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ABSTRACT OF THE DISSERTATION

On real Johnson-Wilson theories

by

Maia Christine Averett

Doctor of Philosophy in Mathematics

University of California San Diego, 2008

Professor Nitu Kitchloo, Chair

Professor Justin Roberts, Co-Chair

The central object of study in this thesis is a family of generalized cohomology

theories ER(n), known as real Johnson-Wilson theories. These theories arise as

the homotopy fixed points of the classical Johnson-Wilson theories E(n) under

the Z/2-action of complex conjugation. The classical Johnson-Wilson theories

E(n) are closely related to another family En of cohomology theories, the so-

called Lubin-Tate or Morava E-theories. A purely obstruction-theoretic argument

given by Hopkins and Miller [Rez98] shows that the En admit an action of the

Morava stabilizer group of automorphisms of the height n Honda formal group

law. We relate the real Johnson-Wilson theories ER(n) to homotopy fixed points

of the Morava E-theories En under an action by a certain subgroup of the Morava

stabilizer group. In doing so, we obtain a calculation of the coefficients of the

homotopy fixed points of En for this subgroup and as a corollary we see that after

completion the ER(n) are commutative S-algebras (i.e. E∞-ring theories). We

work entirely at the prime 2.

ix



Chapter 1

Introduction

1.1 Background

Cohomology theories derived from complex cobordism are central objects of

study in modern homotopy theory. Due to its geometric nature as the Thom

spectrum associated to the unitary group, the spectrum MU representing complex

cobordism admits a natural involution by complex conjugation. This gives rise to

a theory of Z/2-equivariant or Real cobordism.

In 1966, Atiyah [Ati66] noticed that a complex vector bundle over a Z/2-space

might admit a complex antilinear Z/2-action compatible with the action on the

base. He called such a bundle a Real vector bundle and introduced Real K-theory

KR(X) as the Grothendieck group of such bundles over a Z/2-space X. Motivated

by this, in 1967 Landweber [Lan67] defined cobordism of Real manifolds and later

[Lan68], using the involution of complex conjugation on the Thom spaces MU(n)

and equivariant suspension, he defined an associated spectrum MR indexed on a

complete Z/2-universe.1 Later, Araki [AM78], [Ara79b], [Ara79a], observed that

one could carry out many of the classical constructions of complex cobordism for

this new Real cobordism. He defined the notion of a Real-oriented spectrum, Real

formal group laws, and used Quillen’s idempotent to construct a Real analogue

BPR of the Brown-Peterson spectrum BP . Much more recently, in work con-

1Note that the equivariant homotopy ring MR? does not calculate the Real cobordism groups
of compact Real manifolds, unlike the complex case (see [Hu99]).

1
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nected to constructing a Real version of the Adams-Novikov spectral sequence, Hu

and Kriz [HK01] constructed Real versions of Johnson-Wilson theory E(n) and

Morava K-theory K(n). Of course, these constructions presuppose a fixed prime

p. Throughout this thesis, we work exclusively at p = 2.

Given a Real spectrum E, there is a näıve Z/2-spectrum associated to the

trivial representation. In this way, we obtain näıve Z/2-spectra associated to

Johnson-Wilson theories. Since forgetting the Z/2-action returns the Johnson-

Wilson spectra E(n), we write E(n) for the näıve Z/2-spectra as well. Taking

homotopy fixed points yields spectra

ER(n) := E(n)hZ/2

that go by the name of ‘real Johnson-Wilson’ theories.2 The central object of study

in this thesis is this family ER(n) of real Johnson-Wilson theories. These were

first considered by Kitchloo and Wilson [KW06], who made computations with

ER(n) feasible by constructing a fibration

Σλ(n)ER(n)
x(n)−→ ER(n)→ E(n). (1.1.1)

Here x(n) is a distinguished 2-torsion element in ER(n)∗ and λ(n) is the integer

22n+1 − 2n+2 + 1. The Johnson-Wilson theories are higher K-theories in the sense

that E(1) is complex K-theory localized at 2. The ER(n) are similarly related

to real K-theory KO and the fibration above is a generalization of the classical

fibration

ΣKO(2)
η−→ KO(2) → KU(2).

The fibration (1.1.1) gives rise to an exact couple and a Bockstein spectral sequence

measuring x(n)-torsion. Kitchloo and Wilson [KW06] have used this spectral se-

quence to compute ER(2)-cohomology of real projective spaces and to prove new

bounds for nonimmersions of real projective spaces in Euclidean space. We will use

this spectral sequence to calculate the coefficients of ER(n) and related theories.

2The terminology is meant to mimic that of Atiyah’s: the analogous construction applied
to Atiyah’s Real K-theory KR returns real K-theory KO. The real Johnson-Wilson theories
ER(n) are honest spectra corresponding to Hu and Kriz’s Real Johnson-Wilson theories ER(n).
We indicate this by writing ‘real’ rather than ‘Real.’
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In this thesis, we will relate the real Johnson-Wilson spectra ER(n) to a much-

studied but difficult to access family of spectra known as Morava E-theories. These

are a family of theories En with coefficients

(En)∗ = W (F2n)[[u1, . . . , un−1]][u
±]

where |ui| = 0, |u| = 2, and W (F2n) denotes the Witt vectors of F2n . They can

be constructed using Landweber’s exact functor theorem for BP . Let Sn denote

the Morava stabilizer group of automorphisms of the height n Honda formal group

law Γn over F2n and write G(n) = Gal(F2n/F2) n Sn (see [Rez98]). The Lubin-

Tate theory of lifts gives an action of Sn on (En)∗ and Gal(F2n/F2) acts on (En)∗

by its action on the Witt vectors, so we have an action of G(n) on (En)∗ (see

[HM],[Rez98]). In the early 1990’s, Hopkins and Miller used obstruction theory

to rigidify this action to an action on the level of spectra. They showed that the

space of A∞-self-maps of En is homotopy discrete with components equal to the set

G(n). They thus realized the action of G(n) on (En)∗ by an action of a homotopy

discrete monoid on En in the category of A∞-ring spectra (see [Rez98]). Later,

Goerss and Hopkins [GH04] improved this by replacing A∞ by E∞. These theorems

therefore give rise to a great supply of interesting E∞-ring spectra obtained by

taking homotopy fixed points of En with respect to various subgroups of G(n).

For example, we might consider the action of Gal(F2n/F2) n F×2n and the re-

sulting homotopy fixed points

En(Gal) := E
hGal(F2n/F2)nF×2n
n .

The action of the Galois group Gal(F2n/F2) on the Witt vectors W (F2n) fixes

precisely F2, so the fixed point set of this action is W (F2) = Ẑ2, the 2-adic in-

tegers. Calculating the homotopy fixed points spectral sequence for the action of

Gal(F2n/F2) gives

(EhGal(F2n/F2)
n )∗ = Ẑ2[[u1, . . . , un−1]][u

±].

Since F×2n has odd order, the homotopy fixed point spectral sequence for the action

of it on E
hGal(F2n/F2)
n collapses and gives

En(Gal)∗ = Ẑ2[[v1, . . . , vn−1]][v
±
n ]
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where |vi| = 2(2i − 1). Recall that

E(n)∗ = Z(2)[v1, . . . , vn−1, v
±
n ]

so

En(Gal)∗ = Ẑ2[[v1, . . . , vn−1]][v
±
n ] = (E(n)∗)

∧
In

where In is the maximal ideal (v0, . . . , vn−1) ⊆ E(n)∗ and the notation denotes

In-adic completion. The Morava stabilizer group Sn again acts on En(Gal) and

there is a subgroup G2 of order 2 in Sn generated by the formal inverse. The

purpose of this thesis is to relate ER(n) to the homotopy fixed points En(Gal)hG2 .

Now, we may also consider K(n)-localization of E(n)

Ê(n) := LK(n)E(n)

which also has

Ê(n)∗ = (E(n)∗)
∧
In
.

The spectrum Ê(n) inherits a Z/2-action from the action of complex conjugation

on E(n), and so the homotopy fixed points of Ê(n) with respect to this action may

be considered to be a completion of ER(n). We will prove that

Ê(n)
hZ/2

' En(Gal)hG2

and that the canonical map

ER(n)→ En(Gal)hG2

induces an algebraic completion on the level of coefficients. This is the content of

Theorem 6.2.4. Along the way, we obtain a calculation of En(Gal)hG2 . Computa-

tions of this nature are in general extremely difficult and, unfortunately, ours arises

through a very special circumstance that does not generalize to other subgroups

of Sn or G(n).

Beginning in the next section, we use the modern terminology of Elmendorf,

Kriz, Mandell, and May’s S-algebras (see [EKMM97] or Chapter 2 for a very brief

summary of the essential definitions and properties). An S-algebra is essentially

an A∞-ring spectrum and a commutative S-algebra is essentially an E∞-ring spec-

trum.
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1.2 Methods

In order to relate the action of complex conjugation on Ê(n) to the action of

the subgroup generated by the formal inverse on En(Gal), we would like to have a

map

Ê(n)→ En(Gal)

that is equivariant with respect to these actions. If this map were also an equiva-

lence, it would induce an equivalence on homotopy fixed points. Since Ê(n) and

En are equivalent as S-algebras ([Laz03]) and the equivalence is homotopy equiv-

ariant, it is natural to attempt to rigidify this homotopy equivariant equivalence to

one that is honestly equivariant. A standard trick for this purpose is the following.

Trick 1.2.1. Suppose A and B are spaces or spectra or S-algebras with G-actions

and suppose that the space of maps F (A,B) is homotopy discrete. Let ϕ ∈ F (A,B)

be equivariant up to homotopy. Let F (A,B)ϕ denote the component of ϕ in

F (A,B). Then A ∧ F (A,B) and A are equivalent, F (A,B)ϕ inherits a G-action

via conjugation, and the evaluation map

A ∧ F (A,B)ϕ → B

is honestly equivariant.

In order for this trick to work, one needs the space of maps between the two

objects to be homotopy discrete, or at least for the relevant component to be

contractible. In general, this is a quite stringent restriction, but if the objects

are endowed with extra structure, the space of maps preserving this structure can

sometimes be shown to be homotopy discrete. For example, A and B might be

S-algebras or commutative S-algebras and we might ask if the space of S-algebra

maps from A to B is homotopy discrete. As noted in the Introduction, Hopkins

and Miller showed that the space of S-algebra self-maps of En is homotopy discrete

and its components are the extended Morava stabilizer group G(n).3 This was later

extended by Hopkins and Goerss [GH04] to the space of commutative S-algebra

3See Rezk’s notes [Rez98] for an account of their work.
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maps. More recently, Lazarev [Laz03] proved generalized Hopkins-Miller theorems

for a class of theories called strongly K(n)-complete. Namely, he showed that

the space of S-algebra maps from Ê(n) to a strongly K(n)-complete theory is

homotopy discrete with components equal to the set of multiplicative cohomology

operations.

We might hope to use this trick for A = Ê(n) and B = En(Gal), together with

the results of Hopkins, Miller, and Goerss, to rigidify our homotopy equivariant

map. Here we run into a problem: it is not known if the Z/2-action on Ê(n)

arising from complex conjugation on MU is an action by S-algebra maps. That

is, the conjugation action on the space of maps from Ê(n) to En(Gal) does not

necessarily descend to an action on the subspace of S-algebra maps from Ê(n) to

En.

To rectify this problem, we retreat to a situation where we know that the ac-

tion is via S-algebra maps. Because the commutative S-algebra MU representing

complex cobordism is constructed geometrically, the Z/2-action of complex conju-

gation is via S-algebra maps. Moreover, the natural map

MU → v−1
n MU → E(n)→ Ê(n)→ En(Gal)

is homotopy equivariant, so we might try to rigidify this map. The space of S-

algebra maps from MU to En(Gal) is not known to be homotopy discrete, but in

light of results of Lazarev [Laz03], one might guess that the space of S-algebra maps

from v−1
n M̂U = LK(n)MU is. The standard way of computing the homotopy of

such a space of maps is to identify E2-term of the Bousfield-Kan spectral sequence

with Hochschild cohomology and then show that the spectral sequence collapses.

This argument falls apart for the space

FS−alg(v
−1
n M̂U,En(Gal))

because the Hochschild cohomology is not concentrated in a single vertical line.

However, we are able to get around this obstruction by means of another trick. We

construct an S-algebra T , a wedge of smashes of spheres, with the property that

FT−alg(v
−1
n M̂U, Ê(n)) ' FS−alg(Ê(n), Ê(n)). (1.2.1)
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We give Ê(n) the trivial T -algebra structure via a map T → S. The right hand side

of (1.2.1) is homotopy discrete by Hopkins-Miller theory. To prove the equivalence

of these mapping spaces, we calculate the Bousfield-Kan spectral sequence for

FT−alg(v
−1
n M̂U, Ê(n))

and compare it to the Bousfield-Kan spectral sequence for

FT−alg(Ê(n) ∧S T, Ê(n)).

We must also construct an S-algebra action on v−1
n M̂U that extends the action

of complex conjugation on MU . We use Bousfield localization and the complex

conjugation action σ on MU to construct a map

σ̂ ∈ FS−alg(v
−1
n M̂U, v−1

n M̂U)

with σ̂2 = idv−1
n

dMU . With this result in hand, we are finally able to rigidify our

homotopy equivariant map.

Write G1 ⊆ FS−alg(v
−1
n M̂U, v−1

n M̂U) for the Z/2 generated by σ̂ and G2 ⊆
FS−alg(En(Gal), En(Gal)) for the homotopy discrete monoid corresponding to the

subgroup of Sn generated by the formal inverse, so that G1 acts on v−1
n M̂U and

G2 acts on En(Gal). Define Z̃/2 by the following pullback diagram

Z̃/2 G1 ×G2

Z/2 Z/2× Z/2

w
e∆

u u
π0

w
∆

where ∆ is the diagonal map. We give En(Gal) the trivial T -algebra structure, so

a T -algebra map

En(Gal)→ En(Gal)

is just an S-algebra map. Then we obtain an action of Z̃/2 on

FT−alg(v
−1
n M̂U,En(Gal))



8

by conjugation and hence a Z̃/2 action on

v−1
n M̂U ∧S FT−alg(v

−1
n M̂U,En(Gal))

diagonally. Using Trick 1.2.1, we obtain an equivariant map

v−1
n M̂U ∧S FT−alg(v

−1
n M̂U,En(Gal))ν → En(Gal).

where ν is the map v−1
n M̂U → En(Gal) that is the quotient map on coefficients

and the subscript denotes the component of ν.

Next, we show that after taking homotopy fixed points, this map factors through

ER(n), resulting in a map

ER(n)→ En(Gal)hgZ/2.

We prove that this map is a completion in the sense that it induces an algebraic

completion on the level of homotopy. In fact, we see that En(Gal)hgZ/2 is equivalent

to the homotopy fixed points of Ê(n) under the action of complex conjugation.

This, together with a calculation of the homotopy ring of ER(n), allows us to

compute the coefficients of En(Gal)hgZ/2. Because En(Gal)hgZ/2 is a commutative

S-algebra by Hopkins-Goerss theory, we obtain the result that ER(n) becomes a

commutative S-algebra after completion.

1.3 Outline

Now we proceed to outline the basic structure of this thesis. We begin in

Chapter 2 by reviewing terminology and constructions that we will need. These

include the basics of Elmendorf, Kriz, Mandell, and May’s categories of S- and

R-algebras, various types of completion, and a quick review of Real spectra. We

also define the spectra ER(n) and related spectra that will be considered in this

thesis.

Next, in Chapter 3, we use calculations of Hu and Kriz [HK01] and Kitchloo

and Wilson [KW06] to calculate the homotopy groups of various spectra, including

Kitchloo and Wilson’s real Johnson-Wilson theory ER(n) and the homotopy fixed

points of a completion of Johnson-Wilson theory.
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In Chapter 4, we use Bousfield localization to construct an S-algebra v−1
n M̂U

and an S-algebra map

σ̂ : v−1
n M̂U → v−1

n M̂U

with σ̂2 = idv−1
n

dMU . This map σ̂ is induced by the action

σ : MU →MU

of complex conjugation.

In Chapter 5, we construct the S-algebra T and prove that the space of T -

algebra maps from v−1
n M̂U to Ê(n) is homotopy discrete.

Finally, in Chapter 6, we tie all the results together to compare the actions. In

this chapter, we construct the map

v−1
n M̂U ∧S FT−alg(v

−1
n M̂U,En(Gal))ν → En(Gal)

and prove that it factors through ER(n) after taking homotopy fixed points. This

gives rise to the main theorems and corollaries, which are also drawn here.



Chapter 2

Terminology and constructions

In this chapter, we describe the categories in which we work, define the main

objects of study, and give basic constructions that we will use throughout this

thesis. We begin with a very brief description of the “brave new” structured point-

set categories that we work with in place of the category of spectra. The reference

for all of this material is the text [EKMM97] of Elmendorf, Kriz, Mandell, and May.

They construct a topological closed model category MS with a unital symmetric

monoidal smash product ∧S such that the derived category DS ofMS is equivalent

to the classical derived category of spectra. We only provide the basic terminology

here and we refer the reader to [EKMM97] for details and proofs. Next, we recall

a few useful constructions. We briefly visit Bousfield localization and describe its

relationship to completion. We give examples that define and describe Ê(n) and

v−1
n M̂U . After that, we recall the theory of Real spectra as studied by Hu and

Kriz [HK01]. We describe the construction of the real Johnson-Wilson theories

and related theories that we will study in this thesis.

Terminology. We are strict about our terminology throughout this thesis. We use

the terms “R-module” and “R-algebra” to refer to the highly structured notions

of [EKMM97] discussed below. The terms “spectrum” or “R-module spectrum”

or “R-ring spectrum” refer to the classical homotopical notions.

10
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2.1 L-spectra

All of the highly structured categories of spectra that we work with are built on

top of the category of L-spectra. Let SU denote the category of spectra indexed

on some fixed universe U . Let I denote the category whose objects are universes

and whose morphisms are linear isometries. We write I(U,U ′) for morphisms in

this category. Give each universe a topology as the union of its finite dimensional

subspaces and give the set I(U,U ′) the function space topology. Then I(U,U ′) is

contractible.

Let U j be the direct sum of j copies of U and write L(j) for the space I(U j, U).

The space L(0) is a point and L(1) contains the identity map on U . The symmetric

group Σj acts on the left on U j by permutations and induces a free right action of

Σj on L(j). Define maps

L(k)× L(j1)× · · · × L(jk)→ L(j1 + · · ·+ jk)

by (g, f1, . . . , fk) 7→ g ◦ (f1 ⊕ · · · ⊕ fk). The spaces L(j) together with these maps

form what is called the linear isometries operad, which we denote by L. Let L
denote the monad in S given by LE = L(1) n E.1

Definition 2.1.1 ([EKMM97], I.4.2). An L-spectrum is an algebra over the monad

L. Denote the category of L-spectra by S[L].

This means that an L-spectrum is a spectrum E together with an action LE →
E so that the following diagrams commute

LLE LE

LE E

w

u u
w

and

E LE

E

w
[
[]
u

A morphism E → F of L-spectra is a map of spectra commuting with the action

of L on E and F . The category of L-spectra has a naturally associative and

commutative internal smash product E ∧L F defined as the coequalizer

(L(2)× L(1)× L(1)) n (E ∧ F ) ⇒ L(2) n (E ∧ F )→ E ∧L F
1The symbol n denotes the twisted half smash product of a space with a spectrum. See

Appendix A of [EKMM97].
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Unfortunately, this smash product is only unital on the homotopy category. How-

ever, there is a unital symmetric monoidal category whose derived category is

equivalent to that of classical spectra. The category is that of so-called S-modules,

which we will define in the next section. First, we note that for any L-spectrum

E there is a natural map λ : S ∧L E → E which is always a weak equivalence of

L-spectra. See Section I.8 of [EKMM97] for its construction.

2.2 S-modules

Let S denote the sphere spectrum indexed on a fixed universe U .

Definition 2.2.1. An S-module is an L-spectrum E such that λ : S ∧L E → E is

an isomorphism. Write MS for the full subcategory of L-spectra whose objects

are S-modules. Define E ∧S F := E ∧L F and FS(E,F ) := S ∧L FL(E,F ).

Elmendorf, Kriz, Mandell, and May justify the name S-modules with the fol-

lowing commutative diagrams

S ∧S S ∧S E S ∧S E

S ∧S E E

w
λ∧id

u

id∧λ

u

λ

w
λ

and

E S ∧S E

E

w
λ−1

[
[
[
[]id

u

λ

The following theorem summarizes the basic properties ofMS.

Theorem 2.2.2 ([EKMM97], II.1.3, II.1.4, II.1.6).

1. The functor S ∧L − : S[L]→MS is left adjoint to the functor

FL(S,−) :MS → S[L]

and right adjoint to the inclusion MS → S[L].

2. The category of S-modules is complete and cocomplete, with colimits created in

S[L] and limits created by applying S ∧L − to limits created in S[L].
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3. The category MS is symmetric monoidal under ∧S and

MS(E ∧S F, P ) ∼=MS(E,FS(F, P ))

for S-modules E,F , and P .

2.3 S-algebras and their modules

Definition 2.3.1. An S-algebra is a monoid inMS and a commutative S-algebra

is a commutative monoid inMS and we denote the category of S-algebras by AS.

If R is an S-algebra or commutative S-algebra, then a left (resp. right) R-module

is a left (resp. right) R-object inMS. WriteMR for the category of R-modules.

Remark 2.3.2. These notions replace the older notions of A∞ and E∞ ring spec-

tra. In fact, an S algebra is just an A∞ ring spectra which is also an S-module.

Similarly in the commutative case. Of course, S is a commutative S-algebra.

Theorem 2.3.3 ([EKMM97], III.1). Let R be an S-algebra.

1. The functors R ∧S − and FS(R,−) from MS to MR are the free and cofree

functors from S-modules to R-modules. They are left and right adjoint to the

forgetful functor.

2. The category of R-modules is complete and cocomplete. Limits and colimits are

created in MS.

Definition 2.3.4. The free S-module generated by a spectrum X is

FSX := S ∧L LX

and the free R-module generated by a spectrum X is FRX := R ∧S FSX. The

m-sphere S-module is the free S-module generated by the m-sphere spectrum, i.e.

Sm
S := S ∧L LSm

The m-sphere R-module is Sm
R := R ∧S S

m
S .
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Warning 2.3.5. The term “free” is somewhat inaccurate, since F is not left ad-

joint to the forgetful functor. It is only left adjoint to a functor that is naturally

equivalent to the forgetful functor. In detail, the functor F : S → MR is left

ajdoint to the functor that sends an R-module E to the spectrum FL(S,E) and

there is a natural map of R-modules FE → E whose adjoint E → FL(S,E) is a

weak equivalence of spectra. This is enough to ensure that

πm(E) := hS(Sn, E) ∼= hMS(Sm
S , E) ∼= hMR(Sm

R , E).

Note that for X a wedge of sphere spectra, π∗(FRX) is the free π∗(R)-module

with a generator of degree m for each m-sphere.

2.4 Model structures

All of the categories described above admit topological closed model structures.

In all cases, the weak equivalences are created in the category of spectra in the

sense that a map is a weak equivalence if it is a weak equivalence of the underlying

spectra.

Theorem 2.4.1 ([EKMM97], VII.4.6). The category MS is a topological model

category with weak equivalences created in S. Its q-fibrations are Serre fibrations

of S-modules, i.e. maps f : M → N such that

F (id, f) : FL(S,M)→ FL(S,N)

is a Serre fibration of spectra.

We write DS and DR for the derived categories of S- and R-modules obtained

fromMS andMR by inverting the weak equivalences. Ring objects in DS are ring

spectra and ring objects in DR are R-ring spectra.

2.5 Various constructions

In this section, we collect the basic definitions of some commonly occurring

constructions.
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Homotopy fixed points

Given a space X with a G-action, the fixed point set XG can be identified with

the set of equivariant maps from a point into X, i.e.

XG = FG(pt, X).

This construction, however, is badly behaved for use in homotopy theory: it need

not preserve homotopy equivalences. To rectify this, we replace pt by a free con-

tractible G-space EG and define

XhG := FG(EG,X),

the homotopy fixed points of X under G. This construction enjoys the following

very useful property: given a G-equivariant map X → Y which is a homotopy

equivalence, the induced map

XhG → Y hG

is an equivalence. This construction generalizes to spectra, S-modules, etc. in the

obvious way.

Inverting a homotopy element

Let R be a commutative S-algebra and let M be an R-module. An element a

of the homotopy ring π∗(R) gives rise to a self-map of R via the composition

R = S ∧S R
a∧id−→ R ∧S R

µ−→ R

where µ is multiplication of the S-algebra R. Let

R[1/a] := colim(R
a−→ R

a−→ R
a−→ · · · ).

Then R[1/a] is an S-algebra with (R[1/a])∗ = R∗[a
−1]. Let

M [1/a] := M ∧R R[1/a]

so (M [1/a])∗ = M∗[a
−1]. We often write a−1M for M [1/a].
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Quotients of R-modules

For a commutative S-algebra R, an R-module M , and an element a ∈ π∗(R),

define R/a by the cofiber sequence

R
a−→ R→ R/a

in DR. Let that M/a := M ∧R R/a. For a sequence a = (a1, a2, . . .) of elements

π∗(R), let

M/a := M ∧R

(∧
i

R/ai

)
where the product is taken over R. If a is regular on π∗(M), we call M/a a

regular quotient of M . If πi(R) = 0 for i odd and a and a′ are regular sequences

generating the same ideal I in π∗(R), then the regular quotients M/a and M/a′ are

equivalent R-modules (see [EKMM97], Cor. V.2.10). This justifies the notation

M/I for M/a. See [Str99], [Wüt05], and [BL01] for many details and properties

of such quotients.

2.5.1 Forms of completion

We will be working with various forms of completion of spectra at ideals in their

homotopy rings. In this section, we recall a few constructions and outline their

respective properties and relationships. First, we recall completions in algebra.

Then we recall various ways of mimicking these constructions in homotopy theory.

The material in this section is standard.

Algebraic completions

In algebra and algebraic geometry, it is common to study the completion of a

ring R at an ideal I. The completion of R at I is the inverse limit

R∧
I := lim←−

s

R/Is

over the inverse system

· · · ⊇ R/Is ⊇ · · · ⊇ R/I2 ⊇ R/I.
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Similarly, for an R-module M , one can define the completion of M at I as the

inverse limit

M∧
I := lim←−

s

M/IsM.

See Chapter 10 of [AM69] or Chapter 7 of [Eis95] for thorough treatments of

algebraic completion.

Examples 2.5.2.

1. If R = Z and I = (p), then the completion is the ring of p-adic integers, Ẑp.

2. If R = S[x1, . . . , xn] is a polynomial ring and I = (x1, . . . , xn), then the

completion is the power series ring R∧
I = S[[x1, . . . , xn]].

Homotopy I-completion

Let R be a commutative S-algebra and let M be an R-module. Let a ∈ π∗(R).

As in [GM95], define the Koszul spectrum KR(a) by the fiber sequence

KR(a)→ R→ R[1/a].

Since R[1/a] is an R-module and the map R→ R[1/a] is an R-module map, KR(a)

is an R-module. For a finite sequence of elements a1, . . . , ak ∈ π∗(R), define

KR(a1, . . . , ak) := KR(a1) ∧R · · · ∧R KR(ak)

Up to equivalence, KR(a1, . . . , ak) only depends on the radical of the ideal I gen-

erated by a1, . . . , ak, so we write KR(I) for KR(a1, . . . , ak). For an R-module M ,

we define the completion

M∧
I := FR(KR(I),M) (2.5.1)

where the right side is R-module maps from KR(I) to M . Notice that M∧
I is again

an R-module and comes equipped with an R-module map M →M∧
I .
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Bousfield Localization

We recall the basic definitions necessary for Bousfield localization. We use the

modern formulations for S- and R-algebras, as in [EKMM97], though these are just

reformulations of the original ideas of Bousfield [Bou79]. Let R be a commutative

S-algebra and fix an S-module E. An R-module A is E-acyclic if E∧RA ' pt and

a map is an E-equivalence if its cofiber is E-acyclic. An R-module Y is E-local if

FR(A, Y ) ' pt for all E-acyclics A. A map X → LR
EX is a Bousfield localization of

X with respect to E if it is an E-equivalence and LR
EX is E-local. The superscript

R may be omitted when clear from the context. Of course, these definitions make

sense when R = S.

By Theorem VIII.2.1 of [EKMM97], Bousfield localization preserves S- and R-

algebra structures. This will play an important role in Chapter 4 and the relevant

theorem is cited there as Theorem 4.1.1. The following lemma relates Bousfield

localization over different S-algebras.

Lemma 2.5.3 ([May96], XXIII.6.5; [BJ02], Lemma 4.3). Let R be a commutative

S-algebra and let A be an R-algebra. Let E be an R-module and let M be an

A-module. The (A ∧R E)-localization map

M → LA
A∧REM

in the category of A-modules is a E-localization in the category of R-modules; hence

there is a weak equivalence

LA
A∧REM ' LR

EM

of R-modules.

Properties

The following theorem relates homotopy I-completion and Bousfield localiza-

tion.

Theorem 2.5.4 (Greenlees-May, [GM95] Thm 4.2). Let R be a S-algebra and let

M be an R-module. Let I be a finitely generated ideal of π∗(R). The map

M →M∧
I
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is Bousfield localization in the category of R-modules with respect to the R-module

K(I).

Example 2.5.5 (Ê(n)). Consider the K(n)-localization Ê(n) := LS
K(n)E(n) of

Johnson-Wilson theory E(n), as in the Introduction. There are several equiv-

alent ways to describe Ê(n) in terms of localization or completion. Let In =

(v0, . . . , vn−1) ⊆ E(n)∗ be the standard ideal. In [BW89], Ê(n) is constructed as

a spectrum representing an algebraic completion of Johnson-Wilson theory. It is

defined on finite spectra by

Ê(n)
∗
(X) = lim←−

s

(E(n)∗/Is
n)⊗E(n)∗ E(n)∗(X)

and since Ê(n)
∗

= (E(n)∗)∧In
is linearly compact with respect to the In-adic topol-

ogy, this determines the spectrum Ê(n). Later, Baker [Bak91] constructed Ê(n)

as the In-adic completion of E(n) on the level of spectra. He constructed a tower

· · · → E(n)/Is
n → · · · → E(n)/I2

n → E(n)/In (2.5.2)

of E(n)-module spectra whose homotopy inverse limit gives the Ê(n) of [BW89].

Here E(n)/Is
n is the quotient E(n)-module spectrum obtained by killing all mono-

mials vi0
0 v

i1
1 · · · v

in−1

n−1 with
∑n−1

j=0 ij = s. The canonical map

E(n)→ holimsE(n)/Is
n

is Bousfield localization with respect to K(n) by Cor. 6.13 of [Wüt05], so the

homotopy limit of this tower is equivalent to LS
K(n)E(n) = Ê(n) as we considered

it in the introduction. Now, by Lemma 2.5.3, there is a weak equivalence

Ê(n) = LS
K(n)E(n) ' LMU

MU∧SK(n)E(n)

of S-modules. In Prop. 4.2 of [BJ02], Baker and Jeanneret show that the natural

map E(n) → holimsE(n)/Is
n is a morphism of MU -algebras. In proving their

proposition, they show that MU ∧S K(n) is Bousfield equivalent to v−1
n MU/In, so

there is a weak equivalence

Ê(n) ' LMU
v−1

n MU/In
E(n) (2.5.3)
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of S-modules. Baker and Jeanneret go on to explain that Theorem 6.4 of [BL01]

shows that (2.5.3) is in fact an equivalence of MU -modules (the tower (2.5.2) can

be constructed as one of MU -modules and its limit is shown to be LMU
v−1

n MU/In
E(n)).

Each of these various descriptions of Ê(n) has a slightly different set of obvious

properties, so it comes in handy to have them all at our disposal. Since

holimsE(n)/Is
n ' LS

K(n)E(n) ' LMU
v−1

n MU/In
E(n)

are (weakly) equivalent as MU -modules, we feel justified in using the notation of

Ê(n) for any of them.

Example 2.5.6 (v−1
n M̂U). Consider MU as a commutative MU -algebra. Since

Bousfield localization preserves MU -algebra structures, we obtain a commutative

MU -algebra

v−1
n M̂U := LMU

v−1
n MU/In

MU

as the Bousfield localization with respect to v−1
n MU/In in the category of MU -

modules. By the discussion in the previous example, we have weak equivalences

of S-modules

v−1
n M̂U = LMU

v−1
n MU/In

MU ' LMU
MU∧SK(n)MU ' LS

K(n)MU

As explained in [GM95], the homotopy ring of v−1
n M̂U is

π∗(v
−1
n M̂U) = π∗(MU)[v−1

n ]∧In
.

(See also Section 1.1 of [HS99].) Note that applying Bousfield localization with

respect to MU ∧S K(n) to the MU -algebra map MU → E(n) gives a MU -algebra

map v−1
n M̂U → Ê(n).

2.6 Real cobordism

In this section, we briefly review the definition of a Real spectrum and give

examples of Real spectra relevant to this thesis.
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A Real spectrum E is a Z/2-equivariant spectrum indexed on the real represen-

tation ring RO(Z/2), i.e. it is a collection of Z/2-spaces EV for each V ∈ RO(Z/2)

such that for everyW ∈ RO(Z/2) we have compatible maps ΣW E(V )→ E(V⊕W ),

whose adjoints are homeomorphisms E(V )
∼=−→ ΩW E(V ⊕W ). Here ΣW means

smashing with SW , the one-point compactification of W , and ΩW means maps

out of SW . Homotopy classes of maps from a Real (i.e. Z/2-) space into a Real

spectrum defines a RO(Z/2)-graded cohomology theory.

Since RO(Z/2) = Z⊕αZ, a Real spectrum is secretly a bigraded spectrum Ea,b

such that each Ea,b has a Z/2-action and there are maps

ΩEa,b → Ea−1,b

ΩαEa,b → Ea,b−1

which are compatible with the Z/2 actions and whose adjoints are homeomor-

phisms

Ea,b → ΣEa−1,b

Ea,b → ΣαEa,b−1

Note also that for a fixed value of b, the collection of spaces and maps {Ea,b}a∈Z

forms a näıve Z/2-spectrum. For b = 0, this is the underlying näıve Z/2-spectrum

associated to the trivial representation that we referred to in the introduction; it

is often denoted E{e}.

Remark 2.6.1. We will use blackboard bold to indicate a Real spectrum E. We

will use the subscript ? to denote the bigraded coefficients, so that E?(X) = E∗,∗(X)

for a Real space X.

Example 2.6.2 (Real cobordism). Let MU(k) be the Thom space of the universal

k-plane bundle over BU(k). There is an action of Z/2 on MU(k) given by complex

conjugation, constructed as follows. Recall that BU(k) is the Grassmannian of k-

planes in C∞ and define a map

BU(k)→ BU(k)
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by sending V 7→ V̄ , where V̄ = {w | w̄ ∈ V }. This map is covered by a map on

the total space level EU(k) → EU(k) by v 7→ v̄ on each fiber, so we obtain a

map on MU(k). Since conjugating twice gives back the original element, the map

c : MU(k) → MU(k) squares to the identity and hence defines an action of Z/2
on MU(k). In order to define a Real spectrum MR associated to this action on

the prespectrum {MU(k)}k≥0, we need structure maps in the ‘trivial’ and the ‘α’

directions. Consider the diagram

(R⊕ αR)⊕ EU(k) EU(k + 1)

BU(k) BU(k + 1)

w

u u
w

f

where we identify C with R⊕ αR, and f is the classifying map for the bundle on

the left. Taking Thom spaces gives a map

S1+α ∧MU(k) = Σ1+αMU(k)→MU(k + 1)

which is compatible with the Z/2-action by construction. We can then define the

zeroth space of the Real spectrum MR by

MR0,0 := colimk Ωk(1+α)MU(k)

and the rest of the spaces by

MRa,b := Ω−a−bα colimk Ωk(1+α)MU(k)

This definition makes sense because eventually k will be larger than both a and b.

Note that any näıve Z/2-spectrum can be made into a Real spectrum in this way.

Example 2.6.3 (The Real Brown-Peterson spectrum). In [Ara79b], Araki used a

Quillen idempotent MR → MR to construct a Real version BPR of the Brown-

Peterson spectrum BP . His construction is analogous to the construction of BP

from MU . As explained in [HK01], this gives a splitting

MR =
∨
mi

Σmi(1+α)BPR
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of Real MR-module spectra, where the mi range over the dimensions of additive

free generators of a free symmetric algebra on generators of dimension k 6= 2i − 1.

These mi are the same as those that give the classical splitting

MU =
∨
mi

Σ2miBP

of MU -module spectra.

Example 2.6.4 (Spectra derived from Real cobordism). Recall that π∗(MU) =

MU∗ = Z[x1, x2, . . .], where |xk| = 2k, and that many interesting spectra may be

constructed by killing a regular sequence of elements MU∗ and (or) localizing at

elements of MU∗. If E is such a spectrum, we may use the methods of Section

3 of [HK01] to construct a Real spectrum (in fact an MR-module) ER with the

property that the spectrum {ERa,0}a∈Z is E. In [HK01], Prop. 2.7, it is shown

that the natural map MR? → MU∗ splits by a map of rings MU∗ → MR? that

sends the generator xk of degree 2k to an element of bidegree (k, k).2 Thus we may

construct ER by killing off and localizing the lifts of the elements of MU∗ used to

define E. In this way, we obtain Real versions KR(n),ER(n), etc., of the classical

spectra K(n), E(n), etc. This method also gives an alternate construction of BPR.

In the classical case, the regularity of the sequence of elements in MU∗ used

to construct a derived spectrum of MU allows one to easily calculate the coeffi-

cients of such a spectrum. In the Real world, the lifts of these elements do not

necessarily form a regular sequence in MR?, so the calculation of the coefficients

BPR?,KR(n)?, and ER(n)? is not immediate. However, Real spectra often satisfy

a completion theorem that facilitates the computation of their coefficients. The

Real spectra MR,BPR,KR(n), and ER(n) all satisfy completion theorems [HK01].

This fact is used in [Hu01] and [HK01] to compute BPR?.

2.7 The main players

2In fact, this is a ring isomorphism from MU∗ onto the diagonal subring of MR?, i.e. the
subring of all elements in bidigrees (k, k).
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We are now ready to define the objects of central study in this thesis. For a Real

spectrum E, we noted that for a fixed b, the collection of spaces and corresponding

maps {Ea,b}a∈Z forms a näıve Z/2-spectrum, that is, an ordinary spectrum in

which each of the spaces is equipped with a Z/2-action and the structure maps

are equivariant. Fixing b = 0 and applying this to the Real versions of derived

spectra of MU described in Example 2.6.4 gives näıve Z/2-spectra MU,BP,E(n),

etc. which are the classical MU,BP,E(n) if we forget the Z/2-action. We can

now take homotopy fixed points to obtain spectra MUhZ/2, BP hZ/2, E(n)hZ/2, etc.

The central object of study in this thesis is the spectrum

ER(n) := E(n)hZ/2.

Kitchloo and Wilson ([KW06], [KW]) refer to this as real Johnson-Wilson theory.

Note that this is not a Real spectrum in the sense of the previous section; it is only

real in the sense that it is derived from a Real spectrum by taking homotopy fixed

points of an underlying näıve Z/2-spectrum, just as real K-theory is derived from

Atiyah’s Real K-theory. We shall rely on our notation of bold for Real spectra to

make this distinction clear.



Chapter 3

Calculating coefficients

In this chapter, we use published calculations of the coefficients of various Real

spectra to compute the coefficients of various fixed points of underlying näıve Z/2-

spectra.

3.1 BPR? and ER(n)?

As described in Section 2.6, there is a Real spectrum MR associated with

complex cobordism and Real spectra BPR and ER(n) associated with Brown-

Peterson theory and Johnson-Wilson theory. In various papers, Hu and Kriz have

calculated the coefficients of BPR using the Borel spectral sequence. In [KW06],

this calculation is modified to give the coefficients of ER(n). We recall these here.

Theorem 3.1.1 (Hu-Kriz,[HK01]).

BPR? = Z(2)[vk(l), a | k ≥ 0, l ∈ Z]/I

where I is the ideal generated by the relations

v0(0) = 2, a2k+1−1vk(l) = 0, and for k ≤ m, vm(j)vk(2
m−kl) = vm(j + l)vk(0)

The bidegrees of the elements are

|a| = −α, |vk(l)| = (2k − 1)(1 + α) + l2k+1(α− 1)

25
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Here we use the notation (k, l) = k + lα.

Remark 3.1.2. Note that BP∗ sits inside BPR? as the vk(0).

Theorem 3.1.3 (Kitchloo-Wilson,[KW06]).

ER(n)? = Z(2)[vk(l), a, v
±
n , σ

±2n+1 | 0 ≤ k < n, l ∈ Z]/I

where vk(l) = vkσ
l2k+1

and I is the ideal generated by the relations

v0,0 = 2, a2k+1−1vk(l) = 0, and for k ≤ m, vm(j)vk(2
m−kl) = vm(j + l)vk(0).

The bidegrees of the elements are the same as above, with |σ| = α − 1 and |vn| =
(2n − 1)(1 + α).

3.2 ER(n)∗

Before we calculate the homotopy ring of ER(n), we recall a few key elements

of the homotopy rings of related spectra. The diagonal elements

vk(0) ∈ ER(n)2k−1,2k−1

are invariant under the Z/2-action of complex conjugation and hence give rise to

elements in ER(n)
hZ/2

2k−1,2k−1
, which we also call vk(0). Multiplying each vk(0) by

σ−2k+1 ∈ ER(n)1−2k,2k−1 yields the element

vk = vk(0)σ−2k+1 ∈ ER(n)2(2k−1),0 = E(n)2(2k−1).

Now, for vk ∈ E(n)2(2k−1), put

v̂k := vkv
−(2k−1)(2n−1)
n

for 0 ≤ k < n. To facilitate the calculations to come, we reindex the homotopy of

E(n) using the v̂k for k < n, rather than vk. Of course, these generators are just

as good as the original generators, since vn is a unit. From now on, we put

E(n)∗ = Z(2)[v̂1, v̂2, . . . , v̂n−1, v
±1
n ].
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Let λ(n) = 22n+1−2n+2 +1. In [KW06], Kitchloo and Wilson identify an invertible

element

y(n) := v2n−1
n σ−(2n−1−1)2n+1 ∈ ER(n)

hZ/2
λ(n),−1

which then give rise to elements

v̂k(0) := vk(0) · y(n)1−2k ∈ ER(n)
hZ/2

(1−λ(n))(2k−1),0
= ER(n)(1−λ(n))(2k−1).

These map to v̂k under the natural map

ER(n)∗ → E(n)∗

induced by inclusion of fixed points.

The element σ2n+1
is a unit and the Z/2-action on it is trivial (since there are

an even number of σ’s), so it gives rise to an element in ER(n)
hZ/2
∗,∗ , which we also

denote by σ2n+1
. Hence

v2n+1

n σ−(2n−1)2n+1

= (vnσ
−(2n−1))2n+1 ∈ ER(n)

hZ/2

2n+2(2n−1),0 = ER(n)2n+2(2n−1)

(3.2.1)

is also a unit. This maps to v2n+1

n ∈ E(n)∗ and is the periodicity element for

ER(n).

In [KW06], Kitchloo and Wilson use the element y(n) to construct a fibration

of spectra

Σλ(n)ER(n)
hZ/2
V

x(n)−→ ER(n)
hZ/2
V

ι−→ ER(n)V (3.2.2)

where x(n) = a · y(n) and the subscript V indicates the spectrum obtained by

fixing a V ∈ RO(Z/2). Fixing V to be the trivial representation, we obtain a

fibration of spectra

Σλ(n)ER(n)
x(n)−→ ER(n)

ι−→ E(n)

for x(n) ∈ ER(n)λ(n). This fibration gives rise to an exact couple

ER(n)∗(X) ER(n)∗(X)

E(n)∗(X)

w
x(n)

A
A

AAD ι




�

δ

and hence a Bockstein spectral sequence measuring x(n)-torsion in ER(n) (see

[KW], Thm. 4.2). The degree of dr is rλ(n) + 1, and E2n+1−1 = 0. Moreover, the
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spectral sequence measures x(n)-torsion in the following sense. Filter ER(n)∗ by

Fj, the kernel of multiplication by x(n)j, so that

0 = F0 ⊆ F1 ⊆ · · · ⊆ F2n+1−1 = ER(n)∗.

Let M = ER(n)∗/x(n)ER(n)∗ and filter M by the image of Fj. Then

M/Mr−1 ↪→ Er and Mr/Mr−1
∼= im(dr).

Since v0 = 2 is in the image of d1, we have that Er is entirely 2-torsion for r ≥ 2.

Note that the image of ER(n)∗ → E(n)∗ is the set of elements that are targets of

differentials.

Now we will use this spectral sequence, together with the calculation of ER(n)?,

to compute ER(n)∗.

Theorem 3.2.1. Let λ(n) = 22n+1 − 2n+2 + 1 and set x := x(n). We have

ER(n)∗ = Z(2)[x, v̂k(l), v
±2n+1

n | 0 ≤ k < n, l ∈ Z]/J

where J is the ideal generated by the relations

v̂0(0) = 2, x2k+1−1v̂k(l) = 0, and for k ≤ m, v̂m(l)v̂k(2
m−ks) = v̂m(l + s)v̂k(0).

The degrees of the generators are

|x| = λ(n) = 22n+1 − 2n+2 + 1, |v2n+1

n | = 2n+2(2n − 1)2,

|v̂k(l)| = 2(2k − 1) + l2k+2(2n − 1)2 − 2(2k − 1)(2n − 1)2.

Remark 3.2.2. Though the degrees of these elements seem quite complicated,

they are more easily remembered using the fact that

v̂k(l) 7→ vkv
−(2k−1)(2n−1)+l2k+1(2n−1)
n

under the natural map ER(n)∗ → E(n)∗ (which of course preserves the grading).

Remark 3.2.3. Note that we recover the homotopy of KO(2) as

π∗(ER(1)) = Z(2)[v̂0(1), η, v
±4
1 ]/(2η = η3 = ηv̂0(1) = 0).
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Proof of Theorem 3.2.1. We calculate the Bockstein spectral sequence for a point,

using the identifications E(n)∗ = E(n)−∗ and ER(n)∗ = ER(n)−∗. The E2-page is

E2 = E(n)∗ = Z(2)[v̂1, v̂2, . . . , v̂n−1, v
±
n ].

Though there are potentially 2n+1 differentials, we will see that in fact only n+ 1

of them are nonzero, namely those of the form d2j+1−1 for j = 0, . . . , n.

First, we show that for degree reasons, differentials can only originate on powers

of vn. This can also be seen using Kitchloo and Wilson’s computation of ER(n)?:

for k < n, the v̂k must be permanent cycles because they correspond to a2k+1−1-

torsion elements in ER(n)?. (They are therefore targets of differentials and hence

permanent cycles.) However, we choose to include a short degree argument to

demonstrate how much can be obtained from the Bockstein spectral sequence with

very little input.

Write λ for λ(n). We have

|v̂i| = (2i − 1)(1− λ) for 0 ≤ i < n

Consider differentials of the form dr(v̂
m
i ) = v̂k

j . Such differentials must satisfy the

degree equation

k|v̂j| = |v̂k
j | = |dr|+ |v̂m

i | = |dr|+m|v̂i|. (3.2.3)

If 0 ≤ i < n and 0 ≤ j < n, the degree equation (3.2.3) becomes

k(2j − 1)(1− λ) = −rλ− 1 +m(2i − 1)(1− λ). (3.2.4)

Since 1− λ is divisible by 2n, reducing modulo 2n gives

r ≡ −1 mod 2n.

However, we know that E2n+1 = 0, so the only possibilities are r = 2n − 1 or

r = 2n+1 − 1, both of which are be ruled out by plugging in to equation (3.2.3).

An easy generalization of this argument shows that there are no differentials of the

form

dr

(
n−1∏
i=0

aiv̂
ki
i

)
=

n−1∏
i=0

biv
mi
i
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for 0 ≤ i < n and 0 ≤ j < n, where ai, bi ∈ Z(2) if r = 1 and ai, bi ∈ Z/2 if r > 1.

Now consider differentials of the form dr(v
m(2n−1)
n ) = v̂k

j for i, j 6= n. If i = n

and 0 ≤ j < n, equation (3.2.3) becomes

k(2j − 1)(1− λ) = −rλ− 1 +m(λ+ 1)

and reducing modulo λ gives

k(2j − 1)−m+ 1 ≡ 0 mod λ.

We also have

2m ≡ r + 1 mod (λ− 1).

Simple calculations and the fact that r < 2n+1 show that

r = 2m− 1 and m = k(2j − 1) + 1.

Since 0 < r < 2n+1, we have

0 < m ≤ 2n and 0 < k ≤ 2n − 1

2j − 1
.

This is as much as we can say by looking at degrees alone. Notice that if k = 1,

we see a possible differential of the form d2j+1−1(v
2j(2n−1)
n ) = v̂j. It turns out that

this differential does occur, though we need to invoke extra information to see it.

We now show that v̂k is x2k+1−1-torsion so that the differential

d2j+1−1(v
2j(2n−1)
n ) = v̂j (3.2.5)

does indeed occur. Recall the definition

x = x(n) = a · y(n).

By Kitchloo and Wilson’s computation of ER(n)?, we have that

a2k+1−1vk(l) = 0 (3.2.6)

in ER(n)?. Now, since

vk = vk(0)σ1−2k ∈ ER(n)2(2k−1),0 = E(n)2(2k−1)
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we have

v̂k = vkv
−(2k−1)(2n−1)
n︸ ︷︷ ︸
∈E(n)∗

= vk(0)σ
1−2k

v−(2k−1)(2n−1)
n σ(−2n+1)(1−2k)(2n−1)︸ ︷︷ ︸

∈ER(n)?

and so

x2k+1−1v̂k = (ay(n))2k+1−1(vk(0)σ
1−2k

v−(2k−1)(2n−1)
n σ(−2n+1)(1−2k)(2n−1))

= a2k+1−1vk(0)︸ ︷︷ ︸
=0 by (3.2.6)

y(n)2k+1−1v−(2k−1)(2n−1)
n σ(−2n+1)(1−2k)2(2n−1) = 0

Hence v̂k is x2k+1−1-torsion.

So, we have proved that the only possible differentials originate on powers of

vn and that we have the differential (3.2.5), assuming that v
2j(2n−1)
n survives long

enough to support this differential (we’ll see that it does below.) Hence we see the

x2k+1−1-torsion elements in v̂k(0) ∈ ER(n)∗ that map to the v̂k ∈ E(n)∗. Now we

complete the description of the differentials.

In [KW] the first differential is realized as

d1(z) = v1−2n

n (1− c)(z)

where c denotes the action induced by complex conjugation. This agrees with our

computation with the usual convention that v0 = 2 (recall that v̂0 = v0). This also

implies that d1(v
m(2n−1)
n ) = 0 for m even. Moreover, if m is odd, say m = 2s + 1,

then

d1(v
m(2n−1)
n ) = d1(v

(2s+1)(2n−1)
n )

= d1(v
2s(2n−1)
n )v2n−1

n + c(v2s(2n−1)
n )d1(v

2n−1
n ) = v2s(2n−1)

n v̂0

so odd powers of v2n−1
n do not survive past E1. Note that the same computation

shows that odd powers of vn also die on the E1 page.

If m is a power of 2, say m = 2j+1, and r < 2j+1− 1, then the product formula

gives

dr(v
m(2n−1)
n ) = dr(v

2j(2n−1)
n )v2j(2n−1)

n + c(v2j(2n−1)
n )dr(v

2j(2n−1)
n )

= 2v2j(2n−1)
n dr(v

2j(2n−1)
n ).
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But since d1 kills v̂0 = 2, each Er is a vector space over Z/2 when r > 1. Therefore

dr(v
m(2n−1)
n ) is zero and v

2j(2n−1)
n does indeed survive long enough for the differential

(3.2.5) to hold.

Now suppose that m is even but not a power of 2. Let m = 2l1 + · · · + 2ls be

the binary expansion of m, with l1 > l2 > · · · > ls > 0. For brevity, write v̌n for

v2n−1
n . We compute

d2ls+1−1(v̌
2l1+···+2ls

n ) = d2ls+1−1(v̌
2l1

n )︸ ︷︷ ︸
=0 since l1>ls

v̌2l2+···+2ls

n + c(v̌2l1

n )︸ ︷︷ ︸
=v̌2l1

n

d2ls+1−1(v̌
2l2+···+2ls

n )

= v̌2l1

n (d2ls+1−1(v̌
2l2

n )︸ ︷︷ ︸
=0 since l2>ls

v̌2l3+···+2ls

n + c(v̌2l2

n )︸ ︷︷ ︸
=v̌2l2

n

d2ls+1−1(v̌
2l3+···+2ls

n ))

...

= v̌2l1+···+2ls−2

n (d2ls+1−1(v̌
2ls−1

n )︸ ︷︷ ︸
=0 since ls−1>ls

v̌2ls

n + c(v̌2ls−1

n )︸ ︷︷ ︸
=v̌2

ls−1
n

d2ls+1−1(v̌
2ls

n ))

= v̌2l1+···+2ls−1

n v̂ls

and so v̌m
n dies on the (2ls+1 − 1)th page. This is of course assuming that all

the terms involved survive to the (2ls+1 − 1)th page, which is easily checked by

induction. The key point is that d2ls+1−1(v̌
2lt

n ) will always vanish if t < s, because

this implies that ls < lt. Since 2ls is the maximal power of 2 dividing m, we have

proved: If m = 2jm′ and 2 does not divide m′, then v̌m
n dies on the (2j+1 − 1)th

page.

Thus if j > 0, an arbitrary monomial a ∈ E2j+1−1 is of the form

a =
n∏

i=j

aiv̂
ki
i

where ai ∈ Z/2 and where the maximal power of 2 dividing kn is larger than 2j−1.

That is,

E2j+1−1 = Z/2[v̂j, . . . , v̂n−1, v
±2j(2n−1)
n ].

Let 2l be the maximal power of 2 dividing kn, so l ≥ j. Writing the binary

expansion for kn as k′n + 2l, our previous calculation shows that

d2j+1−1(v̌
kn
n ) = d2j+1−1(v̌

k′n+2l

n ) =

{
v̌

k′n
n v̂j if l = j

0 else



33

This and the product rule give

d2j+1−1(a) = d2j+1−1

(
n∏

i=j

aiv̂
ki
i

)
= d2j+1−1

(
v̌kn

n ·
n−1∏
i=j

aiv̂
ki
i

)

= d2j+1−1(v̌
kn
n ) ·

n−1∏
i=j

aiv̂
ki
i + c(v̌kn

n ) · d2j+1−1

(
n−1∏
i=j

aiv̂
ki
i

)
︸ ︷︷ ︸

=0

= d2j+1−1(v̌
kn
n ) ·

n−1∏
i=j

aiv̂
ki
i

=

{
v̂j v̌

k′n
n ·

∏n−1
i=j aiv̂

ki
i = v̂j v̌

−2j

n a if l = j

0 else

In particular, for l ∈ Z, we have

d2k+1−1(v̌
(2k−1)+l2k+1

n ) = d2k+1−1(v̌
2k−1
n )v̌l2k+1

n + c(v̌2k−1
n ) d2k+1−1(v̌

l2k+1

n )︸ ︷︷ ︸
=0

= v̂kv̌
l2k+1

n

so we see the elements v̂k(l) ∈ ER(n)∗ arising as the elements that map to

v̂kv̌
l2k+1

n = vkv
−(2k−1)(2n−1)+l2k+1(2n−1)
n ∈ E(n)∗.

This concludes the analysis of the possible differentials.

It remains to put these pieces together to determine the ring structure on

ER(n). To this end, recall that we have seen that

v̂k(l) 7→ v̂kv̌
l2k+1

n = vkv
−(2k−1)(2n−1)+l2k+1(2n−1)
n

under map ER(n)∗ → E(n)∗. Since this is a ring homomorphism and

v̂mv̌
l2m+1

n v̂kv̌
(2m−ks)2k+1

n = v̂kv̌nv̂mv̌
(l+s)2k+1

n

we obtain the relation

v̂m(l)v̂k(2
m−ks) = v̂k(0)v̂m(l + s)

As explained above, the Bocksetein spectral sequence measures x-torsion in the

sense that the elements in the target of the kth differential are xk-torsion. Hence

we see the relation

x2k+1−1v̂k(l) = 0.
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Since we identified the periodicity element v2n+1

n in equation (3.2.1), this completes

the proof.

3.3 v−1
n BPR∗ and v−1

n MUR∗

Let BPR denote Real Brown-Peterson theory, whose coefficients we recalled at

the beginning of this chapter. We will need to know the coefficients of the theory

v−1
n BPR, where BPR is obtained from BPR in the same way as ER(n) is obtained

from ER(n), as explained in Section 2.7.

First consider the Real MR-module vn(0)−1BPR obtained by inverting vn(0) in

BPR:

vn(0)−1BPR := colim(BPR vn(0)−→ Σ(2n−1)(1+α)BPR vn(0)−→ Σ2(2n−1)(1+α)BPR vn(0)−→ · · · ).

As is explained in [KW06], any Real spectrum derived from MR with vn(0) inverted

has a fibration similar to the one for ER(n) given in (3.2.2). The proof is the same

as the one given in [KW06] for ER(n). In particular, for vn(0)−1BPR we have

Σλ(n)BPRhZ/2
V

x(n)−→ BPRhZ/2
V

ι−→ BPRV

where x(n) is defined in exactly the same way as it was for ER(n). Hence we

obtain a fibration

Σλ(n)v−1
n BPR

x−→ v−1
n BPR→ v−1

n BP

where v−1
n BPR is the homotopy fixed points of the näıve Z/2-spectrum associated

to the trivial representation, i.e.

v−1
n BPR := {vn(0)−1BPRhZ/2

a,0 }a∈Z

The goal of this section is to prove the following proposition.

Proposition 3.3.1.

(v−1
n BPR)∗ = ER(n)∗[v̂n+1, v̂n+2, . . .],

where |v̂k| = (2k − 1)(1− λ) for k > n.
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Proof. Just as in the calculation of ER(n)∗, we may set up the Bockstein spectral

sequence measuring x-torsion. Working with the hat generators again (except for

the periodicity element vn), the E2-term is

v−1
n BP ∗ = Z(2)[v̂1, v̂2, . . . , v̂n−1, vn, v̂n+1, . . .][v

−1
n ].

To prove the proposition, we will show that after inverting vn, the element x

becomes nilpotent with x2n+1
= 0. Hence there are only the n+1 differentials that

occurred in the spectral sequence for ER(n), proving the result.

Recall the definition

x = x(n) = ay(n) = av2n−1
n σ−(2n−1−1)2n+1 ∈ vn(0)−1BPRhZ/2

λ(n),0 = v−1
n BPRλ(n)

By Theorem 3.1.1, we have the relation

a2k+1−1vk(l) = 0

in the ring BPR?. Setting k = n and l = 0 and using the fact that vn(0) is a unit

in (vn(0)−1BPR)?, we see that

a2n+1−1 = 0

and hence the same holds for x.

In Example 2.6.3, we remarked that there is a splitting

MR =
∨
mi

Σmi(1+α)BPR

of Real MR-module spectra. Thus there is an analogous splitting of vn(0)−1MR in

terms of vn(0)−1BPR and hence there is an equivariant splitting of v−1
n MU in terms

of v−1
n BP . We obtain a Bockstein spectral sequence converging to the homotopy

of

v−1
n MUR := v−1

n MU
hZ/2

in exactly the same way as we did for v−1
n BPR. The equivariant splitting of

v−1
n MU in terms of v−1

n BP gives a map of Bockstein spectral sequences from that

of v−1
n MUR to that of ∨

mi

Σmi(1+α)v−1
n BPR
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Since this map is an isomorphism on E2, we have proved the following proposition.

Proposition 3.3.2. v−1
n MUR∗ is a free v−1

n BPR∗-module on generators mi rang-

ing over the dimensions of additive free generators of a free symmetric algebra on

generators of dimension k 6= 2i − 1.

3.4 (Ê(n)
hZ/2

)∗

Here we calculate the coefficients of the fixed points of a completion of Johnson-

Wilson theory. Consider the ideal

In = (v0, . . . , vn−1) ⊆ E(n)∗

and let

Ê(n) := LS
K(n)E(n)

as in Example 2.5.5. It is well known that this K(n)-localization induces comple-

tion at In on the level of coefficients (see, for example, [BJ02],[BH94], or [HS99]).

Therefore, we have

Ê(n)∗ = (E(n)∗)
∧
In

= Ẑ2[[v1, . . . , vn−1]][v
±
n ],

where Ẑ2 denotes the 2-adics (the completion of Z(2) at the its maximal ideal).

We’ll see below (Remark 4.1.5) that Bousfield localization is functorial in the

sense that a map A → B gives rise to a map AE → BE in a way that respects

composition. Applying this to the S-module map

E(n)→ E(n)

given by complex conjugation gives rise to a map

Ê(n)→ Ê(n)

that squares to the identity. This map makes Ê(n) into a näıve Z/2-spectrum.

By the method explained in Example 2.6.2, we obtain a Real spectrum ÊR(n)

with näıve Z/2-spectrum Ê(n). Because vn(0) is a unit, we also have a fibration

resulting in a Bockstein spectral sequence measuring x-torsion in (Ê(n)
hZ/2

)∗.
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Theorem 3.4.1. Let În = (v̂k(l) | 0 ≤ k < n, l ∈ Z) ⊆ ER(n)∗. Then

(Ê(n)
hZ/2

)∗ = (ER(n)∗)
∧
În

Proof. This is another calculation with the Bockstein spectral sequence. The differ-

entials are the same as in previous calculations, since the natural map E(n)→ Ê(n)

is equivariant. The E2-term of the Bockstein spectral sequence is

E2 = Ê(n)∗ = Ẑ2[[v1, . . . , vn−1]][v
±
n ]

and again, we replace the vk with the v̂k for k < n in order to facilitate computa-

tions. We then have

E2 = Ẑ2[[v̂1, . . . , v̂n−1]][v
±
n ]

with the differentials as in the proof of Theorem 3.2.1. So again, if j > 0, an

arbitrary monomial a ∈ E2j+1−1 is of the form

a =
n∏

i=j

aiv̂
ki
i

where ai ∈ Z/2 and where the maximal power of 2 dividing kn is larger than 2j−1.

Hence,

E2j+1−1 = Z/2[[v̂j, . . . , v̂n−1]][v
±2j(2n−1)
n ]

and again we see the x2k+1−1-torsion elements v̂k(l) mapping to

v̂kv̌
l2k+1

n = vkv
−(2k−1)(2n−1)+l2k+1(2n−1)
n ∈ Ê(n)∗,

but now these generate a power series ring, rather than a polynomial ring. Thus,

we have

(Ê(n)
hZ/2

)∗ = Ẑ2[[v̂k(l) | 0 ≤ k < n, l ∈ Z]][x, v±2n+1

n ]/J

where J is the ideal generated by the relations

v̂0(0) = 2, x2k+1−1v̂k(l) = 0, and for k ≤ m, v̂m(l)v̂k(2
m−ks) = v̂m(l + s)v̂k(0)

as in Theorem 3.2.1. To complete the proof, we need only show that this is the

same as the ring ER(n)∗ completed at the ideal În. This is the result of the lemma

below.
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Lemma 3.4.2. Let În be as above. Then

(ER(n)∗)
∧
În

∼= Ẑ2[[v̂k(l) | 0 ≤ k < n, l ∈ Z]][x, v±2n+1

n ]/J

where J is the ideal generated by the relations in Theorem 3.2.1.

Proof. First, let

Ǐn = (v̂0(0), . . . , v̂n−1(0)) ⊆ ER(n)∗.

Recall ([Eis95], Lemma 7.14) that two ideals A and B of a ring R generate the

same topology (i.e. R∧
A
∼= R∧

B) if for every j there is an i such that Ai ⊆ Bj and

for every k there is an l such that Bl ⊆ Ak. Since Ǐn ⊆ În and Î2
n ⊆ Ǐn, we have

(ER(n)∗)
∧
În

∼= (ER(n)∗)
∧
Ǐn

so it suffices to prove that the latter ring is the one listed in the statement of the

lemma.

Now, let v̂k := vkv
−(2k−1)(2n−1)
n for 0 ≤ k < n and v̂n := v

2n+1(2n−1)
n . Consider

the subring

L := Z(2)[v̂1, . . . , v̂n−1, v̂n] ⊆ E(n)∗

of the coefficients of Johnson-Wilson theory. By the computations in the previous

sections, the v̂k are permanent cycles in the Bockstein spectral sequence converg-

ing to the coefficients of ER(n), so the Bockstein spectral sequence is a spectral

sequence of modules over L. Moreover, each page is a finitely generated L-module

since there are only finitely many differentials.

Recall that completion at an ideal in a Noetherian ring preserves short exact

sequences of finitely generated modules over that ring (see, for example, Prop.

10.12 of [AM69]). Moreover, the completion of such a module is simply the tensor

product of the module with the completion of the ring. Let

Ĩn := (v̂1, . . . , v̂n−1) ⊆ L

and note that

L∧eIn
= Z(2)[[v̂1, . . . , v̂n−1]][v̂n].
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Thus each page of the Bockstein spectral sequence satisfies

(Er)
∧eIn

∼= Er ⊗L L
∧eIn
.

Since the images of the v̂k on the E∞–page are exactly the v̂k(0) (i.e. the module

map L → E∞ sends v̂k 7→ v̂k(0)), we see that the E∞-page is isomorphic to the

desired ring. Since any nontrivial extension would be detected in ER(n)∗, this

completes the proof.

3.5 (v−1
n B̂P

hZ/2
)∗ and (v−1

n M̂U
hZ/2

)∗

Let v−1
n B̂P := LK(n)BP and note that

v−1
n B̂P ∗ = (v−1

n BP ∗)
∧
In
.

The proof of the following proposition is analogous to the v−1
n BP case.

Proposition 3.5.1.

(v−1
n B̂P

hZ/2
)∗ = (Ê(n)

hZ/2

)∗[v̂n+1, v̂n+2, . . .]

Now, let v−1
n M̂U := LK(n)MU , as in Example 2.5.6. Again the complex conju-

gation action on MU gives rise to one on v−1
n M̂U and again there is a Bockstein

spectral sequence converging to (v−1
n M̂U

hZ/2
)∗. As in Section 3.3, the equivariant

splitting of MR as a wedge of suspensions of BPR implies the following.

Proposition 3.5.2. (v−1
n M̂U

hZ/2
)∗ is a free (v−1

n B̂P
hZ/2

)∗-module on generators

mi ranging over the dimensions of additive free generators of a free symmetric

algebra on generators of dimension k 6= 2i − 1.
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Bousfield localization

In this chapter, we construct a commutative MU -algebra v−1
n M̂U and an S-

algebra map σ̂ : v−1
n M̂U → v−1

n M̂U which squares to the identity idv−1
n

dMU . The

S-algebra v−1
n M̂U is constructed as a the Bousfield localization

v−1
n M̂U := LMU

v−1
n MU/In

MU.

As explained in Example 2.5.6, it has coefficients

π∗(v
−1
n M̂U) = (π∗(MU)[v−1

n ])∧In

where In = (v0, v1, . . . , vn−1).

4.1 Bousfield localization of R-algebras

We rely heavily on the following theorem from [EKMM97], which says that

Bousfield localization preserves R-algebra structures.

Theorem 4.1.1 ([EKMM97], VIII.2.1). For a cell R-algebra A, the localization

λ : A→ AE can be constructed as the inclusion of a subcomplex in a cell R-algebra

AE. Moreover, if f : A→ B is a map of R-algebras into an E-local R-algebra B,

then f lifts to a map of R-algebras f̃ : AE → B such that f̃λ = f , and f̃ is unique

up to homotopy through maps of R-algebras. If f is an E-equivalence, then f̃ is a

weak equivalence.

40
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4.1.2 Functoriality

To construct σ̂, we will need a few facts about the construction that are not

made explicit in [EKMM97]. We show that the construction given in [EKMM97]

is in fact functorial in the point-set category, though the universal property of the

localization only holds in the homotopy category.

The construction of AE

The R-algebra AE is constructed as the colimit of a sequence of R-algebras1

A0 → A1 → A2 → · · ·

where A0 = A and An+1 is constructed from An as follows. Let T be the set of

E-acyclic inclusions X → Y of cell complexes of R-modules. For an R-algebra C,

let DC be the category of all diagrams of the form

Y
i←− X

α−→ C

where i ∈ T and α is a map of R-modules. Morphisms in this category are triples

(fy, fx, fc) of maps such that

Y X C

Y ′ X ′ C
u

fy

u
i

u
fx

w
α

u
fc

u
i′

w
α′

commutes and composition is given by stacking the diagrams in the obvious way.

For any object of DC , we obtain a diagram of R-algebras

TY Ti←− TX eα−→ C

where T is the free R-algebra functor and α̃ is the R-algebra adjoint to the R-

module map α. Taking the sum over all elements of T , we obtain a diagram∐
TY ←−

∐
TX

P eα−→ C.

Define An+1 to be the pushout of this diagram for C = An.

1The construction actually uses a transfinite sequence, though for simplicity we ignore this
technicality here. The construction and proof is easily modified to account for this.
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Induced maps

In this section, we describe the induced maps between localizations and prove

that their construction respects composition. For a map f : A→ B of R-algebras,

we will construct maps fn : An → Bn inductively and then pass to colimits to

obtain a map fE : AE → BE.

Suppose f : A→ B is a map of R-algebras. Given an object

Y
i←− X

α−→ A

of DA, we obtain an object

Y
i←− X

α−→ A
f−→ B

of DB. Applying T and taking coproducts as before, we obtain a diagram∐
TY

∐
TX A

∐
TY

∐
TX B

∐
TY

∐
TX B

B′

u
id

u

u
id

w

P eα

u

f

z

u

z

u

u w
f◦

P eα

u

id

[
[
[[]

u

u w

P eγ
�
�

�
��

(4.1.1)

where B′ = colim(
∐

TY ←−
∐

TX
P eγ−→ B) and the maps into B′ are the natural

ones. The coproducts in the middle row range over the objects

Y
i←− X

β−→ B

of DA such that β = f ◦ α for some α in a object

Y
i←− X

α−→ A



43

of DA. The coproducts in the bottom row range over all objects of DB. Using the

universal property of the colimit of the top row, we obtain a map

f ′ : colim
(∐

TY ←−
∐

TX
P eα−→ A

)
→ colim

(∐
TY ←−

∐
TX

P eγ−→ B
)

This construction respects composition. To see this, suppose g : B → C. Consider

the analogous diagrams for g and for the composition gf : A→ C

∐
TY

∐
TX B

∐
TY

∐
TX C

∐
TY

∐
TX C

C ′

u
id

u

u
id

w

P eγ

u

g

z

u

z

u

u w
g◦

P eγ

u

id

[
[
[[]

u

u w

P eξ
�

�
�
��

∐
TY

∐
TX A

∐
TY

∐
TX B

∐
TY

∐
TX C

∐
TY

∐
TX C

C ′

u
id

u

u
id

w

P eα

u

f

u
id

u
id

u w
f◦

P eα

u

g

z

u

z

u

u w
g◦f◦

P eα

u

id

[
[
[
[[]
u

u w

P eξ
�

�
�

�
��

(4.1.2)

where C ′ = colim(
∐

TY ←−
∐

TX
P eξ−→ C). The diagram on the left gives rise to

the map

g′ : colim
(∐

TY ←−
∐

TX
P eγ−→ B

)
→ colim

(∐
TY ←−

∐
TX

P eξ−→ C

)
induced by g. In the diagram on the right, the coproducts in the first two rows

range over the same sets as they did in (4.1.1). The coproducts in the third row

range over all objects

Y
i←− X

ξ−→ C

of DC such that ξ = g ◦ f ◦ α for some α in an object

Y
i←− X

α−→ A
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of DA and the coproducts in the last row range over all objects of DC . The resulting

map

(gf)′ : colim
(∐

TY ←−
∐

TX
P eα−→ A

)
→ colim

(∐
TY ←−

∐
TX

P eξ−→ C

)
is the map induced by the composition gf . Now, the middle part of the diagram

on the right in (4.1.2) factors as∐
TY

∐
TX B

∐
TY

∐
TX B

∐
TY

∐
TX C

z

u

z

u

u w
f◦

P eα

u

id

u
id

u
id

u w

P eγ

u

g

u w
g◦

P eγ
where the coproducts in the middle row range over all objects of DB. Therefore

(gf)′ factors as g′f ′. We have proved the following lemma.

Lemma 4.1.3. The assignment A 7→ A′, f 7→ f ′ defines a functor from R-algebras

to R-algebras.

Returning to Bousfield localization, we iterate this construction to obtain a

diagram

A0 A1 A2 A3 · · ·

B0 B1 B2 B3 · · ·

w

u
f

w

u
f1

w

u
f2 u

f3

w

w w w w

for each map f : A→ B. Passing to colimits, we obtain a map fE : AE → BE. We

have λBf = fEλA, where λA : A → AE and λB : B → BE are the maps into the

colimits. The lemma ensures that (gf)E = gEfE, so we have proved the following

proposition.

Proposition 4.1.4. Suppose f : A → B and g : B → C are maps of R-algebras

and let λX : X → XE be the localization maps for X = A,B, or C. Then there

are maps fE : AE → BE and gE : BE → CE such that

λBf = fEλA, λCg = gEλB, and (gf)E = gEfE.
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Remark 4.1.5. It was not necessary to restrict ourselves to R-algebras in the proof

of the above proposition. The same argument applies to Bousfield localization of

S- or R-modules.

4.2 Specialization to v−1
n MU

As a special case of the discussion above, we obtain the following proposition.

Proposition 4.2.1. There is an MU-algebra v−1
n M̂U and an MU-algebra map

σ̂ : v−1
n M̂U → v−1

n M̂U

such that σ̂2 = idv−1
n

dMU and λσ = σ̂λ, where λ : v−1
n MU → v−1

n M̂U .

Proof. Let R = MU,A = MU and E = v−1
n MU/In in Theorem 4.1.1. Then

v−1
n M̂U := LMU

v−1
n MU/In

MU

is an MU -algebra. Applying the construction described above to the map

σ : MU →MU

yields σ̂ := σv−1
n MU/In

. Since σ2 = idv−1
n MU , functoriality ensures that

σ̂2 = idv−1
n

dMU .



Chapter 5

Additional structure

Complex conjugation gives rise to an S-algebra map σ : MU → MU with

σ2 = id. In Chapter 4, we extended this S-algebra Z/2-action to an action σ̂ on

v−1
n M̂U . In this chapter, we prove some technical results that will allow us to

compare this action with the Goerss-Hopkins-Miller action on En(Gal). The key

result is Theorem 5.5.8.

5.1 Background and notation

We recall a few constructions we will need. Fix a commutative S-algebra R

and define the free S- and R-modules generated by a spectrum X as

FSX := S ∧L LX and FRX := R ∧R FSX

where L is the linear isometries operad and L is the L-spectrum functor. Let

Sm
R = FRS

m
S = R ∧S FSS

m = R ∧S S ∧L LSm = R ∧L LSm

denote the m-sphere R-module (see [EKMM97], II.1.(1.7), V.1.(1.1)), so that

πm(M) = hMS(Sm
S ,M) = hMR(Sm

R ,M)

whereMS andMR are the categories of S-modules and R-modules, respectively.

46
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Proposition 5.1.1 ([EKMM97], III.1.1.5). If X is a wedge of sphere spectra, then

π∗(FRX) is the free π∗(R)-module with one generator of degree m for each wedge

summand Sm.

For an R-module X, define

TRX :=
∨
j≥0

X∧j
R = R ∨X ∨ (X ∧R X) ∨ (X ∧R X ∧R X) ∨ · · · ,

the free R-algebra on the R-module X (see [EKMM97], VII.1.1.4). When clear

from the context, we may drop the subscript R from the notation, writing TX for

TRX.

For S-modules K and L, there is a natural isomorphism

(K ∧S R) ∧R (R ∧S L) ∼= R ∧S (K ∧S L)

(see [EKMM97], III.4.3.6). Taking K = L = Sm
S , we have

Sm
R ∧R S

m
R = (Sm

S ∧S R) ∧R (Sm
S ∧S R) ∼= R ∧S (Sm

S ∧S S
m
S )

and so TRS
m
R = R ∧S TSS

m
S .

Proposition 5.1.2. π∗(TRS
m
R ) = π∗(R)[x], where |x| = m.

Proof. Since TRX = R ∨X ∨ (X ∧R X) ∨ (X ∧R X ∧R X) ∨ · · · , we have

π∗(TRS
m
R ) = π∗(R ∨ Sm

R ∨ (Sm
R ∧R S

m
R ) ∨ (Sm

R ∧R S
m
R ∧R S

m
R ) ∨ · · · )

= π∗(R)⊕ π∗(Sm
R )⊕ π∗(Sm

R ∧R S
m
R )⊕ π∗(Sm

R ∧R S
m
R ∧R S

m
R )⊕ · · ·

= π∗(R)⊕ π∗(FRS
m)⊕ π∗(FRS

m ∧R FRS
m)

⊕π∗(FRS
m ∧R FRS

m ∧R FRS
m)⊕ · · ·

Since π∗(FRS
m) is a free π∗(R)-module on one generator of degree m and π∗(R) is

a commutative ring, the Künneth theorem gives the result.

Corollary 5.1.3. Let M = (TRS
m1
R ) ∧R · · · ∧R (TRS

mk
R ). Then

π∗(M) = π∗(R)[x1, . . . , xk],

where |xi| = mi.
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5.2 The S-algebra T

Now we will construct the S-algebra T , as promised so many pages ago in

the introduction. Specializing the discussion of the previous section to the case

R = Ê(n) (which has a unique structure as a commutative S-algebra [Bak91]), we

can construct a Ê(n)-module M with

π∗(M) = π∗(Ê(n))[xi | i ∈ Λ]

for some index set Λ. Define an index set of integers

Λ := {m ∈ Z |m 6= 2j − 1 for some 0 ≤ j ≤ n}.

Hence 2m is the degree of the polynomial generator xm of π∗MU , and the set Λ

encodes those which are not v1, . . . , vn. In detail, we define

M :=
∧
i∈Λ

T
Ê(n)

S
|xi|
Ê(n)

= Ê(n) ∧S

∧
i∈Λ

TSS
|xi|
S

where the first Λ-indexed smash product is over Ê(n) and the second is over S.

Let

T :=
∧
i∈Λ

TSS
|xi|
S ,

so that M = Ê(n) ∧S T . Notice that T is a commutative S-algebra. Moreover,

since T is equivalent to a wedge of suspensions of spheres with exactly one 0-sphere

S0
S, there is a natural S-algebra map

t : T → SS. (5.2.1)

Using this map, we can make any S-algebra X into a trivial T -algebra.

5.3 v−1
n M̂U is a T -algebra

In this section, we prove the following.

Proposition 5.3.1. v−1
n M̂U is a T -algebra.
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It is enough to show that MU is a T -algebra, since v−1
n M̂U is a Bousfield local-

ization of MU and Bousfield localization preserves such structures (see [EKMM97],

VIII.2.2.1).

Just as in ordinary algebra, if T is an S-algebra and N is an S-algebra, a central

map T → N of S-algebras makes N into a T -algebra. To show that MU is a T -

algebra, we must write down a map T → MU of S-algebras (it is automatically

central since MU is a commutative S-algebra).

Recall that π∗(MU) = Z[x1, x2, . . .] where |xk| = 2k. Since

πm(MU) = hMS(Sm
S ,MU),

we may choose S-module maps ξk : S2k
S → MU representing the classes xk. Since

TSS
m
S is the free S-algebra on the S-module Sm

S , we obtain S-algebra maps

TSS
2k
S →MU

for each ξk. Slightly abusing notation, we will also call these maps ξk. Define the

map T →MU by smashing together the ξk and then multiplying in MU . That is,

ϕ : T =
∧
k∈Λ

TSS
|xk|
S

∧ξk−→
∧
k∈Λ

MU
µ−→MU. (5.3.1)

Proposition 5.3.2. The map ϕ is a map of S-algebras, hence MU is a T -algebra.

Proof. Each ξk : TSS
|xk|
S → MU is an S-algebra map by construction, hence their

product is also an S-algebra map. Since µ is an S-algebra map, the composition

ϕ is an S-algebra map.

5.4 Twisted maps and complex conjugation

We would like to say that the map σ̂ : v−1
n M̂U → v−1

n M̂U constructed in Chap-

ter 4 is a map of T -algebras, but unfortunately complex conjugation (and hence σ̂)

does not preserve the maps used to give v−1
n M̂U its T -algebra structure. To remedy
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this, we carry the conjugation action along by replacing S2k with S(Ck) throughout

the construction of T . Now complex conjugation defines an automorphism

c : T → T

with c2 = idT . We can consider not only the space of T -algebra maps

FT−alg(A,B)

between T -algebras A and B, but also the space of twisted T -algebra maps

FcT−alg(A,B),

which are defined to be S-algebra maps ϕ : A→ B such that the following diagram

commutes
T ∧S A A

T ∧S B B

w

u
c∧ϕ

u
ϕ

w

The following lemma says that our σ̂ is a twisted T -algebra map.

Proposition 5.4.1. σ̂ ∈ FcT−alg(v
−1
n M̂U, v−1

n M̂U)

Proof. This follows directly from the T -module structure on v−1
n M̂U . The S-

algebra representatives

ξk : TSS
2k
S →MU

of the generators xk ∈ π2k(MU) are themselves twisted with respect to complex

conjugation because they are odd desuspensions of the invariant generators in the

homotopy of the Real spectrum MR.

5.5 Homotopy discrete mapping spaces

In this section, we prove that the space of T -algebra maps from v−1
n M̂U to

a certain class of S-algebras is homotopy discrete. We need the following results

of Lazarev [Laz03] and Elmendorf, Kriz, Mandell, and May [EKMM97]. The first
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result of Lazarev pertains to the class of strongly K(n)-complete S-algebras, which

we do not define here (see [Laz03] for the definition). We simply note that Ê(n)

(and hence En(Gal)) belongs to this class.

Theorem 5.5.1 (Lazarev, [Laz03]). For any strongly K(n)-complete S-algebra N ,

the space of maps FS−alg(Ê(n), N) is homotopy discrete.

Theorem 5.5.2 (Lazarev, [Laz03]). The S-algebra map v−1
n M̂U → Ê(n) splits by

a map of S-algebras.

Proposition 5.5.3 ([EKMM97], VII.1.4). Let R be a commutative S-algebra and

let Q be an S-algebra. Then Q ∧S R is the free R-algebra generated by Q. That

is, the functor −∧SR from S-algebras to R-algebras is left adjoint to the forgetful

functor.

Corollary 5.5.4. Ê(n)∧S T is the free T -algebra generated by the S-algebra Ê(n).

Corollary 5.5.5. For any T -algebra N , FT−alg(Ê(n)∧ST,N) ∼= FS−alg(Ê(n), N).

Corollary 5.5.6. For any strongly K(n)-complete S-algebra N with the trivial

T -algebra structure, the space

FT−alg(Ê(n) ∧S T,N)

is homotopy discrete.

Remark 5.5.7. Note that by freeness, Lazarev’s splitting gives rise to a map

ψ : Ê(n) ∧S T → v−1
n M̂U (5.5.1)

of T -algebras which, by construction, induces an isomorphism on homotopy and

thus gives an isomorphism in the derived category.

Our goal for this section is to prove the following theorem.
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Theorem 5.5.8. FT−alg(v
−1
n M̂U,B) is homotopy discrete for any strongly K(n)-

complete S-algebra B with the trivial T -algebra structure.

We will prove this by computing the Bousfield-Kan spectral sequence and using

the map (5.5.1) to compare the spectral sequence for maps out of Ê(n) ∧S T with

that of maps out of v−1
n M̂U . The T -algebra map Ê(n) ∧S T → v−1

n M̂U induces a

map of spectral sequences and we will see that it is an isomorphism on the E2-page

because this page is entirely cohomological.

Proposition 5.5.9. Let X = v−1
n M̂U or Ê(n)∧S T . Let E be any strongly K(n)-

complete S-algebra with trivial T -algebra structure. In the Bousfield-Kan spectral

sequence computing the homotopy of FT−alg(X,E), we have:

(a) E0,0
2 = HomE∗T−alg(E∗X,E∗)

(b) Es,t
2 = Hs(HomE∗T−alg↓E∗(T

•+1(E∗X), E∗[x]/x
2)) for t − s ≥ −1, t > 0. Here

|x| = t, T denotes the free E∗T -algebra functor, and the homomorphisms are

those of E∗T -algebras augmented over E∗.

Before proving the proposition, we describe the set up of the spectral sequence.

For this and to compute the E2-term, we follow Rezk [Rez98], though we work with

the language of modules and algebras in the sense of [EKMM97] rather than in the

operadic sense. Given a T -algebra X, we can construct an augmented simplicial

T -algebra

X ← TX ⇔ TTX · · · (5.5.2)

where TX is the free T -algebra on the S-algebra underlying X (i.e. TX = X∧S T )

and the iterated T nX are obtained considering T n−1X as an S-algebra (forget-

ting the T -algebra structure) and then applying T again.1 Applying the functor

FT−alg(−, E) yields a cosimplicial space

Y • = FT−alg(T
•+1X,E)

which under certain conditions gives rise to a Bousfield-Kan spectral sequence

Es,t
2 = πsπt(Y

•, f) =⇒ πt−s(TotY •, f)

1This is the simplicial resolution over the forget-free comonad. We suppress the notation for
the forgetful functor here for simplicity. See below for the precise construction.
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for some basepoint f ∈ FT−alg(T
•+1X,E) arising from a T -algebra map X → E.

In order for this spectral sequence to compute the homotopy of FT−alg(X,E), we

need that

Tot(FT−alg(T
•+1X,E)) ' FT−alg(X,E).

For this to be true, we must ensure that our resolution T •+1X is Reedy cofibrant

(see Chapter VII of [GJ99] and below). This requires a short detour and a few

lemmas.

A comonad and Reedy cofibrancy

The augmented simplicial resolution (5.5.2) arises as the simplicial resolution

over a forget-free comonad. The free T -algebra functor T from S-algebras to T -

algebras is left adjoint to the forgetful functor U and hence defines a comonad

C := TU on AT with structure maps

µ : C → C2 η : C → idAT

defined as follows. For a T -algebra X, define ηX : TUX → X to be the adjoint

to the identity idUX . Define µX : TUX → TUTUX to be the image under the

functor T of the adjoint UX → UTUX to the identity idTUX . We obtain the

simplicial resolution T •+1X by putting T k+1X := Ck+1X and

di := Ci(ηCk−iX) : T kX → T k−1X

sj := Cj(µCk−jX) : T kX → T k+1X

for 0 ≤ i, j ≤ n. The simplicial identities are implied by the standard commuting

diagrams for the structure maps η and µ. (See e.g. [Sch94], p. 65.)

The condition of Reedy cofibrancy ensures that the natural map |T •+1X| → X

is a weak equivalence of T -algebras and that the resulting tower FT−alg(T
•+1X,E)

is a tower of fibrations giving rise to the desired spectral sequence. A simplicial

object Y • in a model category is Reedy cofibrant if the natural map

Lk(Y
•)→ Y k
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of the latching object is a cofibration. The latching object Lk(Y
•) is defined as

Lk(Y
•) := colimϕ:[k]→[m] Y

m

where ϕ runs over nonidentity surjections in the ordinal number category.

Proposition 5.5.10. The resolution T •+1X is Reedy cofibrant.

Proof. The latching object has an alternative description as the coequalizer

∐
0≤i<j≤k

Yk−2 ⇒
k−1∐
i=0

Yk−1 → Lk(Y
•)

where for i < j the restrictions of the two left-hand maps are

Yk−2
si−→ Yk−1

iki−→
k−1∐
i=0

Yk−1

Yk−2
sj−1−→ Yk−1

iki−→
k−1∐
i=0

Yk−1

The map Lk(Y
•) → Yk is induced by the degeneracies si : Yk−1 → Yk. (See

Chapter VII of [GJ99].) In the case of a simplicial resolution over a comonad, the

degeneracies arise from the structure map µ; Reedy cofibrancy will follow from the

fact that µX is a cofibration.

The identity map

idTUX : TUX → TUX

is a cofibration of T -algebras and its adjoint is

ι ∧ idX : S ∧S X = UX → T ∧S X = UTUX

where ι : S → T is the unit of the S-algebra T . Since T is a cofibrant S-algebra,

the unit map ι is a cofibration ([EKMM97], Thm. VII.6.2), so the adjoint to idTUX

is a cofibraiton. Applying T preserves cofibrations, so the map

µX : TUX → TUTUX

is a cofibration of T -algebras. Since

sj := Cj(µCk−jX) : T kX → T k+1X
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and Ci = (TU)i preserves cofibrations ([EKMM97], Thm. VII.4.14), we see that

the sj are cofibrations. Since the map

Lk(Y
•)→ Yk

is induced by applying the universal property of coproducts to the si, it is also a

cofibration, as desired.

We need one additional lemma before we can prove Proposition 5.5.9. Let

FT (−,−) denote T -module maps.

Lemma 5.5.11. For Z = Ê(n)∧ST or v−1
n M̂U and E any strongly K(n)-complete

S-algebra, the evaluation map

π0FT (Z,E)→ HomE∗T (E∗Z,E∗)

is an isomorphism.

Proof. First consider the case Z = Ê(n) ∧S T . In the diagram

π0FT (Ê(n) ∧S T,E) HomE∗T (E∗(Ê(n) ∧S T ), E∗)

π0FS(Ê(n), E) HomE∗(E∗Ê(n), E∗)

u

w

u

w

the vertical arrows are isomorphisms since Ê(n) ∧S T is free. The bottom arrow

is an isomorphism by Lemma 5.10 of Lazarev [Laz03], and hence the top arrow is

also an isomorphism, as desired.

For Z = v−1
n M̂U , consider the diagram

π0FT (v−1
n M̂U,E) HomE∗T (E∗(v

−1
n M̂U), E∗)

π0FT (Ê(n) ∧S T,E) HomE∗T (E∗(Ê(n) ∧S T ), E∗)

u

w

u

w

where the vertical arrows are induced by the map ψ of (5.5.1). Since ψ is an

isomorphism in the derived category of T -algebras, it induces an isomorphisms on

these vertical arrows. Above we proved that the bottom arrow is an isomorphism,

so the top arrow is as well.



56

Now we are ready to prove Proposition 5.5.9. Again, the argument here is the

same as that of [Rez98], with minor adjustments made to account for working over

T rather than S. The reader familiar with that paper may wish to skip these

proofs.

Proof of Proposition 5.5.9(a). First, notice that the natural map

π0FT−alg(Z,E)→ HomE∗(E∗Z,E∗)

obtained by sending f : Z → E to the composition

E∗Z
f∗−→ E∗E → E∗

actually lands in E∗T -algebra maps since the T -algebra structure Z ∧T Z → Z

induces the desired E∗T -algebra structure

E∗Z ⊗E∗T E∗Z → E∗(Z ∧T Z)→ E∗Z

and a T -algebra map gives rise to a E∗T -algebra map.

Now, to compute E0,0
2 , we must compute the equalizer of the pair of maps

π0FT−alg(TX,E) ⇒ π0FT−alg(T
2X,E).

We will reduce this to computing the equalizer of the pair of maps

HomE∗T−alg(T(E∗X), E∗) ⇒ HomE∗T−alg(T
2(E∗X), E∗) (5.5.3)

where T is the tensor algebra (over E∗T ) on the underlying E∗T -module. Consider

the diagram

π0FT−alg(TZ,E) HomE∗T−alg(E∗(TZ), E∗)

π0FT (Z,E) HomE∗T (E∗Z,E∗)

w

u u
w

The left vertical map is an isomorphism since TZ is the free T -algebra on Z. The

inclusion Z → TZ induces a map E∗Z → E∗(TZ) that gives rise to the right hand

vertical arrow. It also gives a map T(E∗Z)→ E∗(TZ). Since E∗Z is flat over E∗

in the cases of interest (i.e. Z = TX for X = Ê(n)∧S T or X = v−1
n M̂U), this map
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is an isomorphism, so the right vertical map is an isomorpism. The bottom map

is an isomorphism by Lemma 5.5.11, and so the top map is also an isomorphism.

Taking Z = TX, we have reduced the original coequalizer to that of (5.5.3). But

this is just the coequalizer of

HomE∗T (E∗X,E∗) ⇒ HomE∗T (T(E∗X), E∗)

where the top arrow sends an E∗T -module map f : E∗X → E∗ to

T(E∗X)→ E∗X
f−→ E∗

and the bottom arrow sends it to

T(E∗X)
Tf−→ E∗X → E∗

and so the coequalizer is HomE∗T−alg(E∗X,E∗), as desired.

Proof of Proposition 5.5.9(b). Following Rezk [Rez98], we will construct a complex

whose cohomology gives the E2-term. First, we identify

πt(FT−alg(Z,E), f) ∼= π0FT−alg(Z, FT−alg(S
t
T , E))

and then we construct a map from the latter to

HomE∗T−alg↓E∗(E∗Z,E∗[x]/x
2).

Taking Z = T sX for s ≥ 0 gives a complex

HomE∗T−alg↓E∗(T
•(E∗X), E∗[x]/x

2)

and we’ll see that

π0FT−alg(TZ, FT−alg(S
t
T , E)) ∼= HomE∗T−alg↓E∗(T(E∗Z), E∗[x]/x

2)

for Z = T sX. When Z = T sX, the left side is Es,t
2 , so this will prove the result.

Fix a basepoint f ∈ FT−alg(Z,E). The adjunction between ∧ and F (−,−) gives

that the set πt(FT−alg(Z,E), f) is the same as the set of homotopy classes of T -

algebra maps ϕ̃ : Z → FT−alg(S
t
T , E) such that eϕ̃ = f , where e : FT−alg(S

t
T , E)→
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E is evaluation at the basepoint. In diagrams,

pt FT−alg(Z,E)

St
T

w
f

u [
[
[
[[]ϕ ↔

FT−alg(S
t
T , E)

Z E
u

e

�
�
�
���eϕ

w
f

Thus by applying E∗ to the diagram on the right and using the algebra structure

of E∗, we obtain a diagram of E∗T -algebras

E∗(FT−alg(S
t
T , E)) E∗[x]/x

2

E∗Z E∗E E∗

u
e∗

w

uA
A
A
A
A
AACeϕ∗
w

f∗
w

where |x| = t and E∗[x]/x
2 ∼= π∗FT−alg(S

t
T , E). By sending ϕ to the top compsition

in this diagram, we obtain a map

πt(FT−alg(Z,E), f)→ HomE∗T−alg↓E∗(E∗Z,E∗[x]/x
2)

where the right hand side is maps of E∗T -algebras augmented over E∗.

By an argument similar to that in the proof of part (a) above, the top map in

the diagram

π0FT−alg(TZ, FT−alg(S
t
T , E)) HomE∗T−alg↓E∗(T(E∗Z), E∗[x]/x

2)

π0FT (Z, FT−alg(S
t
T , E)) HomE∗T (E∗Z,E∗ ⊕ E∗+t)

w

u u
w

is an isomorphism. Thus we may calculate the E2-term as the cohomology

Es,t
2
∼= Hs(HomE∗T−alg↓E∗(T

•+1(E∗X), E∗[x]/x
2))

completing the proof.

Proof of Theorem 5.5.8. Recall that we have a T -algebra map (5.5.1)

ψ : Ê(n) ∧S T → v−1
n M̂U
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which is an isomorphism in the derived category. Since ψ is a T -algebra map, it

induces a map of augmented simplicial T -algebras

T •+1(Ê(n) ∧S T )→ T •+1(v−1
n M̂U)

and thus a map of cosimplicial S-algebras

FT−alg(T
•+1(v−1

n M̂U), E)→ FT−alg(T
•+1(Ê(n) ∧S T ), E)

Under the identification of the E2-page as given in Proposition 5.5.9, ψ yeilds a

map

Hs(HomE∗T−alg↓E∗(T
•+1(E∗(v

−1
n M̂U)), E∗[x]/x

2))→

Hs(HomE∗T−alg↓E∗(T
•+1(E∗(Ê(n) ∧S T )), E∗[x]/x

2)).

Since the map ψ is an isomorphism in the derived category, it induces an isomor-

phism on E∗ homology, and hence on the E2-terms of these spectral sequences.

Since the spectral sequence for Ê(n)∧S T collapses, so must that for v−1
n M̂U .



Chapter 6

Comparing the actions

6.1 Relating ER(n) and En(Gal)hZ̃/2

We have constructed an S-algebra v−1
n M̂U and an S-algebra map σ̂ that extends

the complex conjugation action on MU . In this chapter, we compare this action

to the action of the Goerss-Hopkins-Miller monoid corresponding to the subgroup

generated by the formal inverse on En(Gal). We will prove that En(Gal)hgZ/2 is

a completion of ER(n), in an appropriate sense, and calculate the homotopy of

En(Gal)hgZ/2. This final chapter ties together the results of the previous chapters

to prove Theorem 6.2.4.

We will show that there is an equivariant map into En(Gal) from an MU -

module equivariantly equivalent to v−1
n M̂U . We will see that the induced map on

homotopy fixed points factors through Ê(n)
hgZ/2

and that the resulting map

Ê(n)
hgZ/2

→ En(Gal)hgZ/2

is an equivalence. Composing with the natural map ER(n) → Ê(n)
hgZ/2

will give

a map

ER(n)→ En(Gal)hgZ/2

that induces the algebraic completion

ER(n)∗ → (ER(n)∗)
∧
În

∼= (En(Gal)hgZ/2)∗

on the level of homotopy.

60
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6.1.1 An equivariant map

In this section, we construct an equivariant map into En(Gal) from an S-algebra

equivalent to v−1
n M̂U . This construction uses the S-algebra T from Chapter 5 and

the fact that the space of T -algebra maps from v−1
n M̂U to En(Gal) is homotopy

discrete.

Write

G1 ⊆ FS−alg(v
−1
n M̂U, v−1

n M̂U)

for the Z/2 generated by σ̂ and

G2 ⊆ FS−alg(En(Gal), En(Gal))

for the homotopy discrete monoid corresponding the subgroup of the Morava sta-

bilizer group generated by the formal inverse, so that G1 acts on v−1
n M̂U and G2

acts on En(Gal). Define Z̃/2 by the following pullback diagram

Z̃/2 G1 ×G2

Z/2 Z/2× Z/2

w
e∆

u u
π0

w
∆

where ∆ is the diagonal map. We obtain an action of Z̃/2 on the space

FS−alg(v
−1
n M̂U,En(Gal))

by conjugation. In detail, for ϕ ∈ FS−alg(v
−1
n M̂U,En(Gal)) and ψ ∈ Z̃/2, we have

ϕ 7→ ψ′′ϕ(ψ′)−1

where ψ 7→ (ψ′, ψ′′) under the map ∆̃.

Give En(Gal) the trivial T -algebra structure and let

ν : v−1
n M̂U → En(Gal)

be a T -algebra representative for the map that induces the quotient map on coef-

ficients. Write

FT−alg(v
−1
n M̂U,En(Gal))ν
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for the component of ν. Notice that the composition

T
ϕ−→ v−1

n M̂U
ν−→ En(Gal) (6.1.1)

factors through the unit map S → En(Gal) via the projection t : T → S described

in (5.2.1). Here ϕ is the T -algebra structure map of Prop. 5.3.2.

The map ν is homotopy equivariant with respect to the G1 action on v−1
n M̂U

and the G2 action on En(Gal), so the action of Z̃/2 on FS−alg(v
−1
n M̂U,En(Gal))

descends to an action on the component of ν, which we denote by

FS−alg(v
−1
n M̂U,En(Gal))ν .

Lemma 6.1.2. The Z̃/2 action on FS−alg(v
−1
n M̂U,En(Gal))ν descends to an ac-

tion on the subspace

FT−alg(v
−1
n M̂U,En(Gal))ν ⊆ FS−alg(v

−1
n M̂U,En(Gal))ν

of T -algebra maps.

Proof. Since ν is homotopy equivariant, it suffices to show that ν remains a T -

algebra map after the action of Z̃/2. Consider the diagram

v−1
n M̂U v−1

n M̂U En(Gal) En(Gal)

T T S

w
bσ

w
ν

w
f

w
c

u

ϕ

u

ϕ

w
t

u

[
[
[
[]

for f ∈ G2. The left square commutes because σ̂ is a twisted T -algebra map (Prop

5.4.1). The middle square commutes because of the factorization noted in (6.1.1).

The right triangle commutes because f is an S-algebra map. Since tc = t, the

commutativity of the outside of the diagram shows that the map across the top is

a T -algebra map. Since the image of ν under the Z̃/2 action consists exactly of

such maps, this completes the proof.
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Because FT−alg(v
−1
n M̂U,En(Gal))ν is homotopy discrete, the space

v−1
n M̂U ∧S FT−alg(v

−1
n M̂U,En(Gal))ν

is homotopy equivalent to v−1
n M̂U . Moreover, this space admits a diagonal Z̃/2-

action, where Z̃/2 acts on v−1
n M̂U via the map Z̃/2

e∆−→ G1 × G2 → G1, which

sends the identity component to the identity and the nonidentity component to σ̂.

Consider the evaluation map

ε : v−1
n M̂U ∧S FT−alg(v

−1
n M̂U,En(Gal))ν → En(Gal) (6.1.2)

and let Z̃/2 act on En(Gal) via the map Z̃/2
e∆−→ G1 × G2 → G2. The map ε is

equivariant by the following lemma.

Lemma 6.1.3. Let G be a group and let A and B be R-algebras with G-actions

through R-algebra maps. Suppose ϕ : A→ B is equivariant up to homotopy. Then

the evaluation map

ε : A ∧R FR−alg(A,B)ϕ → B

is G-equivariant with respect to the conjugation action on FR−alg(A,B).

Proof. The diagram

G ∧R A ∧R FR−alg(A,B)ϕ A ∧R FR−alg(A,B)ϕ

G ∧R B B

w

u
id∧ε

u
ε

w

commutes since

g · ε(a, ψ) = gψ(a) = gψ((g−1g)a) = gψ(g−1(ga)) = ε(ga, g · ψ)

for every g ∈ G, a ∈ A,ψ ∈ FR−alg(A,B)ϕ.

Corollary 6.1.4. The map

ε : v−1
n M̂U ∧S FT−alg(v

−1
n M̂U,En(Gal))ν → En(Gal)

described in (6.1.2) is equivariant and therefore induces a map

(v−1
n M̂U ∧S FT−alg(v

−1
n M̂U,En(Gal))ν)

hgZ/2 → En(Gal)hgZ/2. (6.1.3)
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6.2 The spectral sequence for En(Gal)hZ̃/2

Now that we have constructed an equivariant map

v−1
n M̂U ∧S FT−alg(v

−1
n M̂U,En(Gal))ν → En(Gal)

we can calculate the coefficients of En(Gal)hgZ/2 using the Bockstein spectral se-

quence and the calculations of Chapter 3.

Theorem 6.2.1.

(En(Gal)hgZ/2)∗ ∼= Ẑ2[[v̂k(l) | 0 ≤ k < n, l ∈ Z]][x, v±2n+1

n ]/J

where J is the ideal generated by the relations in Theorem 3.2.1.

Proof. The natural map

v−1
n M̂U ∧S FT−alg(v

−1
n M̂U,En(Gal))ν → v−1

n M̂U

given by projection onto the first component is equivariant and an equivalence, so

it induces a weak equivalence on homotopy fixed points. In particular,

v−1
n M̂U ∧S FT−alg(v

−1
n M̂U,En(Gal))ν

and v−1
n M̂U have isomorphic Bockstein spectral sequences. Moreover, the equiv-

ariant map

v−1
n M̂U ∧S FT−alg(v

−1
n M̂U,En(Gal))ν → En(Gal)

(6.1.2) induces a map of Bockstein spectral sequences. On the E2-page, the map

v−1
n M̂U∗ → En(Gal)∗

is the natural one, sending xi 7→ 0 for i 6= 2(2k−1), 0 ≤ k ≤ n, so it factors through

Ê(n)∗. This factorization is a map of spectral sequences since the differentials on

all three spectral sequences are the same. Therefore, the map

Ê(n)∗ → En(Gal)∗
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is in fact a map of Bockstein spectral sequences. Since it is an isomorphism on E2,

it is an isomorphism of spectral sequences and thus (En(Gal)hgZ/2)∗ ∼= (Ê(n)
hZ/2

)∗.

Since the latter was computed to be

Ẑ2[[v̂k(l) | 0 ≤ k < n, l ∈ Z]][x, v±2n+1

n ]/J

in Section 3.4, this completes the proof.

6.2.2 The map ER(n)→ En(Gal)hZ̃/2

Recall that (v−1
n M̂U

hZ/2
)∗ is a free (v−1

n B̂P
hZ/2

)∗-module (see Section 3.5).

Let A be the MUhZ/2-module spectrum constructed from v−1
n M̂U

hgZ/2
by tak-

ing successive cofibers in order to kill the free (v−1
n B̂P )

hZ/2
∗ -module generators

of (v−1
n M̂U

hZ/2
)∗. Let B be the MUhZ/2-module spectrum constructed from B by

taking successive cofibers to kill the polynomial generators of (v−1
n B̂P

hZ/2
)∗ as a

(Ê(n)
hZ/2

)∗-module (again, see Section 3.5).

Proposition 6.2.3. B is equivalent to Ê(n)
hgZ/2

.

Proof. The map

v−1
n M̂U

hgZ/2
→ Ê(n)

hgZ/2

,

arising from the natural map v−1
n M̂U → Ê(n), factors through B. The result-

ing map B → Ê(n)
hgZ/2

induces an isomorphism on coefficients, and is thus an

equivalence.

Since the equivariant map

v−1
n M̂U ∧S FT−alg(v

−1
n M̂U,En(Gal))ν → v−1

n M̂U

is an equivalence of MU -modules, it induces an isomorphism

(v−1
n M̂U ∧S FT−alg(v

−1
n M̂U,En(Gal))ν)

hgZ/2 ∼= v−1
n M̂U

hgZ/2

in the derived category of MUhZ/2-modules. Composing this isomorphism with

the map (6.1.3) gives a map

v−1
n M̂U

hgZ/2
→ En(Gal)hgZ/2.
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Since this map induces the obvious quotient map on coefficients, it factors through

B and hence through Ê(n)
hgZ/2

, yielding a diagram

v−1
n M̂U

hgZ/2
En(Gal)hgZ/2

Ê(n)
hgZ/2

w

u \
\
\
\
\\]

The dotted arrow is a homotopy isomorphism and hence an equivalence. Precom-

posing with the natural map

ER(n)→ Ê(n)
hgZ/2

gives the map

ER(n)→ En(Gal)hgZ/2

claimed in the introduction. We have proved the following theorem.

Theorem 6.2.4. There is an equivalence Ê(n)
hgZ/2

' En(Gal)hgZ/2 and a map

ER(n)→ En(Gal)hgZ/2

that induces an algebraic completion on the level of coefficients. Let

În = (v̂k(l) | 0 ≤ k < n, l ∈ Z) ⊆ ER(n)∗.

The coefficients of En(Gal)hgZ/2 are

(En(Gal)hgZ/2)∗ = (ER(n)∗)
∧
În

= Ẑ2[[v̂k(l) | 0 ≤ k < n, l ∈ Z]][x, v±2n+1

n ]/J

where J is the ideal generated by the relations

v̂0(0) = 2, x2k+1−1v̂k(l) = 0, and for k ≤ m, v̂m(l)v̂k(2
m−ks) = v̂m(l + s)v̂k(0).

The degrees of the generators are

|x| = λ(n), |v2n+1

n | = 2n+2(2n − 1)2,

|v̂k(l)| = 2(2k − 1) + l2k+2(2n − 1)2 − 2(2k − 1)(2n − 1)2.

Corollary 6.2.5. After completion, the Z/2-action of complex conjugation on

Johnson-Wilson theory E(n) becomes E∞, so Ê(n)
hZ/2

is a commutative S-algebra.
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