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Abstract

Dynamic textures are sequences of images of moving scenes that exhibit certain stationarity properties

in time; these include sea-waves, smoke, foliage, whirlwind etc. We present a novel characterization of

dynamic textures that poses the problems of modeling, learning, recognizing and synthesizing dynamic

textures on a firm analytical footing. We borrow tools from system identification to capture the “essence”

of dynamic textures; we do so by learning (i.e. identifying) models that are optimal in the sense of max-
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imum likelihood or minimum prediction error variance. For the special case of second-order stationary

processes, we identify the model sub-optimally in closed-form. Once learned, a model has predictive

power and can be used for extrapolating synthetic sequences to infinite length with negligible computa-

tional cost. We present experimental evidence that, within our framework, even low-dimensional models

can capture very complex visual phenomena.

1. Introduction

Consider a sequence of images of a moving scene. Each image is an array of positive numbers that

depend upon the shape, pose and motion of the scene as well as upon its material properties (reflectance)

and on the light distribution of the environment. It is well known that the joint reconstruction ofpho-

tometryandgeometryis an intrinsically ill-posed problem: from any (finite) number of images it is not

possible to uniquely recover all unknowns (shape, motion, reflectance and light distribution). Traditional

approaches to scene reconstruction rely on fixingsomeof the unknowns either by virtue of assumption

or by restricting the experimental conditions, while estimating the others1.

However, such assumptions can never be validated from visual data, since it is always possible to

construct scenes with different photometry and geometry that give rise to the same images2. The ill-

posedness of the most general visual reconstruction problem and the remarkable consistency in the

solution as performed by the human visual system reveals the importance of priors for images [48];

1For instance, in stereo and structure from motion one assumes that (most of) the scene has Lambertian reflection proper-
ties, and exploits such an assumption to establish correspondence and estimate shape. Similarly, in shape from shading one
assumes constant albedo and exploits changes in irradiance to recover shape.

2For example, a sequence of images of the sea at sunset could have been originated by a very complex and dynamic shape
(the surface of the sea) with constant reflection properties (homogeneous material, water), but also by a very simple shape
(e.g. the plane of the television monitor) with a non-homogeneous radiance (the televised spatio-temporal signal). Similarly,
the appearance of a moving Lambertian cube can be mimicked by a spherical mirror projecting a light distribution to match
the albedo of the cube.
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they are necessary to fix the arbitrary degrees of freedom and render the problem well-posed [26]. In

general, one can use the extra degrees of freedom to the benefit of the application at hand: one can fix

photometry and estimate geometry (e.g. in robot vision), or fix geometry and estimate photometry (e.g.

in image-based rendering), or recover a combination of the two that satisfies some additional optimality

criterion, for instance the minimum description length of the sequence of video data [40].

Given this arbitrariness in the reconstruction and interpretation of visual scenes, it is clear that there

is no notion of atrue interpretation, and the criterion forcorrectnessis somewhat arbitrary. In the case

of humans, the interpretation that leads to a correct Euclidean reconstruction (that can be verified by

other sensory modalities, such as touch) has obvious appeal, but there is no way in which the correct

Euclidean interpretation can be retrieved from visual signals alone.

Therefore, in this paper we will analyze sequences of images of moving scenes solely as visual sig-

nals. “Interpreting” and “understanding” a signal amounts to inferring a stochastic model that generates

it. The “goodness” of the model can be measured in terms of the total likelihood of the measurements

or in terms of its predicting power: a model should be able to give accurate predictions of future signals

(akin to so-called prediction error methods in system identification). Such a model will involve a combi-

nation of photometry, geometry and dynamics and will be designed for maximum-likelihood or minimal

prediction error variance. Notice that we will not require that the reconstructed photometry or geome-

try becorrect (in the Euclidean sense), for that is intrinsically impossible without involving (visually)

non-verifiable prior assumptions. All we require is that the model must be capable of predicting future

measurements. In a sense, we look for an “explanation” of the image data that allows us to recreate and

extrapolate it. It can therefore be thought of as the compressed version or the “essence” of the sequence

of images.
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1.1. Contributions of this work

This work presents several novel aspects in the field of dynamic (or time-varying) textures. On the issue

of representation, we present a novel definition of dynamic texture that is general (even the simplest in-

stance can capture the statistics of a sequence of images{I(t)} that are second-order stationary process3

with an arbitrary covariance sequence) and precise (it allows making analytical statements and drawing

from the rich literature on system identification). Onlearning, we propose two criteria: total likelihood

or prediction error. Under the hypothesis of second-order stationarity, we give a closed-form sub-optimal

solution of the learning problem. Onrecognition, we show how textures alike tend to cluster in model

space, therefore assessing the potential to build a recognition system based on this framework [41]. On

synthesis, we show that even the simplest linear dynamical model (first-order ARMA4 model with white

zero-mean IID5 Gaussian input) captures a wide range of dynamic textures. Our algorithm is simple to

implement, efficient to learn and fast to simulate; it allows generating infinitely long sequences from

short input sequences and to control the parameters in the simulation [12].

Although in our experiments we only consider simple choices of input distributions, more general

classes can be taken into account by using particle filtering techniques and more general classes of filter

banks. We only use linear dynamical systems because they capture second-order stationarity. Several

extensions can be devised, although no closed-form solutions are available. Some of these results may

be useful for video compression and for image-based rendering and synthesis of image sequences.

3A stochastic process is stationary (of orderk) if the joint statistics (up to orderk) are time-invariant. For instance a
process{I(t)} is second-order stationary if its meanĪ

.= E[I(t)] is constant and its covarianceE[(I(t1) − Ī)(I(t2) − Ī)]
only depends upont2 − t1.

4ARMA stands for auto-regressive moving average.
5IID stands for independent and identically distributed.
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1.2. Prior related work

Statistical inference for analyzing and understanding general images has been extensively used for the

last two decades [31]. The statistical characterization of textures was pioneered by Julesz four decades

back [24]. Following that, there has been extensive work in the area of 2D texture analysis, recognition

and synthesis. Most of the approaches use statistical models [21, 48, 37, 38, 10, 35, 9, 20] while few

others rely on deterministic structural models [14, 47]. Another distinction is that some work directly on

the pixel values while others project image intensity onto a set of basis functions6.

There have been many physics-based algorithms which target specific dynamic textures [13, 17, 36].

Some simulations have been performed using particle systems [39, 44]. In these approaches a model

of the scene is derived from first principles, then approximated, and finally simulated. Such techniques

have been successfully applied for synthesizing sequences of natural phenomena such as smoke, fire

etc. (see for instance [45, 15] and references therein), but also walking gaits ([22] and references), and

mechanical systems ([4] and references). The main advantage of these techniques is the extent in which

the synthesis can be manipulated, resulting in great editing power. While physics-based models are the

most principled and elegant, they have the disadvantage of being computationally expensive and often

highly customized for particular textures, therefore not allowing automatic ways of inferring new models

for a large class of dynamic textures.

An alternative to physics-based techniques are image-based ones. In this framework, new texture

movies are generated using images without building a physical model of the process that generates the

scene. Among these approaches, one can distinguish two subclasses, the so-called “procedural” tech-

niques that forego the use of a model altogether and generate synthetic images by clever concatenation or

6Most common methods use Gabor filters [6], and steerable filters [18, 43, 21]. One could also infer and choose the best
filters as part of the learning process [48].
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repetition of image data, and image-based techniques that rely on a model, albeit not a physical one. As

example of the first subclass, the work of Schödl et al. [42], addresses the problem by finding transition

points in the original sequence where the video can be looped back in a minimally invasive way. The

process involves morphing techniques to smooth out visual discontinuities. Another example is the work

of Levoy and Wei [47], where they synthesize temporal textures by generating each new pixel, in the 3D

spatio-temporal space of a video sequence, by searching, in the original sequence, a pixel neighborhood

that best matches its companion in the synthesized output. Procedural techniques result in a relatively

quick solution for the purpose of synthesis. Within this framework, the simulation is generated with-

out explicitly inferring a model, which results in lack of flexibility for other purposes such as editing,

classification, recognition, or compression.

There has been comparatively little work in the specific area of image-based techniques that rely on a

model. The problem of modeling dynamic textures has been first addressed by Nelson and Polana [32],

where they classify regional activities of a scene characterized by complex, non-rigid motion. The same

problem has been later considered by Saisanet al. in [41].

Bar-Joseph [3] uses multi-resolution analysis (MRA) tree merging for the synthesis and merging of

2D textures and extends the idea todynamic textures. For 2D textures new MRA trees are constructed

by merging MRA trees obtained from the input; the algorithm is different from De Bonet’s algorithm

[10] that operates on a single texture sample. The idea is extended to dynamic textures by constructing

MRA trees using a 3D wavelet transform. Impressive results were obtained for the 2D case, but only a

finite length sequence is synthesized after computing the combined MRA tree. Our approach captures

the essence of a dynamic texture in the form of a dynamical model, and an infinite length sequence can

be generated in real time using the parameters computed off-line and, for the particular case of linear
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dynamic textures, in closed-form.

Szummer and Picard’s work [46] on temporal texture modeling uses a similar approach towards cap-

turing dynamic textures. They use the spatio-temporal auto-regressive model (STAR), which imposes a

neighborhood causality constraint even for the spatial domain. This severely restricts the textures that

can be captured and does not allow to capture rotation, acceleration and other simple non translational

motions. It works directly on the pixel intensities rather than a smaller dimensional representation of

the image. We incorporate spatial correlation without imposing causal restrictions, as will be clear in

the coming sections, and can capture more complex motions, including ones where the STAR model is

ineffective (see [46], from which we borrow some of the data processed in Section 5).

2. Representation of dynamic textures

What is a suitable definition of texture? For a single image, one can say it is a texture if it is a realization

from a stationary stochastic process with spatially invariant statistics [48]. This definition captures the

intuitive notion of texture. For a sequence of images (time-varying texture), individual images are clearly

not independent realizations from a stationary distribution, for there is a temporal coherence intrinsic in

the process that needs to be captured. The underlying assumption, therefore, is that individual images

are realizations of the output of a dynamical system driven by an independent and identically distributed

(IID) process. We now make this concept precise as an operative definition of dynamic texture.

2.1. Definition of dynamic texture

Let {I(t)}t=1...τ , I(t) ∈ Rm, be a sequence ofτ images. Suppose that at each instant of timet we

can measure a noisy version of the image,y(t) = I(t) + w(t), wherew(t) ∈ Rm is an independent
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and identically distributed sequence drawn from a known distribution7, pw(·), resulting in a positive

measured sequencey(t) ∈ Rm, t = 1 . . . τ . We say thatthe sequence{I(t)} is a (linear) dynamic

textureif there exists a set ofn spatial filtersφα : R → Rm, α = 1 . . . n and a stationary distribution

q(·) such that, defining8 x(t) ∈ Rn such thatI(t) = φ(x(t)), we havex(t) =
∑k

i=1 Aix(t− i) + Bv(t),

with v(t) ∈ Rnv an IID realization9 from the densityq(·), for some choice of matrices,Ai ∈ Rn×n,

i = 1, . . . , k, B ∈ Rn×nv and initial conditionx(0) = x0. Without loss of generality, we can assume

k = 1 since we can redefine the state of the above modelx(t) to be[x(t)T x(t − 1)T . . . x(t − k)T ]T .

Therefore, a linear dynamic texture is associated to an auto-regressive moving average process (ARMA)

with unknown input distribution





x(t + 1) = Ax(t) + Bv(t)

y(t) = φ(x(t)) + w(t)

(1)

with x(0) = x0, v(t)
IID∼ q(·) unknown,w(t)

IID∼ pw(·) given, such thatI(t) = φ(x(t)). To the best of

our knowledge, the characterization of a dynamic texture as the output of an ARMA model is novel10.

We want to make it clear that this definition explains what we mean by dynamic textures. It could be

argued that this definition does not capture the intuitive notion of a dynamic texture, and that is indeed

7This distribution can be inferred from the physics of the imaging device. For CCD sensors, for instance, a good approxi-
mation is a Poisson distribution with intensity related to the average photon count. The reason for including the termw(t) in
modeling dynamic textures is because it is necessary for the covariance sequence ofy(t) to be arbitrary. Moreover, standard
results in stochastic realization [29] state that, under some additional hypotheses (see Section 4), second-order stationary
processes can be represented as the output of models of the type (1), which include the output noise termw(t).

8φ(·) indicates the combination of the output of then filters{φα} respectively applied to each of then state components;
see Section 2.2 for details.

9In our experiments we havem = 320 × 220 for the color sequences, andm = 170 × 110 for the graylevel sequences,
while n ranges from 10 to 50, andnv ranges from 10 ton.

10[16], which appeared after this paper was submitted, also advocates the use of AR models for registering non-rigid
scenes.
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possible. As showed in Section 5, however, we have found that the model (1) captures most of what

our intuition calls dynamic textures, and even visual phenomena that are beyond the purpose of this

modeling framework. Furthermore, one can easily generalize the definition to an arbitrary non-linear

model of the formx(t + 1) = f(x(t), v(t)), leading to the concept of anon-linear dynamic texture.

2.2. Filters and dimensionality reduction

The definition of dynamic texture above entails a choice of filtersφα, α = 1 . . . n. These filters are also

inferred as part of the learning process for a given dynamic texture.

There are several criteria for choosing a suitable class of filters, ranging from biological motivations

to computational efficiency. In the simplest case, we can takeφ to be the identity, and therefore look at

the dynamics of individual pixels11 x(t) = I(t) in (1). We view the choice of filters as a dimensionality

reduction step, and seek for a decomposition of the image in the simple (linear) form

I(t) =
n∑

i=1

xi(t)θi
.
= Cx(t) , (2)

whereC = [θ1, . . . , θn] ∈ Rm×n and{θi} can be an orthonormal basis ofL2, a set of principal compo-

nents, or a wavelet filter bank, for instance.

An alternative non-linear choice of filters can be obtained by processing the image with a filter bank,

and representing it as the collection of positions of the maximal response in passband [30]. In this paper

we will restrict our attention to linear filters.

11As an anonymous reviewer remarked, this would result in an approach similar to Video Textures [42].
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3. Learning dynamic textures

Given a sequence of noisy images{y(t)}t=1...τ , learning the dynamic texture amounts to identifying

the model parametersA,B,C and the distribution of the inputq(·) in the model (1). This is asystem

identification problem[27], where one has to infer a dynamical model from a time series. However, in

the literature of dynamical systems, it is commonly assumed that the distribution of the input is known.

In the context of dynamic textures, we have the additional complication of having to infer the distribution

of the input along with the dynamical model. The learning, or system identification, problem can then

be posed as follows.

3.1. Maximum likelihood learning

The maximum-likelihood formulation of the dynamic texture learning problem can be posed as follows:

given y(1), . . . , y(τ), find

Â, B̂, Ĉ, q̂(·) = arg max
A,B,C,q

log p(y(1), . . . , y(τ))

subject to (1) and v(t)
IID∼ q.

The inference method depends crucially upon what type of representation we choose forq. Note that the

above inference problem involves the hidden variablesx(t) multiplying the unknown parameterA and

realizationsv(t) multiplying the unknown parameterB, and is therefore intrinsically non-linear even

if the original state space model is linear. In general, one could use iterative techniques that alternate

between estimating (sufficient statistics of) the conditional density of the state and maximizing the like-

lihood with respect to the unknown parameters, in a fashion similar to the expectation-maximization
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(EM) algorithm [11]. In order for such iterative techniques to converge to a unique minimum,canonical

model realizationsneed to be considered, corresponding to particular forms for the matricesA andB.

We discuss such realizations in Section 4, where we also present aclosed-form sub-optimal solutionfor

a wide class of dynamic textures.

3.2. Prediction error

As an alternative to maximum-likelihood, one can consider estimating the model that results in the least

prediction error, for instance in the sense of mean square. Letx̂(t + 1|t) .
= E[x(t + 1)|y(1), . . . , y(t)]

be the best one-step predictor that depends upon the unknown parametersA,B, C, q. One can then pose

the problem as

Â, B̂, Ĉ, q̂
.
= lim

t→∞
arg min E‖y(t + 1)− Cx̂(t + 1|t)‖ (3)

subject to (1).

Unfortunately, explicit forms of the one-step predictors are available only under restricted assumptions,

for instance linear models driven by white Gaussian noise which we consider in Section 4. For details

the reader is referred to [29].

3.3. Representation of the driving distribution

So far we have managed to defer addressing the fact that the unknown driving distribution belongs, in

principle, to an infinite-dimensional space, and therefore something needs to be said about how this issue

is dealt with algorithmically.

We consider three ways to approach this problem. One is to transform this into a finite-dimensional
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inference problem by choosing a parametric class of densities. This is done in the next section, where

we postulate that the unknown driving density belongs to a finite-dimensional parameterization of a

class of exponential densities, and therefore the inference problem is reduced to a finite-dimensional

optimization. The exponential class is quite rich and it includes, in particular, multi-modal as well

as skewed densities, although with experiments we show that even a single Gaussian model allows

achieving good results. When the dynamic texture is represented by a second-order stationary process

we show that a closed-form sub-optimal solution can be obtained.

The second alternative is to represent the densityq via a finite number of fair samples drawn from

it; the model (1) can be used to represent the evolution of the conditional density of the state given the

measurements, and the density is evolved by updating the samples so that they remain a fair realization

of the conditional density as time evolves. Algorithms of this sort are called “particle filters” [28], and in

particular the CONDENSATION filter [8] is the best known instance in the Computer Vision community.

The third alternative is to treat (1) as a semi-parametric statistical problem, where one of the “param-

eters” (q) lives in the infinite-dimensional manifold of probability densities that satisfy certain regularity

conditions, endowed with a Riemannian metric (corresponding to the Fisher’s information matrix), and

to design gradient descent algorithms with respect to the natural connection, as it has been done in the

context of independent component analysis (ICA) by Amari and Cardoso [1]. This avenue is consider-

ably more laborious and we are therefore not considering it in this study.
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4 A closed-form solution for learning second-order stationary pro-

cesses

It is well known that a stationary second-order process with arbitrary covariance can be modeled as the

output of a linear dynamical system driven by white, zero-mean Gaussian noise [29]. In our case, we will

therefore assume that there exist a positive integern, a process{x(t)}, x(t) ∈ Rn, with initial condition

x0 ∈ Rn and symmetric positive-definite matricesQ ∈ Rn×n andR ∈ Rm×m such that





x(t + 1) = Ax(t) + v(t) v(t) ∼ N (0, Q); x(0) = x0

y(t) = Cx(t) + w(t) w(t) ∼ N (0, R)

(4)

for some matricesA ∈ Rn×n andC ∈ Rm×n. The problem ofsystem identificationconsists in estimating

the model parametersA,C,Q, R from the measurementsy(1), . . . , y(τ). Note thatB andv(t) in the

model (1) are such thatBBT = Q, andv(t) ∼ N (0, Inv) whereInv is the identity matrix of dimensions

nv × nv.

4.1 Uniqueness and canonical model realizations

The first observation concerning the model (4) is that the choice of matricesA,C, Q is not unique, in

the sense that there are infinitely many such matrices that give rise to exactly the same sample paths

y(t) starting from suitable initial conditions. This is immediately seen by substitutingA with TAT−1,

C with CT−1 andQ with TQT T , and choosing the initial conditionTx0, whereT ∈ GL(n) is any

invertiblen × n matrix. In other words, the basis of the state-space is arbitrary, and any given process

hasnot a unique model, but anequivalence classof modelsR .
= {[A] = TAT−1, [C] = CT−1, [Q] =
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TQT T , | T ∈ GL(n)}. In order to be able to identify a unique model of the type (4) from a sample path

y(t), it is therefore necessary to choose a representative of each equivalence class: such a representative

is called acanonical model realization, in the sense that it does not depend on the choice of basis of the

state space (because it has been fixed).

While there are many possible choices of canonical models (see for instance [25]), we are interested

in one that is “tailored” to the data, in the sense explained below. Since we are interested in data

dimensionality reduction, we will make the following assumptions about the model (4):

m >> n; rank(C) = n , (5)

and choose the canonical model that makes the columns ofC orthonormal:

CT C = In , (6)

whereIn is the identity matrix of dimensionn × n. As we will see shortly, this assumption results in a

unique model that is tailored to the data in the sense of defining a basis of the state space such that its

covarianceP
.
= limt→∞ E[x(t)xT (t)] is asymptotically diagonal (see equation (11)).

The problem we set out to solve can then be formulated as follows:givenmeasurements of a sample

path of the process:y(1), . . . , y(τ); τ >> n, estimateÂ, Ĉ, Q̂, R̂, a canonical model of the process

{y(t)}. Ideally, we would want the maximum-likelihood solution:

Â(τ), Ĉ(τ), Q̂(τ), R̂(τ) = arg max
A,C,Q,R

p(y(1) . . . y(τ)). (7)
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Asymptotically optimal solutions of this problem, in the maximum-likelihood sense, do exist in the lit-

erature of system identification theory [29]. In particular, the subspace identification algorithm N4SID,

described in [34], is available as a Matlab toolbox. The main reason why in Section 4.2 we propose a

sub-optimal solution of the problem is because, given the dimensionality of our framework, the N4SID

algorithm requires a memory storage far beyond the capabilities of the current state of the art worksta-

tions. The result derived in Section 4.2 is a closed-form sub-optimal solution in the sense of Frobenius

that takes 30 seconds to run in a common PC whenm = 170× 110 andτ = 140.

Before presenting the solution of the learning problem (7), we point out an unspoken hypothesis that

has been made so far in the paper, i.e. the fact the framework we propose entails the filtering in space

and time to be separable, which means that we perform filtering in space and time in two separate stages.

The reason for this choice is nothing else than computational simplicity of the resulting algorithm.

4.2 Closed-form solution

Let Y τ
1

.
= [y(1), . . . , y(τ)] ∈ Rm×τ with τ > n, and similarly forXτ

1
.
= [x(1), . . . , x(τ)] ∈ Rn×τ and

W τ
1

.
= [w(1), . . . , w(τ)] ∈ Rm×τ , and notice that

Y τ
1 = CXτ

1 + W τ
1 ; C ∈ Rm×n; CT C = I , (8)

by our assumptions (5) and (6). Now letY τ
1 = UΣV T ; U ∈ Rm×n; UT U = I; V ∈ Rτ×n, V T V = I

be the singular value decomposition (SVD) [19] withΣ = diag{σ1, . . . , σn}, and{σi} be the sin-

gular values, and consider the problem of finding the best estimate ofC in the sense of Frobenius:

Ĉ(τ), X̂(τ) = arg minC,Xτ
1
‖W τ

1 ‖F subject to (8). It follows immediately from the fixed rank approxi-
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mation property of the SVD [19] that the unique solution is given by

Ĉ(τ) = U X̂(τ) = ΣV T (9)

Â can be determined uniquely, again in the sense of Frobenius, by solving the following linear problem:

Â(τ) = arg minA ‖Xτ
1 −AXτ−1

0 ‖F , whereXτ−1
0

.
= [x(0), . . . , x(τ − 1)] ∈ Rn×τ which is trivially done

in closed-form using the state estimated from (9):

Â(τ) = ΣV T D1V (V T D2V )−1Σ−1 (10)

whereD1 =




0 0

Iτ−1 0


 andD2 =




Iτ−1 0

0 0


. Notice thatĈ(τ) is uniquely determined up to a

change of sign of the components ofC andx. Also note that

E[x̂(t)x̂T (t)] ≡ lim
τ→∞

1

τ

τ∑

k=1

x̂(t + k)x̂T (t + k) = ΣV T V Σ = Σ2 , (11)

which is diagonal as mentioned in Section 4.1. Finally, the sample input noise covarianceQ can be

estimated from

Q̂(τ) =
1

τ

τ∑
i=1

v̂(i)v̂T (i) (12)

wherev̂(t)
.
= x̂(t + 1)− Â(τ)x̂(t). ShouldQ̂ not be full rank, its dimensionality can be further reduced

by computing the SVD̂Q = UQΣQUT
Q whereΣQ = diag{σQ(1), . . . , σQ(nv)} with nv ≤ n, and letting

B̂ be such that̂BB̂T = Q̂.

In the algorithm above we have assumed that the order of the modeln was given. In practice, this
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needs to be inferred from the data. Following [2], we propose to determine the model order empirically

from the singular valuesσ1, σ2, . . . , by choosingn as the cutoff where the singular values drop below a

threshold. A threshold can also be imposed on the difference between adjacent singular values.

Notice that the model we describe in this paper can also be used to perform denoising of the original

sequence. It is immediate to see that the denoised sequence is given by

Î(t)
.
= Ĉx̂(t) , (13)

whereĈ is the estimate ofC andx̂(t) is obtained from̂x(t + 1) = Âx̂(t) + B̂v̂(t).

4.3 Asymptotic properties

The solution given above is, strictly speaking,incorrect because the first SVD does not take into account

the fact that the stateX(τ) has a very particular structure(i.e. it is the state of a linear dynamical

model). It is possible, however, to adapt the algorithm to take this into account while still achieving a

closed-form solution that can be proven to be asymptotically efficient, i.e. to approach the maximum-

likelihood solution. The resulting algorithm is exactly N4SID, and its asymptotic properties have been

proven by Bauer in [5]. Such an optimal algorithm, however, is computationally expensive, and the gain

in the quality of the final model, for the experiments reported below, is marginal.

5. Experiments

We coded the algorithm described in Section 4 using Matlab: learning a graylevel sequence of140

frames withm = 170 × 110 takes about 30 seconds on a desktop PC (1GHz), while it takes about 5
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function [x0,Ymean,Ahat,Bhat,Chat] = dytex(Y,n,nv)

% Suboptimal Learning of Dynamic Textures;

tau = size(Y,2); Ymean = mean(Y,2);
[U,S,V] = svd(Y-Ymean*ones(1,tau),0);
Chat=U(:,1:n); Xhat = S(1:n,1:n)*V(:,1:n)’;
x0=Xhat(:,1);
Ahat = Xhat(:,2:tau)*pinv(Xhat(:,1:(tau-1)));
Vhat = Xhat(:,2:tau)-Ahat*Xhat(:,1:(tau-1));
[Uv,Sv,Vv] = svd(Vhat,0);
Bhat = Uv(:,1:nv)*Sv(1:nv,1:nv);

function [I] = synth(x0,Ymean,Ahat,Bhat,Chat,tau)

% Synthesis of Dynamic Textures;

[n,nv] = size(Bhat);
X(:,1) = x0;
for t = 1:tau,

X(:,t+1) = Ahat*X(:,t)+Bhat*randn(k,1);
I(:,t) = Chat*X(:,t)+Ymean;

end;

Figure 1:Matlab code implementation of the closed-form sub-optimal learning algorithm proposed in
Section 4 (functiondytex ), and the synthesis stage (functionsynth ). In order to perform stable
simulations, the synthesis function assumes that the poles of the linear system (i.e. the eigenvalues of
Ahat ) are within the unit circle.

minutes for 150 color frames andm = 320×220. Synthesis can be performed at frame rate. The Matlab

routines implementing the learning and synthesis algorithms are reported in Figure 1. The dimension of

the staten and inputnv is given as an input argument. In our implementation, we have usedτ between

50 and 150,n between10 and50 andnv between10 and30.

5.1. Synthesis

Figure 2 illustrates the fact that an “infinite length” texture sequence can be synthesized from a typically

“short” input sequence by just drawing IID samplesv(t) from a Gaussian distribution. The frames belong

to thespiraling-water sequence. From a 120 frame-long training sequence a 300 frames synthe-
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sized sequence12 of dimensions85× 65 pixels has been generated usingn = 20 principal components.

This sequence has been shown in [46] as an example where the STAR model fails in capturing non-

translational motion. Our model, on the other hand, has no difficulty in capturing the spatio-temporal

statistics of the input sequence, as shown in Figure 2.

Figures 3 to 7 show the behavior of the algorithm on a representative set of experiments (the training

sequences of Figures 3 to 6 have been borrowed from the MIT Temporal Texture database13). In each

case, on the first row we show a few images from the original dataset, on the second row we show their

compressed version (see Section 5.3), and on the third row we show a few extrapolated samples. On

the last row we show the overall compression error as a function of the dimension of the state space

(left) as well as the prediction error as a function of the length of the learning set (right). For very reg-

ular sequences, the prediction error decreases monotonically; however, for highly complex scenes (e.g.

talking-face , smoke), it is not monotonic. In these simulationsx0 was set tôx(1), which explains

why the first 100 frames of the 300 synthesized frames resemble the ones of the training sequence. No-

tice that the example of the talking face (Figure 7) has been included to show the output of the proposed

technique when the underlying hypothesis of the input sequence being a realization of a second-order

stationary process is violated. Of course the model fails to capture the non-stationary nature of the se-

quence, giving rise to a synthesized sequence that shows some artifacts. This is, therefore, an example

where our technique fails. Nevertheless, it is surprising to note that such a simple model can be pushed

so far in modeling complex visual phenomena.

As explained in Section 4, we choose the model ordern and learn the parameters of the model. A

crucial question is how long should the input sequence be in order to capture the temporal dynamics of

12Movies available online athttp://www.cs.ucla.edu/ ∼doretto/projects/dynamic-textures.html .
13ftp://whitechapel.media.mit.edu/pub/szummer/temporal-texture/
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the process? To answer this question experimentally we plot the prediction error at the bottom right of

the Figures 3 to 7 as a function of the length,τ , of the input (training) sequence. This means that for

each length,τ , we predict the frameτ + 1 (not part of the training set) and compute the prediction error

per pixel in gray levels. We do so many times in order to infer the statistics of the prediction error, i.e.

mean and variance at eachτ . Figure 8 shows an error-bar plot including mean and standard deviation

of the prediction error per pixel for thesteam sequence. The average error decreases and becomes

stable after approximately 80 frames. Notice that the plot of Figure 8 has also the meaning of model

verification in the sense that this plot of the prediction error validatesa-posteriori the model inferred

with a sub-optimal solution, and is informative for challenging the model.

Another important parameter to compare various texture synthesis models is the time it takes to syn-

thesize them. It is well established that models using Gibbs sampling [48] and other sampling methods

to draw samples from complex distributions are computationally intensive. Moreover, there is always

uncertainty on whether the samples have converged. Deterministic methods to extend and extrapolate

sequences have to go back and query the input texture in one way or another to obtain information that

generates the next frame [14, 47]14. In our model, learning is performed in closed-form (30 seconds for

100 graylevel samples), andsynthesis is instantaneous(frame-rate), even in our Matlab implementation.

Moreover, we can even control the size of parameters to obtain a particular synthesis speed, and change

the model parameters (e.g. the eigenvalues ofÂ) to manipulate the original dynamics [12]. Notice that,

in certain cases corresponding to certain natural phenomena (e.g the sequence ofsmoke-far ) it may

be possible, and actually correct, for the learning process to return a marginally stable system, capturing

the “explosive” nature of the input sequence. In fact, the system captures the exact nature of the ongoing

14In [47] for each new pixel a search is conducted for a similar neighborhood pattern in the original texture.
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process of the training set and generalizes it in time during a synthesis simulation. Analytically, the

poles of the training sequences can be very close to the unit circle, and for the case of “unstable” dy-

namic textures, in order to make stable synthesis simulations, we just relocate the unstable system poles

within the unit circle. To accomplish this task we found that by simply reducing to 0.99 the distance of

the unstable poles from the origin (while maintaining their phase constant), we obtain stable synthesized

sequences that very well resemble the original training set.

Finally, Figure 9 and Figure 10 show some more results on synthesis. Here, the dimension of the state

has been set ton = 50, andx0 has been drawn from a zero-mean Gaussian distribution with covariance

inferred from the estimated statêX(τ). For the experiments in Figure 9, the training sequences has been

borrowed again from the MIT Temporal Texture database, the length of these sequences ranges from

τ = 100 to τ = 150 frames, and the synthesized sequences are 300 frames long. For the experiments

in Figure 10, the training sets are color sequences that have been captured by the authors except for the

fire sequence that comes from the Artbeats Digital Film Library15. The length of the sequences is

τ = 150 frames, the frames are320 × 220 pixels, and the synthesized sequences are 300 frames long.

The extension of the learning algorithm to the case of color images can be done in several ways. The

one we used for our experiments implies that the column vectory(t), at timet, in equation (1), contains

the three unfolded RGB channels ordered one after the other. Representation of color in a more suitable

space [23] may lead to a more efficient use of our model in terms of ability to capture information from

the training sequence.

15http://www.artbeats.com
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5.2. Recognition

According to our definition in Section 2.1, each texture is characterized by an ARMA model. Therefore,

in order to compare textures, we need to first define a base measure in the space of linear dynamical

systems, and then to characterize probability distributions in that space.

Defining an appropriate base measure in the space of ARMA models is not trivial, since each model

entails a combination of an input density and state and output transition matrices that have a very partic-

ular Riemannian structure (they arenot a linear space). We should define an inner product in the space

of models (which involves Stiefel manifolds), and a distance as the length of the geodesic joining two

models. This is beyond the scope of this paper, and we refer the reader to [7, 41] for details on how to

do so. Here we compute the Kullback-Leibler divergence between different realizations of the textures

and show how similar textures cluster together in model space. The problem is formalized as follows.

Let I(t), t = 0, 1, . . . be an infinitely long sequence of images. This can be modeled as a stochastic

process which takes values in a subset ofRm for anm-dimensional image. Let̄Iτ .
= (I(1), I(2), . . . , I(τ))

be a sequence of images and letp(Īτ ) be the corresponding probability density function (p.d.f.). The

p.d.f. p(Īτ ) is completely determined by the parameters that define the model (1). Now, letp1 andp2 be

two p.d.f.s that correspond to two different dynamic textures. The K-L divergence,KL(p1‖p2), between

p1 andp2 is defined asKL(p1‖p2)
.
= limτ→∞ KLτ (p1‖p2) whereKLτ (p1‖p2) = 1

τ
Ep1 [log(p1(Ī

τ
1 )/p2(Ī

τ
1 ))]

andEp1 [·] is the expectation taken with respect top1.

In Figure 11 we display the distance, the quantityKLτ (p1‖p2), between different dynamic textures

plotted against the lengthτ . We have taken different realizations of the texturesriver andsteam

and have computed the distance of the former realizations against themselves and the latter16. It is

16We obtain a similar plot if we compute the distance of the latter against the former although the K-L divergence by
definition is not commutative.
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evident that alike textures tend to cluster together. Therefore, in principle, a comprehensive database of

parameters learned from commonly occurring dynamic textures can be maintained and a new temporal

sequence can be categorized after learning its parameters and computing the distance. Notice that it

would not be easy to build a recognition framework for dynamic processes using procedural techniques

like [42, 47]. An extensive assessment of the recognition capabilities of our system as well as extensions

to non-global representations, e.g. segmentation ones, are beyond the scope of the paper. Some of these

issues are discussed in [41, 7].

5.3. Compression

In this section we present a preliminary comparison between storage requirements for the estimated

parameters relative to the original space requirement of the texture sequences, to get an estimate of the

sequence compression capabilities of our model. A thorough assessment of the compression capabilities

of this model is a research program in its own right. Our intention, here, is to point out the potential of

the model for compression, as a further motivation for the model.

The storage requirement of the original dataset isO(mτ), while the components of the model that

are necessary to re-create an approximation of the sequence areA, C, Q and the input sequencev(t).

Therefore, one would needn2 numbers (forÂ), m× n− n(n− 1)/2 (for Ĉ, counting the orthogonality

constraints),n × nv numbers forQ̂ and, finally,nv × τ numbers for the input sequencev̂(t). Thus, the

storage requirement of our model isO(mn + n2 + nnv + nvτ), wheren << m, τ > n, andnv is the

effective rank ofQ̂. If we consider the fact that typical values for acceptable “lossy” could ben = 30 and

nv = 20, it is immediate to convince ourselves that the effectively compression power comes especially

when long sequences are considered, i.e. whenτ >> n, since the matrixC is responsible for the higher

23



storage occupancy while the other components are negligible (it is enough to notice that the sequence

has to be 15000 frames long to havenvτ = mn, whenm = 100× 100).

Of course, a more systematic evaluation of the potential of this model for compression is due. We

would like to point out that our algorithm provides compression based on thetemporalcharacteristics,

and therefore it operateson topof MPEG encoding and provides further compression. For very long

sequences (largeτ ) , the algorithm presented above can be modified in order to avoid computing the

SVD of a very large matrix. In particular, the model can be identified from a shorter subsequence, and

then the identified model can be used to compute the input (in innovation form [33]) using a simple

linear Kalman filter. For real-time transmission or broadcasting, the innovation can be estimated in real-

time using a Kalman filter and transmitted in lieu of the sequence of images, after the initial model is

identified and transmitted to the receiver. This would ensure real-time coding and decoding – after an

initial batch – for applications such as teleconferencing or remote video broadcasting.

6. Discussion

We have introduced a novel representation of dynamic textures and associated algorithms to perform

learning and synthesis of sequences from training data. Somewhat surprisingly, even the simplest choice

of a first-order ARMA model driven by white zero-mean Gaussian noise can capture complex visual

phenomena. The algorithm is simple to implement, efficient to learn and fast to simulate. Having a

model that represents data is good in general because it provides its compact representation and ma-

nipulation (via model parameters). Therefore, the framework presented in this paper stimulates several

areas of future investigation, ranging from video compression, classification, recognition to image-based

rendering, synthesis, and editing of image sequences.
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.. the original source

input texture sequence

The synthesized image
frames Starting Image

Infinite sequence

The finite spiraling−water

I(0)

Figure 2: Spiraling-water. The figure shows how an “infinite length” texture sequence is synthe-
sized from a typically “short” input texture sequence by just drawing samples fromv(t). The data
set used comes from theMIT Temporal Texture database. The particular structure of this sequence
(spiraling-water synthesized usingn = 20 principal components,τ = 120, m = 85 × 65), is
amongst the ones that cannot be captured by the STAR model [46].
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components,τ = 120, m = 170 × 115), compression error as a function of the dimension of the state
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from theMIT Temporal Texture database.
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Figure 7:Talking-face. From top to bottom: samples of the original sequence, corresponding samples
of the compressed sequence (compression ratio:2.53), samples of extrapolated sequence (usingn = 40
components,τ = 125, m = 105 × 170), compression error as a function of the dimension of the state
spacen, and extrapolation error as a function of the length of the training setτ . This sequence has been
proposed to show a synthesized sequence learned from a training set that violates the hypothesis of being
a realization of a second-order stationary process. The result shows some artifacts, meaning that not all
the information has been captured from the proposed model.
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Figure 8:Model verification : to verify the quality of the model learned, we have used a fixed number
of principal components in the representation (20) and considered sub-sequences of the original data set
of length varying from10 to 120. We have used such sub-sequences to learn the parameters of the model
in the Maximum-Likelihood sense, and then used the model to predict the next image. Using one cri-
terion for learning (ML) and another one for validation (prediction error) is informative for challenging
the model. The average prediction error per pixel is shown as a function of the length of the training
sequence (for thesteam sequence), expressed in gray levels within a range of256 levels. The average
error per pixel decreases and becomes stable after about 80 frames. Mean and standard deviation for100
trials are shown as an error-bar plot.

35



(a)

(b)

(c)

(d)

Figure 9:Fountain, Plastic, River-far, Smoke-far. (a) fountain sequence (τ = 100, m = 150×90),
(b) plastic sequence (τ = 119, m = 190 × 148), (c) river-far sequence (τ = 120,
m = 170 × 115), (d) smoke-far sequence (τ = 150, m = 170 × 115). For each of them the
top row are samples of the original sequence (borrowed from the MIT Temporal Texture database),
the bottom row shows samples of the extrapolated sequence. All the data are available on-line at
http://www.cs.ucla.edu/ ∼doretto/projects/dynamic-textures.html.
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(a)
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(d)

Figure 10: Fire, Color-fountain, Ocean, Water [COLOR]. (a) fire sequence (τ = 150,
m = 360 × 243), (b) color-fountain sequence (τ = 150, m = 320 × 220), (c)
ocean sequence (τ = 150, m = 320 × 220), (d) water sequence (τ = 150, m =
320 × 220). For each of them the top row are samples of the original sequence, the bot-
tom row shows samples of the extrapolated sequence. All the data are available on-line at
http://www.cs.ucla.edu/ ∼doretto/projects/dynamic-textures.html.
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Figure 11: The figure demonstrates that textures belonging to the same class tend to cluster together
in the sense of Kullback-Leibler. In particular for this figure distances are computed amongst three
realizations of theriver sequence and three of thesteam sequence w.r.t. the former. The cluster of
graphs on top refer to “steam w.r.t. river” type of distances and the ones below refer to the “river w.r.t.
river” type. The K-L divergences are computed using Monte-Carlo methods.
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