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Abstract

Genome-wide association studies have identified 40 ovarian cancer risk loci. However, the 

mechanisms underlying these associations remain elusive. In this study, we conducted a two-

pronged approach to identify candidate causal SNPs and assess underlying biological mechanisms 

at chromosome 9p22.2, the first and most statistically significant associated locus for ovarian 

cancer susceptibility. Three transcriptional regulatory elements with allele-specific effects and a 

scaffold/matrix attachment region were characterized and through physical DNA interactions 

BNC2 was established as the most likely target gene. We determined the consensus binding 

sequence for BNC2 in vitro, verified its enrichment in BNC2 ChIP-Seq regions and validated a set 

of its downstream target genes. Fine-mapping by dense regional genotyping in over 15,000 ovarian 

cancer cases and 30,000 controls identified SNPs in the scaffold/matrix attachment region as 

among the most likely causal variants. This study reveals a comprehensive regulatory landscape at 

9p22.2 and proposes a likely mechanism of susceptibility to ovarian cancer.
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INTRODUCTION

Epithelial ovarian cancer (EOC) is a poorly understood disease often diagnosed at late stages 

and with low 5-year survival rates. Although it used to be widely acknowledged that the 

ovarian surface epithelium (OSE) was the likely tissue of origin of EOC, recent evidence 

supports the notion that the epithelial lining of the fallopian tube and benign endometriosis 

contribute to the origin of invasive EOCs. Invasive EOCs may also originate from ectopic 

Müllerian tissue due to endosalpingiosis. The diverse cellular origins of EOC subtypes, in 

part, underlie the heterogeneity that characterizes ovarian cancer.
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Less than half of all familial ovarian cancer cases and less than 15% of high grade serous 

EOC are due to highly penetrant pathogenic alleles of genes such as BRCA1 and BRCA2. 

However, exhaustive family-based linkage studies have not identified additional highly 

penetrant EOC susceptibility genes (1). The excess familial risk of EOC may be explained, 

at least in part, by common variants with low to moderate penetrance. Genome-wide 

association studies (GWAS) have identified ~40 common variant loci associated with risk of 

EOC (2–13). Delineation of the mechanisms and likely causal variants at GWAS-identified 

loci may reveal novel chemoprevention and therapeutic strategies.

To evaluate the mechanisms by which single nucleotide polymorphisms (SNPs) may 

contribute to EOC, we conducted a functional dissection at the 9p22.2 locus, the first ovarian 

cancer risk locus identified through GWAS of European ancestry women (2). The SNP most 

significantly associated with high grade serous EOC risk was rs3814113, which is located 44 

kb centromeric and 220 kb telomeric to the BNC2 and CNTLN transcription start sites 

(TSS), respectively (2). The minor allele [C; MAF = 0.323] was associated with reduced risk 

of high grade serous EOC (combined data OR = 0.82; 95%CI = 0.79–0.86; P = 2.5 × 10−17).

MATERIALS AND METHODS

Cell Lines

We used two immortalized normal OSE cell lines, iOSE4 and iOSE11 (14), and three 

immortalized normal fallopian tube surface epithelial cells (iFTSEC33, iFTSEC246, and 

iFTSEC283), a normal epithelial ovarian cell line, iOSE4CMYC, immortalized with hTERT 
and transformed with MYC (15), and HEK293FT cells. Cell line aliquots were tested for 

mycoplasma (PCR-based method) and authenticated using STR analysis before being used 

for experiments, which were conducted before 20 passages after thawing.

FAIRE-Seq and ChIP-Seq for Histone Modifications

FAIRE-Seq (Formaldehyde Assisted Isolation of Regulatory Elements followed by 

sequencing) and ChIP-Seq (Chromatin immunoprecipitation followed by sequencing) for 

Histone H3 Lysine 27 Acetylation (H3K27Ac) and Histone H3 Lysine 4 Monomethylation 

(H3K4me1) were performed in iOSE4, iOSE11, iFTSEC33, iFTSEC246, iFTSEC283 

(GSE68104) (16).

Enhancer Scanning

We used an optimized method to identify genomic regions with enhancer activity (17). 

Genomic tiles of ~2 kb were generated by PCR using bacterial artificial chromosome (BAC) 

Clone RPCI-11–185E1 (Empire Genomics) as the template and cloned in forward and 

reverse orientations upstream in the firefly luciferase reporter vector designed to test for 

enhancer activity (17). Primers can be found in Supplementary Table 1. Transfections 

included a plasmid expressing Renilla sp. luciferase as internal control and every tile was 

tested in two independent experiments. Tiles with significantly (two-tailed t-test; p <0.05) 

higher luciferase counts than the control tile (TC) were tested for allele specific effects. For 

allele-specific luciferase assays, tiles with the effect allele were considered significant if the 
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luciferase counts were significantly higher or lower (p <0.05) in at least one independent 

experiment than the tile with the reference allele.

Electrophoretic Mobility Shift Assays

Nuclear extracts were obtained from iOSE4CMYC cells at 70–90% confluence and EMSAs 

were run as previously described (18).

Nuclear Scaffold Extraction

A lithium-based nuclear scaffold extraction was performed as previously described (19). 

Scaffold and genomic DNAs were quantified by qPCR using primers for Region 11, the 

ApoB S/MAR and the ApoB Neg regions (Supplementary Table 1). Samples were run using 

Sybr Green Spectrum on Applied Biosystems 7900 HT Real-Time PCR System. Enrichment 

was calculated by dividing the quantity of the scaffold DNA by the quantity of the digested 

genomic DNA. A Z-score for the region 11 and ApoB S/MAR was calculated as described 

previously (19) [Z score = (average of S/MAR – average of ApoB Neg)/std dev of ApoB 

Neg)]. A Z-Score > 8 indicates a site positive for scaffold binding (19). Each experiment 

includes three technical replicates.

Chromosome Conformation Capture (3C)

3C libraries were prepared as previously described (20). qPCR was performed by using Taq 

Polymerase PCR Kit (Qiagen) and Syto9 (Life Technologies). Samples were run using FAM 

Spectrum on an Applied Biosystems 7900 HT Fast Real-Time PCR System. EcoR1 digested 

BACs (RPCI-11–185E1 Empire Genomics, RPCI-11–179K24 Life Technologies, RPCI-11–

106G11 Life Technologies) for the region were used for the standard curve. Interactions 

were calculated as a percentage of a restriction site directly adjacent to the bait restriction 

site. Sites with a significantly higher frequency of interaction than the site adjacent to the 

anchor were considered significant (p <0.05; two-tailed t-test). 3C was performed in two 

independent experiments and three technical replicates each.

Protein Binding Microarray

Fragments containing cDNAs of each of the zinc finger pairs were PCR amplified from a 

plasmid containing BNC2 cDNA (a gift from Dr. Philippe Djian) using primers containing 

Gateway recombination sites (Supplementary Table 1). PCR products were cloned into 

pDONR221 using the BP recombination kit and transferred to pDEST15 as a fusion to 

Glutathione-S-transferase (GST) using LR recombination kit (Invitrogen). Purified GST-ZFs 

were eluted from beads with 50 mM reduced glutathione and 0.5 μg of each GST-ZF protein 

construct were applied individually to two differently designed arrays designated ME and 

HK as previously described (21, 22). ZFs typically bind to degenerate motifs and have the 

potential to have more than one recognition sequence (21). Each DNA probe sequence is 

given an E-score which is similar to the Area under the ROC curve statistical metric and an 

E-score above 0.45 was considered significant.
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ChIP/ChIP-Seq for BNC2

Chromatin immunoprecipitations were performed as previously described (23) using a 

validated BNC2 antibody (Sigma Atlas) (see Supplementary Data). Real-time qPCR was 

performed using Sybr Green chemistry with primers at the −2184, −914, and −582 positions 

relative to the TSS (Supplementary Table 1) in an Applied Biosystems 7900HT Fast Real-

Time PCR System. ChIP for each cell line was performed in four biological replicates. 

Overrepresentation test (release 20170413) was conducted with PANTHER version 11.1 

released 2016–10-24 using all genes in Homo sapiens database as a reference list and a 

Bonferroni correction for multiple testing. The uploaded list contained 965 genes of which 

839 were mapped to GO-Slim.

For BNC2 ChIP-Seq four individual ChIP samples were pooled for each cell line (iOSE11 

and iFTSEC283) in two biological replicates. Immunoprecipitated DNA was used to 

generate a sequencing library using the NuGEN Ovation Ultralow Library System with 

indexed adapters (NuGEN, Inc., San Carlos, CA). The library was PCR amplified and size-

selected using AxyPrep Fragment Select beads (Corning Life Sciences – Axygen Inc., 

Union City, CA). Each enriched DNA library was then sequenced on an Illumina HiScan SQ 

sequencer to generate 20–30 million 100-base paired-end reads. The raw sequence data was 

de-multiplexed using the Illumina CASAVA 1.8.2 software (Illumina, Inc., San Diego, CA) 

and binding sites were identified using the MACS2 software (24) using input DNA as a 

control. See Supplementary Data for further details.

Nanostring

pNTAP-BNC2 (or the empty vector) was transfected with Fugene 6 into 293FT cells at 70% 

confluence. Cells were harvested after 24 h, RNA was isolated using Trizol RNA Isolation 

(Life Technologies), and cleaned using Qiagen RNeasy Mini Kit (Qiagen). The three 

biological replicates for HEK293FT cells with the empty vector or over-expressed BNC2 

were applied to a Nanostring platform containing probes for 87 genes and 10 reference 

genes (Supplementary Table 2) used to normalize the data in the NanoString nSolver 

Analysis Software v 1.1. These genes had a %CV < 50. Genes were considered to be 

differentially expressed if p <0.05 (two-tailed t-test).

Fine-mapping Association Analyses

To refine the observed signal at rs3814113 (2), fine-mapping was conducted using a 

customized Illumina iSelect genotyping array (iCOGS). SNPs were selected based on data 

from 1000 Genomes Project (1000GP) (25) CEU (April 2010) and Hapmap III within a 1 

Mb interval of rs3814113 (chr9: 16407967–17407967)(26). We included tagging SNPs (r2 > 

0.1) with a minor allele called at least twice in the 1000GP and additional SNPs tagging 

remaining variation in the interval (r2 > 0.9), requiring Illumina Design score > 0.8.

The iCOGS array was used to genotype cases and controls from constituent studies of the 

Ovarian Cancer Association Consortium as previously described (6), supplementing with 

data from three independent ovarian cancer GWAS. In iCOGS, we excluded samples if they 

were not of European ancestry, had a genotyping call rate of <95%, showed low or high 

heterozygosity, were not female or had ambiguous sex, or were duplicates (cryptic or 
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intended). SNPs were excluded if they were mono-morphic, had a call rate of < 95%, 

showed evidence of deviation from Hardy-Weinberg equilibrium in controls or had low 

concordance between duplicate pairs(6). For two of the GWAS (from Mayo Clinic and the 

UK), we also excluded rare SNPs (MAF < 1% or allele count < 5, respectively). The final 

data set comprised 11,069 cases and 21,722 controls from iCOGS (‘OCAC-iCOGS’), 2,165 

cases and 2,564 controls from a GWAS from North America (27), 1,762 cases and 6,118 

controls from a United Kingdom-based GWAS (2), and 441 cases and 441 controls from the 

Mayo Clinic. All subjects included in this analysis provided written informed consent as 

well as data and blood samples in accordance to ethical guidelines under protocols approved 

by institutional review boards of their respective study sites. Overall, 43 studies from 11 

countries provided data on 15,437 women diagnosed with invasive EOC, 9,627 of whom 

were diagnosed with serous EOC, and 30,845 controls from the general population.

We imputed variants separately for the OCAC-iCOGS and each GWAS from 1000 Genomes 

Project data using the v3 April 2012 release as the reference panel using the IMPUTE2 

software (28) without pre-phasing. The final data set comprised genotypes for 4,234 SNPs 

of which 2,418 had been directly genotyped.

We evaluated the association between genotype and disease using logistic regression by 

estimating the associations with each additional copy of the minor allele (log-additive 

models). The analysis was adjusted for study and population substructure by including the 

eigenvectors of the first five European-specific principal components as covariates in the 

model. We used the same approach to evaluate SNP associations with serous ovarian cancer 

after excluding all cases with any other or unknown tumor subtype. For imputed SNPs, we 

used expected dosages in the logistic regression model to estimate SNP effect sizes and P 

values. We carried out analyses separately for OCAC-iCOGS and each GWAS and pooled 

data thereafter using a fixed-effects meta-analysis; thus, all results are based on the 

combined data. We also performed analyses adjusted for rs3814113 to evaluate evidence of 

independent signals.

RESULTS

Overview of Study Design

Here, we utilized two independent approaches to identify a list of candidate causal SNPs 

(Fig. 1). First, we conducted a comprehensive analysis to identify functional SNPs in linkage 

disequilibrium (LD, r2 > 0.3) with rs3814113 with no prior assumption about their 

individual association to risk. Since all resided in non-coding regions, we hypothesized that 

SNP alleles determine the activity of regulatory elements in enhancers and promoter regions 

active in OSE and fallopian tube surface epithelial cells (FTSEC) (29). Second, we 

performed fine-mapping association analyses by densely genotyping over 15,000 ovarian 

cancer cases and 30,000 controls to identify a credible set of causal SNPs guide by 

association data. These parallel approaches identified the SNP most likely to be causal to 

ovarian cancer risk at the 9p22 locus.

Buckley et al. Page 6

Cancer Res. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Candidate Causal SNP Set for Functional Analysis

A total of 134 SNPs were chosen for functional analysis, based on their LD (r2 ≥ 0.3) with 

rs3814113 in European 1000 Genomes Project data (v3 April 2012 release). They are 

distributed over an 82 kb region ranging from the first intron of BNC2 to ~44 kb centromeric 

to its transcription start site (TSS) (Fig. 2a and Supplementary Table 3).

Since all SNPs in the candidate functional set are in non-coding regions, several independent 

assays were used to identify transcriptional regulatory elements. First we analyzed data from 

FAIRE-Seq, and ChIP-Seq for H3K27Ac and H3K4Me1. FAIRE-Seq reveals regions of 

open chromatin while H3K27Ac or H3K4Me1 are markers for active chromatin and 

enhancers, respectively. The chromatin landscape profiles (Fig. 2a) were derived from iOSE 

and iFTSEC cells (16).

Analysis of FAIRE- and ChIP-Seq data identified twelve regions with evidence of enhancer 

activity in at least one cell line (Fig. 2a). Twenty-two candidate causal SNPs (Table 1) are 

located within five regions containing FAIRE or ChIP-Seq features suggesting that these 

SNPs might have a functional impact (Fig. 2a). The relatively lenient threshold for LD and 

criteria to consider a region as a putative enhancer was designed to favor sensitivity at the 

initial stage of analysis (with high specificity being achieved by the integration of the two 

approaches).

Mapping SNPs to Regions of Enhancer Activity

To refine the analysis, we tested twelve genomic tiles (~2 kb each) (Fig. 2a), in both 

orientations, spanning the five candidate regions using a reporter assay to identify enhancer 

activity in iOSE4cMYC ovarian cells (17). Although not present in a region with evidence of 

regulatory activity, we also tested one tile containing rs3814113 (Tile 12), the most 

significantly associated with high grade serous EOC in a previous study (2), and a control 

tile devoid of evidence for enhancer activity as judged by FAIRE and ChIP-Seq data (Fig. 

2a, Tile C). Tiles in regions 6 (T6), 7 (T7.2, T7.3, T7.6), and 8 (T8) contained nine candidate 

causal SNPs and showed significant activity (two tailed t-test p<0.05 compared to the 

control tile C; two replicates) in at least one orientation (Fig. 2b).

Causal SNPs are hypothesized to display allele-specific effects. Therefore, we used site-

directed mutagenesis in tiles T6, T7.2, T7.3, T7.6, and T8 to change each of the nine 

candidate causal SNPs from the reference to the effect allele and compared their activity. For 

tiles with multiple SNPs, the reference tile was the most common haplotype (Supplementary 

Fig. 1) (All populations; 1000 Genomes Project). Individual SNPs were mutated to 

determine the contribution of each SNP, with other SNPs in the haplotype retaining the 

reference SNP allele. Seven SNPs in T6 (rs62541878), T7.2 (rs62541920, rs12379183), 

T7.3 (rs1092647), and T8 (rs77507622, rs10810657, rs12350739) demonstrated 

significantly different transcription activity (p<0.05) between the reference and effect allele 

in at least one replicate (Fig. 2c-d). These seven SNPs were retained for analysis.
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Allele Specific Activities in Electrophoretic Mobility Shift Assays

We conducted EMSAs using probes with both alleles for each of the seven SNPs in regions 

6, 7 and 8 (Fig. 2e). Tiles that did not show activity in Fig. 2b were not tested. Tile 11 had 

significant transcription activity in only one reporter experiment but two SNPs within the 

region (rs113780397 and rs181552334) are correlated with the original SNP (r2 of 0.818 and 

0.5, respectively), and so four additional probes were tested. We also examined rs3814113, 

the most significant original GWAS SNP. EMSAs revealed allele specific nuclear extract 

binding for rs12379183, rs62541920 (Region 7), rs12350739, rs77507622 (Region 8) and 

rs181552334 (Region 11) (Fig. 2e) indicating these SNPs were strong causal candidates.

Region 11 Attaches to the Nuclear Scaffold

Region 11 overlapped with an open chromatin region, according to FAIRE-Seq data 

obtained in ovarian cells, and one SNP showed allele-specific binding in EMSA experiments 

(rs181552334). However, this region lacked H3K4Me1 and H3K27Ac marks and luciferase 

assays showed weak evidence for enhancer activity in ovarian cells (Fig. 2b). Interestingly, 

the region is A/T rich (> 60%), a feature in regions that anchor the cell’s DNA to the nuclear 

scaffold/matrix (19). Moreover, Region 11 was predicted by MAR-Wiz to attach to the 

nuclear scaffold/matrix compared to the rest of the locus (Supplementary Fig. 2).

To determine whether Region 11 was attached to the nuclear scaffold in ovarian cells, we 

performed a nuclear scaffold extraction in iOSE11 cells (19), using HeLa cells as a control. 

Region 11 had significantly higher enrichment in the scaffold fraction of iOSE11 and HeLa 

cells than a previously defined negative control (ApoB Neg) (19) (Fig. 3a-c). A region 

previously defined as a S/MAR (ApoB S/MAR) (19) in HeLa cells did not have significantly 

higher enrichment in the scaffold fraction of iOSE11 cells than ApoB Neg (Fig. 3a-c) but 

had significantly higher enrichment in the scaffold fraction of HeLa cells than ApoB Neg. 

These results indicate that Region 11 acts as S/MAR in ovarian cells. Visual inspection of 

HiC (High dimensional chromosome conformation capture) data from seven cell lines 

suggested the presence of a 1.8 Mb (chr9:15,750,000–17,550,000) topologically associating 

domain (TAD) in which the S/MAR (Region 11, rs181552334) is situated close to one of its 

borders (Fig. 3d-e). This TAD includes TSS for BNC2, C9orf92, and CNTLN.

Candidate Target Genes BNC2 and CNTLN

Two functional SNPs in Region 7 were located in an approximately 7kb region that includes 

the TSSs for two BNC2 transcripts (Fig. 2a) denoted by FAIRE-Seq and H3K4me1 ChIP-

Seq data in ovarian cells, and ENCODE layered H3K4me3 (promoters) ChIP-Seq data (Fig. 

3f). This region is the major BNC2 promoter, raising the hypothesis that BNC2 may act as 

the mediator of risk at the 9p22.2 locus.

Region 8, containing two SNPs with allele specific activity in luciferase assays and EMSA, 

overlapped with FAIRE-Seq and ChIP-Seq data in ovarian cells with features indicative of 

an enhancer (Fig. 2a). To determine potential interacting promoters with the enhancer at 

region 8, we examined all genes (c9orf92, BNC2, CNTLN and SH3GL2) within a stretch of 

1 MB at either side of the region containing the candidate SNPs (Fig. 3f). First, guided by 

H3K4me3 marks in seven non-ovarian cell lines from ENCODE, we identified their 
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promoters close to TSSs (Fig. 3f). Next, we inferred whether the gene was expressed in 

ovarian cell lines using H3K27ac as a marker of active promoters combined with analysis of 

transcript levels from RNA sequencing (RNA-Seq) data for ovarian and fallopian tube 

epithelial cells (Fig. 3g). This analysis indicated that BNC2 and CNTLN were expressed in 

ovarian cells, but c9orf92 or SH3GL2 were not (Fig. 3g).

Region 8 is physically close to the TSS of BNC2 in Ovarian Cells

Next, we used Chromatin Conformation Capture (3C) to determine which promoters 

physically interacted with Region 8. In iOSE11 cells, Region 8, when compared to an 

adjacent site displayed two regions of frequent (Fig. 3h; blue arches) interactions. The 

interaction peak closer to the anchor is located upstream of the TSS but does not overlap 

with any known chromatin marks. The second interaction peak corresponds to region 7 

considered to be the core promoter of BNC2. No significant interaction was detected 

between Region 8 and the CNTLN TSS (Fig. 3h). As expected, no interaction was detected 

between the S/MAR in Region 11 and promoters in the region (Fig. 3i). The modules in 

Regions 7 and 8 appear to affect the major promoter of BNC2 and are a distal regulatory 

enhancer that physically interacts with the BNC2 promoter, respectively.

Fine mapping

Next, as part of our two-pronged approach, we conducted fine mapping of the 9p22 locus in 

15,437 women diagnosed with invasive EOC and 30,845 controls (Fig. 4a). We evaluated the 

association between genotype and disease using logistic regression by estimating the 

associations with each additional copy of the minor allele (log-additive models) for 4,234 

SNPs of which 2,418 were directly genotyped (Supplementary Table 4). SNP rs3814113 

remained the most statistically significant association (P = 2.10 × 10−34) (Fig. 4a) with the 

minor allele [C] being protective. Next, we calculated the likelihood ratio of each SNP 

relative to the most significant SNP (rs3814113) of being the functional variant underlying 

the signal. For any given set of correlated associated SNPs, the strength of evidence was 

estimated by the log likelihood statistic from the logistic regression; thus difference in the 

log likelihood between the SNP with the strongest association and any other SNP provides a 

measure of the log odds in favor of the most significant SNP being the SNP that is truly 

driving the observed association. There were 40 SNPs with odds of 1:1000 or better and 

were considered to be credible candidates for mediating the observed association. They were 

all in strong LD (r2 > 0.89).

While 35 out of the 40 SNPs were part of the set of 134 SNPs assessed during functional 

analysis, five SNPs (rs34131140, rs112442786, rs113198237, rs199782476, and 

c9_pos16900214/rs62543587) were not (Supplementary Fig. 3). SNPs rs199782476 and 

rs62543587 did not overlap with any biofeatures (FAIRE-seq, H3K4me1, H3K27Ac) 

suggesting they were not functionally relevant. The remaining three SNPs were part of Tile 

11 (rs112442786), Tile 12 (rs34131140) or the control (TC) Tile (rs113198237). Tiles 12 

and TC did not display significant activity in enhancer scanning (Fig. 2b) suggesting that 

rs112442786, which resided in Tile 11 and mapped to the S/MAR region, may be 

functionally relevant (Supplementary Fig. 3).
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Among the 40 SNPs, six SNPs with odds ranging from better than 1:4 (rs112442786) to 

better than 1:200 (rs181552334) mapped to the S/MAR (Region 11) (Fig. 4a). We repeated 

the association analyses adjusting for rs3814113 to identify additional independent signals in 

the region (Fig. 4b). Nine SNPs were significant at P < 10−5 (Supplementary Table 4; 

Conditional tab) of which two (rs7848057, rs80039758) mapped to the S/MAR (Fig. 4b). In 

this group of 9 SNPs, rs10756825 and c9_pos16889285 were the next most significant 

associations (p = 2.3 × 10−5; p = 6.23 × 10-5, respectively) and mapped close to the enhancer 

in Region 8 (Fig. 4b). Finally, several attempts to remove the S/MAR using CRISPR-based 

genome editing techniques were not successful, suggesting that deletion of this region may 

impact the viability of ovarian and fallopian tube cells.

To identify eQTL associations for c9orf92, BNC2, CNTLN and SH3GL2 we searched the 

GTEx dataset for single gene eQTLs in all tissues (GTEx Analysis Release V7; dbGaP 

Accession phs000424.v7.p2; fallopian tube not included due to small sample size). Although 

all four genes displayed eQTL associations (CNTLN = 11,039; C9ORF92 = 1; SH3GL2 = 

361; BNC2 = 94) (Supplementary Table 5) only BNC2 displayed eQTL associations with 

SNPs (rs10962662, rs10756823, and rs10124837; whole blood) present in our set of 40 

credible candidate SNPs. Next, we searched for single SNP eQTL associations in all tissues 

for 40 credible candidate SNPs. The only three eQTL associations found were for SNPs 

rs10962662, rs10756823, and rs10124837 with BNC2.

The data from the functional analysis and fine mapping data provide evidence that the 

candidate causal SNPs at the locus exert their effects in a 1.8Mb TAD with BNC2 as the 

most likely target gene at the locus.

In vitro Recognition of Specific DNA Sequences by BNC2 Zinc Fingers

BNC2 has three pairs of C2H2 zinc fingers (ZF) raising the possibility that it recognizes 

specific DNA sequences and is involved in transcription regulation (Fig. 5a) (30). To identify 

DNA sequences recognized by BNC2, GST-tagged constructs of each ZF pair 

(Supplementary Fig. 4) were expressed in bacteria and applied to a protein binding 

microarray (PBM) with overlapping, rationally randomized nucleotides, representing every 

possible motif up to 10 bp (21, 22). When aligned the top ten scoring sequences for each ZF 

pair generated a sequence logo using position weight matrix scoring (Fig. 5a). The motifs 

for ZF1,2 and 5,6 were consistent with the predicted C2H2 “recognition code” (31). Binding 

for ZF3,4, which yielded lower-confidence data, did not match the recognition code 

predictions (Fig. 5a) (32). The 3’ end of the ZF1,2 and ZF5,6 binding motifs had the same 

nucleotides at the exact same position and weight, consistent with the similarity in amino 

acid residue positions between ZF2 and ZF6 (Fig. 5a). Notably, the BNC2 promoter region 

contains two BNC2 ZF5,6 PBM binding sequences (Supplementary Fig. 4).

We validated BNC2 binding sequences identified with the PBM by conducting ChIP in 

iOSE11 and iFTSEC283 cells for endogenous BNC2 (Supplementary Fig. 4) at the PBM 

sites (−582 and −914 bp upstream of the TSS) at the BNC2 locus. A significantly larger 

amount of DNA was immunoprecipitated with the BNC2 antibody than with the IgG control 

at the −582 (iOSE11 p = 2.6 × 10−3, iFTSEC283 p = 8.3 × 10−3) and −914 (iOSE11 p = 1.8 

× 10−4, iFTSEC283 p = 2.0 × 10−6) bp sites, but not at the −2184 bp site (negative control; 

Buckley et al. Page 10

Cancer Res. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Fig. 4). These data provides evidence that the sites identified in the PBM 

experiment are recognized by endogenous BNC2.

BNC2 Genome-wide Target Sites

To identify genomic sites bound by BNC2 in ovarian cells, we used ChIP-Seq in iOSE11 

and iFTSEC283 cells (see Extended Data). MEME, a motif analysis tool, defined a motif 

centrally enriched in the ChIP-Seq peaks in both cell types (Fig. 5b-c). The motif identified 

by MEME appears to be a concatenation of the reverse complement motif for ZF1,2 and the 

motif for ZF5,6 with a 75% homology (Fig. 5b). The concatamer motif was significantly 

enriched in ChIP-Seq peak summits in iFTSEC283 and iOSE11 cells (Fig. 5c). ChIP-Seq 

data replicated BNC2 binding in the iOSE11 cells (chr9:16871799–16872039) at the −914 

position tested in ChIP-qPCR (Supplementary Fig. 4).

Identification and Validation of BNC2 Target Genes

To identify putative target genes regulated by regulatory elements containing BNC2 
recognition sites, we generated a list of 995 genes/transcripts with TSS within 30 kb of the 

BNC2 ChIP-Seq peak centers found in both iOSE11 and iFTSEC283 cells (Supplementary 

Table 2). Next, we used PANTHER (33) and found that several functional classes were 

statistically overrepresented in our set including system development (GO:0048731), 

anatomical structure development (GO:0048856), single-multicellular organism process 

(GO:0044707), multicellular organism development (GO:0007275), and tissue development 

(GO:0009888) (Supplementary Table 2).

From the above set, we selected a set of 87 genes that were: a) implicated in ovarian cancer; 

b) ovarian development; c) were part of KEGG pathways related to cancer; d) in which 

BNC2 ChIP-Seq peaks were found in their core promoter (within 1kb from the TSS) 

(Supplementary Table 2) and tested the extent to which their expression (measured by 

Nanostring) was modulated by overexpression of BNC2 in HEK 293T.. Multiple 

unsuccessful attempts were performed to manipulate expression - silencing or ectopic 

overexpression - levels of BNC2 in ovarian cells, suggesting that BNC2 levels are tightly 

controlled. Several genes mapping to KEGG Focal Adhesion, ECM-receptor interaction or 

TGF-β Signaling Pathways and implicated in ovarian cancer or ovarian development showed 

significant changes in expression upon BNC2 overexpression (Table 2; Supplementary Table 

2). Although most genes showed a positive correlation with BNC2 overexpression, FEM1A 
and IGTB5 showed an inverse correlation suggesting that BNC2 modulation of expression is 

likely to be context dependent (Table 2). Taken together, these experiments validate the 

BNC2 binding site in vivo and reveal putative downstream targets of BNC2 activity in 

ovarian cells.

DISCUSSION

Here, we started from early findings from GWAS for EOC risk and delineated a mechanistic 

hypothesis for susceptibility at the 9p22.2 locus. Using a two-pronged approach combining 

functional analysis and fine mapping we identified three genomic features (and enhancer to 

BNC2, the BNC2 promoter, and a Substrate/Matrix Attachment Region) harboring twelve 
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potentially functional SNPs (Fig. 1). Based on the likelihood statistics, the most likely causal 

SNPs were in a Substrate/Matrix Attachment Region (S/MAR) located in a 1.8 Mb 

topologically associating domain (TAD). Also, this TAD includes associated SNPs revealed 

in conditional analysis (adjusting for rs3814113) that locate to an enhancer region that 

interacts with the BNC2 promoter in ovarian cells. Taken together our data implicate 

multiple candidate causal SNPs at the locus that converge to regulate BNC2 in ovarian 

cancer susceptibility.

Our functional analysis revealed two SNPs in the BNC2 promoter, two SNPs in an enhancer 

that physically interacts with the BNC2 promoter, and a functional SNP in a S/MAR with 

allele-specific effects. Of these five SNPs, the strongest genetic evidence for causality is for 

rs181552334 in the S/MAR. An additional SNP, rs112442786 (r2 to rs181552334 = 0.9556), 

located in the same region, which emerged in our fine-mapping approach was not directly 

tested and may also contribute to risk. S/MARs are thought to help maintain the local 3D 

chromatin structure by contributing to looping and modulate gene expression (34). 

Polymorphisms in S/MARs can regulate, in an allelic-specific manner, attachment to the 

nuclear scaffold/matrix (35). Interestingly, our EMSA experiments suggest allelic specific 

binding to nuclear proteins. Several attempts to remove the S/MAR using CRISPR-based 

genome editing techniques were not successful suggesting that ovarian cells may not be 

viable without this S/MAR. CRISPR-based deletion of a region including the S/MAR in 

293T HEK cells led to a two-fold reduction of BNC2 expression (36), with no changes in 

CNTLN expression, implicating the S/MAR in BNC2 regulation. Notably, all three cis-

eQTL associations detected for the 40 credible SNPs from fine mapping were with BNC2; 

and all cis-eQTL associations for the four genes at the locus only BNC2 showed eQTL with 

the set of credible SNPs. High dimensional chromatin interaction (HiC) data from seven cell 

lines indicates the presence of a 1.8 Mb topologically associating domain (TAD) in which 

the S/MAR is situated close to one of its borders. Our data suggest a role for several 

regulatory interactions, defined by a TAD containing multiple non-coding elements which 

target BNC2 (Fig. 1).

Although future research will further delineate the relationship between BNC2 and ovarian 

biology, recent reports support our findings. Hnisz et al. (37) identified a super enhancer in 

ovarian cells near BNC2, consistent with BNC2 representing a cell identity gene or master 

regulator in ovarian cells. The bonaparte zebrafish (Bnc2) mutants display skin pigmentation 

defects (no body stripes), stunted growth, and dysmorphic ovaries coupled to infertility (38). 

In mice, Bnc2 is expressed in ovarian theca cells, and female mice nullizygous for Bnc2 
display an excessive number of stromal cells combined with a reduced number of oocytes 

(39). Interestingly, rs12379183, in Region 7, is associated with sonographically detectable 

abnormalities in the ovaries (40). Moreover, a network-based integration of GWAS and gene 

expression in ovarian cancer focusing on transcription factors identified BNC2 using a 

combination of coexpression and enrichment analysis as a gene contributing to a HOX-

centric network associated with serous ovarian cancer risk (41). Finally, a recent analysis of 

genetic interactions between germline polymorphisms and tumor formation in specific 

tissues revealed a significant association between rs3814113 and ovarian cancer (42).
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Genome-wide and candidate gene association studies suggest that this locus may also be 

pleiotropic in humans with effects on ovary, skin, and skeletal biology. SNPs in the 9p22.2 

locus have been associated with skin pigmentation in Europeans (43) and Asians (44), with 

freckling (45), and height (46).Functional analysis revealed rs12350739 as the likely causal 

variant contributing to saturation of skin color (47). SNP rs12350739 was identified in the 

present study mapping to a Region 8 (a candidate BNC2 enhancer). An introgressed region 

of Neanderthal DNA (Chr9: 16,720,121–16,786,930) proposed to confer adaptive advantage 

to colder climates through changes in skin pigmentation is also present at this locus (48, 49). 

Finally, this locus has also been shown to modify ovarian cancer risk in carriers of BRCA1 
and BRCA2 pathogenic variants (50).

We acknowledge limitations of this work including the that regulatory networks may be 

significantly altered during development (51), the incomplete knowledge of the regulatory 

landscape in ovarian cells (e.g. lack of data on CTCF repressor marks and of information on 

other non-coding RNA elements) and the possibility of missing rare alleles that contribute to 

the phenotype that could be revealed using the larger Haplotype Reference Consortium data 

for imputation. Despite these limitations, our data identify plausible and likely biological 

mechanisms operating to modulate ovarian cancer risk. In summary, we confirmed the 

region as a highly associated susceptibility locus and propose that the mechanism of ovarian 

cancer susceptibility at the 9p22.2 locus is likely mediated by changes in a transcriptional 

regulatory network involving several regulatory elements (enhancers and S/MAR) acting on 

BNC2.

Extended Data

Antibody

Chromatin immunoprecipitations were performed as previously described1 using a validated 

Prestige® BNC2 antibody (Sigma Atlas; cat.no. HPA018525). Prestige Antibodies were 

developed supported by the Human Protein Atlas (proteinatlas.org). According to the 

manufacturer Prestige Antibodies are tested in a series of validation steps. The BNC2 

antibody was able to immunoprecipitate ectopically expressed CBP-tagged BNC2 showing 

that it can also specifically recognize native BNC2 (Extended Data Figure 1).
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Extended Data Figure 1: GFP and CBP tagged BNC2 were over expressed in 293FT cells.
Lysates of these cells were immunoprecipitated with either Rabbit IgG or the Prestige 

antibody for BNC2 (Sigma). Immunoprecipitates (IP; #1, 1μg of BNC2 antibody; #2, 2μg of 

BNC2 antibody) undergo Western Blot for CBP. A band for BNC2 between the 150 kDA 

and 250 kDA mark appears in the input and BNC2 IP for over expressed BNC2 but not in 

the input and BNC2 IP for over expressed GFP nor in the IgG IP.

ChIP-Seq

ChIP-Seq was performed on the endogenous BNC2. In brief, iOSE11 or iFTSEC283 cells at 

70% confluence were cross-linked with 1% Formaldehyde in PBS. Crosslinking was 

quenched by adding Glycine to a concentration of 0.125 M. After washing, cells were 

collected in Szaks’ RIPA buffer [150 mM NaCl, 1% NP-40, 0.5% deoxycholate, 0.1% SDS, 

50 mM Tris HCl pH8, 5 mM EDTA, Protease Inhibitors, 50 mM NaF, 0.2 mM sodium 

orthovanadate, 0.5 mM PMSF] and the lysate was brought to approximately 1 mg/mL. The 

lysate was then sonicated in Biogenode Sonicating Water Bath for 12 cycles of 30 sec on 

and 30 sec off for 8 min. One mg of protein was then mixed with 40 μL of 50% slurry 

protein A/G agarose beads (Santa Cruz) previously washed in Szaks’ RIPA buffer and pre-

cleared for 1–2 h at 4°C. We prepared one lysate per cell line, referred to as OSE_input and 

FTE_input.

Next, pre-cleared lysate was mixed with 5 μg of BNC2 antibody (Sigma Atlas) and 40 μL of 

50% slurry protein A/G agarose beads previously washed in Szaks’ RIPA buffer and 

saturated with 1 mg/mL BSA. The mix was incubated overnight at 4°C while rotating. Beads 
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were then washed twice with Szaks’ RIPA Buffer, four times with Szaks’ IP wash buffer 

[100 mM Tris HCl pH 8.5, 500 mM LiCl, 1% NP–40, 1% deoxycholate], twice again with 

Szak’ RIPA Buffer and twice with cold TE. Immunocomplexes were eluted by incubating 

samples at 65°C for 10 min in 1.5X Talianidis Elution Buffer [70 mM Tris HCl pH 8, 1 mM 

EDTA, 1.5% SDS]. Crosslinks were reversed by bringing samples to 200 mM NaCl solution 

and incubating at 65°C for 5 h. DNA was purified by phenol-chloroform extraction and re-

suspended in 50 μL 10 mM Tris pH 8.0.

For BNC2 ChIP-Seq four individual ChIP samples (from each input lysate) were pooled for 

each cell line (iOSE11 and iFTSEC283) in two biological replicates, referred to as OSE1, 

OSE2, FTE1, and FTE2. Immunoprecipitated DNA was used to generate a sequencing 

library using the NuGEN Ovation Ultralow Library System with indexed adapters (NuGEN, 

Inc., San Carlos, CA). The library was PCR amplified and size-selected using AxyPrep 

Fragment Select beads (Corning Life Sciences - Axygen Inc., Union City, CA). The size and 

quality of the library was evaluated using the Agilent BioAnalyzer, and the library was 

quantitated with the Kapa Library Quantification Kit (Kapa Biosystems, Woburn MA). Each 

enriched DNA library was then sequenced on an Illumina HiScan SQ sequencer to generate 

100-base paired-end reads. The raw sequence data was de-multiplexed using the Illumina 

CASAVA 1.8.2 software (Illumina, Inc., San Diego, CA) and binding sites were identified 

using the MACS2 software2 using input DNA as a control and callpeak function without 

building the shifting model, minimum FDR as 0.01.

The .bam and .wig files were visualized and inspected using the UCSC genome browser3. 

The number of reads for each sample and their quality metrics are shown in Extended Data 

Figure 2. All samples had >70% of reads with Q30 or better and 2% or less of duplicates. 

For peak calling −log10(q value) > 2 (corresponding to an 1% FDR) was used as a cut-off. 

The number of paired end reads ranged from ~50M to ~69M per sample above the 

ENCODE minimum requirement of 20M for point-source (ChIP-Seq) experiments4.

iFTSEC283 cells had a total of 5,687 (FTE1) and 5,730 (FTE2) peaks with 3,396 

overlapping peaks and iOSE11 cells had a total of 5,492 (OSE1) and 9,818 (OSE2) with 

3,205 overlapping peaks. Peaks used for identification of potential target genes had an 

intensity greater than 0.05 (reads/length), number of reads greater than 50, and a fold change 

compared to the input greater than 10 for a total of 2,012 peaks for iFTSEC283 cells and 

544 peaks for iOSE11 cells. Median enrichment ranged from 5.2 to 6.9 considered within 

the norm for ENCODE experiments4. Typical peaks are illustrated in Extended Data Figure 

3.
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Extended Data Figure 2: Sample quality metrics for ChIP-Seq experiment.
A. Sample description and quality metrics. Rawnum and cleanreadsnum, number of raw and 

clean map reads, respectively. Paired and paired_perc, number and percent of paired mapped 

reads. ≥Q30(%), percent of map reads Q30 and above. B. Distribution of map reads 

according to their quality metrics (Q bins). Red dashed line indicates threshold of ≥Q30. C. 
Peak overlaps between replicates of the same cell lines and overlapped between the two 

samples.
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Extended Data Figure 3: Examples of ChIP-Seq data from the Human Genome Browser.
A. FAM49B peak. B. TGBR3 peak. C. Jun peak. Peaks located in these regions and found 

both in FTE and OSE samples. The total length of the called peak is shown as the blue 

highlight.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance:

Mapping the 9p22.2 ovarian cancer risk locus identifies BNC2 as an ovarian cancer risk 

gene
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Figure 1: Rules guiding SNP selection and prioritization of causal SNPs at the 9q22 locus using a 
two-pronged strategy.
Functional dissection guided by Linkage Disequilibrium with the most significantly 

associated risk SNP (left flowchart) identified five SNPs in three regulatory elements, an 

enhancer to BNC2, the BNC2 promoter, and a Substrate/Matrix attachment region (S/MAR). 

Analysis guided by fine mapping data (right flowchart) points to the S/MAR as the region 

with the SNPs most highly associated with risk (in bold red) which was also identified in the 

functional analysis. Conditional analysis (adjusted for rs3814113; green font) revealed 

independent signals at the locus.
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Figure 2: Candidate functional SNPs overlapping with regions of regulatory activity in ovarian 
cells.
A. Within the region of the 9p22 locus containing linked SNPs, twelve regions contain 

FAIRE peaks (gray bars), H3K27Ac peaks (orange bars), and/or H3K4Me1 peaks (maroon 

bars) in iOSE and iFTSEC cells. Some regulatory regions do not overlap with candidate 

SNPs (yellow highlight). Regions highlighted in red overlap with candidate functional SNPs 

(thin blue bars). Numbered blue bars represent the location of 2 kb tiles cloned into 

luciferase reporter vectors. B. Box and whisker plots showing the luciferase activity from 
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duplicate experiments with eight biological replicates of each tile in both orientations. 

Asterisks denote tiles exhibiting significant transcription activity compared to a control tile 

(C) located in a genomic region inactive in ovarian cells as judged by features in the figure. 

Tiles moving forward in the functional assays are colored red. C and D. Luciferase assays 

reveal significant allele-specific differences in transcription activation for rs62541878, 

rs62541920, rs12379183, rs1092647, rs10810657, rs12350739, and rs77507622, as 

indicated by red boxes and asterisks in forward (C) or reverse orientation (D). Reference and 

effect allele tiles are shown in blue and red fonts, respectively. E. EMSA showing allele-

specific differences in mobility between the reference and effect alleles. SNPs in Regions 7 

(rs12379183 and rs6251920), and 8 (rs12350739 and rs77507622) display differences in 

complex formation between the reference and effect alleles. SNPs with allele-specific 

differences are indicated by red text.
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Figure 3: Region 11 is attached to the nuclear scaffold in ovarian cells.
A-C. Genomic DNA (total or attached to the nuclear scaffold) was extracted from ovarian 

iOSE11 and HeLa cells. For each region the ratio of scaffold-attached to total DNA is 

depicted. Significance was defined by a Z score ≥21 (Z score = (average of scaffold attached 

DNA – average of negative control)/standard deviation of negative control). R11, Region 11; 

ApoB, ApoliproteinB gene, used as positive control in HeLa cells. D. HiC (High 

dimensional chromosome conformation capture) interaction frequency data from cell lines 

obtained from the Yue lab HiC browser (http://promoter.bx.psu.edu/hi-c/view.php). Dashed 
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line indicates the position of the S/MAR. E. Depiction of the location of the topologically 

associating domain (TAD) inferred from the interaction data in D and the relative positions 

of the S/MAR and the other two genes located in the TAD. F. A snapshot from the genome 

browser displays UCSC genes as well as FAIRE peaks (gray), H3K27Ac peaks (orange), 

and/or H3K4Me1 peaks (maroon) in iOSE, iFTSE, and ovarian cancer cells generated in the 

laboratory. The four genes within the region considered as potential target genes for ovarian 

cancer susceptibility include c9orf92, BNC2, CNTLN, and SH3GL2. ENCODE H3K4me3 

peaks (purple), used to identify the promoters of these four genes (highlighted in yellow). 

H3K27ac tracks (orange) inform the extent to which these promoters are active and show 

that BNC2 and CNTLN promoters are active in ovarian cells while c9orf92 and SH3GL2 are 

not. G. RNA-Seq for these four genes indicates the presence of transcripts for BNC2 and 

CNTLN but not for SH3GL2 and c9orf92. H-I. Chromosome conformation capture (3C) 

analysis indicates that Region 8 interacts with the BNC2 promoter (H) while region 11 

(right) does not show a significant interaction compared to the adjacent site (I). Anchor 

regions for 3C are highlighted in red. Red dashed line indicates the interaction to adjacent 

probes. Each graph is aligned with chromatin mark and transcript information from the 

genome browser. Regions containing SNPs are indicated by blue boxes. Blue arches depict 

the interactions.
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Figure 4: Fine mapping of the interval at 9p22 (chr9: 16407967–17407967) locus in 15,437 
women diagnosed with invasive EOC and 30,845 controls.
Plotted using LocusZoom (http://locuszoom.sph.umich.edu/locuszoom). A. rs3814113 (the 

most significant SNP in the original analysis (Song et al.) is shown as a purple diamond as 

remains as the most significant association in fine mapping analysis for serous ovarian 

cancer. SNPs are colored according to LD to rs3814113. B. Conditional analysis adjusting 

for rs3814113.
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Figure 5: BNC2 recognizes specific nucleotide sequence.
A. BNC2 is characterized as a C2H2 zinc finger protein with three pairs of ZFs (called 1,2; 

3,4; 5,6). BNC2 Zinc Finger binding sites were identified in vitro by applying recombinant 

proteins of each ZF pair to a protein binding microarray. Position weight matrices of all 

potential binding sites with significant scores for each BNC2 ZF pair are shown as logos. 

Motifs predicted based on the protein sequence of the ZF domains aligned with ZF1,2 and 

ZF5,6. The 3’ end of the sequences recognized by ZF1,2 and ZF5,6 reveal the same 

nucleotides. Inspection of the amino acid sequences for ZF2 and ZF6 show that amino acid 

residues at position −1, 2, 3, 6, and 10 within the alpha helix that specifically interact with 

DNA nucleotides (in red) are the same. B. The ChIP-Seq motif identified by MEME seems 

to be a concatenation of the predicted motif for ZF1,2 and the predicted reverse complement 

motif for ZF 5,6. C. Enrichment of motif relative to ChIP-Seq peak summits.
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Table 1:

Twenty-two SNPs correlated with rs3814113 overlap with areas of regulatory activity.

Region chr9 Coordinates Tile SNP Name Effect Allele Reference Allele R2 MAF P value in Song et al.

1 16,837,392–16,838,723

2 16,848,158–16,848,790

3 16,850,432–16,851,014

4 16,852,717–16,853,479

5 16,857,377–16,857,907

T5 B A C 0.719 A=0.3904

6 16,860,790–16,861,348

T6 rs62541878 T A 0.3 T=0.0513

7 16,863,768–16,874,127

T7.1
rs11792249 G T 0.3 G=0.0513

rs2153271 T C 0.539 T=0.2879 4.66×10−10

T7.2
rs62541920 A G 0.3 A=0.0511

rs12379183 G A 0.445 G=0.2462 1.36×10−10

T7.3 rs10962647 G T 0.3 G=0.0515

T7.4 & T7.5 rs10962648 C G 0.3 C=0.0515

T7.6
rs62541922 C T 0.317 C=0.0487

rs62541923 A C 0.3 A=0.0507

T7.7 rs11789875 A G 0.3 A=0.0489

T7.8
rs10962649 T C 0.3 T=0.0489

rs10810650 T C 0.589 T=0.2963

8 16,883,570–16,885,692

T8

rs10810657 A T 0.528 A=0.2915

rs12350739 A G 0.508 A=0.1875

rs77507622 G A 0.3 G=0.0493

9 16,899,790–16,900,338

10 16,901,238–16,902,039

11 16,907,559–16,908,180

T11

rs113780397 A G 0.818 A=0.4395

rs9697099 A T 0.301 T=0.4814

rs181552334 G A 0.527 G=0.4395

rs76718132 T C 0.379 NA

rs117224476 G T 0.44 NA

rs77795022 G T 0.442 NA

12 16,915,387–16,915,739

LD (r2 ≥ 0.3) to rs3814113 based on 1000GP data v3.

MAF: minor allele frequency; rs2153271 are reported in dbSNP as the reverse orientation to the genome; NA, not available. SNPs in bold represent 
the final five SNPs remaining at the end of the functional analysis; SNP shown in bold and underlined indicates the only SNP that is common to the 
two analytical approaches.
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Table 2:

Validation of ChIP-seq Data by Nanostring

Gene TSS to Peak Center P-Value Expression Correlation to 
BNC2 PBM Notes

FAM49B 21553 0.000147821 - 1,2;5,6 Ovarian cancer

ITGB5 8074 0.000463581 - 1,2;5,6 Focal Adhesion

JUN 20445 0.00626649 + 1,2; 5,6 Focal adhesion, WNT and MAPK signaling

TGFBR3 5215|−14508 0.0390608 + 5,6 TGF-beta Signaling Pathway

CCND3 −25565 0.00106617 + 1,2;5,6 Focal adhesion, WNT and MAPK signaling

CEP55 −24627|24647 0.002645 + 1,2;5,6 Ovarian Development

FEM1A −65 0.0206431 - 1,2; 5,6 Promoter with Peak

Expression correlation to BNC2: indicates whether the expression of the target gene is positively (upregulated) (+) or negatively (downregulated) 
(−) correlated with the overexpression of BNC2.
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