1 (if rejection at t = 0 is on-path) and belief monotonicity (if rejection at t = 0
is off-path).

Let p0 > max{a, b}. From Lemma A.4, we need to rule out (i) and (ii). If (i) then, by equilibrium belief
consistency, pr = p0 and a buyer j can deviate to wj0 ∈ (CH(p0), B(p0)) and attract both types w.p.1, and
can therefore earn positive profits. If (ii), then pr ≥ p0 > a implies that CL(pr) ≥ CH(p0) > CL(a) = κ,
so w0 = κ is rejected by both types w.p.1 and pr = p0. Hence, the deviation to wj0 ∈ (CH(p0), B(p0)) is
again profitable. The only reamining possibility is (iii), as claimed in the proposition. For an equilibrium
consistent with the claims, let pr = p0, and note that B(p0) > CH(p0) > CL(p0). Hence, both types prefer
to accept the bid of B(p0), which also earns any buyer zero profit. A buyer’s unilateral deviation to a lower
offer will be ignored since w′0 = B(p0) (Lemma A.2), and deviating to a higher offer w > B(p0) will attract
both types w.p.1 and therefore earn B(p0)− w < 0.

Let p0 < min{a, b}. From Lemma A.4, we need to rule out (i) and (iii). If (i), then pr = p0 and a buyer
j can deviate to wj0 ∈ (CL(p0), κ), which attracts the low type w.p.1 and therefore earns positive profits.
Next, p0 ≤ pr and p0 < b imply CH(pr) ≥ CH(p0) > B(p0), meaning that (iii) is inconsistent with Lemma
A.1. Hence, the only possibility is (ii). Given w0 = κ and the specified y0

L, equilibrium belief consistency
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requires that pr = a. By definition of a, this implies the low type is indifferent (CL(a) = κ = w0) and hence
willing to mix. The high type strictly prefers to reject since κ < CH(a). A buyer’s unilateral deviation to
a lower offer will be rejected by both types w.p.1, leaving his payoff unchanged. Deviating to any offer in
(κ,CH(a)) will attract only the low type, and so earn negative profits, whereas deviating to an even higher
offer will earn no more than B(p0)− CH(a) < 0.

Let a < b and p0 ∈ (a, b). Ruling out (iii) of Lemma A.4 is done by the same argument given for
p0 < min{a, b}. Next, by pr ≥ p0 > a, we have CL(pr) ≥ CH(p0) > CL(a) = κ. Hence, in this case, (ii) of
Lemma A.4 implies (i). Finally, we verify the proposed equilibrium. Given the proposed play, equilibrium
belief consistency requires that pr = p0. That both seller types are willing to reject the bid w0 ≤ CL(p0)
is immediate. A buyer’s unilateral deviation to a lower offer will continue to be rejected. Deviating to any
offer in (CL(p0), CH(p0)) will attract only the low type, so earn κ − CL(p0) < 0, whereas deviating to an
even higher offer will earn no more than B(p0)− CH(p0) < 0.

Let b < a. First, let c solve CH(a) = B(c), and p0 ∈ (c, a). From Lemma A.4, we need to rule out (i) and
(ii). If (i), then pr = p0 and a buyer j can deviate to wj0 ∈ (CH(p0), B(p0)) and attract both types w.p.1,
therefore earning positive profits. If (ii) and pr > a, then y0

L = y0
H = 0. Equilibrium belief consistency

requires pr = p0 < a, contradicting the supposition that pr > a. If (ii) and pr ≤ a, then, because p0 ∈ (c, a),
we have CH(pr) ≤ CH(a) < B(p0). But then a buyer j can deviate to wj0 ∈ (CH(pr), B(p0)) and attract
both types w.p.1 and therefore earn positive profit. Hence, the only possibility is (iii), as claimed in the
proposition. Verifying this equilibrium outcome is done by the same argument given for p0 > max{a, b}.
Now let p0 ∈ (b, c). We need to rule out (i) of Lemma A.4. If (i), then pr = p0 and a buyer j can deviate to
wj0 ∈ (CL(p0), κ), which attracts the low type w.p.1 and therefore earns positive profits. Verifying the fully
liquid and partially liquid equilibrium outcomes follows the same arguments given for the p0 > max{a, b}
and p0 < min{a, b} cases, respectively.

Proof of Proposition 2. Consider any λ2 > λ1 ≥ 0. Let Bi denote the buyers’ value given the probability
of the shock is λi. Similarly let ai, bi denote the respective thresholds (likewise ci if bi < ai).

For (i), that B1 > B2 follows from equation (3) and by noting that the terms on the RHS (save
λ) are independent of λ and strictly positive for any p0 ∈ (0, 1). For (ii), suppose that b2 ≤ b1, then
B2(b2) = CH(b2) ≥ B1(b2) (by Lemma 2), contradicting (i). That a remains constant is immediate. For
(iii), note that from (ii) we have a1 = a2, and thus we drop the subscript. Generically, there are three cases
to consider:

Case 1: a < b1 < b2. The probability of trade is unchanged for p0 < b1 and p0 > b2. For p0 ∈ (b1, b2),
the probability of trade drops from one to zero.

Case 2: b1 < a < b2. The probability of trade is unchanged for p0 < b1 and p0 > b2. For p0 ∈ (a, b2), the
probability of trade drops from one to zero. For p0 ∈ (b1, a), the unique equilibrium under λ2 is the partially
liquid one, which involves weakly lower probability of trade than any equilibrium for these priors under λ1.

Case 3: b1 < b2 < a. The probability of trade is unchanged for p0 < b1 and p0 > c2. For the remaining
states, equilibrium multiplicity complicates the comparison. For any p0 ∈ (b1, c1), under λ1 there are both
partially liquid and fully liquid equilibria, whereas under λ2 either the equilibrium is uniquely the partially
liquid one or the equilibrium set is identical to that under λ1. For any p0 ∈ (c1, c2), under λ1 the unique
equilibrium is the fully liquid one, whereas under λ2 either the equilibria is uniquely the partially-liquid one
or there is both the partially liquid and fully liquid equilibria. If one compares the respective equilibria with
the maximum or minimum probability of trade for each p0 across the two λ values, the proposition holds.
Further, if c1 < b2, then for p0 ∈ (c1, b2) the equilibrium is unique for both λ values, being fully liquid under
λ1 but only partially liquid under λ2.

Proof of Proposition 7. It is straightforward to adapt Lemma A.3 to show that buyers at t = 1 make
zero expected profit. Hence, any buyer’s unconditional value for the security at t = 0 equals the expected
discounted realized stream of cash flows. To establish the claimed form of Bun, it is sufficient to demonstrate
the following: in equilibrium, for generic p̃1, the security is efficiently allocated at t = 2, unless θ = H, the
t = 1 owner is constrained, and p̃1 < p̄. The logic for the claim is analogous to that of Lemma 1. Note that
the first part of Lemma A.1 now applies to all owners, with the continuation/reservation values remaining δ
and δκ for the constrained high and low types, respectively, and being one and κ for the unconstrained high
and low types, respectively.
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First, if p̃1 < p̄, then w1 = κ, which the high-type owner rejects w.p.1, the low-type constrained owner
accepts w.p.1, and the low-type unconstrained owner accepts with any probability in [0, 1]. The optimality
of the owner decisions is immediate given the type-specific continuation values. Further, no buyer j can
profitably deviate. Deviating to wj1 < κ will be ignored since at least one other buyer must be offering κ

in the equilibrium (by an argument analogous to Lemma A.2). Deviating to wj1 ∈ (κ, δ) attracts only the

low type and therefore negative profits. Deviating to wj1 ∈ [δ, 1), at best, attracts all owners except the
high-type unconstrained owner, so leads to a payoff no greater than V̄ (p̃1)− δ < 0 since p̃1 < p̄. Deviating
to wj1 ≥ 1, at best, attracts all owners, so leads to a payoff no greater than V̄ (p1) − 1 ≤ 0 for any p1.
Second, suppose that p̃1 > p̄. Then w1 = V̄ (p̃1), which the high-type unconstrained owner rejects w.p.1, and
all other owners accept w.p.1. The optimality of the owner decisions is immediate given the type-specific
continuation values. Further, no buyer j can profitably deviate. Deviating to wj1 < V̄ (p̃1) will be ignored.

Deviating to wj1 ∈ (V̄ (p̃1), 1) attracts all owners except the high-type unconstrained owner, so leads to a

payoff of V̄ (p̃1) − wj1 < 0. Deviating to wj1 ≥ 1 leads to a payoff no greater than V̄ (p1) − 1 ≤ 0 for any p1.
Finally, in both cases, uniqueness is established by showing that every other candidate equilibrium bid leads
to a profitable deviation for a buyer, using arguments similar to those in the proofs of Lemmas A.4 and 1,
which we omit for brevity.

What remains is to demonstrate that Bun(p0) < B(p0) for all λ and p0 both in (0, 1). Using (3),

B(p0)−Bun(p0) = (1− δ)λp0

(
Pr(q̃(s, p0) < p̄|θ = H)− Pr(q(s, p0) < p̄|θ = H)

)
.

Given (1− δ)λp0 > 0, we need that Pr(q̃(s, p0) < p̄|θ = H) > Pr(q(s, p0) < p̄|θ = H). But this follows from
q̃(s, p0) < q(s, p0) for all s and p0 ∈ (0, 1), given λ ∈ (0, 1)—see (10).

Appendix B. Characterization of Equilibrium System

In this appendix we present the system that characterizes an equilibrium of the form ΞN , for arbi-
trary N ∈ {1, 2, . . . ,∞}, on which Theorem 3 relies. The equations govern the necessary optimality and
interdependency properties of the equilibrium value functions of sellers, holders, and buyers.

The Seller Value Function

For any N , fix a candidate ΞN (α, β,B) such that B is differentiable for z ≥ β.46 Due to the stationary
structure of the candidate equilibrium, the state z is sufficient to compute the seller’s payoff. Therefore,
without loss, fix t = 0 and let T (β) ≡ inf{s ≥ 0 : Zs ≥ β}. Note that T (β) is the strategy prescribed by
ΞN for the high type and, because she must be indifferent regarding trading when z = α, this strategy must
yield the low type her ΞN -equilibrium payoff. Therefore, for each θ, the equilibrium value function must be
consistent with this strategy:

Fθ(z) = Eθz

[∫ T (β)

0

e−rtkθdt+ e−rT (β)B(β)

]
, (B1)

where Eθz is the expectation over the process Z under the probability law starting at z and conditional on θ
(Qθz). For z ∈ (α, β), the seller waits and Z evolves according to news. Therefore,

Fθ(z) = kθdt+ e−rdtEθ
[
Fθ(z + dẐ)

]
. (B2)

Applying Ito’s lemma to Fθ, using the law of motion of Ẑ, and taking the expectation conditional on θ, (B2)
implies a differential equation that Fθ must satisfy for all z ∈ (α, β). In particular, for a high-type seller

rFH(z) = kH +
φ2

2
(F ′′H(z) + F ′H(z)) (B3)
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and for a low-type seller

rFL(z) = kL +
φ2

2
(F ′′L(z)− F ′L(z)). (B4)

The equilibrium specifies that for all z ≥ β, both types of sellers trade immediately at B(z). Therefore,

FH(z) = FL(z) = B(z), ∀ z ≥ β. (B5)

For all states (z,~i), z ≤ α, low-type sellers mix, and the equilibrium belief jumps instantaneously to α
conditional on no trade.47 Therefore,

FH(z) = FH(α), FL(z) = FL(α), ∀ z ≤ α. (B6)

Six boundary conditions help pin down the seller’s equilibrium value function in the interior of the fully illiquid
region. Four of these are physical conditions that must be satisfied for the equilibrium value functions to be
consistent with (B1). The value matching conditions are straightforward:

FL(β−) = B(β) (B7)

FH(β−) = B(β), (B8)

where g(x−) and g(x+) are used to denote the left and right limits of the function g at x. For a high type,
the belief process reflects at z = α, and therefore the value function must satisfy

F ′H(α+) = 0 (B9)

(see Harrison (1985, §5)). According to ΞN , the low types mix at the lower boundary such that Z is killed
at the lower boundary at a rate of κ = 1, implying that FL must satisfy the Robin boundary condition

F ′L(α+) = FL(α)− VL (B10)

(see Harrison (2013, §9)).48 The remaining conditions are equilibrium conditions required to ensure that
both Owner Optimality and No Deals hold:

F ′L(α+) = 0 (B11)

F ′H(β−) = B′(β). (B12)

The equilibrium argument for (B11) is as follows. According to ΞN , a low type mixes between accepting
VL at α and rejecting. Therefore, she must be indifferent between these two actions. The first implies a
payoff at α of FL(α) = VL. Using the stopping rule T (β) (i.e., always rejecting at α) implies that F ′L(α) = 0
(since Z reflects conditional on rejection). To be consistent with indifference, both must hold. Note that in
conjunction with (B10), any two of these conditions imply the third.

To see why (B12) must hold, suppose that F ′H(β−) < B′(β) and consider the following deviation: reject
at z = β and continue to reject until z = β + ε for some arbitrarily small ε > 0. Instead of accepting
B(β), the high type attains a convex combination of B(β+ ε) and FH(β− ε), which lies strictly above B(β),
implying the deviation is profitable. On the other hand, if F ′H(β−) > B′(β), then FH(β− ε) < B(β− ε), the
high type would prefer to accept sooner, and buyers will have a profitable deviation, violating No Deals.49

It remains to determine the buyer value function, B, which in turn requires deriving a holder’s value for
a share of the asset.

The Holder Value Function for Finite N

We proceed by constructing a holder’s value function based on the structure of ΞN . A holder’s value
function depends only on z and max(~i) ∈ {0, 1}. Define Gθ(z,max(~i)) to be the equilibrium payoff of a
type-θ holder given belief z.

Consider first Gθ(z, 0). The market belief, Z, evolves based solely on the realization of news, and the
holder waits until either she is shocked and becomes a seller, or another owner is shocked and her value

48



function becomes Gθ(·, 1):

Gθ(z, 0) = vθdt+ λdtFθ(z) + (N − 1)λdtGθ(z, 1) + (1−Nλdt)e−rdtEθ
[
Gθ(z + dẐt, 0)

]
. (B13)

As (B2) does for the seller, (B13) implies a differential equation that Gθ(·, 0) must satisfy for all z. In
particular, for a high-type and low-type holder,

rGH(z, 0) = vH + λ (FH(z) +N [GH(z, 1)−GH(z, 0)]−GH(z, 1)) +
φ2

2

(
G′H(z, 0) +G′′H(z, 0)) (B14)

rGL(z, 0) = vL + λ (FL(z) +N [GL(z, 1)−GL(z, 0)]−GL(z, 1))− φ2

2

(
G′L(z, 0)−G′′L(z, 0)). (B15)

As z → ±∞, the belief becomes degenerate, and the effect of news on equilibrium beliefs goes to zero. A
holder waits for the next shock to come. Therefore,

lim
z→∞

Gθ(z, 0) =
rVθ + λ limz→∞ Fθ(z) + (N − 1)λ limz→∞Gθ(z, 1)

r +Nλ
θ ∈ {L,H}, (B16)

lim
z→−∞

Gθ(z, 0) =
rVθ + λ limz→−∞ Fθ(z) + (N − 1)λ limz→−∞Gθ(z, 1)

r +Nλ
θ ∈ {L,H}. (B17)

REMARK 2: When N = 1, B14 to B17 simplify, and all Gθ(·, 1) terms drop out. In this case, the entire
system has no dependence on Gθ(·, 1). With only one share, there is never a history in which both a holder
and a seller exist simultaneously. Thus, the analysis of Gθ(·, 1) is not relevant for the N = 1 case, and hence
notation simplifies to Gθ(·) = Gθ(·, 0) in Section III.

Now considerGθ(z, 1). The market belief, Z, evolves based on the realization of both news and the trading

behavior of the sellers. We first state the characterization and then explain. Let qL(z|α) ≡ p(α)−p(z)
p(α)(1−p(z)) . Then

GL(z, 1) =


qL(z|α)VL + (1− qL(z|α))GL(α, 1) for z < α
1
r

(
vL + λ (FL(z)−GL(z, 1))− φ2

2

(
G′L(z, 1)−G′′L(z, 1))

)
for z ∈ [α, β)

GL(z, 0) for z ≥ β
(B18)

GH(z, 1) =


GH(α, 1) for z < α
1
r

(
vH + λ (FH(z)−GH(z, 1)) + φ2

2

(
G′H(z, 1) +G′′H(z, 1))

)
for z ∈ [α, β)

GH(z, 0) for z ≥ β.
(B19)

If trade occurs when z < α, it publicly reveals that θ = L and leads to a common value of VL for all
owners (see Lemma C.2). Conditional on θ = L, this occurs with probability qL(z|α). If no sellers sell, then
z jumps to α yielding Gθ(α, 1).

For z > α, beliefs evolve based only on news, so the equations are analogous to those derived previously.
Note that for z ≥ β, all sellers sell immediately, meaning that sellers are “present” for an arbitrarily short
amount of time. Further, there is no information content gleaned from a sale. Thus, Gθ(z, 1) = Gθ(z, 0),
which implies the following two value matching conditions:

GH(β−, 1) = GH(β, 0) (B20)

GL(β−, 1) = GL(β, 0). (B21)

The behavior of Z at α requires that

G′H(α+, 1) = 0 (B22)

G′L(α+, 1) = GL(α, 1)− VL. (B23)

Similar to (B9), (B22) is due to the reflecting boundary of Z (for high-type owners) when there is at
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least one seller present. Similar to (B10), (B23) is the Robin condition, which must be satisfied because at α,
for a low-type holder when sellers are present, the process Z is either reflected (if the sellers reject, yielding
the holder GL(α, 1)) or killed (if the sellers accept, yielding the holder GL(−∞, 0) = VL).

The Holder Value Function for Countably Infinite N

As N → ∞, any smooth solution to (B14) and (B15) requires that |Gθ(z, 1) − Gθ(z, 0)| → 0 for all z.
In the limit (N =∞), beliefs always account for the presence of sellers (see Section IV). Thus, we no longer
need to distinguish the two cases and simply let G∞θ be the type-θ holder’s value function, which is given by

G∞L (z) =

{
qL(z|α)VL + (1− qL(z|α))G∞L (α) for z < α,
1
r

(
vL + λ (FL(z)−G∞L (z))− φ2

2

(
G∞′L (z)−G∞′′L (z))

)
for z ≥ α, (B24)

G∞H (z) =

{
G∞H (α) for z < α,
1
r

(
vH + λ (FH(z)−G∞H (z)) + φ2

2

(
G∞′H (z) +G∞′′H (z))

)
for z ≥ α. (B25)

This form for G∞ comes from the fact that above α, the belief evolves solely based on news and a holder
is simply waiting to get shocked, but once α is reached the behavior of the sellers in the market affects the
belief just as described immediately above. Finally, the boundary conditions, which follow from arguments
similar to those given previously, are

lim
z→∞

G∞θ (z) =
rVθ + λ limz→∞ Fθ(z)

r + λ
for θ ∈ {L,H}, (B26)

G∞′L (α+) = GL(α, 1)− VL, (B27)

G∞′H (α+) = 0. (B28)

The Buyer Value Function

Finally, we derive the buyer value function. After purchasing a share of the asset, a buyer becomes a
holder and therefore a buyer’s (unconditional) value for a share is the expected holder value. For finite N ,
this will depend on whether there are sellers present after the share is purchased. Because trade occurs
at a price of B only when z ≥ β, this dependance has no implications for on-path equilibrium play (as
Gθ(z, 1) = Gθ(z, 0) for all such z). Nevertheless, this dependance is important for checking whether profitable
off-path deviations exist. Define

B(z) ≡
{

E[Gθ(z, 1{N>1})|z] for N <∞
E[G∞θ (z)|z] for N =∞.

(B29)

In Proposition 6 we establish that E[Gθ(z, 1)|z] ≥ E[Gθ(z, 0)|z] when 1 < N < ∞, which ensures that to
check whether a buyer has a profitable deviation it is unnecessary to distinguish whether sellers are present
following such a deviation (i.e., demonstrating No Deals using B as defined by (B29) is sufficient). From
(B29) we see that B is differentiable above β (since Gθ is), as we assume at the outset. In addition, for any
finite N , we have that

lim
z→∞

B(z) =
rVH + λ limz→∞ FH(z) + (N − 1)λ limz→∞GH(z, 1)

r +Nλ
= VH , (B30)

where the first equality is implied by (B16) and (B19), and the second by (B5) and B bounded. Similarly,

lim
z→−∞

B(z) =
rVL + λ limz→−∞ FL(z) + (N − 1)λ limz→−∞GL(z, 1)

r +Nλ
= VL. (B31)

Analogous arguments establish these same boundary conditions when N =∞.
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Summary and Restatement of Characterization Results

Collecting the relevant equations for each case, define the system of equations SN as follows:

SN ≡

 (B3) to (B12), (B14) to (B17), (B29) for N = 1
(B3) to (B12), (B14) to (B23), (B29) for 1 < N <∞
(B3) to B12), (B24) to (B28), (B29) for N =∞.

(B32)

For convenience, we restate the theorems from Sections III and IV.

Restatement of Theorem 3: For arbitrary N ∈ {1, 2, . . . ,∞}, an equilibrium of the form ΞN (α, β,B) is
characterized by the system of equations SN defined in (B32). That is, a solution to the equations is both
necessary and sufficient for an equilibrium of this form.

Restatement of Theorem 1: There exists an (α∗, β∗, B∗) such that Ξ1(α∗, β∗, B∗) is an equilibrium. Given
Theorem 3, this is equivalent to: a solution to S1 exits.

The proof of these two theorems can be found in the Internet Appendix. The proofs of all other results
from Sections III and IV are found in Appendix C.

Appendix C. Remaining Proofs

We first record an intuitive lemma showing that, due to the transversality condition on the bid process,
the expected utility of agents in the economy derives only from the expected net cash flows from the asset.

LEMMA C.1: Fix any equilibrium, and define Πn(Ft0) to be the Ft0-expected utility of the current owner of
share n, Ant0 , starting from time t0. In any equilibrium,

Πn(Ft0) = E
[∫ ∞

t0

e−r(t−t0)(vθ + Int (kθ − vθ))dt|Ft0
]
.

Proof. Fix any equilibrium. Consider arbitrary share n and public history Ft0 and let t1, t2, t3, . . . be the
(random) times that the share trades for the the first, second, third, etc., times after time t0 (with tj+1 =∞
if the asset does not trade more than j times). By Zero Profit, for any j ≥ 1,

Wtj = E

[∫ tj+1

tj

e−r(t−tj)
(
vθ + Int (kθ − vθ)

)
dt+ e−r(tj+1−tj)Wtj+1

∣∣Ftj
]
.

Substituting in the analogous expressions forWtj+1
, Wtj+2

, etc., and applying the law of iterated expectations,
we get that for arbitrary integer κ,

Wtj = E

[∫ tj+κ

tj

e−r(t−tj)
(
vθ + Int (kθ − vθ)

)
dt
∣∣Ftj

]
+ E

[
e−r(tj+κ−tj)Wtj+κ

∣∣Ftj] . (C1)

Because any pair of trades must be separated by a shock arrival, as κ → ∞, (tj+κ − tj)
a.s.→ ∞. Therefore,

by the transversality condition on W , the last term in (C1) limits to zero, and, setting j = 1, we have

Wt1 = E
[∫ ∞

t1

e−r(t−t1)
(
vθ + Int (kθ − vθ)

)
dt
∣∣Ft1] . (C2)

Next, by definition of t1, the Ft0-expected utility of Ant0 is

Πn(Ft0) = E
[∫ t1

t0

e−r(t−t0)
(
vθ + Int (kθ − vθ)

)
dt+ e−r(t1−t0)Wt1 |Ft0

]
. (C3)

Putting (C2) and (C3) together establishes the result.
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Proof of Theorem 2. Let t0 = inf{t ≥ 0 : It = 0}. Because λ = 0, a holder never transitions to a seller,
meaning that the asset is held in perpetuity by a holder after t0. Hence, Gθ(z) =

∫∞
0
e−rtvθdt = vθ

r = Vθ
and B(z) = E[Gθ(z)|z] = V̄ (z), for all z (from (B29)). If A0 is a holder, then t0 = 0 and the model is trivial.
Finally, if A0 is a seller, then B = V̄ implies that the model is identical to that of DG12, and the result
follows from Lemma 3.1 and Theorems 3.1 and 5.1 found therein.

Proof of Proposition 3. That B takes the functional form given in (8) is shown in Appendix II. For the
first claim, using equation (B29), Lemma C.1, and the stationary structure of Ξ, we have

B(z) = E[Gθ(z)|z] = Π1(z, 0) = E
[∫ ∞

0

e−rt(vθ + Int (kθ − vθ))dt
∣∣(Z0, I0) = (z, 0)

]
.

Because kθ < vθ, to prove that B(z) < V̄ (z), it is sufficient to argue that

E

[∫ ∞
0

e−rtItdt|(Z0, I0) = (z, 0)

]
> 0.

But this is nearly immediate from the structure of the equilibrium. Let t1 be the arrival of the first shock,
and t2 ≥ t1 be the time of the first sale thereafter. Hence, if Zt1 ∈ (α, β), then Prob(t2 > t1) = 1. Finally,
because the shock arrives in finite time w.p.1. and because Z follows a diffusion while I = 0, there is positive
probability that Zt1 ∈ (α, β), giving

0 < E

[∫ t2

t1
e−rtdt|(Z0, I0) = (z, 0)

]
≤ E

[∫ ∞
0

e−rtItdt|(Z0, I0) = (z, 0)

]
.

Proof of Corollary 1. Follows immediately from Proposition 3 and the fact that B(z) corresponds to the
equilibrium price when z ≥ β (i.e., in the fully liquid region).

Proof of Corollary 2. Using Proposition 3, it is clear from inspection of (8) that B′(z) > V̄ ′(z) for all
z > β, implying the result for price volatility by Ito’s Lemma. Combining the two inequalities B < V̄
(Corollary 1) and B′ > V̄ ′ for all z > β implies the statement for return volatility.

Proof of Proposition 4. For any equilibrium Ξ(α, β,B), we have FL(α) = KL +ELα[e−rT (β)](B(β)−KL)
(see IA.1 in the Internet Appendix). The value-matching boundary conditions on the low-type seller’s value

function then imply ELα[e−rT (β)] = VL−KL
B(β)−KL . Direct calculation yields ELα[e−rT (β)] =

qL1 −q
L
2

qL1 e
qL2 (β−α)−qL2 e

qL1 (β−α)
.

Therefore, B(β1) ≥ V̄ (β0) ⇐⇒ (β1 − α1) ≥ (β0 − α0). In addition, Proposition 3 shows that B < V̄ ,
meaning B(β1) ≥ V̄ (β0) =⇒ β1 > β0.

For the purpose of contradiction, suppose that B(β1) < V̄ (β0), and therefore (β1 − α1) < (β0 − α0).
Recalling the functional form of B3 from the Internet Appendix (IA.13), B(β1) < V̄ (β0) implies that V̄ (β1)+

CB32
eq
B
4 β

1+eβ1
< V̄ (β0), where CB32 < 0. This yields

B′(β1)

B(β1)−KH
=

V̄ ′(β1)

V̄ (β1) + CB32
eq
B
4 β1

1+ez −KH

+

(
−CB32e

qB4 β1

1+eβ1

)(
(1−qB4 )eβ1−qB4

(1+eβ1)

)
V̄ (β1) + CB32

eq
B
4 β1

1+ez −KH

>
V̄ ′(β0)

V̄ (β0)−KH
. (C4)

However, using Fact IA.1 as above, condition (B12) rearranges to

d

dz
EHz=β [e−rT (β)] =

B′(β)

B(β)−KH
(C5)

If (β1 − α1) < (β0 − α0), then by direct calculation d
dzE

H
z=β1

[e−rT (β1)] < d
dzE

H
z=β0

[e−rT (β0)] = V̄ ′(β0)
V̄ (β0)−KH

<
B′(β1)

B(β1)−KH , where the inequality comes from (C4), but violates (C5), completing the proof.
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The following lemma will be used in the proof of Proposition 5.

LEMMA C.2: If, in any equilibrium, Zt0 is degenerate on θ, then Gθ(t0, ω) = Fθ,t(t0, ω) = Vθ, for any
t ≤ t0.

Proof. Lemma C.1 implies that if, in equilibrium, Zt0 is degenerate on θ, then Gθ(t0, ω), Fθ,t(t0, ω) ≤ Vθ.
We now show that this bound is tight for both. Let F θ, Gθ be the infimums of Fθ and Gθ over all possible on-
path histories after reaching the degenerate belief (i.e., Gθ = inf{Gθ(t, ω) : t ≥ t0, ω s.t. Zt0 is degenerate on θ},
and analogously for F θ). By (7), the definition of G,

Gθ ≥ E[(1− e−r(τ−t))|Gt]Vθ + E[e−r(τ−t)|Gt]F θ, (C6)

where, starting from arbitrary time t, τ ≥ t is the time of the next shock. Now suppose there exists an
on-path history such that Fθ < Gθ. This clearly violates No Deals. Therefore, F θ ≥ Gθ. This is consistent
with (C6) and Gθ, F θ ≤ Vθ if and only if F θ = Gθ = Vθ.

Proof of Proposition 5. By Owner Optimality and KH > VL, it is never on-path for a high-type seller to
accept a bid less than KH . Thus, only low types can be trading at t, and Belief Consistency requires that,
for all t′ > t, Pr(Zt′ = −∞) = 1. Lemma C.2 and Zero Profit then require that Wt = VL, which establishes
(1). Next, suppose (2) fails. Then there exists t̂ > t such that there is positive probability that the seller of
share m retains the asset up to t̂. Since Pr(Zt̂ = −∞) = 1, Lemma C.2 implies that the seller’s payoff falls
below VL by following such a strategy. This violates Lemma C.2, so (2) must hold.

The proof of the final claim requires several steps. First, we establish that if, in any equilibrium, a share
trades when the belief is Zt, then Wt ≤ V̄ (Zt). Suppose not, then by Zero Profit and Lemma C.1, conditional
on trade, Zt+ > Zt. By Belief Consistency then, not trading is also on-path, and conditional on no trade,
Zt+ < Zt. There are two cases to consider: i) not trading is on-path for both types, and ii) not trading is
on-path only for the low type. For (i), following no trade, minθ{Fθ(t+, ω)} ≤ E[Fθ(t

+, ω)] ≤ V̄ (Zt+), by
Lemma C.1. Because, conditional on no trade, V̄ (Zt+) < V̄ (Zt) < Wt, at least one type of seller wishes to
sell w.p.1 at time t, contradicting the equilibrium. For (ii), Belief Consistency implies that, conditional on
not trading, Zt+ = −∞. By Lemma C.2, FL(t+, ω) = VL < Wt, so Owner Optimality is violated for the low
type, contradicting the equilibrium.

Second, let z be the unique solution to V̄ (z) = KH . Because Wt ≤ V̄ (Zt), by Owner Optimality, in any
equilibrium the high type never trades if Zt < z.

Third, and finally, we establish the proposition’s claim of the existence of such a z∗. Suppose that for
arbitrary starting belief Zt < z there is zero probability of a future contagious sell-off. By the preceding first
and second established claims,

FL(t, ω) < EL
[∫ τ

t

e−r(s−t)kLds+ e−r(τ−t)VH

]
,

where τ = inf{s ≥ t : Zt + (Ẑs − Ẑt) ≥ z}, since, as there is zero probability of trade by either type before
the belief reaches z, the belief must evolve based only on news. It is straightforward to calculate that as
Zt → −∞, the term on the right-hand-side limits (continuously) to KL. This means Owner Optimality is
violated if Zt is low enough, establishing the proposition’s claim.

Proof of Proposition 6. Without loss of generality we start at t = 0, with arbitrary initial state (z,~i)
such that some share n satisfies In0 = 0. Let τ = inf{t : Int = 1}. From the structure of ΞN , for each θ,

Gθ(z,max(~i)) = Eθ
[∫ τ

0

e−rtvθdt+ e−rτFθ(Zτ )
∣∣(Z0, ~I0) = (z,~i)

]
.
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So,

E[Gθ(z,max(~i))|z] = E
[
Eθ
[∫ τ

0

e−rtvθdt+ e−rτFθ(Zτ )
∣∣(Z0, ~I0) = (z,~i)

]]
= E

[∫ τ

0

e−rtvθdt
∣∣z]+ E

[
e−rτEθ

[
Fθ(Zτ )

∣∣(Z0, ~I0) = (z,~i)
]]
, (C7)

where the second equality follows from the independence of the shock and news processes.
Let M be the set of shares, other than n, initially owned by holders and let

τ ′ = inf {t : ∃ m ∈M s.t. Imt = 1}. Finally, define the process Z̃ on [0, τ ] as Z̃0 = z and

dZ̃t =

{
dẐt for t < τ ′

dZt for t ≥ τ ′.

Now consider the two cases at t = 0: max(~i) = 1 (i.e., there exists a seller) and max(~i) = 0. In the latter,

by construction, Zτ = Z̃τ . In the former, Zτ = Z̃τ +Qαmin{τ,τ ′}−. That is, given any τ, τ ′, and path of X on

[0, τ ], the difference between Zτ in the two cases is due to updating based on the information content of the
low-type sellers’ trading behavior prior to min{τ, τ ′} in the max(~i) = 1 case versus no such information in
the max(~i) = 0 case. Notice that this additional information is binary in nature (either the sellers traded or
they did not), with one realization (trade) perfectly revealing that θ = L and the other (no trade) increasing
the belief that θ = H. Hence, from (C7) it is sufficient to show that any such signal increases the value of

E[Fθ(Zτ )|τ, Z̃τ ].
To show this result, it will be convenient to transition back to beliefs as probabilities p = ez

1+ez . Let fθ
be the type-θ seller’s value function and f̄(p) = E[fθ(p)|p]. For any p ∈ (0, 1], let Rp be the ray from the
point (0, VL) through the point (p, f̄(p)), and for any p′ ≤ p, let Rp(p

′) be the value such that Rp also passes
through (p′, Rp(p

′)). Using standard value-of-information arguments, it suffices to show that, for any pair
p′ ≤ p, f̄(p′) ≤ Rp(p′).

This last requirement is established via the following properties of f̄ (demonstrated below): (i) f̄(0) = VL,
f̄(1) = VH , f̄(p) ≤ V̄ (p) for all p, and f̄ is continuous and increasing, (ii) f̄ is convex below p(β) and concave
above p(β), and (iii) f̄ ′(p) > V̄ ′(p), for all p > p(β). Given just (i) and (ii), the result is immediate for
p ≤ p(β). For p > p(β), properties (i) and (iii) imply that f̄ is steeper than Rp at all points p′ ∈ [p(β), p), so
f̄ ≤ Rp in this region. Finally, they cannot intersect below p(β), since f̄ does intersect Rp(β) in this region
and Rp(β) lies everywhere below Rp due to (ii) and (iii).

(i) By construction in Appendix B.
(ii) That f̄ is convex below p(β) is immediate for p < p(α) since f̄ is linear in this region.

For p ∈ (p(α), p(β)), using the functional form in (IA.1), making the change of variables, and taking
the expectation over θ, we get

f̄ = c1(1− p)
(

p

1− p

)qL1
+ c2(1− p)

(
p

1− p

)qL2
+ pkH + (1− p)kL,

where ci = CHi + CLi > 0. Taking the second derivative gives

f̄ ′′ = c1
1

p2
qL1
(
qL1 − 1

) ( p
1−p

)qL1
1− p

+
1

p2
c2q

L
2

(
qL2 − 1

) ( p
1−p

)qL2
1− p

> 0,

where the inequality follows from qL1 > 1, qL2 < 0.
For p ≥ p(β), recall that FL(z) = FH(z) = B3(z). Making the change of variables from B3 using
CB31 = 0 (which it must be in SN ), we get that

f̄(p) = pVH + (1− p)VL + CB32(1− p)
(

p

1− p

)qL2
. (C8)
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Recalling that CB32 < 0 and taking the second derivative in p gives the result.
(iii) Follows by taking the first derivative of (C8) and noting that CB32, q

L
2 < 0.

For the remainder of this appendix we drop the superscript n and let i (It) denote the status (process) of
the owner of an arbitrary share. The following lemma will be used in the proof of Proposition C.4.

LEMMA C.3: Let f : R × {0, 1} → R denote an arbitrary function that is twice differentiable in its first
argument almost everywhere. Let A denote (infinitesimal) generator of (Zt, It) under Q (i.e., the public
measure). For all states such that z > α, we have that

Af(z, i) =
φ2

2

(
(2p(z)− 1)fz(z, i) + fzz(z, i)

)
+ (1− i)λ(f(z, 1)− f(z, 0)). (C9)

In the case that N = 1, the above also holds for all z when i = 0.

Proof. For all such states, (i) dZt = dẐt and equation (5) gives E[dZt|Ft] = φ
2 (2p(Zt)− 1)dt, and (ii) It

follows a jump process with arrival λ and fixed jump size (1− i). The result then follows from Applebaum
(2004, Theorem 3.3.3).

In the next proposition, we characterize the unscaled trade volume per share f ≡ λf̄ and g ≡ λḡ.

PROPOSITION C.4: When N = 1, for any t > 0, the expected (unscaled) trade volume satisfies

f(t, z) :


f =

p(α)− p(z)
p(α)

(1 + λt) +
p(z)

p(α)
f(t, α) for z ≤ α

ft =
φ2

2

[
(2(p(z)− 1))fz + fzz

]
for z ∈ (α, β)

f = 1 + g for z ≥ β

(C10)

g(t, z) : gt = λ(f − g) +
φ2

2

[
(2(p(z)− 1)gz + gzz

]
for all z (C11)

with boundary conditions

lim
z→±∞

f(t, z) = 1 + λt (C12)

lim
z→±∞

g(t, z) = λt

and initial conditions

f(0, z) =


p(α)−p(z)
p(α) z ≤ α

0 z ∈ (α, β)
1 z ≥ β

(C13)

g(0, z) = 0.

When N =∞, the above holds except that (C11) becomes

g(t, z) :


g(t, z) =

p(α)− p(z)
p(α)

λt+
p(z)

p(α)
g(t, α) for z < α

gt = λ(f − g) +
φ2

2

[
(2(p(z)− 1))gz + gzz

]
for z ≥ α.

(C14)

Proof. The boundary conditions are uniquely pinned down by equilibrium play; when beliefs are de-
generate, trade occurs immediately upon arrival of a shock (Lemma C.2). For the remainder of the proof,
we break the state space into four different regions enumerated below. With the exception of the region in
which i = 0, the arguments below are independent of N .

1. For z ≤ α, i = 1: with probability p(α)−p(z)
p(α) trade occurs (dvt = 1) and the state transitions to (−∞, 0) .
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With probability p(z)
p(α) trade does not occur and the state transitions to (α, 1) . Therefore,

f(t, z) =
p(α)− p(z)

p(α)

(
1 + lim

z→−∞
g(t, z)

)
+
p(z)

p(α)
f(t, α) =

p(α)− p(z)
p(α)

(1 + λt) +
p(z)

p(α)
f(t, α),

where the second inequality follows from the boundary condition on g.
2. For z ∈ (α, β), i = 1: dνt = 0 w.p.1. (f(0, z) = 0). Applying the Kolmogorov backward equation (e.g.,

Applebaum (2004, p. 164)) using the generator from (C9) gives ft in (C10).
3. For z ≥ β, i = 1: dνt = 1 w.p.1. (thus f(0, z) = 1) and the new owner is a holder. Thus, f(t, z) =

1 + g(t, z).
4. For i = 0:

(i) When N = 1, for all z: dνt = 0 w.p.1. (thus g(0, z) = 0). Again, applying the Kolmogorov
backward equation using the generator from (C9) gives gt in (C11).

(ii) When N = ∞, (i) holds for all z > α yielding the second equation in (C14). For z < α, with

probability p(α)−p(z)
p(α) another trader sells, the asset type is revealed to be low, and all future trade

occurs immediately when the shock arrives (i.e., at rate λ). With complimentary probability,
no other traders sell, in which case z transitions to α. Taking the expectation yields the first
equation in (C14).
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Notes

1Reuters, 2008, Prices nosedive, liquidity dries up.

2An implicit assumption is that the market is transparent, meaning agents observe information about all trades.

If this assumption fails to hold, the appropriate modeling choice for N would be smaller, reflecting not the total

number of shares, but the number of shares agents having information regarding. Under this latter interpretation,

one can evaluate regulations, such as the introduction and subsequent extensions of TRACE, aimed at improving

transparency through the availability of transaction data. See Section IV.

3Zweig, Jason, 2008, Capitulation: When the market throws in the towel surprisingly, bear markets dont always

end with a bang sometimes its just a whimper, The Wall Street Journal.

4See a report from the U.S. Treasury (2009) on the role of fire sales in the recent financial crisis or Shleifer and

Vishny (2011) for a survey of the literature on fire sales in financial markets.

5See http://www.sec.gov/spotlight/enf-actions-fc.shtml for a list of such allegations.

6For commercial real estate, the more relevant characteristics might be population growth or income per capital.

Alternatively, the private information could pertain to specific characteristics of the building, with news corresponding

to the outcome of inspections, which are required to be publicly disclosed in many states across the U.S.

7To flesh this out further, if a cost is associated with listing property for sale and shocks are verifiable, then buyers

would be leery of owners who are unable to disclose a credible reason for selling, and in equilibrium, only verifiably

constrained owners would bother to list their properties.

8If one were interested in applying the model to a systematic component of the market portfolio, it would be

natural to incorporate risk-averse traders. See Section VI for comments on this extension.

9Recent search-based models in which liquidity is not constant over time include Afonso and Lagos (2012) and He

and Milbradt (2014).

10For example, the overlapping generations settings of Azariadis (1981), De Long et al. (1990), Spiegel (1998), and

others use supply shocks (or noise traders) as a source of risk from which multiple equilibria, including high-volatility

ones, emerge as a self-fulfilling prophecy.

11For convenience, we assume there are always multiple unconstrained buyers at t = 1. This assumption can be

motivated by having new (unconstrained) buyers arrive at t = 1, or having infinitely many buyers and restricting

λ < 1.

12In Section VI, we show that although the predictions are qualitatively similar, the illiquidity problem is further

exacerbated if shocks are unobservable.

13This restriction has little economic content and is not strictly necessary. For example, alternative proof methods

can be used to show that all of the results go through when κ < δ2 under certain conditions on σ.

14See Swinkels (1999) for further discussion of this refinement.

15The latter obtains if the security sold at date t = 0 and the new owner was not hit by a shock. The former case

obtains if either the original owner still owns the security or the security was sold but the new owner experienced a

shock.
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16Payoff-equivalent equilibria exist in which the low-type unconstrained owner engages in non-surplus-enhancing

trade at t = 1 for a price of κ. However, the specification that unconstrained owners do not trade mirrors the

continuous-time model of subsequent sections, wherein unconstrained owners strictly prefer not to trade whenever

the market has any uncertainty regarding θ.

17For the knife-edge case of p1 = p̄, both of the above are equilibrium outcomes—but because it is nongeneric,

which outcome is specified is irrelevant for behavior or payoffs at t = 0. For concreteness, our statements of FH , FL

in (1) specify the fully liquid outcome at p1 = p̄.

18That is, q(s, p) ≡ pfH (s)
pfH (s)+(1−p)fL(s)

, where fθ is the density of s̃ given θ.

19Notice that the possibility that b < a contrasts with the structure of equilibria studied in the continuous-time

models of DG12 and subsequent sections of this paper, wherein a region with zero probability of trade always exists

(i.e., a < b). In Section III, we discuss the reasons for this difference. Perhaps surprisingly, b < a arises in the

two-period model when the signal-to-noise ratio (i.e., (µH − µL)/σ) is sufficiently high or sufficiently low, whereas

a < b requires intermediate levels of the signal-to-noise ratio.

20The proposition focuses on the generic cases in which p0 6= a, b, c. Analyzing nongeneric cases is not difficult, but

their omission simplifies exposition considerably.

21Such results include that that prices exhibit excess volatility (Corollary 2), or that resale considerations also

influence the low type’s threshold (Proposition 4).

22We define this ownership process to be left-continuous, meaning that At should be interpreted as the owner at

the beginning of “period” t.

23This specification accommodates both additive and proportional holding costs without imposing either. In

addition, because agents are risk neutral, nothing substantive changes if the cash flow is random with mean vθ or kθ,

depending on the owner’s status.

24Relying on the rationale that we formalize in Definition 1, because omnipresent buyers compete with one another,

there is no uncertainty about the maximum price they are willing to pay following any given history. Therefore,

whether buyers bid this price (as in Example 1), the sellers ask for it (as in Example 2, where the bid is not an

explicit part of agent strategies), or a market maker facilitates the transaction (as in Example 3) makes no difference

for equilibrium outcomes. In all cases, a seller simply decides when to stop, at which point she is paid the buyers’

value for her share (conditional on her stopping, of course), regardless of whether stopping translates into accepting

an offer from a buyer or market maker, or to posting a price equal to the buyers’ (conditional) value for a share,

which will then be accepted.

25Like Duffie, Gârleanu, and Pedersen (2005, 2007), this model of over-the-counter markets features decentralized

trading, however, there are no search frictions.

26One might argue that it is unreasonable to think agents can keep track of all the information in the public history.

This assumption is not crucial. The equilibrium we construct and analyze is stationary; all relevant information prior

to time t will be encapsulated in a simple state variable (Section III).

27For any t,Ft, limh→∞ E[e−rhWt+h|Ft] = 0. See Brunnermeier (2008) for a discussion of how the failure of this
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condition can lead to “bubbles.”

28In general, Q is pinned down along the equilibrium path by Bayes rule; however, writing this process for arbitrary

times, given arbitrary strategies, is a cumbersome exercise that provides little insight beyond that found for the case

derived in (6). Note also that like the ownership process (footnote 22), the belief process is a left-continuous process

corresponding to the interpretation that Zt is the belief at the beginning of “period” t. Hence, the usage of the

left-limits (i.e., Sθ,t
h−
≡ lims↑h S

θ,t
s ) in (6).

29We use (z, i) to refer to any (t, ω) such that (Zt(ω), It(ω)) = (z, i). References to generic z should be understood

as z ∈ R, as opposed to the degenerate belief levels z = ±∞, unless otherwise stated. In any equilibrium, after

reaching a degenerate belief at time t, Zt ∈ {±∞}, Lemma C.2 shows that on-path continuation play must be as

follows. For all h ≥ t, Zh = Zt, Wh = E[Vθ|Zh] if Ih = 1, and sellers accept with probability one if Wh ≥ Kθ, and

reject otherwise.

30To see this, notice that in Ξ(α, β,B), low types mix between accepting and rejecting at z = α. Therefore, Owner

Optimality will require low types to be indifferent between these strategies, including the one that always rejects at

z = α (i.e., playing according to T (β, t)).

31The Internet Appendix may be found in the online version of this article on the Journal of Finance website.

32See DG12 for additional restrictions under which Ξ is the unique equilibrium when λ = 0.

33For example, assume that cash flows and the news process are synonymous (the analysis is unchanged by stochastic

cash flows; see footnote 23) and that a seller incurs an additive holding cost that is constant across type: vH − kH =

vL − kL. This specification ensures that an owner does not receive any private information from ownership.

34If one wishes to avoid an infinite total cash flow when N = ∞, vθ, kθ can be interpreted as “infinitesimal”

quantities (see Anderson (2008)).

35In July 2002, FINRA introduced regulation to improve the transparency of corporate bond markets by requiring

all member broker/dealers to report corporate bonds transactions to TRACE, which then makes transaction data

publicly available. More recently, TRACE reporting requirements have extended to a broader class of fixed-income

securities.

36When N is finite, for z ∈ (α, β), the presence or absence of sellers affects the probability that sellers will be

present the next time z reaches α, so it also affects the holder value function. However, when N =∞, the probability

that there will be sellers present the next time that α is reached is one, regardless of the number of sellers today, so

the contingency is again irrelevant.

37To complete the mapping, note that our model is isomorphic to one in which the asset type is revealed randomly

(i.e., default or prepayment occurs) according to a Poisson arrival with the same arrival rate for either event.

38Because all traders are risk neutral in our economy, the physical and risk-neutral measures are identical.

39Notice that LF and LG coincide with the illiquidity discount, D, when z ≥ β, because FL(z) = FH(z) = B(z) =

E[Gθ(z)|z] in this region.

40For ease of exposition, Figure 7 only depicts LG. The results for LF are similar.

41Perhaps surprisingly, our numerical results indicate that not only does efficiency increase with N , but so too do
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seller and holder values, regardless of the asset’s type. The additional information generated by greater N causes

arbitrary shares to be efficiently allocated more of the time. This, in turn, increases the prices buyers are willing to

pay, which benefits even low-type owners.

42No qualitative differences arise when using a proportional holding cost structure (i.e., kθ = δvθ).

43We continue to refer to the owner as a seller if she is constrained, and as a holder if she is unconstrained despite

the fact that a low-type holder does sell in equilibrium.

44An intuitive feature to note is that as λ→ 0, 1, whether shocks are observable makes no difference, because then

buyers would then have little uncertainty regarding whether the owner is constrained.

45The public history at t = 0 is empty. The public history at t = 1 includes whether trade occurred at t = 0, if so

then whether a shock arrived, and (in any case) the realization of the signal.

46We will later show that B is increasing, continuous, and differentiable almost everywhere. These properties are

not required for the present analysis, but may help provide intuition for the arguments.

47We use ~i to denote the vector of owners’ statuses (i.e., the generalization of i in the single share model).

48That the killing rate is κ = 1 follows from the definition of Qα in ΞN .

49The necessity of high-type-seller indifference at β, and therefore (B12), hinges on the specification of off-

equilibrium-path beliefs imposed by ΞN . Regardless of this specification, the weaker condition F ′H(β−) ≤ B′(β)

is necessary. Equilibria in which F ′H(β−) < B′(β) can be sustained only by imposing “threat beliefs” for off-

equilibrium-path rejections (i.e., the probability assigned to a high type decreases following an unexpected rejection).

The requirement that beliefs cannot decrease following an unexpected rejection makes (B12) necessary.
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t

Market Belief
(z)

α

β

Trader A sells as soon 
as shock arrives.

The market belief evolves 
according to news.

Bad news arrives, drives 
the belief down.

Trader B gets shocked, but 
the market is fully illiquid. 

Delay ensues.

Sell-off may occur. If not, 
the belief reflects at α.

Full liquidity is restored 
only when the market 
belief reaches β.

Trade occurs

Shock arrives

Figure 1. Sample path of market liquidity dynamics.
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t=0 t=1 t=2

Market opens 

for trading

News is 

revealed
Market opens 

for trading

Cash flow

realized

New owner faces shock 

with probability λ

Figure 2. Timeline of the two-period model.
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(a) Period 1

 

 

a bλ=0 bλ=1 1

κ

δ2

1

V̄

CH

CL

E[Fθ]

(b) Period 0

Figure 3. Equilibrium trade regions and continuation values in each period. The leftmost region (shaded
in grey) corresponds to the partially liquid region. The rightmost region (shaded in green) corresponds to the fully
liquid region. The middle region (shaded in white) in Figure 3(b) corresponds to the fully illiquid region in the case
λ = 1. In the rightmost region of Figure 3(a) all three functions, V̄ , FH , and FL coincide.
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Figure 4. Ξ-equilibrium value functions as they depend on the underlying market belief (z).
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Figure 5. Scaled volume. This figure plots the scaled holder volume over a unit interval of time (i.e., ḡ(1, z)).
Note that the first-best efficient trade volume is equal to one for all z.
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Figure 6. Efficiency loss.
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Figure 7. Efficiency loss as it varies with N , φ, λ, and holding costs.
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Table I: Parameters

This table presents the parameters used in all numerical results

N = 1 N =∞
r 5% 5%
vH 0.1 0.035
kH 0.08 0.03
vL 0.05 0.03
kL 0.03 0.025
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Table II: Illiquidity Regions

This table reports the upper boundary (b) and the lower boundary (a) of the illiquid region for each set of parameters.

Arrival Rate News Quality N = 1 N =∞
(λ) (φ) b a b a

0.25 0.20 0.890 0.754 0.639 0.503
1.00 0.20 0.939 0.853 0.819 0.713
0.25 0.50 0.942 0.672 0.837 0.549
1.00 0.50 0.965 0.776 0.907 0.694

73



Table III: Liquidity Premium and Excess Volatility

This table reports the illiquidity discount (D) and the excess volatility as given by the ratio of equilibrium volatility

to fundamental volatility (σe/σf ) for each of the parameter configurations.

Arrival Rate News Quality N = 1 N =∞
(λ) (φ) D σe/σf D σe/σf

0.25 0.20 0.037 2.548 0.019 2.038
1.00 0.20 0.051 4.852 0.031 3.954
0.25 0.50 0.015 1.707 0.009 1.550
1.00 0.50 0.024 2.840 0.016 2.609
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