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Abstract

The Good, the Bad, the Algae:

Using High Resolution Imagery to Detect Freshwater Algal Blooms in California

by

Emily Anne Kislik

Doctor of Philosophy in Environmental Science, Policy, and Management

University of California, Berkeley

Professor Maggi Kelly, Chair

Algae are an essential component of aquatic ecosystems. They provide food, habitat,
structural support, and oxygen to marine, freshwater, and brackishwater environments alike.
However, algae in excess can be problematic. Harmful algal blooms (HABs) are proliferations of
both toxic and non-toxic algal species that can cause ecological and environmental damage in
lakes, reservoirs, and rivers. As global temperatures rise, coupled with increasing nutrient inputs
from eutrophication and atmospheric deposition, many predict HABs will also increase in
frequency and intensity. There is a need to advance methods in algal bloom monitoring to keep
pace with these global trends. As in situ techniques such as water quality samples, swimming,
and laboratory assessments can be time-consuming and expensive, remote sensing may offer a
faster, more cost-effective method to investigate blooms at greater spatial and temporal extents in
freshwater ecosystems. Rivers, reservoirs, and lakes are particularly important because of their
environmental, economic, cultural, and recreational roles in nature and society, and advancing
remote sensing methods could improve our ability to monitor and mitigate blooms in these
settings across the world. This dissertation explores the spatial and temporal dynamics of algal
blooms, both “good” (non-toxic filamentous algae) and “bad” (toxic cyanobacteria), throughout
freshwater environments of California. In Chapter 1, I introduce the importance and risks of
algae, as well as a background of in situ and remote sensing methods to monitor algae. Chapter 2
examines the use of unoccupied aerial vehicle (UAV) imagery over the Klamath River to
understand the distribution of aquatic plants and filamentous algae prior to the largest dam
removal in history. Chapter 3 moves upstream in the Klamath River to two reservoirs, Iron Gate
and Copco, and uses high-resolution Sentinel-2 satellite imagery to detect the spatial distribution
and timing of potentially toxic blooms in a five-year time series. Chapter 4 integrates two
statewide harmful algal bloom datasets (one of crowdsourced reports and another of 300-meter
Sentinel-3 satellite imagery) with higher-resolution Sentinel-2 imagery in order to monitor a
greater number of lakes and reservoirs in California with higher resolution data. Finally, in
Chapter 5, I review the major findings, lessons learned, and challenges of this research and posit
new directions of future research to improve remote sensing techniques of algal bloom detection
in freshwater environments.
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Chapter 1: An Introduction to High-Resolution Remote Sensing of Algal
Blooms

Part of this chapter has been previously published and is reproduced here with kind permission
of the co-authors.

Kislik, C., Dronova, I., Kelly, M. (2018). UAVs in Support of Algal Bloom Research: A Review
of Current Applications and Future Opportunities. Drones, 2(4), 35; doi:10.3390/drones2040035

Algae are among the most important living beings on Earth. They are a complex group of
organisms that thrive in freshwater, frozen, marine, and brackish ecosystems across the globe
(Peacock et al. 2018; Vincent and Howard-Williams 1986), and there are an estimated 30,000 to
1 million different species of algae (Guiry 2012). Unlike plants, algae do not have roots, stems,
leaves, or a vascular system to transport nutrients and water. However, algae photosynthesize as
plants do and produce oxygen (Weiss 1952). Algae range in size, from microscopic unicellular
organisms such as the Chlamydomonas genus (<20 micrometers long) (Makino et al. 2019) to
giant kelp, such as M. pyrifera (up to 50 meters long) (Macaya and Zuccarello 2010). They are
diverse in that they can be single-celled, filamentous, or more plant-like and they vary in color,
ranging from green (Chlorophyta) to red (Rhodophyta) to brown (Phaeophyta) (Chan, Ho, and
Phang 2006). Blue-green algae, also known as cyanobacteria, have been on this planet for about
3.5 billion years (Schopf and Packer 1987), and their ability to photosynthesize is linked to the
initial oxygenation of Earth’s atmosphere. Algae currently provide about 30-50% of the oxygen
available to humans, other animals, and plants on the planet (Chapman 2013), sustaining life as
we know it.

In addition to oxygen production, algae provide vital environmental and economic
benefits. As primary producers, algae create the foundation for aquatic food webs and are
essential to the health of many freshwater and marine ecosystems (Klemas 2012; Lee et al. 2015;
Blondeau-Patissier et al. 2014). They also sequester large volumes of carbon and can be used to
produce food and fuel (Chapman 2013; Okada and Watanabe 2007). For example, the blue-green
alga Spirulina is harvested commercially across the globe for its high vitamin A content (Tang
and Suter 2011) and the green alga Chlorella is consumed globally, and especially in several
Asian countries, for its high protein content (Ramazanov and Ramazanov 2006). Algae have also
been cultivated for biofuel; a green alga called Botryococcus braunii is harvested for its oil and
rivals the efficiency of other alternative fossil fuel crops, including those grown for feedstock
purposes (Ramaraj, Kawaree, and Unpaprom 2016). There are many other types of “good algae,”
such as microalgal phytoplankton to macroalgal kelp fields, that benefit the environment and
economy. However, the same species that provide benefits can also cause economic,
environmental, and health problems when they proliferate to an extraordinary extent or produce
dangerous toxins.

Algae can become perilous when large patches grow in response to excess nutrients and
environmental changes in light availability, water pH, wind intensity, and water temperature (Van
der Merwe and Price 2015). Some algae also produce toxins, including dinoflagellates, diatoms,
and cyanobacteria (Smayda 1997; Moore et al. 2008; Van der Merwe and Price 2015). For
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example, toxic phytoplankton species can cause paralytic, diarrhetic, amnesic, ciguatera, and
neurotoxic shellfish poisoning in shellfish consumers, and can materialize as aerosols that drift
from estuarine or coastal regions and trigger asthma symptoms (Moore et al. 2008). It is
uncertain what causes specific algal species to express toxins at certain times, although some
believe it is in response to the availability of limited nutrients, the presence of certain bacteria, or
to protect against grazing from zooplankton (S. S. Bates et al. 1995; Mos 2001; Stephen S. Bates
et al. 2004; W. W. Carmichael 1992). Both toxic and non-toxic algal species can have deleterious
effects on aquatic life by clogging fish gills, depleting the water’s oxygen levels, and killing fish
and other organisms (G. M. Hallegraeff 2003; Kirkpatrick et al. 2004). The proliferation of these
“bad algae” in aquatic ecosystems are commonly referred to as harmful  algal blooms, or HABs.

Harmful algal blooms have existed for centuries. The first written record of algal blooms
is believed to be from the Bible around 1000 B.C.: “. . all the waters that were in the river were
turned to blood. And the fish that was in the river died; and the river stank, and the Egyptians
could not drink of the water of the river’ (Exodus 7: 20–1).” (G. M. Hallegraeff 1993). The first
recorded instance of the most common and severe type of shellfish poisoning produced by algal
toxins, paralytic shellfish poisoning, was in 1793 from Captain George Vancouver's A Voyage of
Discovery to the North Pacific Ocean and Round the World. Captain Vancouver’s crew landed in
British Columbia (in what is now known as Poison Cove) where it was then taboo for local
Tribes to eat shellfish if the ocean was a specific color (G. M. Hallegraeff 1993). One of the 5
crew members who ate the poisoned mussels died within 6 hours of consumption (Ansdell
2019). Paralytic shellfish toxins were not considered a serious public health concern until 1927
when over 100 people near San Francisco became ill and several died after consuming poisoned
shellfish (Price, Kizer, and Hansgen 1991). A paralytic shellfish toxic monitoring program was
then established, becoming the first of its kind in the United States (D. M. Anderson et al. 2021).
Harmful algae remain a significant health risk. From 2017 to 2019, there were 321 emergency
room visits associated with toxic algal blooms across the country (Lavery et al. 2021). Harmful
algae have plagued human civilization for thousands of years and they continue to increase (D.
M. Anderson 2009). However, only within the past 200 years have we been able to mitigate these
harmful outbreaks.

While most HABs are related to toxin exposure in marine ecosystems, these events can
exist in any type of aquatic environment. They have become notorious in locations such as
Toledo, Ohio, for poisoning the city’s drinking water (J. C. Ho and Michalak 2015), as well as
Lake Champlain, Vermont, for dog mortalities (Boyer et al. 2004). It is important to understand
the dynamics of HABs that flourish in freshwater bodies because these are the resources we
depend on for drinking, farming, boating, cultural practices, and recreation (Pitois, Jackson, and
Wood 2000). Furthermore, freshwater blooms are estimated to cost the United States about $4
billion in economic losses each year (J. C. Ho, Michalak, and Pahlevan 2019), and mitigating
these events would save money and diminish the risk of severe illness and death.

Cyanobacteria (blue-green algae) are one of the most prevalent groups of HABs in
freshwater ecosystems (D. M. Anderson, Glibert, and Burkholder 2002; Coffer et al. 2020), and
they have been linked to toxic events in small freshwater environments (Backer 2002; A. de la
Cruz et al. 2017; Dalu and Wasserman 2018; Quesada et al. 2006; J. Yang et al. 2016; Mwaura,
Koyo, and Zech 2004) in over 100 countries (Harke et al. 2016). Cyanobacteria HABs are
common in small lakes and reservoirs across the globe, likely due to high concentrations of
nutrients such as phosphorus that can quickly accumulate in these environments (Lobo et al.
2021). These blooms are typically seasonal, often reaching highest values from August to
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September in temperate-region reservoirs (Jacoby and Kann 2007; Oliver, Dahlgren, and Deas
2014), although cyanobacteria HABs have also been detected in freshwater ecosystems year
round (Filatova et al. 2020; Coffer et al. 2020). Due to the increasing number of cyanobacteria
HABs in the United States, the Environmental Protection Agency has created advisories to better
monitor and understand public health risks associated with these events (United States
Environmental Protection Agency 2021).

As global water temperatures warm (Gobler et al. 2017; Jochens et al. 2010) and urban
and agricultural runoff continues to supply water systems with nutrients (Klemas 2012), the
frequency of algal bloom events, including HABs, will likely continue to climb (Hans W. Paerl
and Huisman 2008; Hudnell 2010). These events pose threats to aquatic ecosystems and human
health and call for new management strategies with tools at scales appropriate to the events in
question. Ho et al. (2019) determined that phytoplankton blooms in lakes across the globe have
been increasing intensely since the 1980s, pointing to increased fertilizer use as a potential
culprit (J. C. Ho, Michalak, and Pahlevan 2019). However, Hallegraff et al. (2021) believe that
increased monitoring, rather than climate change or nutrient inputs, is the real reason for this
perceived increase in HABs across the globe (Gustaaf M. Hallegraeff et al. 2021). In any case,
the potential for an increase in global algal blooms is alarming because of the threat of
deleterious health effects within humans and other organisms. It also underscores the need to
improve and standardize the way in which HABs are monitored in order to better understand and
ultimately mitigate the risks of algae blooms in freshwater ecosystems across the world.

The first methods used to detect and quantify algal blooms date back to the 1700s when
sea navigators and botanists recorded visual and microscopic observations of various marine
algae in their notebooks (Papenfuss 1992). By the early 20th century, algae sampling methods
had developed to include in situ measurements of chlorophyll-a, turbidity, total suspended
matter, and surface water temperature (C. I. Weber 1986; Goldberg, Kirby, and Licht 2016;
Pölönen et al. 2014), as well as field sampling of algal cover and spectroradiometer
measurements of algal spectral reflectance (Honkavaara et al. 2013; Jang et al. 2016; Shang et al.
2017; F. Xu et al. 2018). Since the late 19th century and early 20th century, researchers have
used microscopy to identify specific algal species present in water bodies, and this method
continues today (Bollard-Breen et al. 2015; Van der Merwe and Price 2015; Whipple 1914).
Contemporary laboratory analyses for toxins include Enzyme-Linked Immunosorbent Assays
(ELISA) and Protein Phosphatase Inhibition Assays (PPIA), which can be time intensive and
expensive (Watson et al. 2017). Recently, visual, ground-based methods have been developed
that involve snorkeling, swimming, and wading across bodies of water (Kislik et al. 2020). While
improving the ability to detect and monitor algal blooms, many of these in situ sampling methods
are time-consuming, financially burdensome, and even dangerous. Furthermore, algal sampling
programs that involve laboratory analyses are expensive and involve problematic time lags that
can delay posting of advisory signs of potentially toxic blooms.

Recent advances in remote sensing technology are creating opportunities to develop
faster, safer, and less expensive methods to monitor algal blooms. Remote sensing has proven to
be an effective tool to study algae because of optical detection capabilities, and algal blooms are
commonly studied water quality topics that incorporate remote sensing methods in current
literature. Algae contain a photosynthesizing pigment called chlorophyll-a (chl-a) which can be
detected to understand the presence and distribution of algae in an aquatic environment.
Generally, water scatters blue light in non-productive portions of water bodies, making them
appear blue, while productive regions with high plankton content appear green (Klemas 2012).
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This coloration distinction can be used to optically detect algal blooms by measuring chl-a
absorption peaks at 500 nm and 675 nm, reflectance peaks at 550 nm and 700 nm, and a
fluorescence peak at 683 nm (Shen, Xu, and Guo 2012). Algae also have different accessory
pigments to absorb light for photosynthesis, such as phycocyanin in cyanobacteria (Simis, Peters,
and Gons 2005). Such pigments have unique spectral signatures, allowing for the identification
of algae to the genus level using high resolution imagery. Many methods of optical identification
of cyanobacteria involve algorithms that accentuate phycocyanin by observing measurements in
the 615-630 nm range. Other methods rely on observing the spectral shape of algae to increase
the signal-to-noise ratio (Kudela et al. 2015). These methods have been applied through various
technologies, including remote sensing instruments, which have advanced algal research to
greater spatial, temporal, and spectral detection capacities.

Common remote sensing approaches used to identify algal blooms include data from
satellite and airborne imagery analysis (Shen, Xu, and Guo 2012; Kutser 2009; Hook et al.
2001). Classic remote sensing methods that have been used to observe algal blooms since the late
1970s include multispectral satellite sensors such as the Coastal Zone Color Scanner (CZCS)
(which was the first ocean satellite sensor), the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS), Moderate Resolution Imaging Spectrometer (MODIS), Medium Resolution Imaging
Spectrometer (MERIS), Ocean Color Monitor (OCM) sensors, and the Advanced Very High
Resolution Radiometer (AVHRR). However, coarse spatial resolution (> 300 m / pixel) of
satellite imagery can only identify massive blooms that encompass tens to hundreds of square
kilometers. It is often very difficult to discern a bloom in a relatively small water body, such as a
bay, lake, river, or estuary, from satellite imagery (Shen, Xu, and Guo 2012). Aerial monitoring
of algal blooms via airplanes has been conducted to identify blooms in smaller water bodies.
Sensors that have been flown on aircraft and used for algal bloom studies include the Airborne
Visible / Infrared Imaging Spectrometer (AVIRIS), the Compact Airborne Spectrographic Imager
(CASI), and the MODIS/ASTER airborne simulator (MASTER) (Hook et al. 2001; Kutser
2009).

Recent developments in unoccupied aerial vehicles (UAVs, also known as drones)
technology and a transition from military applications to environmental research purposes
(Shang et al. 2017) have also opened the door for high-resolution algal bloom monitoring.
Although UAVs currently cannot rival the spatial extent and often spectral capacity captured by
satellite or aircraft sensors, they offer the potential benefit of higher temporal revisit times and
spatial resolution to the centimeter scale. They can also be flexibly modified with different
sensors to perform specific tasks or capture specific spectral properties (Manfreda et al. 2018;
DeBell et al. 2015). Since compact sensors for UAVs entered the commercial market in the early
2000s, their use in research has skyrocketed (DeBell et al. 2015; Johnston 2018), including
several studies that have tested UAV-based phytoplankton bloom identification methods. As
UAV technology and algal bloom detection algorithms continue to advance, small unoccupied
platforms are likely to  become invaluable tools for algal bloom research.

In this dissertation, I introduce improved monitoring techniques for both benthic
(attached to the bottom of the water body) and planktonic (on the water’s surface) blooms in
California, with particular focus on the Klamath River Basin. While extensive research has been
conducted to identify algal blooms using satellite imagery, few studies have used very high
resolution drone or satellite images to identify blooms in large, non-wadeable rivers and in small
lakes and reservoirs. More specifically, little work has been conducted to examine the spatial and
temporal dynamics of potentially toxic freshwater blooms using aerial imagery in the Klamath
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Basin and throughout California. This work also establishes new methods for how best to
acquire, process, and interpret new and existing water quality datasets to study algal blooms and
inform management of rivers, lakes, and reservoirs in California and beyond. There is a plethora
of water-related datasets available (Strobl and Robillard 2008), and this dissertation helps make
several of these datasets and data processing methodologies more accessible. Here, we describe
the “good” (benthic filamentous algae), the “bad” (potentially toxic cyanobacteria), the algae
(any other types of algae).

This dissertation is composed of three research chapters and a concluding chapter. The
first research chapter (Chapter 2: Application of UAV Imagery to Detect and Quantify
Submerged Filamentous Algae and Rooted Macrophytes in a Non-Wadeable River) provides a
standardized approach to map submerged filamentous algae and rooted macrophytes along the
Klamath River using a pixel-based supervised classification method applied to aerial drone
imagery. I quantified the spatial distribution and percent cover of these primary producers
throughout 32 transects along the river, and also determined to what depth aerial imagery could
perceive filamentous algae and aquatic plants below the water surface. Chapter 3: Mapping Algal
Bloom Dynamics in Small Reservoirs using Sentinel-2 Imagery in Google Earth Engine tests the
ability of four spectral indices applied to Sentinel-2 satellite imagery to detect algal blooms in
two reservoirs of the Klamath River between 2015 to 2020. I analyzed the heterogeneity of
bloom events and showed that discrete, single in situ samples cannot capture the dynamics that
are present in these small reservoirs. In Chapter 4, I explore how Sentinel-2 imagery can be used
to monitor HABs in California lakes and reservoirs. Entitled, “Integrating Crowdsourced
Incident Reports with Satellite Imagery to Understand Algal Blooms in California Lakes and
Reservoirs,” this chapter compares two distinct California freshwater HAB datasets (one of
crowdsourced reports and another of coarse-resolution satellite imagery) with detections of
HABs from higher-resolution Sentinel-2 imagery. Data at this spatial resolution has the potential
to increase near-real time satellite-based monitoring in California lakes and reservoirs by 55
times, although spectral resolution remains a challenge. In the conclusion of my dissertation
(Chapter 5), I summarize the key findings, lessons learned, and challenges encountered in my
research, along with proposed future directions in the field of algal bloom remote sensing. In
particular, I explore the potential to take advantage of greater spectral resolution imagery, the
need for improved understanding of the causes of blooms, and the potential for freshwater algal
bloom forecasting. This body of work is intended to help other researchers, water quality
managers, recreational water users, dog owners, and the general public leverage new data and
tools to better track and understand algal bloom dynamics throughout California and in rivers,
lakes, and reservoirs around the globe.
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Chapter 2: Application of UAV Imagery to Detect and Quantify Submerged
Filamentous Algae and Rooted Macrophytes in a Non-Wadeable River

This chapter has been previously published and is reproduced here with kind permission of the
co-authors.

Kislik, C., Genzoli, L., Lyons, A., Kelly, M. (2020). Application of UAV Imagery to Detect and
Quantify Submerged Filamentous Algae and Rooted Macrophytes in a Non-Wadeable River.
Remote Sensing. 12, 3332; doi:10.3390/rs12203332

Abstract

Imagery from unoccupied aerial vehicles (UAVs) is useful for mapping floating and emerged
primary producers, as well as single taxa of submerged primary producers in shallow, clear, lakes
and streams. However, there is little research on the effectiveness of UAV imagery-based
detection and quantification of submerged filamentous algae and rooted macrophytes in deeper
rivers using a standard red-green-blue (RGB) camera. This study provides a novel application of
UAV imagery analysis for monitoring a non-wadeable river, the Klamath River in northern
California, USA. River depth and solar angle during flight were analyzed to understand their
effects on benthic primary producer detection. A supervised, pixel-based Random Trees
classifier was utilized as a detection mechanism to estimate the percent cover of submerged
filamentous algae and rooted macrophytes from aerial photos within 32 sites along the river in
June and July 2019. In-situ surveys conducted via wading and snorkeling were used to validate
these data. Overall accuracy was 82% for all sites and the highest overall accuracy of classified
UAV images was associated with solar angles between 47.5 and 58.72 degrees (10:04 am to
11:21 am). Benthic algae were detected at depths of 1.9 m underwater and submerged
macrophytes were detected down to 1.2 m (river depth) via the UAV imagery in this relatively
clear river (Secchi depth > 2 m). Percent cover reached a maximum of 31% for rooted
macrophytes and 39% for filamentous algae within all sites. Macrophytes dominated the
upstream reaches, while filamentous algae dominated the downstream reaches closer to the
Pacific Ocean. In upcoming years, four proposed dam removals are expected to alter the species
composition and abundance of benthic filamentous algae and rooted macrophytes, and aerial
imagery provides an effective method to monitor these changes.

1. Introduction
The extent, distribution, and assemblage of primary producers can indicate the ecological

health of a water body (Dennison et al. 1993; Carpenter and Lodge 1986). Like vegetation on
land, algae and aquatic plants provide a large portion of the nutritional and structural foundation
for aquatic ecosystems (Wetzel 1964). In many rivers and clear lakes, primary producer
assemblages are dominated by benthic algae and aquatic plants growing attached to the substrate,
where filamentous algae and aquatic plants provide structural support to streambeds, as well as
improve water quality by storing and processing nutrients and promoting settlement of
suspended particles (Jones et al. 2012; Algal Ecology: Freshwater Benthic Ecosystem 1996).
Diverse assemblages of primary producers, including thin films of diatoms, filamentous algae,
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and rooted aquatic plants also provide food resources and habitat for invertebrates and fish in
these ecosystems (Vadeboncoeur and Power 2017; Lusardi, Jeffres, and Moyle 2018).

Macrophytes and benthic algae can become a nuisance to water bodies when dams, changing
flows, and excess nutrients stimulate algal proliferations that reduce overall biodiversity and
degrade water quality (Duarte 1995; Torn and Martin 2012; Welch et al. 1988; Flinders and Hart
2009; Dodds and Gudder 1992; Rørslett and Johansen 1996). Medium and large rivers are
especially vulnerable to nutrients and environmental conditions that promote algal and aquatic
plant proliferations due to their position in watersheds and proximity to human habitation (Algal
Ecology: Freshwater Benthic Ecosystem 1996; B. J. F. Biggs 1996, 2000; Hilton et al. 2006;
Smith, Tilman, and Nekola 1999). Despite the importance of primary producers in rivers and
their vulnerability to alterations, monitoring the extent, types, and coverage of benthic primary
producers in rivers is rarely conducted due to challenges associated with heterogeneity in benthic
communities and field conditions. Given the important ecological functions and potential
problems of macrophyte and benthic algal proliferations, it is valuable to monitor and understand
primary producer assemblages in aquatic ecosystems. 

High-resolution imagery can provide fine-scale detection of algae and vegetation
(Aguirre-Gómez et al. 2017; Husson, Hagner, and Ecke 2014; C. N. Brooks et al. 2019; Van der
Merwe and Price 2015). Unoccupied Aerial Vehicles (UAVs) have been utilized for algal bloom
and submerged aquatic vegetation detection for nearly two decades (Kislik, Dronova, and Kelly
2018; Flynn and Chapra 2014; Nowak, Dziób, and Bogawski 2019). This type of high-resolution
aerial imagery offers a cost-effective and rapid method to assess primary producer assemblages
in aquatic environments and provides greater spatial resolution than current commercially
available satellite imagery (B. Yang et al. 2019; Díaz-Delgado et al. 2019; Manfreda et al. 2018).
Furthermore, UAV image capture can provide benefits to traditional surveying of submerged
filamentous algae and rooted aquatic vegetation in deep rivers, such as wading, swimming,
kayaking, boating, and scuba diving (Preskitt, Vroom, and Smith 2004; Priddle 1980; Pennuto,
Howell, and Makarewicz 2012; Suplee et al. 2009), because this method is more accessible than
physically entering a body of water, and it can accelerate the data acquisition process (Beijbom
et al. 2015). For these reasons, this study explored UAV image capture as a method to
supplement current detection and quantification techniques.

Several researchers, such as Husson et al. (Husson, Hagner, and Ecke 2014), Flynn &
Chapra (Flynn and Chapra 2014), Visser et al. (Visser, Wallis, and Sinnott 2013), and Stanfield
(Stanfield 2009), have been successful in identifying species and quantifying percent cover of
submerged aquatic vegetation and benthic algae using UAV imagery over freshwater ecosystems.
In these studies, Flynn & Chapra (Flynn and Chapra 2014) and Stanfield (Stanfield 2009) used
multirotor DJI drones and Visser et al. (Visser, Wallis, and Sinnott 2013) used a Helikite UAV to
capture imagery with red-green-blue (RGB) and multispectral cameras in wadeable (< 1 meter)
(Flynn and Chapra 2014), and non-turbid (0-10 Formazin Nephelometric Units (FNU))
(Stanfield 2009) rivers. Several researchers flew over aquatic environments at low altitudes, such
as Visser et al. (Visser, Wallis, and Sinnott 2013) at 5 m, Husson et al. (Husson, Hagner, and
Ecke 2014) at 10 to 25 m, and Stanfield (Stanfield 2009) at 10 to 50 m, while others flew much
higher, such as Flynn & Chapra (Flynn and Chapra 2014) at 120 m and Brooks et al. (C. N.
Brooks et al. 2019) at 150 m. Flynn & Chapra (Flynn and Chapra 2014) and Stanfield (Stanfield
2009) used pixel-based classification techniques, and Visser et al. (Visser, Wallis, and Sinnott
2013) employed object-based image analysis (OBIA) methods. With the exception of Visser et
al. (Visser, Wallis, and Sinnott 2013), which used a near-infrared camera to identify three
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macrophyte species, Brooks et al. 2019 (C. N. Brooks et al. 2019), Flynn & Chapra (Flynn and
Chapra 2014), and Stanfield (Stanfield 2009) focused on distinguishing one specific taxa from
the rest of a submerged aquatic vegetation patch in clear, shallow environments. As green
wavelengths are known to penetrate to deeper portions of the water column than other optical
wavelengths (Silva et al. 2008; Visser, Wallis, and Sinnott 2013; Legleiter et al. 2004), Flynn &
Chapra (Flynn and Chapra 2014), Visser et al. (Visser, Wallis, and Sinnott 2013), and Stanfield
(Stanfield 2009) leveraged the green portion of the electromagnetic spectrum to detect
submerged filamentous algae and macrophytes. However, a common challenge in this field
involves detection interference due to sun glint (Aguirre-Gómez et al. 2017; Flynn and Chapra
2014; Stanfield 2009; Kwon et al. 2020), or the solar reflection of the sun off the water’s surface.
Several researchers have incorporated techniques such as dark object subtraction
(Aguirre-Gómez et al. 2017) or calculations of solar angle (Mount 2005) to mitigate these
effects. 

Recent submerged algae and macrophyte monitoring via UAVs has expanded the use of high
spectral resolution sensors and algorithms, but has yet to implement these techniques for multiple
taxa in non-wadeable environments. Current researchers, such as Flynn & Chapra (Flynn Kyle F.
and Chapra Steven C. 2020) use acoustic profiling, and others such as Brooks et al. (C. N.
Brooks et al. 2019), Taddia et al. (Taddia et al. 2019), and Brinkhoff et al. (Brinkhoff,
Hornbuckle, and Barton 2018) use RGB, multispectral, and hyperspectral sensors over shallow
(less than 1 meter) aquatic environments. With the exception of Tait et al. (Tait et al. 2019), in
which several macroalga species were detected using RGB and multispectral imagery in a
shallow coastal environment, and Brinkhoff et al. (Brinkhoff, Hornbuckle, and Barton 2018), in
which three aquatic vegetation species were identified using multispectral imagery in irrigation
canals, current studies primarily identify a single submerged primary producer taxa (Flynn Kyle
F. and Chapra Steven C. 2020; C. N. Brooks et al. 2019; Taddia et al. 2019). In marine
environments, researchers such as Slocum et al. (Slocum et al. 2019) leverage RGB sensors on
fixed-wing and rotary-wing UAVs to create 3D point clouds of submerged aquatic vegetation or
coral reefs from structure from motion photogrammetry. Tait et al. (Tait et al. 2019) flew at 50 m,
Taddia et al. (Taddia et al. 2019) flew at 70 m, and Brinkhoff et al. (Brinkhoff, Hornbuckle, and
Barton 2018) flew at 75 m altitude. Several researchers used supervised classification techniques,
such as Tait et al. (Tait et al. 2019) with support vector machines and Taddia et al. (Taddia et al.
2019) with maximum likelihood classification, and others, such as Brooks et al. (C. N. Brooks et
al. 2019) and Brinkhoff et al. (Brinkhoff, Hornbuckle, and Barton 2018), used vegetation indices
to identify submerged algae or macrophytes. Notable vegetation indices that have been applied to
submerged aquatic vegetation detection in recent years include the Normalized Difference
Aquatic Vegetation Index (NDAVI) and the Water Adjusted Vegetation Index (WAVI), both of
which combine the near-infrared and blue bands (Brinkhoff, Hornbuckle, and Barton 2018; C. N.
Brooks et al. 2019). Furthermore, the red edge band has been incorporated into submerged
aquatic vegetation detection, as shown by studies from Taddia et al. (Taddia et al. 2019) and
Brinkhoff et al. (Brinkhoff, Hornbuckle, and Barton 2018). Researchers, such as Slocum et al.
(Slocum et al. 2019) and Kwon et al. (Kwon et al. 2020), are continuing to address issues of solar
glint by flying slightly off-nadir and flying during times when solar angles are between 35 to 40
degrees. As demonstrated in previous studies conducted by Brooks et al. (C. N. Brooks et al.
2019), Flynn & Chapra (Flynn Kyle F. and Chapra Steven C. 2020), and Taddia et al. (Taddia et
al. 2019), there is a paucity of research on the effectiveness of UAV-based benthic discrimination
and quantification of multiple submerged taxa using RGB imagery in non-wadeable rivers.  
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This study employed an inexpensive (<$1,500 USD) UAV with an RGB camera and used a
machine learning algorithm to investigate how depth and solar angle influenced benthic primary
producer identification and quantification in a non-wadeable river in northern California. The
Klamath River is an ideal system to test the effectiveness of high-resolution aerial imagery to
quantify benthic primary producer assemblages in a deep river because of its high rates of
productivity, high associated algal biomass (Genzoli and Hall 2016; Gillett et al. 2016), and
relatively high optical depth at baseflow. Also, because the Klamath River is dominated by swift
currents and areas of depth > 1 m, surveying benthic primary producers using traditional transect
survey methods designed for wadeable rivers is not possible (B. J. Biggs and Kilroy 2000; Ode,
Fetscher, and Busse 2016). Furthermore, monitoring changes in primary producer assemblages is
needed to track changes in flow management, restoration activities, climate change, and the
planned removal of four large dams along this river (Bellmore et al. 2019; Van Kirk and Naman
2008). This study analyzed aerial images at 32 sites that had variable primary producer
assemblages within the Klamath River during June and July of 2019. Research objectives were
to: (1) classify submerged filamentous algae and rooted macrophytes using a Random Trees
classification algorithm; (2) evaluate the accuracy of this classification scheme based on in-situ
river surveys; (3) investigate the maximum depths and optimal solar angles at which submerged
filamentous algae and rooted macrophytes can be detected with an RGB camera on board a UAV;
and (4) quantify the percent cover of filamentous algae and rooted macrophytes at river locations
with variable primary producer assemblages. This paper assesses the efficacy of RGB aerial
imagery to identify and quantify multiple taxa of submerged filamentous algae and rooted
macrophytes in a non-wadeable river, thereby providing a low-cost and accessible methodology
to supplement current in-situ survey methods. Section 2 provides an overview of the study sites,
technological components, data acquisition, and data processing methods. Section 3 focuses on
the reported classification accuracies and distribution of submerged filamentous algae and rooted
macrophytes throughout the study sites. Finally, sections 4 and 5 discuss limitations,
recommendations, and applications of this study.

2. Materials and Methods

This section describes the study sites, aerial imagery and in-situ data collection methods, image
processing and validation techniques, and percent cover calculation methods used in this study.

2.1. Study Sites
The 40,600-km2 Klamath River watershed spans south-central Oregon and northwestern

California, USA (Figure 1). The Klamath River starts at the outflow of Upper Klamath Lake in
Oregon (42.3996° N, -121.8777° E), and travels approximately 420 km to the Pacific Ocean
(41.5430° N, -124.0750° E). Free-flowing tributaries contribute substantial water during rain and
snowmelt periods (generally October–May/June), with tributaries increasing in size and
frequency with greater proximity to the Pacific Ocean. Summer base flows stabilize in July and
August, when the outflow from Iron Gate Dam is the primary source of water to the river (mean
August discharge from 2000–2019 = 27 m³/s, USGS Gage 11516530) until the confluence with
the Trinity River, 262 km below the outflow of Iron Gate Dam. Flows from the Trinity River
greatly increase flows below Iron Gate Dam (mean August discharge from 2000–2019 = 26 m³/s,
Trinity River USGS Gage 11530000), which, combined with the contribution of smaller
tributaries, result in August base flows of about 81 m³/s near the river mouth (Klamath River
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near Klamath, USGS Gage 11530500). The Klamath River is a non-wadeable river due to both
excessive depth and velocity, even during summer baseflow periods. This study examined
benthic primary producer assemblages (submerged rooted macrophytes and filamentous algae) in
June and July of 2019, as this is peak primary productivity season in the Klamath River (Gillett
et al. 2016; Genzoli and Hall 2016), a time of lower flows, and when water clarity is sufficient to
remotely sense benthic and emergent primary producers (Marcus and Fonstad 2008). 

The upper watershed which supplies flows at Iron Gate Dam supports heavy agricultural
use, including water withdrawals for irrigation and increased nutrient runoff (Snyder and Morace
1997), resulting in lower peak flows and increased nutrient concentrations to the Klamath River.
A series of 4 hydroelectric dams located between 61 and 113 km below the Upper Klamath Lake
outflow alters flow within the river and reservoirs and increases hydrologic stability below the
dams (Bartholow, Campbell, and Flug 2004). High nutrient concentrations and stable flows
support high rates of riverine primary productivity and substantial autotrophic biomass in the
Klamath River (Genzoli and Hall 2016), with peak proliferations typically occurring below Iron
Gate Dam in early summer. Standing stock of primary producers includes dense beds of
filamentous algae and rooted-aquatic plants, such as Cladophora spp., Potamogeton spp., and
Elodea spp. Both rooted aquatic plants and filamentous algae create seasonally dense plant and
algal patches (Holmquist-Johnson and Milhous 2010) that are visible from river margins.
Primary producer dominance changes longitudinally below the hydroelectric dams, shifting from
rooted aquatic plant dominance to filamentous algae dominance downstream.

Figure 1. Ten river reach study locations on the Klamath River below Iron Gate Dam.
The ten reaches that host 32 total sites are: 1. 15 Bridge (I5), 2. Tree of Heaven (TH), 3.
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Above Beaver Creek (ABC), 4. Brown Bear (BB), 5. Rocky Point (RP), 6. Seiad Valley
(SV), 7. Happy Camp (HC), 8. Old Man River (OMR), 9. Orleans (OR), 10. Weitchpec
(WE).

2.2. Data Acquisition

2.2.1. UAV Data

Aerial imagery was captured to classify submerged filamentous algae and rooted
macrophytes and estimate percent cover of each class from 32 sites within ten reaches of the
Klamath River (Figure 1) between Iron Gate Dam and Weitchpec, CA. Imagery was acquired
using a DJI Phantom 4 Pro rotorcraft (DJI, Shenzhen, China) (Figure 2), using the native RGB
20 megapixel camera. This camera has an 8.8 mm focal length and a resolution of 5,472 x 3,648
pixels (Peppa et al. 2019). Flights were conducted for 15 to 20 minutes over each of the 32 sites,
at flying heights between 19 and 104 m. This resulted in estimated ground sampling distances
between 0.52 and 2.85 cm (Table A1). Single images per site that encompassed the width of the
channel and included portions of each side of the riverbank in every photo were acquired. Images
were captured manually (without an automated mission flight plan) at nadir above each site,
avoiding sunglint to minimize the relative angle between the sun and surface ripples. The UAV
was flown between 10:04 am and 5:11 pm to correspond with in-situ transect surveys, from June
26 to July 9, 2019. The time of each UAV flight was converted to solar elevation in degrees (now
referred to as solar angle) using the University of Oregon Solar Radiation Monitoring Lab’s Sun
Chart Program (http://solardat.uoregon.edu/SunChartProgram.html). Solar angle helps predict
the amount of solar glare that is reflected off the water’s surface and into the aerial sensor. No
calibration panel was used for the RGB image analysis, and no atmospheric correction was
applied, as this is often unnecessary for low-flying UAV image collection over a small region (Su
and Chou 2015). 
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Figure 2. Examples of data acquisition using (A) a quadrant for in-situ river surveys
and (B) a Phantom 4 Pro UAV for aerial image collection.

2.2.2. In-Situ Surveys

To validate the UAV imagery, in-situ surveys were conducted for rooted aquatic plants and
filamentous algae along three to four transects (from one side of the river bank to the other) at
each of the 10 reaches (Figure 3) in the Klamath River below Iron Gate Dam between June 26
and July 9, 2019. Reaches were surveyed starting at the reach closest to Iron Gate Dam, and
ending near Weitchpec, CA. At each of the 10 reaches, the riverbed was surveyed to assess the
coverage of aquatic vegetation. Reaches ranged from 1–8 km in length, based on river access
points. Kayaks were used to float the 10 reaches, surveying six transects in each reach, with
transects randomly chosen among variable habitats represented in the reach. Three to four out of
the six transects per reach were selected for analysis based on corresponding UAV image quality
and to reduce computational processing time. Each transect was a minimum of 100 m
downstream from the previous transect, and attempts were made to survey transects with more
pool-type and riffle-type characteristics. Each transect’s general habitat type was estimated based
on river velocity and surface tension characteristics and classified as a run, riffle, or pool (Table
A1). Areas of rapids and swift current were under-represented in surveys due to safety concerns
and the general inability of a surveyor to access these swift sections. Transect selection was
balanced with what was possible to survey safely, as well as what was representative of the
reach; thus, transects were selected in the field while conducting these surveys. No transects
were fully wadeable across the river, confirming that the mixed survey method of wading and
snorkeling was necessary. Each in-situ survey was completed in about an hour per site.

Several variables were measured and collected during the in-situ surveys. At each transect, a
shore-based field technician recorded longitude and latitude with a handheld GPS (GPSMAP
76CSx, Garmin Inc., Olathe, Kansas) and a GPS-enabled GoPro Hero 5 (GoPro Inc., San Mateo,
California), and measured wetted width with laser rangefinders from the river's edge. The
technician calculated the width of the channel using the rangefinders, and divided each transect
into 11 evenly spaced quadrants, from one side of the riverbank to the other. When possible, the
surveyor waded to each of the quadrant locations (Figure 2). However, when the river became
too deep for wading (> 1-1.4 m, depending on river velocity), the surveyor transitioned to
snorkeling. Individual quadrants were not surveyed along some transects due to especially swift
or deep points (N=56). At all transects, a minimum of seven quadrants were surveyed. At each
quadrant, the surveyor lowered a 40 x 40 cm weighted PVC square to the riverbed to visually
estimate information about filamentous algae and rooted macrophytes. Filamentous algae
coverage was recorded when filaments were > 2 cm long. For each species or genera observed in
a quadrant (generally identified to species for rooted aquatic plants and genus for algae), the
surveyor recorded the species or genus code, percent cover of the specific taxa, the substrate that
the vegetation type was growing on, plant condition and color, and the average length of the
plant or its filaments within the quadrant. Mat thickness was recorded in species without obvious
filaments. Water depth was recorded using a marked depth stick (quadrants < 2 m deep) or sonar
depth finder (quadrants > 2 m deep, Vexilar LPS-1, Vexilar, Minneapolis, Minnesota). To test the
effect of increasing mean river depth on the detectability and classification accuracy of benthic
primary producers, in-situ depth measurements were averaged per site. Discrete points within
each site were also evaluated to assess the maximum depth detection of filamentous algae and
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rooted macrophytes in the aerial imagery. Turbidity was measured at deep portions (> 1 m) of a
river reach by vertically deploying a Secchi disk from a kayak up to five times and taking an
average. Secchi disk observations were not available at each reach due to depth limitations.
Finally, the technician and UAV pilot recorded observational field notes regarding the
composition of benthic filamentous algae and rooted macrophytes 100 m upstream and 100 m
downstream of each transect by kayaking and collecting samples from sizeable patches (> 1 m2)
to assist in the image classification and validation processes.

Figure 3. Methodology of field data collection and data processing and analysis for this
study.

2.3. Image Classification
A supervised classification scheme was employed to categorize image pixels into several

classes after images were chosen. First, all aerial photos were reviewed and 3 to 4 images from
each of the 10 river reaches were selected based on image quality and in efforts to reduce
computational processing time. A total of 32 images (out of 60 images) were chosen for analysis
after visually inspecting all photos and selecting the highest-quality images that had reduced sun
reflection and glare, variation of in-situ depth measurements, and were captured at a nadir
camera angle. In addition to image quality, these 32 images were subjectively selected to reduce
image processing time associated with classifications and percent cover estimates. A
single-image analysis approach was used in which only one image per site was analyzed
(orthomosaics were not constructed for each site) due to challenges in stitching aerial images
over a uniform surface such as water. Image metadata was then extracted using the uasimg R
package (Andrew Lyons and the R Development Core Team 2020) and incorporated to map
centroids and footprints of images, as well as to estimate ground sampling distance and above
ground altitude of each image. Yaw was manually corrected using Georeference tools in ArcGIS
Pro 2.5 (Esri, Redlands, California). 

Known GPS locations and visual observation were used to train and classify the UAV
imagery into a six-class schema (1. algae, 2. macrophytes, 3. water, 4. land, 5. shadows, and 6.
sunglint) with a machine learning algorithm. To detect these classes within the imagery, in-situ
validation locations within each image were identified using GPS coordinates extracted from
metadata on the GPS devices. It is important to acknowledge that positioning and alignment
errors are introduced from the GPS devices used in the river, as well as from the Phantom 4 Pro
internal GPS and subsequent EXIF modeling that depends on x, y, and z coordinate values.
These errors were minimized by manually aligning images using high resolution basemaps in
ArcGIS Pro and Google Earth, comparing river width measurements using ArcGIS Pro tools and
in-situ width measurements from laser rangefinders, overlaying several estimated GPS
coordinates (GoPro, Garmin, UAV) within the map, and visually detecting the quadrant and
surveyor within the photo. When neither the quadrant nor swimmer was visible in the imagery,
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training sample pixels were selected from regions identified in the visual observation notes that
were taken during aerial missions. 

Algae and macrophyte classes were identified within UAV photos by incorporating
information from in-situ quadrant measurements that had 80% cover or more of either class,
resulting in 162 quadrants used for filamentous algae classification and 46 quadrants for rooted
macrophyte classification. These data were used to justify the ‘pure pixel’ assumption employed
when selecting samples for classification. All filamentous algae and macrophytes in this study
were submerged, and it was assumed that any algae or macrophyte pixels that were visible from
above the water’s surface represented only one class (thus were considered ‘pure pixels’). The
algae and macrophyte classes were categorized generally, without classification to the species or
genus level, and filamentous algae (no diatoms) composed the algae class. The water class
included any portion of the river in which filamentous algae or rooted macrophytes were not
visible, including wetted channels and riverbed. The land class included any rocks, grass, trees,
sand, or otherwise surrounding environment adjacent to the river. The shadows class included
dark shadow pixels throughout an image, while the sunglint class involved highly reflective solar
glare pixels on the surface of the water. Not all classes were represented in every image.

After creating the class schema, a Random Trees pixel-based supervised classifier was
trained and applied to all image pixels in ArcGIS Pro. Roughly 50-80 training sample polygons
were selected per class by visually identifying sample pixels of all classes except algae and
macrophytes, which were verified with in-situ quadrant surveys and visual observation notes
written concurrently during each aerial mission. To minimize error, ‘pure pixel’ samples
(containing only pixels of the class) were created by selecting pixels from the center of a patch
and with a minimum number of 3 pixels. Each image was classified using a Random Trees
classifier (30 maximum number of trees, 30 maximum tree depth, 1,000 maximum number of
samples per class). This algorithm iteratively classifies an image using a random subset of
training pixels to form a group of decision trees. Samples are classified based on the majority
“vote” of the trained decision tree label outputs (D. Shi and Yang 2016; Gerke 2011). This
machine learning algorithm was chosen because it reduces computational load, particularly
compared to other ensemble classifiers such as boosting and bootstrap aggregating
(Benediktsson, Chanussot, and Fauvel 2007), and it is less prone to overfitting data, as artificial
neural networks (Maxwell, Warner, and Fang 2018) and maximum likelihood classification
(Gómez-Chova et al. 2011) have been reported to do. Furthermore, Random Trees has low error
rates of classification (Crisci, Ghattas, and Perera 2012) in comparison to support vector
machines and artificial neural networks (Rodríguez-Puerta et al. 2020), and this method is well
suited for studies involving multiple sources of remote sensing imagery (Benediktsson,
Chanussot, and Fauvel 2007), as in this study in which each image is analyzed separately.
Finally, the Random Trees method was chosen over OBIA because of its ability to detect
heterogeneous environments (Ghimire, Rogan, and Miller 2010), such as the fine-scale
combinations of filamentous algae and rooted macrophyte patches that are common in the
Klamath River (J. E. Asarian et al. 2014).

2.4. Validation
UAV imagery classifications were validated using the in-situ survey data and visual

observations recorded in the field. The predicted class was compared against the observed class
to validate sampling points, and additional variables such as solar angle were analyzed to help
understand the factors affecting classification accuracy. The accuracy was assessed by creating
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an error matrix to calculate errors of omission, errors of commission, and the overall accuracy
using the in-situ transect measurements as reference data, and visual observations to increase the
spatial distribution of validation. In this context, omission error can be described as how often
filamentous algae in the river is omitted from the proper class, while commission error is how
often pixels identified as filamentous algae in the image are incorrectly classified (Husson,
Hagner, and Ecke 2014). Overall accuracy describes the proportion of correctly mapped pixels
out of the total number of reference pixels. In this study, the overall accuracy, and not the kappa
coefficient, is reported following best practices to omit the latter metric in imagery classification
accuracy assessments (Foody 2020; Pontius and Millones 2011). ArcGIS Pro 2.5 was used to
calculate omission error, commission error, and overall accuracy by assigning ground reference
values to 50-100 stratified random points (randomly distributed based proportionally on the area
of each class) per image and computing an error matrix.

2.5. Percent Cover Estimates
The percent cover of filamentous algae and rooted macrophytes was estimated based on

UAV image classifications to ascertain the spatial distribution of these groups within the
Klamath River between Iron Gate Dam and Weitchpec, CA. All filamentous algal species that
were classified in the imagery were pooled into one percent cover class (“algae”), and all rooted
macrophyte species classified in the imagery were grouped to form another separate percent
cover class (“macrophytes”) (Hughes et al. 2011). To maintain a standardized number of pixels
per image, all images were resampled to 0.014m (the average resolution of all 32 images), and
then clipped using a bounding box of 48.8 m x 48.8 m to mimic a 40 cm x 40 cm quadrant at 160
feet (48.8 m) flight altitude. Next, rasters were converted to polygons (simplified polygons with
multipart features), and summary statistics were performed on the area of each class. ArcGIS Pro
2.5 tools, including Resample, Extract by Mask, Raster to Polygon, and Summary Statistics were
used within ArcGIS ModelBuilder. Finally, percent cover was calculated by dividing each class’
area by the total number of pixels in the image. Although each image was initially classified
using the six-class schema described above, the land class was excluded from the filamentous
algae and rooted macrophyte percent cover estimates to more accurately depict these classes
within the river rather than within the entire image. Filamentous algae and macrophyte percent
cover estimates within the UAV imagery were then compared to the in-situ quadrant class cover
estimates per site using a linear regression (“Lm Function | R Documentation” 2017) with the
ggplot2 package (Wickham 2016) in R version 3.6.3 software (Core Team and Others 2013).  

3. Results

This section details this study’s findings pertaining to image classification outcomes in relation
to depth and solar angle, as well as percent cover estimates of benthic filamentous algae and
rooted macrophytes calculated throughout study sites via aerial imagery classifications and
in-situ surveys.

3.1. Random Trees Classification Results
Overall accuracy of all classes (algae, macrophytes, water, land, shadows, sunglint) from the

Random Trees supervised classification of 32 sites of the Klamath River was 82% (Table 1).
Commission error was lowest for the water class (5%) and highest for the macrophyte class
(41%), while omission error was lowest for the shadows class (5%) and highest for the land class
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(32%). The algae class had lower commission error (27%) but higher omission error (17%) than
the macrophyte class (41% commission error and 12% omission error). For individual sites,
overall accuracy was highest at Weitchpec site 2 (WE 2) (95%) and lowest at Rocky Point site 4
(RP 4) (66%) (Table A1). Weitchpec site 2 (WE 2) and Happy Camp site 1 (HC 1) had the
lowest commission error of all 32 images’ algae classes at 0%, while Above Interstate 5 site 5 (I5
5) had the lowest commission error of all images’ macrophyte classes at 10%. For groups of
sites, Weitchpec (WE) reach sites (N=4) had the highest overall accuracy (89%) of all 32 sites,
and Brown Bear (BB) reach sites (N=3) had the lowest (73%) overall accuracy.  

Table 1. Error Matrix of the Random Trees classification results from all 32 images in
this study.

Error
Matrix Algae Macro-

phytes Water Land Shadows Sunglint Total Commission
Error

Algae 209 4 58 11 1 2 285 27%

Macro-
phytes 7 91 47 5 3 0 153 41%

Water 22 4 628 3 0 7 664 5%

Land 9 1 23 89 4 9 135 34%

Shadows 5 3 1 5 171 2 187 9%

Sunglint 0 0 32 18 1 129 180 28%

Total 252 103 789 131 180 149 1604

Omission
Error 17% 12% 20% 32% 5% 13% 82%

Results demonstrated that depth and solar angle impacted the classification accuracies of the
UAV imagery. Generally, overall accuracy increased with average depth per transect up to about
2.75 m (in-situ depth measurements ranged from 0 m to 9 m) (Figure 4). While the adjusted R2

value was very low (adj R2 = 0.115) between average depth per transect and overall accuracy,
these results were statistically significant (p-value ≤ 0.05). To further understand the effects of
solar angle and depth on accuracy, images were organized into three overall accuracy groups
using Jenks natural breaks categorization: 1 (greater than 84% accuracy, N=14), 2 (greater than
74% and less than or equal to 84% accuracy, N=10), and 3 (less than or equal to 74% accuracy,
N=8). The majority of images in group 1 (highest overall accuracy) had solar angles between
47.5 and 58.72 degrees (10:04 am and 11:21 am, N=5) or between 48.5 and 62.69 degrees (2:53
pm and 4:16 pm, N=5), and had an average depth of 1.71 meters. Most images in group 2
(second highest overall accuracy) had solar angles between 71.06 and 62.59 degrees (1:32 pm
and 2:54 pm), and had an average depth of 1.45 meters. Finally, the majority of images in group
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3 (lowest overall accuracy) had solar angles between 62.72 and 71.2 degrees (11:40 am and 1:17
pm), and had an average depth of 1.19 meters. Throughout this study, solar noon occurred
between 1:13 and 1:20pm (at about a 71-degree solar elevation angle). Times either before or
after solar noon (particularly in the range of about 45 to 60 degrees in the morning or afternoon)
rendered the best imagery with both the most illumination of the substrate and least solar glare
on the surface (which is heightened around solar noon).

Figure 4. Overall accuracy of the 32 image classifications and average depth per site
(adj R2 = 0.115, p-value ≤ 0.05).

The spectral signals of this study’s six classes can be described by the digital numbers
captured by the native Phantom 4 Pro UAV RGB camera (Table A2). The algae class had the
highest reflectance in the green band and second highest in the blue band, while the macrophyte
class had highest values in the green band, followed by the red and then blue bands. The water
class had the highest reflectance values in the blue band, and the land class had equal digital
number values in the red and green bands. The shadows and sunglint classes each had equal
digital numbers in their respective red, green, and blue band values.

3.2. Study Site Characteristics and Percent Cover Estimates
Rooted macrophytes dominated a majority of upstream reaches (I5 through Happy Camp),

while filamentous algae dominated downstream reaches closer to the Pacific Ocean (Old Man
River through Weitchpec). The I5 site 1 (I5 1) location had the highest macrophyte percent cover
(31%), and the Old Man River site 2 (OMR 2) had the highest algae percent cover (39%) (Figure
5). While filamentous algae were present upstream sites (I5 to HC), no macrophytes (0%) were
detected in the aerial imagery at Happy Camp site 4 (HC 4) or at any sites downstream of this
location. 
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Figure 5. UAV-based percent cover estimates of submerged rooted macrophytes and
filamentous algae moving downstream (left to right: I5 to WE) along 32 sites of the
Klamath River below Iron Gate Dam.

To illustrate the changes in percent cover of submerged filamentous algae and rooted
macrophytes moving downstream along the river, three examples that depicted low, medium, and
high percent cover of UAV images were selected and their respective Random Trees
classification results were displayed (Figure 6). Tree of Heaven site 5 (TH 5) had low
filamentous algae percent cover (0% algae, 7% macrophytes), as was commonly observed in
upstream sites within close proximity to Iron Gate Dam. Brown Bear site 6 (BB 6) displayed
equal percentages of filamentous algae and macrophytes (13% algae, 13% macrophytes) and
represented a medium concentration of percent cover for the 32 sites in this study. Finally, Old
Man River site 2 (OMR 2) was selected to display a high amount of primary producer percent
cover because aerial imagery over this location detected the highest amount of filamentous algae
of all sites (39% algae, 0% macrophytes). This site is representative of downstream sites below
Happy Camp site 4, below which no rooted macrophytes were detected. Figure 6 also helps
demonstrate the increase in channel width as the Klamath River approaches the Pacific Ocean.   
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Figure 6. Examples of low, medium, and high filamentous algae and rooted macrophyte
percent cover in original UAV images (top row) and Random Trees classification results
(bottom row). (A1-A2) Tree of Heaven site 5 (TH 5): low (0% algae, 7% macrophytes);
(B1-B2) Brown Bear site 6 (BB 6): medium (13% algae, 13% macrophytes); (C1-C2)
Old Man River site 2 (OMR 2): high (39% algae, 0% macrophytes).

The relationship between in-situ and UAV-based percent cover estimates of submerged
filamentous algae and rooted macrophytes was assessed within the 32 sites to understand how
aerial imagery results compared to river survey results. UAV percent cover estimates were
moderately correlated to in-situ quadrant percent cover estimates for both the filamentous algae
and macrophyte classes (algae: Pearson’s r = 0.51, macrophytes: Pearson’s r = 0.72), indicating a
moderately strong linear relationship between each variable per dataset. Although the
filamentous algae and macrophyte classes for UAV imagery and in-situ data had low and
moderate adjusted R2 values (algae: adj R2 = 0.23, macrophytes: adj R2 = 0.50), this result was
statistically significant (p-value ≤ 0.05) (Figure 7). Thus, the null hypothesis that there is no
relationship between the UAV and in-situ percent cover measurements for both filamentous algae
and rooted macrophyte observations was rejected. For algae measurements, the residual standard
error, or the average amount the response variable (algae) diverged from the regression line (Jay
Kerns 2010) was 9.214 with 30 degrees of freedom. The residual standard error for macrophyte
measurements is 7.208 with 30 degrees of freedom. The F-statistic, an indicator of significance
between the groups of observations, was relatively low for algae (10.49) and moderate for
macrophyte (32.01) measurements.
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Figure 7. Linear regression of UAV-based percent cover estimates and snorkel-based
(in-situ) percent cover estimates of submerged filamentous algae and rooted
macrophytes along 32 sites of the Klamath River below Iron Gate Dam.

Results from this study indicated that filamentous algae were more easily detected and
quantified in deeper regions and often inhabited areas farther from the riverbanks than did
macrophytes below Iron Gate Dam. The filamentous algae class had high overall accuracy
(overall accuracy of 80% or more and in-situ percent cover of 80% or greater per quadrant) down
to a depth of 1.9 m, while rooted macrophytes (overall accuracy of 80% or more and in-situ
percent cover of 80% or greater per quadrant) were accurately classified down to 1.2 m below
the water’s surface at discrete locations. Within the 32 sites, in-situ quadrant observations
revealed that submerged rooted macrophytes generally grew at shallower depths than
filamentous algae (0.83 m mean for rooted macrophyte in-situ percent cover > 0% per quadrant,
1.2 m mean for filamentous algae in-situ percent cover > 0% per quadrant). On average, rooted
macrophytes grew within 7.7 m from either side of the bank within the 32 sites, and filamentous
algae were most commonly found within 8.7 m from either bank. In the 32 sites analyzed, rooted
macrophytes and filamentous algae both most frequently inhabited straight-aways with lower
river velocity (< 1 m / sec) or in relatively shallow areas along banks.

4. Discussion
This study demonstrates that an inexpensive UAV equipped with an RGB camera is a useful

tool for detecting and quantifying multiple types of submerged primary producers in a
non-wadeable river. Filamentous algae and rooted macrophyte coverage had > 70% overall
accuracy at 28 of 32 sites, and water surface solar reflection was the primary factor limiting the
ability to assess submerged vegetation coverage. Along the 32 sites distributed among 10 reaches
beginning below a series of large dams, there was greater dominance of rooted macrophytes
upstream, transitioning to a greater dominance of filamentous algae at downstream sites. The
larger spatial scale documented in UAV image capture can supplement current in-situ survey
methods or provide a novel and useful method to assess primary producer coverage in rivers
where in-situ surveys are not possible due to excessive depth or velocity.

4.1. UAV Monitoring of Benthic Primary Producers
This study’s UAV method resulted in highest classification accuracy in river conditions with

high water clarity and homogenous primary producer assemblages. In contrast, other researchers
have found that classification accuracy decreased with river depth, particularly in water deeper
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than 3 m (Tait et al. 2019; Shintani and Fonstad 2017; Zinke and Flener 2013). Our results were
slightly different from these studies in that filamentous algae were more easily detected and
quantified in deeper water (up to 2.75 m). In our system, water depth covaried with water clarity
(Figure 4), largely as a result of the tributaries entering the Klamath River below Iron Gate Dam
which tend to contribute relatively clearer water to the main stem, creating higher water clarity
with distance downstream from the dam (PacifiCorp 2020). Deepening river channels created by
high winter flows follow a similar longitudinal trend associated with these tributary inputs
(Oliver, Dahlgren, and Deas 2014). At the deepest sites with high overall accuracy, (Old Man
River site 3: 2.09 m average depth, 90.38% overall accuracy; Orleans site 1: 2.75 m average
depth, 92% overall accuracy; Weitchpec site 1: 2.69 m average depth, 91.3% overall average),
conditions were optimal for capturing high-quality aerial imagery. At these sites, lower turbidity
(Secchi depth between 2.1 and 4.4 m) (Table A1) was measured, and only filamentous algae (no
rooted macrophytes) (Figure 5) was detected. Having only one type of submerged primary
producer to classify in each of these sites contributed to increased accuracy of the supervised
classification (Ahmad and Quegan 2013; I, Pakhriazad, and Shahrin 2009) because it diminished
the risk of conflated categorization. The counterintuitive finding that deeper river sites had
higher accuracy when these deeper locations co-occur with lower turbidity reinforces previous
findings that water clarity is a major predictor for how well imagery can be used to successfully
detect and quantify submerged primary producers (Nelson, Cheruvelil, and Soranno 2006; Yadav
et al. 2017; Slocum et al. 2019). This demonstrates that UAV methods are not limited to shallow
(< 1 m) rivers when turbidity is low and primary producer assemblages are homogenous. 

This study was novel in that it attempted to classify both filamentous algae and rooted
macrophyte groups using an RGB camera throughout a non-wadeable river (C. N. Brooks et al.
2019; Stanfield 2009). However, there were instances of class confusion between filamentous
algae and rooted macrophytes. In some dense areas of aquatic vegetation, algae grew on rooted
macrophytes, making class separation challenging. In these cases, spectral unmixing may be a
more suitable classification approach (Keshava 2003; Yan et al. 2019). Furthermore, in-situ
surveys along a single transect left several unknown or unidentified points of interest in the UAV
imagery, making class discrimination challenging. Also, both algae and macrophyte classes had
the highest spectral signals in the green band (Table A2), which further exacerbated confusion
between these classes (Govender, Chetty, and Bulcock 2007). Some algae genera (Cladophora,
Oedogonium) and macrophyte species (Zannichellia palustris, Potamogeton crispus) had both
light and dark green reflectance values throughout the river, resulting in too much overlap of
reflectance values to create a useful spectral library to identify filamentous algae and rooted
macrophyte classes across all 32 images. Each image was classified individually and the
classifications were reduced to two distinct groups because creating spectral libraries for each
image requires in-situ sampling and is time consuming. Due to the individual classification per
image and lack of automation in this process, large sample sizes might not be well suited under
these specific methods. 

While OBIA is commonly used for high-resolution underwater classification of vegetation
and wetland species (Dronova 2015; Husson, Ecke, and Reese 2016), this study utilized a
pixel-based supervised classification. Pixel-based methods facilitate the identification of large
patches of rooted macroalgae or filamentous algae, as well as speckled and interspersed
filamentous algae, both of which were common at study sites. Random Forest algorithms have
proven successful in previous studies in complex, heterogeneous landscapes (Husson, Hagner,
and Ecke 2014; Husson, Ecke, and Reese 2016; Chabot et al. 2017), demonstrating that this
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method can effectively reduce speckle and noise within imagery. To build on current work, future
image analysis techniques that can be applied to benthic surveys in heterogeneous environments
include aquatic vegetation indices, OBIA, structure from motion photogrammetry, and
hyperspectral image capture (Becker et al. 2019; Brinkhoff, Hornbuckle, and Barton 2018; C. N.
Brooks et al. 2019; Taddia et al. 2019; Chabot et al. 2017; Joyce et al. 2019; Ventura et al.
2018). 

One of the most prominent challenges to achieving high classification accuracy in this study
involved solar glare, which is affected by solar angle, wind, and ripples or surface tension on the
water (Hardin and Jensen 2011; Kutser, Vahtmäe, and Praks 2009; Bandini et al. 2017; Kay,
Hedley, and Lavender 2009). In this study, the sun’s reflection produced large white spots in
photos that were taken close to solar noon (around 71 degrees solar angle in this study), thus
making detection below the surface impossible. Several images captured around solar noon had
some of the lowest classification accuracy results (between 66% and 72%) due to issues related
to solar angle and resulting glare. Wind and higher velocity water (> 1 m / second), such as in
areas with ripples, further exacerbated the prominence of solar glare and created distortions
within the UAV imagery. These concerns affected how the 32 out of 60 total UAV images were
selected for analysis, and several selected photos (n = 5) had sizable portions (between 8% and
12% of the image) of solar glare that prohibited visibility below the water’s surface. Flying on a
uniformly cloudy day would also reduce solar glare, although detection capabilities may suffer as
light penetration through the water column would be reduced (Benavides, Fodrie, and Johnston
2020).      

Methods from this study can be applied to a variety of environments, including both
freshwater and marine (Tamondong et al. 2020; Joyce et al. 2019), and will perform best in clear
and relatively shallow (< 2 m) waters. Given that classification accuracy was highest in regions
with reduced water surface tension, such as in a pool or a slow-moving river run, techniques
from this study would also be well-suited for lake environments (Husson, Hagner, and Ecke
2014). Additionally, the Random Trees classifier most easily identified large, homogenous
patches of algae and macrophytes, and would similarly perform well with other large groups of
macroalgae and submerged aquatic vegetation, such as kelp or seagrass (Thomsen et al. 2019;
Duffy et al. 2018; Mora-Soto et al. 2020). Despite these applications, this method is not optimal
for distinguishing multiple aquatic species, as RGB imagery is spectrally sparse. Therefore,
aerial hyperspectral sensors would be more effective in these scenarios (Green 2020; Rossiter et
al. 2020).

Detection and quantification techniques in future studies might be complicated in water with
increasing depth, turbidity, and confounding primary producer types (Gallant 2015; Slocum et al.
2019), and accuracy will likely decrease as these conditions converge. Thus, times of higher river
flows that increase water depth and turbidity, including spring snowmelt or autumn rains, are
expected to result in lower accuracy of primary producer identification and quantification.
Changing water levels associated with water year variation, dam management, and season are
expected to influence primary producer assemblages (Abati et al. 2016; Gillett et al. 2016;
Power, Parker, and Dietrich 2008) in addition to methodological accuracy, making
complementary in-situ surveys important during variable conditions. Examples of expected
changes to primary producer assemblages include lower overall coverage of rooted macrophytes
during high-flow years, and seasonal progression of rooted macrophyte and filamentous algae
coverage, resulting in lower coverage as macrophytes and algae slough in the fall (Wehr 1981;
Banish 2017).
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4.2. Recommendations
Analysis of UAV photos using a single-image, supervised classification method for 32 sites

proved to be time intensive due to the need to create a novel spectral library and separate
classification for each high-resolution image. Ways to address this in future studies involve
assessing fewer sites and spectrally correcting the imagery in order to apply a uniform spectral
library to all photos. While this study represented a static glimpse of conditions on the Klamath
River at 32 individual locations, this method can successfully be applied to smaller-scale river
studies with greater temporal scale, such as time series or change analyses of benthic
communities in small sections of a river. For example, managers can adapt this technique to
capture aerial images of the same river location each month to help answer how specific
filamentous algal communities in one region of a river change in response to seasonal
dam-altered flow regimes. While this small-scale study is best suited for small rotary-wing
UAVs, pilots who are designing future projects may consider employing a larger rotary-wing
UAV with additional power capacity when surveying larger portions of a river (Rusnák et al.
2018).

For monitoring greater river extents (> 100 m river length per site), it is helpful to consider
flight altitudes, platforms, and study site characteristics before conducting a UAV-based benthic
primary producer study. A flight plan at high altitudes (above 100 m) is recommended to both
avoid obstacles (such as trees, power lines, and bridges) and assist in the image stitching process
in order to create orthomosaic maps of large swaths of the river. When generating orthomosaics,
researchers should use real-time kinematic GPS, or have ground control points, secured markers
or landmarks with known GPS locations, or slivers of land in the images to facilitate image
stitching (Nahirnick et al. 2019; Taddia et al. 2019; Hashemi-Beni et al. 2018). When target algal
or macrophyte patches are identifiable at large spatial scales, or when higher spectral resolution
is required to discern among taxa, high-resolution satellite imagery can be an alternative to UAV
imagery (Kutser, Vahtmäe, and Martin 2006). Fixed-wing UAVs may be difficult to fly in
meandering river environments unless there are open riverbanks or roads adjacent to the study
sites that can be used for take-off and landing (Boon, Drijfhout, and Tesfamichael 2017). As
river survey extent increases, UAV data increases, thereby posing additional constraints to
computational processing time. The sampling and image capture methods described in this study
are broadly applicable to benthic primary producer studies, but caution should be taken when
attempting to apply this technique to large spatial extents due to computational and logistical
constraints. In summary, this study’s methods are best suited for smaller-scale studies across
time, rather than across space.

Another recommendation includes changing the order of the in-situ sampling protocol that
was employed in this study. Instead of simultaneously conducting an in-situ transect survey and
flying a drone overhead, it is more effective to capture aerial imagery first, identify several target
sampling areas in the UAV photo, and then collect samples and observations in discrete locations
of the river to reflect target areas within the photo. Also, including in-situ biomass calculations of
filamentous algae and rooted macrophytes to the sampling protocol would augment percent
cover estimates. Finally, incorporating a spectral calibration target and a corrective optical
equation (Legleiter et al. 2004) would allow managers to apply a spectral library to the entire
UAV image dataset, which would reduce time spent on individual classifications and increase the
ability to discriminate among different submerged taxa.

4.3. Management Applications of UAV Monitoring in Non-wadeable Rivers
23

https://paperpile.com/c/7kGg6Z/z8UIl
https://paperpile.com/c/7kGg6Z/z8UIl
https://paperpile.com/c/7kGg6Z/rttTY+6zKKA+vKpzY
https://paperpile.com/c/7kGg6Z/COoLa
https://paperpile.com/c/7kGg6Z/VvF6O
https://paperpile.com/c/7kGg6Z/7Y9Vz


UAV imagery is useful in detecting and quantifying submerged primary producer
assemblages, and can be integrated into monitoring programs where current monitoring is
limited or non-existent. Algae and aquatic plants are sensitive to ecosystem change, making them
useful indicators of ecosystem health (Bunn et al. 2010; Schneider et al. 2017). The type,
distribution, and condition of algae and aquatic plants can drive water quality (pH, dissolved
oxygen, suspended sediment, water temperature) and fisheries health (food resources, habitat),
making quantification of these taxa useful in identifying mechanisms responsible for ecosystem
change (Bunn et al. 2010; Kornijow, Gulati, and Ozimek 1995; Lusardi, Jeffres, and Moyle 2018;
Stevenson et al. 2012). In non-wadeable rivers such as the Klamath River, documentation of
aquatic plants and algae is generally limited to wadeable areas easily accessible from shore,
where the primary producer assemblage may not be representative of the river reach (Gillett et al.
2016). In this study, UAV photos expanded the spatial scale of the surveyed area, and included
areas generally ignored in established survey methods, including areas > 1 m deep, areas of swift
current, and zones not adjacent to shore-line river access points. Although aerial images cannot
capture the taxonomic detail with the same accuracy as in-situ surveys or samples collected for
laboratory analysis of species composition, the larger spatial scale can help address other
research questions and monitoring goals. Ultimately, combining in-situ and UAV methods will
likely provide the most thorough monitoring practice.

UAV images can be used to track ecosystem change associated with management actions
and restoration expected to influence primary producer assemblages. The Klamath River and
many larger rivers are considered impaired due to high aquatic plant and algae biomass, spurring
management actions aimed at reducing these proliferations (J. E. Asarian et al. 2014; Deas and
Vaughn 2006). In the case of the Klamath, nutrient criteria are set by water quality management
agencies, but challenges with monitoring aquatic plant and algae growth limit the ability to
monitor the effectiveness of regulatory nutrient reductions and restoration actions (Poikane,
Kelly, and Cantonati 2016; Ebert et al. 2016). In rivers where confounding factors are expected
to influence benthic algae growth, including nutrients, flow, and water clarity, alterations
including dams and associated flow management can further influence growth patterns of algae
and aquatic plants (Blinn et al. 1998; Sabater et al. 2018). Where restoration has the potential to
alter algae and aquatic plant assemblages, as is the case in the proposed removal of the four large
hydroelectric dams on the Klamath River (Klamath River Renewal Corporation 2018),
monitoring these assemblages with UAV-based techniques provides a promising opportunity to
learn about the effects of large-scale restoration on non-target taxa that may otherwise be
challenging to monitor. In cases in which analytical expertise may not be available,
UAV-imagery can still be collected to document conditions before and after management actions,
so that data can later be analyzed.

5. Conclusions
Employing a pixel-based Random Trees supervised classification on RGB images from a

low-cost UAV is an effective technique to classify and quantify both benthic filamentous algae
and rooted macrophytes in a non-wadeable river. Although increases in water-column turbidity,
water depth, and complex species assemblages can decrease the accuracy of rooted macrophyte
and filamentous algae quantification, overall accuracy was 82% at the 32 assessed sites. This
study fits within the level of accuracy of similar studies analyzing submerged aquatic vegetation
coverage in clear water at shallow depths (< 1 m) (Husson, Hagner, and Ecke 2014; Husson,
Ecke, and Reese 2016; Chabot et al. 2017; Visser et al. 2015), and results verified that these
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methods can be applied in deeper bodies of water, both freshwater and marine, that have high
water clarity. These findings also expand on existing research by suggesting that classifying
vegetation categories and assessing images in mixed vegetation assemblages, in addition to
single taxa-dominant ecosystems, is possible with an RGB camera. It is recommended that future
studies collect aerial imagery between about 45 to 60 degrees of solar elevation angle in the
morning or afternoon to reduce solar glare. Photos taken around solar noon should generally be
avoided to diminish the effect of solar reflection. Future analysis involves incorporating in-situ
biomass calculations to augment percent cover estimates, and further investigating the utility of
multispectral imagery detection at depths deeper than 1 m below the surface. Methods from this
study are not suited for a purely white-water river caused by wind and rapids due to visibility
issues related to solar glare and water surface tension. Instead, this study’s methods are
particularly useful in inaccessible study regions that host large, homogenous patches of
submerged filamentous algae or macrophytes in relatively shallow (< 2 m) and clear water.

As UAVs become a common tool used by research and monitoring groups, the potential to
increase ecosystem monitoring in environments not previously accessible and on larger spatial
scales is expanding. Capturing aerial imagery is relatively efficient and can be combined with
other sample collection efforts as part of regular water quality monitoring programs. These
images can be cataloged for later assessment, which may prove incredibly valuable in the cases
of retrospective monitoring of unplanned management actions, natural variation in ecosystem
condition, or other changes. The collection of UAV images from established long-term study
sites will be comparable through time to assess temporal changes with limited in-situ data, and
aerial images collected in conjunction with in-situ samples will be informative in aquatic system
management and decision-making.
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Chapter 3: Mapping Algal Bloom Dynamics in Small Reservoirs using
Sentinel-2 Imagery in Google Earth Engine

Abstract

Freshwater algal blooms have caused ecological damage and public health concerns throughout
the world. Monitoring such blooms via in situ sampling is both costly and time-consuming, and
satellite imagery provides a rapid and relatively inexpensive way to supplement these techniques.
Sentinel-2 MultiSpectral Imager data have effectively detected chlorophyll-a, a proxy for algal
biomass, in large bodies of water, but few studies have shown the applicability in small (<10
km2) reservoirs, which are critically important for aquatic species, drinking water, irrigation,
cultural activities, and recreation. This study provides a test of the use of Sentinel-2 imagery in
Google Earth Engine for algal bloom detection in two small freshwater reservoirs in northern
California, USA, from October 2015 to December 2020. Google Earth Engine’s cloud computing
allows for the analysis of extensive datasets and time series, expanding the capacity to analyze
the spatial and temporal heterogeneity of floating algal blooms. Here we analyzed four spectral
indices - Normalized Difference Vegetation Index (NDVI), Normalized Difference Chlorophyll
Index (NDCI), B8AB4, and B3B2 - to retrieve chlorophyll-a data for algal bloom identification
in two highly dynamic freshwater systems. We assessed the relationship between spectral indices
and monthly in situ water samples that were collected at three sites within the reservoirs using
cubic polynomial regression equations. NDCI, which leverages the red-edge wavelength, most
accurately identified chlorophyll-a across all study sites (highest adjusted R2 = 0.84, lowest
RMSE = 0.02), followed by NDVI. We demonstrate that Sentinel-2 imagery can capture greater
spatial and temporal heterogeneity of algal blooms than typical in situ sampling. This suggests
that remote sensing may be an increasingly important tool in monitoring algal bloom dynamics
in small reservoirs and other aquatic environments.

1. Introduction

Freshwater harmful algal blooms (HABs), defined as proliferations of toxic or non-toxic
algae that negatively affect freshwater ecosystems (Lopez et al. 2008), impact every continent on
the planet (Clark et al. 2017). Although algae occur naturally and provide nutritional and
structural benefits to aquatic ecosystems, proliferations can become a nuisance or even
dangerous to animal and human health (H. W. Paerl et al. 2001). Such health effects include
nausea, respiratory illnesses, liver problems, skin damage (Davidson et al. 2014), and mortality
of livestock, dogs, and other animals that drink contaminated water (Harke et al. 2016; Backer et
al. 2013). In addition to toxigenic events, HABs can cause a variety of ecological and economic
problems, such as creating anoxic zones, clogging fish gills, producing strong odors, and
impeding waterfront recreation (Weirich and Miller 2014; G. M. Hallegraeff 1993). Furthermore,
consuming even small amounts of toxins can be life-threatening (Chorus et al. 2000). HABs are
increasing in prevalence in small lakes and reservoirs around the world (Kenneth Hudnell 2008;
B. W. Brooks, Lazorchak, and Howard 2016). In fact, lakes and reservoirs often experience the
most severe and frequent HABs of all aquatic environments because of high nutrient influx from
upstream rivers (Hans W. Paerl, Otten, and Kudela 2018). While much HAB research has been
conducted in marine ecosystems and large freshwater ecosystems, few researchers have studied
these events in small lakes and reservoirs despite the importance of these water bodies for
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irrigation, energy usage, and water supply (Lobo et al. 2021). Evaluating the spatio-temporal
trends and variable dynamics of algal blooms in small lakes and reservoirs can provide public
health officials and aquatic managers with targeted information to mitigate potentially harmful
events around the globe (D. M. Anderson, Cembella, and Hallegraeff 2012).

HABs are typically monitored through in situ methods such as laboratory analysis of water
samples that quantify concentrations of algal toxins and chlorophyll-a (chl-a), a proxy for algal
biomass (Caballero et al. 2020). However, in situ monitoring techniques are time-consuming and
require specialized laboratory equipment (Karlson, Cusack, and Bresnan 2010), reducing the
ability to collect data more frequently than once a month per location. Since bloom cycles are
heterogeneous and can last from hours to days in various quantities (Cloern 1996), it is important
that monitoring techniques capture the rapidly-changing dynamics of bloom events. Remote
sensing data from satellites, aircraft, and unoccupied aerial vehicles (Richard P. Stumpf and
Tomlinson 2007; Kislik, Dronova, and Kelly 2018) have been used to complement in situ
monitoring and improve our ability to observe HABs at broad spatial and temporal scales.
Additionally, the growing availability of long-term, high-frequency satellite imagery has enabled
robust comparisons of spectral images with in situ data to develop models to forecast blooms
(Saberioon et al. 2020; S. Mishra et al. 2021; Ranjbar et al. 2021; S. J. Weber et al. 2020). Chl-a
is most commonly used to detect the presence of a variety of algal blooms using both in situ and
remote sensing techniques because it is easy to measure visually, although it is only a proxy and
cannot determine algae to the species level (Kudela, Stumpf, and Petrov 2017; Richard P. Stumpf
and Tomlinson 2007). Therefore, remote sensing techniques combined with in situ water
sampling measurements provides a robust mechanism to characterize the spatial and temporal
dynamics of HABs.

Satellite remote sensing has been used for decades to identify algal blooms, and advances in
sensors have increased the ability to monitor blooms at more local spatial scales. Satellite
imagery is particularly useful for HAB detection because algal blooms typically float at the
surface and have distinct colorations, making them identifiable from space (Mark William
Matthews, Bernard, and Robertson 2012). Previous studies have detected blooms using
multispectral imagery from SeaWiFS (1100m spatial resolution), MERIS (300m spatial
resolution), MODIS (250m spatial resolution), and Sentinel-3 (300m spatial resolution),
leveraging the red-edge and near-infrared (NIR) wavelengths to identify chl-a and general
greenness of blooms (Clark et al. 2017; Sebastiá-Frasquet et al. 2020; Shen, Xu, and Guo 2012).
The red-edge and NIR wavelengths are advantageous for algal bloom detection because, as with
land vegetation reflectance patterns, floating algae have peak reflectance in the NIR and red-edge
(Hu 2009) and high absorption in the red wavelengths, especially compared to surrounding water
(Alawadi 2010). However, the platforms that have tested red-edge and NIR indices are primarily
moderate and low resolution satellite missions that are too coarse to map small lakes and
reservoirs. Higher resolution satellite images are needed for this pursuit.

Missions such as Landsat (30m spatial resolution) and Sentinel-2 (10-60m spatial resolution)
offer finer-scale spatial data and may allow for more precise quantification of algal biomass in
small freshwater lakes and reservoirs (Bresciani et al. 2018). Sentinel-2 MultiSpectral Imager
(MSI) has emerged as a new leader in the field of algal bloom remote sensing because of its
spectral variety in red-edge and NIR wavelengths, high temporal resolution, and high spatial
resolution (Ansper and Alikas 2018; Dogliotti et al. 2018). Although Sentinel-2 sensors were
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originally designed for land-use applications (Cillero Castro et al. 2020), this imagery has been
applied to several algal bloom studies involving coastal regions (N. Pahlevan et al. 2017) and
large inland lakes (Bramich, Bolch, and Fischer 2021; Ha et al. 2017). This satellite has been
used in previous algal bloom research, yet few investigations have shown the applicability of
Sentinel-2 imagery in small reservoirs. The temporal frequency of Sentinel-2 observations,
which is higher than Landsat’s 16-day revisit time (Caballero et al. 2020), provides an additional
advantage for monitoring HABs in small bodies of water at repeat intervals. It is important to
track when and where blooms in small (<10 km2) reservoirs occur to monitor public health
concerns in these environments because even small concentrations of toxic algae in small bodies
of water can injure animals and humans (Laughrey et al. 2021; Gustaaf M. Hallegraeff et al.
2004). Furthermore, small reservoirs are critical for irrigation, water supply, energy production,
recreation, and cultural usage (L. T. Ho and Goethals 2019). Together, in situ measurements
paired with remote sensing data offer a unique window into the time and location of algal blooms
in small bodies of water, helping public health agencies and water quality managers address
these events in a timely and targeted manner.

To test whether Sentinel-2 imagery can monitor HAB occurrences in small water bodies,
we compared four spectral indices with in situ water quality data from two small (10km2 total)
reservoirs in the Klamath River Basin in northern California, USA. Specifically, we used chl-a
and cyanobacteria toxin in situ data to validate the satellite imagery and understand water quality
data before several large dams are planned for removal in 2023 (Klamath River Renewal
Corporation, n.d.). Thus, this study provides an important baseline to later ascertain the effects of
dam removal on the presence of HABs in this environment. Objectives for this study include: (1)
identifying which satellite-based spectral index best detects chl-a in two reservoirs of the
Klamath River from 2015-2020; (2) understanding the spatial and temporal trends of algal
blooms in these bodies of water; and (3) quantifying bloom dynamics and anomalies (higher and
lower than average values) during this study period. This paper assesses the utility of
high-resolution satellite imagery for small algal bloom detection to supplement sampling
techniques and enhance HAB identification and monitoring.

2. Materials & Methods

2.1. Study Sites

The study sites for this research are the two most downstream reservoirs of the Klamath
River in northern California near the Oregon border: Copco Reservoir (41.97941°, -122.304°)
and Iron Gate reservoir (41.93389°, -122.435°) (Figure 1). These reservoirs are small (roughly 4
km2 surface area each) and hold about 34,000-59,000 acre-feet of water (Klamath River Renewal
Corporation, n.d.). Three dams were built within Copco and Iron Gate reservoirs: Copco I in
1918 (the first blockade to migratory fish species in the Klamath River), Copco II in 1925, and
Iron Gate in 1962. The dams were constructed for agricultural water acquisition, hydroelectric
production, and flow regulation ({U.S. Department of the Interior and U.S. Department of
Commerce, National Marine Fisheries Service} 2013). Both reservoirs are characterized by
elevated nitrogen and phosphorus concentrations, warm water temperatures, and high water
residence times (Oliver, Dahlgren, and Deas 2014; Bozarth et al. 2010). Their high nutrient
levels are primarily attributed to inflows from the Upper Klamath Lake, a hypertrophic lake
surrounded by intensive agriculture (Walker, W.W., J. D. Walker, and J. Kann. 2012), but also to
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nitrogen fixation, atmospheric deposition, and nutrient influxes from bottom sediments (Asarian,
E., Kann, J. and W. Walker 2009; Moisander, Ochiai, and Lincoff 2009). These conditions
support the proliferation of algae, dominated by Microcystis aeruginosa and Aphanizomenon
flos-aquae, particularly in the summer and fall months (Otten et al. 2015). Microcystis blooms in
these two reservoirs have been documented each year since 2004 (E. Asarian and Kann 2011),
producing microcystin toxin levels that often exceed public health standards (Otten et al. 2015).
These toxic, recurring events threaten humans and endangered fish species, including chinook
salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), and steelhead trout
(Oncorhynchus mykiss) in the Klamath River (Kann and Corum 2006; {U.S. Department of the
Interior and U.S. Department of Commerce, National Marine Fisheries Service} 2013).

Figure 1. Study sites of Iron Gate Reservoir and Copco Reservoir within the Klamath River
Basin in northern California. There are a total of three in situ sample locations (Copco, Below
Copco, Iron Gate), each encircled by a 15-meter buffer representing locations of Sentinel-2
satellite data acquisition.

2.2. In Situ Data Collection

PacifiCorp (an electric power company that operates hydroelectric dams in the Pacific
Northwest) collects and publishes water quality data pertaining to the Klamath River main stem
and reservoirs, including Copco and Iron Gate. We obtained PacifiCorp in situ water quality
sampling data at three locations: the outlet of Copco Reservoir (“Copco”) (41.98°,
‐122.331208998°), the inlet of Iron Gate Dam (“Below Copco”) (41.97°, -122.36438908°), and
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the outlet of Iron Gate Dam (“Iron Gate”) (41.94°, -122.432227627°) (Figure 1). These data
included chl-a and microcystin toxin concentrations measured in water samples collected at 0.5m
depth and subsequently analyzed in a laboratory using Environmental Protection Agency
standards (Watercourse Engineering, Inc. 2020). The samples were collected at approximately
monthly intervals between March and November from 2015 to 2020 (Figure A.1). Furthermore,
there are strong correlations (adj. R2 > 0.85) between the in situ chlorophyll-a and microcystin
toxin data at each of the 3 sites in this study (Figure A.2).

2.3. Sentinel-2 Data Collection & Processing

We obtained multispectral imagery over the study period at the sampling locations from
Sentinel-2. These provide high-resolution (10 to 20m) images of the sampling sites at 5-day
intervals when combining data from both Sentinel-2A, which began operating in 2015, and
Sentinel-2B, in operation since 2017 (Caballero and Stumpf 2020). This temporal resolution can
greatly supplement monthly in situ samples. As the Klamath reservoirs are dynamic aquatic
systems that have a legacy of nutrient inputs and retention (Oliver, Dahlgren, and Deas 2014),
algal bloom proliferations in these bodies of water are very heterogeneous in space and time. To
understand this complexity, we first explored all available Sentinel-2 images at each of the three
sampling locations and marked coinciding in situ sampling days. Figure 2 shows this
heterogeneity in that the Copco and Below Copco sites typically experience their highest chl-a
values (as retrieved by Sentinel-2 spectral indices) in the spring and summer, while Iron Gate
experiences its highest chl-a measurements in the summer and fall. Winter months, when in situ
sampling is halted, are typically a time of low chl-a values (Figure 2).
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Figure 2. A time series of the four indices used in this study applied to all cloud-free Sentinel-2
images during the study period (October 2015 - December 2020). All values are based on
atmospherically-corrected satellite data. Black lines on the x-axis indicate sampling dates at each
in situ sampling location while gray lines on the x-axis indicate months with no in situ sampling.

Sentinel-2 imagery data are comprised of 12 bands, including wavelengths ranging from the
blue to the shortwave infrared regions of the electromagnetic spectrum (Toming et al. 2016). To
identify chl-a, we used bands 2 (blue), 3 (green), 4 (red), 5 (vegetation red-edge), 8
(near-infrared), and 8A (narrow near-infrared) (Q. Wang et al. 2016). We selected these specific
bands because they have been traditionally used for chlorophyll-a identification; blue and green
wavelength indices operate well in clear bodies of water while red, red-edge, and near-infrared
wavelength indices are successful in turbid waters because they are less affected by surrounding
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detritus and organic matter (Gilerson et al. 2010; S. Mishra and Mishra 2012). Due to the
variable nature of these reservoirs, we explored both types of indices for this study.

After we acquired in situ water quality data, we processed Sentinel-2 Level 1C imagery in
Google Earth Engine (GEE), a satellite imagery analysis application programming interface that
enables global-scale processing (Figure 3). Recent studies have proven the applicability of
Google Earth Engine for water quality monitoring (L. Wang et al. 2020; Lobo et al. 2021;
Vaičiūtė et al. 2021; S. J. Weber et al. 2020; Zong et al. 2019; Maeda et al. 2019; Jia, Zhang, and
Dong 2019). We selected images from October 2015 to December 2020 that were captured
within 5 days of monthly in situ water quality collection dates. About two-thirds of these images
were within 0 to 2 days of an in situ collection date (Copco: 20 out of 30 total, Below Copco: 22
out of 32 total, Iron Gate: 20 out of 30 total). We then implemented a cloud mask to all images
using the QA60 (quality assurance) band to remove thick and cirrus clouds from our dataset. We
also discarded images in which clouds obscured an in situ sampling location. We then
implemented an atmospheric correction algorithm using the Satellite Invariant Atmospheric
Correction (SIAC) package to convert imagery from top of atmosphere to surface reflectance
values. This package applies linear transformations to estimate surface reflectance, incorporating
approximations of aerosol optical thickness and total columnar water vapor using Bayesian
statistics and the Copernicus Atmospheric Monitoring Service (Yin et al. 2019). After the initial
image selection, image matching within 5 days of in situ collection dates, cloud masking, and
atmospheric correction, we were left with a total of 33 Sentinel-2 images that were incorporated
into analysis.

Figure 3. Workflow diagram describing the data acquisition (in situ and satellite imagery),
satellite image processing and analysis, and regression and error assessment components (in situ

and satellite imagery).

To assess which spectral index best detects chl-a at each sampling location, we applied the
four spectral indices (Table 1) to the pre-processed 33 Sentinel-2 images in Google Earth Engine.
First, we extracted spectral index values from Sentinel-2 imagery by clipping these images to a
15m circular buffer that surrounded each in situ sampling location (Figure 1). Buffers were
shifted by up to 15m from the original in situ sampling location when objects in the image, such
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as bridges or an intake barrier curtain, obscured water visibility and impacted index reflectance
values. The four spectral indices tested were: (1) the Normalized Difference Vegetation Index
(NDVI), which is a ubiquitous index in terrestrial research that uses the red and NIR bands for
greenness detection (Ma et al. 2021), (2) the Normalized Difference Chlorophyll Index (NDCI),
which uses Sentinel-2’s first vegetation red-edge and red bands and performs well in chl-a
detection of hypereutrophic water bodies (S. Mishra and Mishra 2012; Caballero et al. 2020;
Watanabe et al. 2018), (3) the Band 8A-Band4 (B8AB4) index, which was inspired by studies
developed to examine the differences between the red and red-edge wavelengths in Sentinel-2
measurements (Khalili and Hasanlou 2019), and (4) the Band 3 Band 2 (B3B2) index, which
uses the green and blue bands for chl-a identification (Cillero Castro et al. 2020). Each of the
wavelengths used within these indices has previously been tested and proven to be effective in
chl-a identification.

Table 1. Sentinel-2 spectral indices used for chlorophyll-a identification. The indices used in this
study include the Normalized Difference Vegetation Index (NDVI), the Normalized Difference
Chlorophyll Index (NDCI), Band 8A Band 4 (B8AB4), and Band 3 Band 2 (B3B2). Rs indicates
reflectance values from the satellite. The wavelengths represented include the Near-Infrared
(NIR), Red, Vegetation Red Edge 1 (Veg Red Edge 1), Narrow Near-Infrared (Narrow NIR),
Green, and Blue.

2.4. Data Analysis

We examined the relationship between in situ chl-a measurements and the spectral index
values using cubic polynomial regression models through the generalized linear model method in
the ggplot2 package of the R program (R Core Team 2020; Wickham 2016). We used this
regression equation because of the non-linear relationship between the spectral reflectance and
chl-a values (Martinez et al. 2020; Sharma et al. 2019; Kwon et al. 2018) and its success in
related studies (O’Reilly et al. 1998; Konik et al. 2020). We first categorized chl-a measurements
into four temporal subgroups per sampling site: Overall (all values per time series), Wet Years
(2017 and 2019), Dry Years (2015, 2016, 2018, 2020), and Cyanobacteria Season (July 1 through
October 31 for each year). Wet and dry years were categorized based on years that experienced
more than average (wet) or less than average (dry) river discharge (mean = 1243 cubic feet per
second) based on the 5-year average (2015-2020) discharge recorded at the United States
Geological Survey Klamath River Below John C. Boyle PowerPlant near Keno, Oregon,
sampling station (USGS 11510700), which is upstream of all sites. We then fit a cubic
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polynomial function (y = index + chl-a + chl-a² + chl-a³) to the paired chl-a value and spectral
index values, resulting in 48 models total (4 subgroups * 4 indices * 3 sites). We evaluated the
significance of each relationship based on the p-value. We also calculated the root mean square
error (RMSE) and coefficient of determination, adjusted for the number of terms in the model
(adjusted R2), by comparing model predictions with observed chl-a values (Tehrani, Janalipour,
and Babaei 2021).

To examine higher and lower than average spectral index values per cyanobacteria season in
the reservoirs, we selected the two highest-performing indices, NDVI and NDCI, and calculated
their annual standardized anomalies in Google Earth Engine. Anomalies are commonly used in
environmental science, such as for climate and drought monitoring, to identify large departures
from a long term mean (Helama, Meriläinen, and Tuomenvirta 2009; Anyamba, Tucker, and
Eastman 2001). To calculate the anomalies, we first organized the Sentinel-2 imagery into yearly
composites (2016-2020) and then filtered these data to only include values from July 1 through
October 31 each year, as this includes the annual cyanobacteria season in this system (Otten et al.
2015; Jacoby and Kann 2007). Next, we subtracted the overall mean per index from each yearly
composite value per index. Finally, we divided this resulting value by the standard deviation for
all years per index. This enabled us to calculate the Z-score of the dataset, which is a metric that
describes how many standard deviations an observation is from the mean (Patel, Chopra, and
Dadhwal 2007). For this study, we call the Z-score the standardized anomaly. The equation for
this calculation is: [Z-Score = (Individual Year - Mean) / Standard Deviation of all Years]. The
annual Standardized Anomaly is used to decipher locations within each reservoir that diverged
from average Sentinel-2 spectral index values, determined per year and during the cyanobacteria
season (July - October). Higher than average values can be used as a proxy to imply higher chl-a
values, while lower than average values serve as a proxy for decreased quantities of chl-a.

3. Results 

3.1. Satellite-based Modeling of Chl-a

Results revealed the seasonal and interannual heterogeneity of algal blooms in Copco and
Iron Gate Reservoirs as detected by spectral indices applied to Sentinel-2 satellite imagery. In
general, algae appeared to be highest in the spring and summer months, with the highest peaks
observed in 2019 at Copco among all spectral indices, in 2019 for NDCI and B3B2 values and
2020 for NDVI and B8AB4 values at Below Copco, and in 2018 for NDCI and B3B2 values and
2020 for NDVI and B8AB4 values at Iron Gate (Figure 4). At each of the three sites, 2016 and
2017 appeared to have generally lower spectral index values (Figure 4). NDVI, NDCI, and
B8AB4 registered their lowest values at Iron Gate, and both NDVI and B8AB4 experienced their
highest values at Below Copco on average. NDCI had its highest values at Copco, with generally
highest values on average across all spectral indices. B3B2 was fairly consistent across the three
sites, with highest values at Iron Gate (Figure 4).
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Figure 4. Time series per spectral index (rows) and in situ sampling location (columns)
from October 2015 to December 2020. This demonstrates the range of values among the four

indices tested in this study and how they vary per site.

NDCI was the most successful spectral index in estimating chl-a from Sentinel-2 imagery
at Below Copco during the wet years (adj. R2 = 0.841, RMSE = 4%, p-Value < 0.001) and Iron
Gate during the wet years (adj. R2 = 0.782, RMSE = 2%, p-Value < 0.01) (Figure 5). In
comparison to in situ measurements, 19 of the 48 evaluated regression results had moderate to
strong relationships (adj. R2 > 0.4) and 26 of the 48 regression results were statistically
significant (p-Value < 0.1) (Figure 5). Overall, all indices performed best at Copco (11 of 16 total
regression results were statistically significant with p-Value < 0.1 and 9 of 16 total results had
moderate to strong relationships with adj. R2 > 0.4). NDCI was the most successful index across
all sites and models (11 of 12 total regression results were statistically significant with p-Value <
0.1 and 10 of 12 total results had moderate to strong relationships with adj. R2 > 0.4), particularly
at Copco and Iron Gate. B3B2 had the second-highest number of statistically significant models
(6 of 12 with p-Value < 0.1), performing best at Iron Gate, although relationships were not as
strong across all models (3 of 12 results with adj. R2 > 0.4). For this reason, NDVI appeared to
perform the second-best across all sites, after NDCI, with 4 of 12 moderate to strong
relationships (adj. R2 > 0.4) and 5 of 12 statistically-significant values (p-Value < 0.1). B8AB4
and NDVI performed similarly to one another across several sites, with high statistical
significance (p-Value < 0.01) and relatively strong relationships at Copco in the categories of
Overall (entire time series), Copco Wet Year (2017 & 2019), and Copco Cyanobacteria Season
(July - October) (adj. R2 > 0.45 for NDVI and adj. R2 > 0.25 for B8AB4). However, error was
higher at these sites for NDVI and B8AB4 than in other locations (as high as 20%). Of all the
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indices, B8AB4 performed the worst across all sites. NDCI and B3B2 had the lowest RMSE
values across all sites (below 9%) (Figure 5). In terms of the four temporal subgroups, the
Overall category (entire time series) performed best (9 of 12 with p-Value < 0.1 and 5 of 12 with
adj. R2 > 0.4), followed by the Wet Years (2017 & 2019) (6 of 12 with p-Value < 0.1 and 6 of 12
with adj. R2 > 0.4), the Cyanobacteria Season (July - Oct) (6 of 12 with p-Value < 0.1 and 5 of 12
with adj. R2 > 0.4), and finally the Dry Years (2015, 2016, 2018, 2020) (5 of 12 with p-Value <
0.1 and 3 of 12 with adj. R2 > 0.4). Results indicate that pixel values that are collected within a
15-meter buffer around in situ sampling locations generally correspond well to in situ chl-a
measurements within 5 days of collection.

Figure 5. Cubic polynomial regression (a) adjusted R2 and (b) Root Mean Square Error (RMSE)
Values of the four Sentinel-2 spectral indices compared to in situ chlorophyll-a data. Green
signifies favorable values indicating high predictive potential (top 30th percentile adj. R2 values,
bottom 30th percentile RMSE values). Statistical significance (*) for adj. R2 values is determined
by: (*) p < 0.1; (**) p < 0.05; (***) p < 0.01; (****) p < 0.001.

Strong relationships were observed between satellite-derived spectral indices and in situ
chl-a data at each site (Figure 6). Below Copco had the highest relationship based on the cubic
polynomial regression (NDCI adj. R2 = 0.841), while Iron Gate (NDCI adj. R2 = 0.782) and
Copco (NDCI adj. R2 = 0.777) had very similar values. There is a non-linear relationship
between NDCI and chl-a, especially for chl-a values above 0.25 µg/l at Copco and Below Copco,
and 0.05 µg/l at Iron Gate. While most points lie within the gray 95% confidence intervals for
each location, there are about five remaining points per plot that can be considered outliers
(Figure 6).
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Figure 6. Regressions of the best-performing spectral index per sampling location based on the
relationship between Sentinel-2 pixels and chlorophyll-a in situ data at (a) Copco (Wet Year,
NDCI), (b) Below Copco (Wet Year, NDCI), and (c) Iron Gate (Wet Year, NDCI). Gray shading:
95% confidence intervals; red lines demonstrate the mean relationships for the polynomial (x3)
regressions. R2 values represent adjusted R2 values.

3.2. Standardized Anomalies of Chl-a Estimates

Annual standardized anomalies demonstrate the relative differences from average spectral
index values across space and time (Figure 7). Specifically, the two best-performing indices
across all sites, NDCI and NDVI, were used to show the biggest deviations from average annual
values during the cyanobacteria season (July 1 - October 31) from 2016 to 2020. Figure 7
indicates that 2019 experienced the largest increases (positive changes from average spectral
index values) across both reservoirs, especially in Copco reservoir, while 2018 shows less than
average values across both reservoirs, particularly in Copco reservoir and the upstream half of
Iron Gate. However, also in 2018, Iron Gate experienced higher than average values in the
downstream portion of the reservoir. Iron Gate also exhibited higher standardized anomaly
values in 2017 and 2020. Index values in 2016 and 2017 appear to be fairly consistent without
major increases or decreases across both reservoirs, and NDVI and NDCI performed similarly to
one another throughout the time series. Finally, these maps demonstrate that depending on the
year, different locations within the reservoirs have various trends in anomalies. For example,
during the wet years (2017 and 2019), Copco experienced higher than average trends near the
Copco in situ sampling location and closer to the edges of the reservoir, while Iron Gate had
higher than average values closer to the Below Copco in situ sampling location. During the dry
years (2016, 2018, 2020), there were generally lower than average values across both reservoirs,
but Iron Gate may have experienced higher than average values closer to the Iron Gate in situ
sampling location. Standardized anomaly maps are useful in determining the seasonal,
interannual, and localized spatial patterns of satellite-derived algal bloom occurrences.
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Figure 7. Annual standardized anomaly maps during the cyanobacteria season (July 1 - October
31) for the two most reliable indices tested in this study, NDVI and NDCI. An annual
Standardized Anomaly depicts higher than average and lower than average Sentinel-2 spectral
index values per cyanobacteria season per full year (2016 - 2020) to identify areas that likely
have more and less than average chl-a.

4. Discussion

4.1. Sentinel-2 Capabilities for Algal Bloom Monitoring

This research demonstrated that Sentinel-2 imagery is effective in monitoring algal
blooms in small freshwater reservoirs. NDCI successfully predicted algal concentrations in the
two reservoirs, as demonstrated by moderate to strong adj. R2 values, high statistical
significance, and low RMSE values (Figure 5). This index uses the red-edge wavelength, which
was originally applied in marine and coastal environments (Caballero et al. 2020; S. Mishra and
Mishra 2012) and has since been tested and proven to effectively identify chl-a in a variety of
freshwater environments (Caballero et al. 2020; Cillero Castro et al. 2020; Lobo et al. 2021; S. J.
Weber et al. 2020; Beck et al. 2017). Red-edge and NIR wavelengths are less affected by detritus
and suspended particles (M. Xu et al. 2019), which are typical components of Copco and Iron
Gate reservoirs (Oliver, Dahlgren, and Deas 2014; Otten et al. 2015). This helps explain why
NDCI and NDVI performed well at a majority of the sampling locations within these water
bodies. NDCI was able to capture peak chl-a concentrations observed at each site (Figure 4),
consistent with previous studies that have shown the index to accurately detect elevated chl-a
concentrations (Gilerson et al. 2010; S. Mishra and Mishra 2012). The highest detection of chl-a
compared to other sites in this study (3270 µg/l) influenced the regression model fit for Copco
and led to low RMSE values (Figure 5). Similar results have been found in recent studies in
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which NDCI was useful when chl-a concentrations were above 10 µg/l and under 70 µg/l (Lobo
et al. 2021). NDCI was especially successful in identifying blooms during the wet years (2017
and 2019) (Figure 5), which included the most elevated chl-a values throughout the time series.
High chl-a rates in these reservoirs during wet years were likely due to a combination of
increased nutrient availability from runoff (T. Huang et al. 2014), as well as sloughing and
flushing of certain aquatic grazers (Beaver et al. 2013). In this study, the efficacy of spectral
indices for algal bloom detection was generally much better in wet years than dry years because
of the higher and more consistent chl-a concentrations.

The red-edge wavelength outperformed NIR and narrow NIR wavelengths in algal bloom
detection throughout this study. Although NDVI leverages the NIR band, it was not as useful as
NDCI because this wavelength has a tendency to overestimate chl-a in high chl-a concentrations,
possibly resembling the oversaturation effect of high forest canopy cover in terrestrial research
(Jiang et al. 2006). High NDVI RMSE values could be linked to the increase of prediction error
associated with large ranges of chl-a concentrations (<5 µg/l or >70 µg/l) (Lobo et al. 2021).
Furthermore, B8AB4, which incorporates the narrow NIR and red bands in a similar equation to
NDVI (Table 1), was found to be the least effective index in this study. This poor performance is
expected as Sentinel-2’s narrow NIR band (B8A) has demonstrated success particularly in
terrestrial studies such as leaf area index estimates (Kaplan and Rozenstein 2021) and burn
severity identification (Fernández-Manso, Fernández-Manso, and Quintano 2016), while the red
(B4) and red edge (B5) bands have also been applied to aquatic studies (J. Shi et al. 2022;
Ambrose-Igho et al. 2021). Additionally, without a large enough difference in reflectance and
absorption values between the narrow NIR and red wavelengths, spectral index values for
B8AB4 become muted and generally underestimate chl-a even in high concentrations (Figure 4).
Results from this study corroborate findings from similar studies (Cillero Castro et al. 2020;
Caballero et al. 2020), which attribute the detection of phytoplankton blooms to high reflectance
peaks in the red-edge and near-infrared bands and low reflectance values in the red band
(Caballero et al. 2020). This reflectance pattern is characteristic of floating cyanobacteria blooms
that appear green to the eye, which resembles reflectance peaks in healthy terrestrial vegetation
(Govender, Chetty, and Bulcock 2007). Although Sentinel-2 sensors were originally created for
land-based studies, findings from this research and other related studies (Cao et al. 2021;
Caballero et al. 2020; Cillero Castro et al. 2020; Lobo et al. 2021) further support the notion that
this satellite is appropriate and can be adapted to aquatic studies.

Indices involving the blue and green portions of the electromagnetic spectrum are often
best for clearer waters with less organic material (Binding et al. 2018; Alawadi 2010). In this
study, B3B2 performed poorly in terms of its relationship to in situ data, but had fairly low
RMSE values (Figure 5). This index proved to be moderately successful (adj. R2 > 0.4) at Iron
Gate sampling location (Figure 5), most likely due to clarity of the blooms on the surface of the
water in this location, but was unreliable at Copco and Below Copco sites because blue and
green wavelengths tend to be affected by confounding factors of chl-a, including detritus and
color dissolved organic matter (S. Mishra and Mishra 2012), which are common in these
extremely productive reservoirs. B3B2 both overestimated chl-a in low concentrations (as
demonstrated in similar studies (Cillero Castro et al. 2020)) and underestimated chl-a in high
concentrations (Figure 4). This can be linked to the pigment packaging effect (Alcântara et al.
2016), which is a flattening effect that describes lower chl-a reflectance values under scenarios of
high in situ chl-a concentrations (Stuart et al. 1998). B3B2 appeared to perform best during the
dry years (2016, 2018, and 2020) when cyanobacteria levels are often reduced because of
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decreased nutrient influx. Although indices that use the blue and green can penetrate the water’s
surface slightly farther than indices in the NIR, red-edge, and red wavelengths (Legleiter, Kinzel,
and Overstreet 2011), it is likely that blue-green indices are more accurate when blooms are
clearly visible directly on the water’s surface instead of layered in higher concentrations below
the surface due to an inability to capture the full concentration. Therefore, B3B2 is most useful
when applied to locations that typically have lower chl-a concentrations (< 5 µg/l), when blooms
look bright green or blue to the human eye, and when blooms proliferate in the top layer of the
water column.

4.2. Limitations of Sentinel-2 Chl-a Detection

There are several limitations associated with this research. The primary concern relates to
the temporal resolution mismatch inherent to the in situ and satellite data comparison. Since in
situ data were only collected once a month at each of the sampling locations, it was difficult to
find Sentinel-2 satellite imagery that was both unobstructed by clouds and within several days of
the sampling day (Figure 2). Therefore, the five-day time difference between the in situ
measurements and some of the satellite data may cause uncertainty in the analysis, and similar
studies attributed error to three-day discrepancies between in situ and Sentinel-2 data (Cillero
Castro et al. 2020). However, regressions run separately on satellite data captured fewer than
three days from in situ measurements did not render better results in our preliminary analyses. As
algal blooms can appear and vanish within hours, it is preferable to gather data on a daily or
weekly timescale. Figure 2 demonstrates that once a strong relationship is established between
satellite imagery and in situ data, satellite imagery can be used to fill temporal gaps and
understand the large heterogeneity that is present in this system. Missions such as PlanetScope (3
m spatial resolution) and RapidEye (5 m spatial resolution) offer daily imagery (Hu 2021) and
indices such as NDVI and NDCI can be applied to these images to detect algal blooms at even
finer resolutions. Other options for improved algal bloom satellite detection involve a
harmonized product of Sentinel-2 and Sentinel-3 or even high-resolution Planet imagery (3-5m)
to leverage enhanced spatial, temporal, and spectral resolution from each mission (Nima
Pahlevan et al. 2020; Caballero et al. 2020). This will help reduce the mismatch between in situ
and satellite data and enable more precise monitoring of bloom dynamics in small reservoirs.

Another limitation involves the detection of chl-a as a determinant for cyanobacteria
species and toxicity. While some satellite missions have spectral bands that can identify the
presence of phycocyanin, a key accessory pigment in cyanobacteria (Beck et al. 2017),
Sentinel-2 does not have this specificity in band wavelength. In contrast, the Sentinel-3 Ocean
and Land Color Instrument sensor has a band centered at 620 nm that has been used for more
precise identification of cyanobacteria blooms (Ogashawara 2019). However, these images are
captured at coarser spatial resolution (300 m) and are thus less useful for small sites. This
presents a tradeoff in spectral and spatial resolution that again deters the detection of bloom
dynamics in small reservoirs. Although chl-a is useful in ascertaining algal biomass, the
concentration of chl-a can only act as a proxy for blooms and indicates neither the species nor
the toxicity level of the bloom (R. P. Stumpf et al. 2003; Gustaaf M. Hallegraeff et al. 2004).
However, toxin levels in this study have a high correlation with chl-a concentrations (Figure
A.2), thus supporting these methods to detect both chl-a and microcystin toxin concentrations
using Sentinel-2 imagery in these reservoirs. To remotely sense algal species or genera
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information, hyperspectral imagery at high spatial resolutions with daily return intervals would
be optimal, although no current satellite missions fit this objective.

4.3. Algal Bloom Management Implications

Despite the above mentioned limitations, Sentinel-2 chl-a time series analysis provides a
promising tool for expanding the spatial and temporal measurements of algal blooms in small
reservoirs. Currently in Iron Gate Reservoir, PacifiCorp uses a physical barrier or “curtain” to
curtail the downstream drift of HABs to the rest of the Klamath River (Stillwater Sciences 2020).
Sentinel-2 imagery might assist this protocol by providing time series information to inform
managers on when to implement the curtain. Using the Google Earth Engine time series
information and standardized anomaly images (Figure 7), locations that may require special
observation to potentially enact phosphate reduction (Hans W. Paerl, Otten, and Kudela 2018) or
cyanobacteria removal and inactivation techniques (Westrick et al. 2010) might be assessed.
Throughout this time series, chl-a measurements exceeded the “Danger” category (20 µg/l
microcystins) for Trigger Levels for Human & Animal Health in California (United States
Environmental Protection Agency 2019) on at least 10 separate days (Figure 2). Increased
monitoring of the Klamath reservoirs through the use of open-access satellite imagery can help
communities prepare for and respond to these toxic events.

This study provides information on algal biomass estimations prior to one of the largest
dam removals in history (Allen 2010). As Klamath River dam removal is expected to improve
overall water quality and diminish long term HAB impacts in this system (Otten et al. 2015),
results from this study provide baseline data that can help managers prepare for ecological
restoration projects in future dam removal scenarios. Also, as the dams are drawn down for
removal, spectral indices, especially NDCI and NDVI, applied to high-resolution satellite
imagery will be effective as a tool for monitoring the spatial and temporal effects on water
quality, particularly if the river mimics the dynamics of a “wet” year. Sentinel-2 imagery
complements in situ monitoring and can be used to improve algal bloom management in small
nutrient-rich lakes, rivers, ponds, and reservoirs around the world. Google Earth Engine analysis
allows researchers to easily scale up the analysis to include greater portions of the Klamath River
or reservoirs to better understand the spatial extent of dam removal impacts in this region.

Finally, the benefits of augmenting sampling with satellite imagery analysis rather than
only increasing field sampling are clear since there is limited money and time for additional in
situ sampling efforts. Instead, strong relationships between spectral indices and in situ data can
be established, allowing managers to leverage satellite-derived products (Figure 7) to expand the
comprehension of the spatial and temporal dynamics of algal blooms in these systems. This
study demonstrated that NDCI is a useful tool to understand cyanobacteria dynamics and
patterns in small reservoirs and lakes, which can be implemented to inform localized
management and mitigation strategies. Satellite imagery allows an integration of understanding
of HAB dynamics over space and time and thus provides a greater perspective on the variability
of the aquatic system than methods relying only on monthly in situ observations.

5. Conclusions
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This research validated the use of Sentinel-2 imagery to improve algal bloom
management and inform baseline water quality data before dam removal by providing greater
spatial and temporal coverage of these events. By deriving a strong relationship between
Sentinel-2 imagery and in situ chl-a data through the use of red-edge and NIR spectral indices, it
is possible to understand the seasonal, interannual, and local patterns of blooms in such
freshwater ecosystems. NDCI proved to be the optimal spectral index in this environment. We
recommend that future studies use high-resolution satellite data in concert with in situ water
quality sampling that occurs within five days of the satellite flyover during peak bloom events.
This research promoted a greater understanding and communication of a highly dynamic system
through the incorporation of a continuous satellite mission and high-performance cloud
computing via Google Earth Engine, where code and analysis can be shared among researchers
and water quality managers. Research in this field can benefit from increased spatial, temporal,
and spectral resolution, and upcoming hyperspectral missions such as NASA’s Plankton,
Aerosol, Cloud, ocean Ecosystem (PACE) paired with in situ data and high spatial resolution
imagery from Sentinel and Planet missions can increase the ability to document and address
future blooms. Finally, as dam removal is anticipated to reduce toxic HABs in the Klamath River
Basin over time (Otten et al. 2015), results from this study allow researchers to estimate algal
bloom risk aversion in future dam removal projects. Similar methods can be applied to a variety
of freshwater environments, reducing the impact of potentially toxic HABs in small lakes, rivers,
and reservoirs around the world.

6. Appendix

Figure A.1. In situ chlorophyll-a and microcystin values (µg/l) per sampling location from
2015-2020, measured by PacifiCorp.
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Figure A.2. Linear regressions of in situ microcystin toxin and chlorophyll-a data at (a) Copco,
(b) Below Copco, and (c) Iron Gate. Gray shading: 95% confidence intervals; red lines
demonstrate the mean relationships for the regression. R2 values represent adjusted R2 values.
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Chapter 4: Integrating Crowdsourced Incident Reports with Satellite Imagery
to Understand Algal Blooms in California Lakes and Reservoirs

Abstract

Freshwater harmful algal blooms (FHABs), and particularly cyanobacteria blooms that emit
toxins, are associated with negative ecological, environmental, and health impacts in global lakes
and reservoirs. In situ water quality sampling is necessary to monitor these blooms, but this
method is often deployed infrequently due to time and financial constraints. Satellite imagery
expands the capacity to evaluate bloom events at broader spatial and temporal scales, although
trade offs exist between spatial and spectral resolution with current sensors. While Sentinel-3
imagery (300 m/pixel) provides the spectral resolution to identify cyanobacteria blooms using
the Modified Cyanobacteria Index, its coarse spatial resolution lacks the detail to resolve smaller
bodies of water (< 2 km2), which are important for drinking water, recreational activities, and
aquatic ecosystems. Sentinel-2 (10 m/pixel) fills this gap with greater spatial resolution, but lacks
the spectral resolution to decipher among algal bloom types. In California, there are FHAB
datasets involving both crowdsourced bloom incident reports and Sentinel-3 satellite imagery of
lakes and reservoirs at near-real time. Although these FHAB data are provisional, this is the first
study to attempt to integrate these two datasets to determine if we can pair field reported blooms
and aerially-detected blooms in California. We compared three spectral indices applied to
Sentinel-2 imagery – Normalized Difference Vegetation Index (NDVI), Normalized Chlorophyll
Index (NDCI), and a blue-green index (B3B2) – to reported microcystin values at two scales: a
200 m buffer around a reported bloom and at the entire lake or reservoir scale. We extracted
mean spectral index values for the buffer scale to average out reflectance noise at a small scale
and 90th percentile spectral index values for the lake or reservoir scale to identify highest values
across the entire body of water. We also compared Sentinel-3 90th percentile Modified
Cyanobacteria Index values to reported microcystin values at the lake or reservoir scale. We
assessed these relationships using logarithmic regressions. For Sentinel-2 imagery, NDVI proved
to be the most useful index (R2 = 0.34) at the buffer scale. Sentinel-3 MCI values had a stronger
relationship to reported microcystin data (R2 = 0.52) than Sentinel-2, although the increased
spatial resolution of Sentinel-2 greatly expands the number of monitored lakes and reservoirs.
Improving the spectral and spatial resolution of future satellite missions will enhance the ability
to integrate in situ reports and aerial imagery, which will help improve detection and monitoring
for potentially toxic blooms in lakes and reservoirs throughout the world.

1. Introduction

Freshwater harmful algal blooms (FHABs) are increasing in frequency, duration, and severity
across the globe (W. Carmichael 2008; Hans W. Paerl and Huisman 2008; J. C. Ho, Michalak,
and Pahlevan 2019). FHABs are algal proliferations in freshwater environments that become
harmful to humans, other animals, and the economy when they produce toxins, foul smells,
anoxic zones, and excess biomass that disrupt ecological processes and recreational activities
(Hudnell 2010). Lakes and reservoirs often suffer from the most severe and frequent FHABs
because of upstream nutrient inputs, extended water residence times, and water column
stratification that enable algal species to grow rapidly in these environments (Hans W. Paerl,

44

https://paperpile.com/c/7kGg6Z/Jpw4c+9Qiec+t6gN4
https://paperpile.com/c/7kGg6Z/Jpw4c+9Qiec+t6gN4
https://paperpile.com/c/7kGg6Z/uoSN7
https://paperpile.com/c/7kGg6Z/sZBc9


Otten, and Kudela 2018). Many FHABs in these ecosystems are composed of cyanobacteria, or
blue-green algae, that can produce microcystin, a toxin that can cause acute liver damage in
organisms that consume it. It has been shown to cause gastrointestinal problems, head and eye
pain, nausea and vomiting, and organ damage in people, as well as mortality of dogs, cattle, fish,
and birds (Wood 2016; Massey et al. 2018).

Due to the severity and increase in FHABs, new monitoring programs have been established for
lakes and reservoirs across the world. New methods are also being developed to detect and
monitor FHABs. Monitoring FHABs typically involves collecting water quality samples, which
are then analyzed in the laboratory for the presence of toxins such as microcystin. However, this
in situ method is expensive and time-intensive, and necessarily restricts the analysis to the point
location at which the sample was collected (Ogashawara and Moreno-Madriñán 2014).
Fortunately, new methods for monitoring FHABs are being developed that are more cost
effective and have greater spatial and temporal coverage. For example, researchers have used
satellite imagery (Klemas 2012; Shen, Xu, and Guo 2012), drones (Kislik et al. 2020), and other
aerial methods (Strong 1974; Beck et al. 2016) to observe and analyze algal proliferations in
concert with in situ monitoring. Others have shown that crowdsourced, participatory, and citizen
science data from social media platforms like Twitter (D. R. Mishra et al. 2020; Skripnikov et al.
2021) and mobile device applications (Malthus, Ohmsen, and Woerd 2020; Kotovirta et al. 2014)
can be used to monitor FHABs. One notable mobile device application is the Cyanobacteria
Assessment Network Application (CyAN app), which pairs blue-green algae observations and
satellite imagery within more than 2,000 of the biggest lakes and reservoirs throughout the
United States (Schaeffer et al. 2018).

The integration of crowdsourced data with satellite imagery has the potential to extend FHAB
monitoring capacity across the globe. However, spatial resolution limitations in satellite sensors
have restricted applications to large lakes and reservoirs (> 2 km2) (S. Mishra, Stumpf, and
Meredith 2019). For example, previous studies that focus on cyanobacteria detection in large
lakes and reservoirs have used imagery from missions such as the Medium Resolution Imaging
Spectrometer (MERIS) (Kutser et al. 2006; Mark W. Matthews, Bernard, and Winter 2010) and
Sentinel-3 (Coffer et al. 2021; Clark et al. 2017). These satellites have sensors that leverage the
reflectance peak near 700 nm or the absorption trough around 620 nm of phycocyanin, a pigment
of cyanobacteria (Kutser 2009; Ogashawara 2019) (Figure 1). These wavelengths greatly
improve the ability to determine if an algal bloom is composed of cyanobacteria, which can
produce toxic blooms. However, the coarse resolution (>= 300 m/pixel) limits the spatial scope
of analysis.

In California, there is an increasing availability of both in situ and satellite-based FHAB bloom
datasets that are collected by the California Cyanobacteria and HAB (CCHAB) Network, a
workgroup of the California Water Quality Monitoring Council. The Network manages and
compiles crowdsourced incident reports (“FHAB Incident Reports”)
(https://mywaterquality.ca.gov/habs/where/freshwater_events.html), in which water body
managers and users can report a bloom online or via phone
(https://mywaterquality.ca.gov/habs/do/bloomreport.html) with an associated advisory level that
is determined by visual observation, laboratory analysis, or both. These advisory levels in
California include Caution (0.8 μg/l microcystins or observational greenness), Warning (6 μg/l
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microcystins), and Danger (20 μg/l or more microcystins), and were originally established by the
U.S. Environmental Protection Agency as health guidelines for swimming and recreational
activities (United States Environmental Protection Agency 2019). These FHAB incident reports
are then displayed in an online interactive map that is updated weekly, enabling recreational
water users and water quality managers to view which bodies of water are currently at risk of
potentially toxic algal blooms in California. The Network also hosts a HAB Data Viewer
(“FHAB Data Viewer”) (https://mywaterquality.ca.gov/habs/data_viewer/), which uses
Sentinel-3 Ocean and Land Colour Instrument (300 m/pixel) imagery to monitor cyanobacteria
blooms in approximately 255 large lakes and reservoirs throughout California
(https://fhab.sfei.org/). With increased spatial resolution, the FHAB Data Viewer can improve its
ability to resolve all sizes of lakes and reservoirs throughout the state. It should be noted that
both of these FHAB monitoring systems use provisional data that are neither validated nor
intended for use in analytical or research settings. However, they serve a vital purpose in alerting
water users, dog owners, and environmental managers of the immediate dangers of potentially
toxic blooms in California. Despite their importance and utility, little attention has been given to
comparing these two statewide programs.

Higher-resolution imagery from Sentinel-2 offers the capability to detect FHABs at smaller
spatial scales. Sentinel-2 captures imagery at 10, 20, and 60 m/pixel, depending on the band
(Rodríguez-Benito, Navarro, and Caballero 2020). However, Sentinel-2 cannot specifically
identify phycocyanin due to limited spectral resolution (Sòria-Perpinyà et al. 2021). Instead,
bands 2 (blue), 3 (green), 4 (red), 5 (red edge), and 8 (near-infrared; NIR) from this satellite
(Figure 1) are commonly used to detect chlorophyll-a (chl-a), a measure of greenness in
photosynthesizing organisms, as a proxy for FHAB biomass (Bramich, Bolch, and Fischer 2021;
Ansper and Alikas 2018; Alawadi 2010; Beck et al. 2016; Pirasteh et al. 2020; Cillero Castro et
al. 2020). Previous studies have leveraged spectral indices applied to Sentinel-2 imagery to
expand their understanding of the location, frequency, and duration of FHABs (Cao et al. 2021;
Viso-Vázquez et al. 2021). Furthermore, studies have linked chl-a measurements with
microcystin measurements and have found predictive relationships (Hollister and Kreakie 2016;
Qian et al. 2021), demonstrating that Sentinel-2 can be used as a tool to monitor cyanobacteria
blooms. However, additional validation from in situ field measurements is needed to determine
the contexts in which data from Sentinel-2 can reliably be used to infer the presence of
microcystin associated with FHABs.
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Figure 1. An example spectral reflectance curve of cyanobacteria (shown as the green line) in a
freshwater lake, modified from Stumpf et al. 2016. Gray lines denote the central wavelengths of
the Sentinel-2 bands used in this study (blue, green, red, red-edge, near-infrared), and the yellow
line denotes the absorption trough at 620 nm that indicates phycocyanin, a key pigment of
cyanobacteria.

To understand the extent to which remotely-sensed imagery can reliably predict the presence of
FHABs at relatively small spatial scales, we compared three spectral indices applied to
Sentinel-2 imagery with FHAB incident report microcystin data from 68 lakes and reservoirs
across California, USA. This analysis was conducted both within a 200 meter buffer around each
sample and at the lake or reservoir scale to understand how we can use remotely-sensed imagery
to capture both local water quality characteristics around in situ sampling locations and
broad-scale dynamics across the entire water body. We also compared the Modified
Cyanobacteria Index applied to Sentinel-3 data with FHAB reported microcystin data from 5
lakes and reservoirs of various sizes (e.g., from ~0.5 - 264 km2) across the state to understand the
difference in scale of existing FHAB monitoring practices. The specific objectives for this study
were to: (1) determine which Sentinel-2 spectral index is most effective in identifying potentially
toxin-producing blooms in California from 2019 to 2021; (2) assess the relationship between
current Sentinel-3 satellite imagery and FHAB-reported microcystin data; and (3) identify the
spatial scale at which toxic blooms can be most reliably detected with satellite data. Our study
attempts to integrate two distinct statewide datasets through the incorporation of a higher spatial
resolution dataset to improve toxic algal bloom monitoring in near-real time within California.

2. Methods & Materials

2.1. FHAB Incident Report Data

To evaluate the relationships between satellite indices and FHAB reported data, we first gathered
the reported data. FHAB incident reports from 2016 to present (2022) were obtained through the
California Open Data Portal
(https://data.ca.gov/dataset/surface-water-freshwater-harmful-algal-blooms). These data are
voluntarily submitted to the California State Water Resources Control Board (Water Boards)
using the Freshwater Incident Form on the California Harmful Algal Blooms Portal, operated by
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the CCHAB Network. Reports within this dataset include different types of water bodies,
advisory levels, methods of analysis, and information about each bloom event. From 2016 to
January 26, 2022, there were 1,350 reports in this database. To focus on algal blooms in lakes
and reservoirs throughout California from 2019 through 2021, we first refined this raw dataset in
Excel by selecting blooms from January 1, 2019 to December 31, 2021 (to align with Sentinel-2
surface reflectance data availability) and then by eliminating any entries that did not include a
latitude and longitude (Figure 2).

Figure 2. Conceptual graphic showing the steps involved in data cleaning, processing, and
analysis phases of the study. The number of incident reports is listed for each step. Note: S2 =
Sentinel-2 satellite imagery and S3 = Sentinel-3 satellite imagery. For Sentinel-2, spectral index
values acquired at both the 200 m buffer and lake or reservoir scale were compared to
microcystin values, while Sentinel-3 spectral index values were only compared to microcystin
values at the lake or reservoir scale. The reduction in the number of comparisons between
microcystin values and spectral index values for Sentinel-2 and Sentinel-3 is based on satellite
imagery availability for each bloom event and pixel size limitations.

We further organized and prepared the FHAB incident reports prior to comparing these data to
satellite-derived spectral indices. We discarded any FHAB report entries that did not pertain to
lakes and reservoirs (i.e., we removed all rivers, creeks, ponds, gulches, irrigation ditches, and
canals, and eliminated any bays, lagoons, marinas, deltas, sloughs, and ports that were not
located within a lake or reservoir). We also removed any bloom that had an advisory level (using
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the field “TypeofSign” in the database) of None or NA. This left us with 265 FHAB reports. We
then read through each report description (“IncidentInformation” in the database) and identified a
date and bloom advisory level for each event (Figure 2). In some cases, reports included multiple
dates and events, so we selected those that contained microcystin toxin level information. We
created a separate column in this refined dataset for microcystin toxin values that were included
in the report descriptions, when available (n = 45). These toxins were measured through
quantitative real-time polymerase chain reaction (qPCR) and enzyme-linked immunosorbent
assays (ELISA) methods. For report descriptions that indicated that further analysis was
warranted or that observations were likely but unsure, we designated the advisory level as
“Precaution” to distinguish these reports from others with higher certainty. We cleaned and
consolidated several data categories including analysis type (“BloomDeterminedBy” in the
database), date, and advisory level, to properly reflect the bloom description information. Finally,
we summarized the FHAB incident reports by bloom advisory level, bloom analysis type, bloom
reports per year, and bloom reports per month.

Next, in ArcGIS Pro 2.9.1 (ESRI 2022), we continued to refine the FHAB incident reports in
preparation for satellite imagery comparison. We used the latitude and longitude information
from the FHAB incident reports to plot the location of each in situ measurement and we then
removed any duplicates. Next, we buffered each FHAB report in situ measurement location by
200 m using the Buffer tool. This 200 m buffer width has been used in previous studies to extract
inland water quality parameters from remotely-sensed imagery (Ross et al. 2019; Yu et al. 2016).
We then intersected and clipped the buffered incident reports to the California Lakes shapefile
from the California Department of Fish and Wildlife
(https://gis.data.ca.gov/datasets/CDFW::california-lakes/about) to constrain buffered incident
reports to lake and reservoir boundaries. We selected a date for “non-blooms” after reviewing
incident report descriptions and finding a day that was at least two weeks after and at least two
weeks before any reported FHAB incidents (February 19, 2020). This non-bloom date was
selected to evaluate statistical significance between bloom and background spectral index values.
We added this non-bloom date as a column in the buffered incident reports shapefile. To assess
each body of water at the lake or reservoir scale, we created a separate shapefile by spatially
joining the buffered incident reports to the California Lakes shapefile. Finally, for both of these
new shapefiles, we converted the dates of each bloom or non-bloom event to “yyyy-mm-dd”
format (as a string, with dashes) using the Convert Time Field tool in ArcGIS Pro to align with
Google Earth Engine’s date format requirements. After this, we exported the two shapefiles (one
at the buffer scale with blooms and non-blooms columns and one at the lake or reservoir scale
with blooms columns) for further analysis in Google Earth Engine (Gorelick et al. 2017).

2.2. Satellite Data Processing

We used Google Earth Engine to determine which spectral index applied to Sentinel-2 satellite
data is most effective in identifying reported FHAB blooms. Here, we paired Sentinel-2 satellite
data with FHAB incident report dates to extract spectral index values per event at various scales.
We used the Sentinel-2 MultiSpectral Instrument Level-2A surface reflectance image collection
in Google Earth Engine (Asset ID: COPERNICUS/S2_SR) to understand reported algal blooms
in California with high resolution satellite imagery from 2019 to 2021 (Figure 2). We first
implemented a cloud mask on this collection by using the QA60 band to remove dense and cirrus
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clouds from the imagery, and then applied spectral indices to each image in the collection. These
indices include the Normalized Difference Vegetation Index (NDVI) [(NIR - Red) / (NIR +
Red)], which uses the near-infrared and red wavelengths to assess greenness in terrestrial
vegetation and aquatic algae (Oyama, Matsushita, and Fukushima 2015), the Normalized
Difference Chlorophyll Index (NDCI) [(Red Edge - Red) / (Red Edge + Red)], which uses the
red edge and red wavelengths to identify algal blooms in turbid environments (S. Mishra and
Mishra 2012), and Band 3 Band 2 (B3B2) [(Green - Blue) / (Green + Blue)], which uses the
green and blue wavelengths to assess chl-a in freshwater ecosystems (Cillero Castro et al. 2020).
We then applied the European Commission’s Joint Research Centre’s Global Surface Water
Mapping Layers water mask (Asset ID: JRC/GSW1_0/GlobalSurfaceWater) with a 70% water
occurrence threshold to the image collection. This water mask was originally created using 30 m
Landsat pixels and is used to distinguish land and shoreline from areas inundated with water
(Pekel et al. 2016). We used this surface water mask in Google Earth Engine to further improve
our ability to exclude neighboring shoreline and land pixels from our analysis.

We then spatially and temporally aligned reported FHAB incident data with the Sentinel-2
satellite imagery to evaluate the relationship between these two datasets. First, we imported the
ArcGIS Pro shapefiles as assets into our Google Earth Engine project and assigned a variable for
the bloom dates. For each FHAB incident, we filtered the Sentinel-2 imagery to include four
images (two images before and two images on or after) its reported date. Four images were
selected to ensure that crowdsourced bloom reports would be captured by satellite imagery
within a large enough time frame. We then calculated the mean spectral index value within the
200 m buffer area per FHAB event (using the ‘reduceRegion’ and ‘Reducer.mean' functions in
Google Earth Engine), as well as the number of cloud free pixels within each buffer and the
number of day(s) between the FHAB incident and each of the four associated satellite image
capture dates. We repeated this process for “non-bloom” events. We excluded imagery in which a
large percentage of pixels were composed of non-water items when the 30 m water mask was
unable to detect these objects. We also calculated the 90th percentile of spectral index values
within the lake or reservoir boundary per FHAB event (using the ‘reduceRegion’ and
‘Reducer.percentile([90])’ tools in Google Earth Engine) to understand the highest values per
spectral index at the lake or reservoir scale and to better compare them with the CCHAB
Sentinel-3 methodology. Pixel counts within each body of water and the number of day(s)
between the FHAB incident and associated satellite image capture date were also calculated.
Data from the buffered values (blooms and non-blooms) and lake or reservoir scale values were
exported as CSV files outside of Google Earth Engine for further analysis using Jupyter
Notebooks (Python 3.0).

We used Jupyter Notebooks for the final stage of data preparation before we evaluated the
relationships between Sentinel-2 spectral indices and FHAB incident reports, as well as the
relationships between Sentinel-2 blooms and non-blooms. In this environment, we imported the
CSV files created in Google Earth Engine containing the spectral index values for each FHAB
event. We computed the average value of Image 2 (the soonest available image before the FHAB
incident) and Image 3 (the soonest available image on or just after the FHAB incident) for every
FHAB incident and for each spectral index. This process was completed for buffered values
(blooms and non-blooms) and lake or reservoir scale blooms. We used this averaged value of
Images 2 and 3 as the primary value of analysis in this study for each spectral index at the 200 m
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buffer scale because it improved data quality by reducing artifacts common to remotely sensed
imagery such as missing cloud-masked pixels due to clouds and erroneous reflectance values
from solar glint and atmospheric properties (Alawadi 2010).

To evaluate how Sentinel-3 Ocean and Land Colour Instrument imagery from the FHAB Data
Viewer can be used in relation to crowdsourced incident reports, we selected FHAB incident
reports that contained microcystin values. We then paired these blooms with data from the FHAB
Data Viewer website (https://fhab.sfei.org/) by searching for the water body, viewing the satellite
data, and evaluating the Sentinel-3 spectral index values. The spectral index used in the FHAB
Data Viewer is the Modified Cyanobacteria Index (MCI), which is an index that was developed
for MERIS imagery to identify the spectral shape at 681 nm; higher curvature indicates higher
cyanobacteria concentrations and there is also a corresponding elevated reflectance at 709 nm for
cyanobacteria species (Timothy T. Wynne et al. 2010). MCI has proven useful in previous algal
bloom detection studies involving species that produce microcystin (Vander Woude et al. 2019;
Timothy T. Wynne and Stumpf 2015; Timothy T. Wynne et al. 2013, 2010; T. T. Wynne et al.
2008). We then downloaded the 90th percentile MCI values for the 10-day interval that
overlapped with each FHAB incident date (n = 16) (Figure 2). The Sentinel-3 imagery used on
this website is not atmospherically corrected because previous studies have shown that these
types of corrections applied over inland waters can produce errors that are worse than
top-of-atmosphere values for algal blooms (Nima Pahlevan et al. 2020). Sentinel-3 values from
the FHAB Data Viewer assess cyanobacteria blooms at the lake or reservoir scale, and we
therefore only compared Sentinel-3 spectral index values to Sentinel-2 values at the same scale
(rather than at the 200 m buffer scale) (n = 14).

2.3. Satellite and In Situ Data Comparison

To determine if non-bloom events and bloom events characterized by Sentinel-2 imagery at the
200 m buffer scale were statistically different, we conducted paired t-tests on the spectral values
from each of the three indices (NDVI, NDCI, B3B2) extracted from 116 reported FHAB events
per group (Kim 2015). We calculated this test to determine if the spectral indices applied to
Sentinel-2 imagery in this study can distinguish blooms from non-blooms. This analysis was
performed using the Python pandas (McKinney and Others 2010) and scipy (Virtanen et al.
2020) packages.

We used linear regression analysis to assess the relationships between the various datasets at
different scales. We wanted to understand how well Sentinel-2 spectral index values and
Sentinel-3 MCI values could predict microcystin values from the FHAB incident reports. To do
this, we used logarithmic regression model coefficient of determination values (R2) for each
comparison: Sentinel-2 index values and microcystin at the 200 m buffer scale, Sentinel-2 index
values and microcystin at the lake or reservoir scale, and Sentinel-3 MCI values at the lake or
reservoir scale. The logarithmic model equation can be described as: y = a + b*ln(x), in which y
is the responses variable, x is the predictor variable, and a and b are the regression coefficients
(Godfrey and Wickens 1981). We selected this equation to describe the relationship between
these predictor and response variables because it linearizes the model, as spectral index values
and the log of microcystin values have a relatively linear relationship (Ostrovsky et al. 2020).
Previous related studies have used logarithmic regressions to evaluate spectral index predictions
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of algal blooms (Van der Merwe and Price 2015; Chang, Shen, and Chen 2004; Ekstrand 1992;
Bakker et al. 2010). We also compared Sentinel-3 MCI values to Sentinel-2 spectral index values
using a standard linear regression equation (y = a + bx) (Krutchkoff 1967).

3. Results

3.1. Descriptive Statistics of FHAB Incidents

Of the 116 FHAB incidents reported in this study (2019 - 2021), the majority were labeled at the
“Caution” bloom advisory level (n = 50), followed by an equal number designated as
“Precaution” (n = 25) and “Danger” (n = 25). The fewest reports (n = 16) had a “Warning”
advisory level (Figure 3). Most reported blooms were analyzed by both visual observation and
water quality sampling analysis (n = 74), followed by those that were only visually observed (n =
23), and others that only had either laboratory or test strip analysis (n = 19). The number of
reported incidents increased in each year of the study, from 2019 (n = 20) to 2020 (n = 46) to
2021 (n = 50). The majority of reports occurred in the summer months with August having the
highest number (n = 36), followed by September (n = 20), and July (n = 16). The fewest reports
occurred in January (n = 1), February (n = 1),  and March (n = 2).

Figure 3. Descriptive statistics for the 116 FHAB incident reports analyzed in this study (2019 -
2021). These are categorized by: a) bloom advisory level, b) reports per year, c) bloom advisory
location, d) bloom analysis type, and e) reports per month.

Lakes and reservoirs with the highest microcystin levels (≥ 100 μg/l) recorded in the FHAB
incident reports for this study included Clear Lake (160,377.5 μg/l, 4940 μg/l, 1449.5 μg/l, 517.2
μg/l, 506.6 μg/l, 135.02 μg/l), Isabella Lake (9,452.8 μg/l, 1,192.5 μg/l, 91 μg/l), Copco
Reservoir (3,600 μg/l), Red Lake (2,389.5 μg/l), Hensley Lake (1,510.1 μg/l), Iron Gate
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Reservoir (220 μg/l), Glen Helen (99 μg/l), and Lake Chabot (50 μg/l) (Figure 4). Each of these
lakes and reservoirs vary by size; Clear Lake is about 264 km2, Isabella Lake is about 48 km2,
Copco Reservoir is about 7 km2, Red Lake is about 0.5 km2, Hensley Lake is about 10 km2, Iron
Gate is about 7 km2, Glen Helen is about 0.06 km2, and Lake Chabot is about 2 km2. Each of
these microcystin values is associated with a Danger bloom advisory level. Of the top 15
microcystin values analyzed in this study, 6 are from Clear Lake and 3 are from Isabella Lake.
Figure 4 displays the four reservoirs with the highest reported microcystin values (Clear Lake,
Isabella Lake, Copco Reservoir, and Red Lake) in this study using Sentinel-2 imagery on the day
of or closest to the reported bloom. All four of these blooms occurred in August or September of
2020 or 2021. One of the largest microcystin levels ever recorded occurred in Clear Lake on
September 7, 2021, and the green cyanobacteria bloom is clearly visible in the Sentinel-2
imagery, particularly in the southeastern portion of the lake (Figure 4).

Figure 4. Sampling locations, bloom advisory levels, and Sentinel-2 imagery of the reservoirs
and lakes with the highest microcystin values during this study: a) Clear Lake: 160,377.5 μg/l
recorded on September 7, 2021; b) Isabella Lake: 9,452.8 μg/l recorded on September 3, 2020; c)
Copco Reservoir: 3,600 μg/l recorded on August 18, 2020; and d) Red Lake: 2389.5 μg/l
recorded on September 25, 2020. The algal bloom sampling maps show where water quality
samples for the crowdsourced reports were collected throughout this study (2019 - 2021), with
associated colors representing the bloom advisory level of each sample. The Sentinel-2 RGB
(red-green-blue) imagery displays what the naked eye can see, and the Sentinel-2 NDVI imagery
has the Normalized Difference Vegetation Index applied to the RGB imagery to depict spectral
index values from the best of the three indices tested in this study. All satellite images were
captured within 3 days of each bloom event (either on or after the event was recorded).
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3.2. Sentinel-2 Satellite Comparison to FHAB Microcystin and Non-Bloom Values

The FHAB incident reports included microcystin values from 45 total bloom events in 19
different lakes and reservoirs across California. Sentinel-2 imagery aligned with 39 of these
bloom events at the 200 m buffer scale and 28 of these events at the lake or reservoir scale
(Figure 2). NDVI applied to Sentinel-2 imagery had the strongest relationship to reported FHAB
microcystin levels of the three spectral indices tested in this study, although this relationship was
moderate to low at the 200 m buffer scale (R2 = 0.34) and lake or reservoir scale (R2 = 0.22)
(Figure 5). All other index values had low or negligible relationships (NDCI: R2 = 0.17 at the
buffer scale, R2 = 0.24 at the lake or reservoir scale; B3B2: R2 = 0 at the buffer scale, R2 = 0.11 at
the lake or reservoir scale). NDVI detected microcystins between about 100 and 1,000 μg/l at the
200 m buffer scale, and over 10 μg/l at the lake or reservoir scale, while NDCI was best at
microcystin levels between 10 and 100 μg/l at the buffer scale and under 10 μg/l at the lake or
reservoir scale. B3B2 did not perform particularly well in any microcystin level category.

Figure 5. Sentinel-2 spectral index comparisons to FHAB incident report microcystin data using
logarithmic regressions for: a) NDVI at the 200 m buffer scale [y = -0.328 + 0.0594 ln x], b)
NDCI at the 200 m buffer scale [y = 0.121 + 0.0263 ln x], c) B3B2 at the 200 m buffer scale [y =
0.273 + -1.64E-05 ln x], d) NDVI at the lake or reservoir scale [y = 0.0111 + 0.0384 ln x], e)
NDCI at the lake or reservoir scale [y = 0.25 + 0.0285 ln x], and f) B3B2 at the lake or reservoir
scale [y = 0.29 + 0.0144 ln x]. Buffer values were calculated by averaging the values of Image 2
and 3 per bloom, while lake or reservoir values were calculated using the 90th percentile values
per bloom. The x-axis is shown using a logarithmic scale.

Results comparing paired population means between blooms and non-blooms indicated that
NDVI and NDCI can distinguish between the two categories and B3B2 cannot. The paired t-test
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result for NDVI returns a statistic of -3.86 and a p-value of 0.0001. The NDVI algal bloom mean
is -0.16 while the non-bloom mean is -0.30 (Figure 6). For NDCI, the statistic is -5.86 with a
p-value of 3.67e-08. The NDCI algal bloom mean is 0.13 while the non-bloom mean is 0.01. The
p-values of both of these spectral indices indicate statistical significance and signify that the
mean bloom values are significantly higher than the non-bloom values. For B3B2, the difference
between the means of algal blooms versus non-blooms is not significant (p-value > 0.1), and the
algal bloom mean is 0.23 while the non-bloom mean is 0.27.

Figure 6. Population distribution comparisons for bloom events and non-bloom events with
Sentinel-2 spectral index values for: a) NDVI, b) NDCI, and c) B3B2. Bloom events correspond
to the average values of Images 2 and 3 and non-bloom events correspond to index values
captured on February 19, 2020.

3.3. Sentinel-3 Satellite Comparison to FHAB Microcystin and Sentinel-2 Values

Sentinel-3 MCI values at the lake or reservoir scale aligned with 16 of the reported bloom events
that had associated microcystin data from 5 different lakes and reservoirs across California
(Clear Lake, Copco Reservoir, Hensley Lake, Iron Gate Reservoir, and Isabella Lake). Several
lakes and reservoirs that had associated microcystin data were not available on the FHAB Data
Viewer (Ewing Reservoir, Glen Helen Lake, Laguna Lake, Lake Chabot, Lake Merced, Pelican
Lake, Red Lake, Stafford Lake, and Whelan Lake) because they are too small to be captured by
the Sentinel-3 satellite imagery. Sentinel-3 mean and 90th percentile MCI values had moderately
strong relationships to FHAB incident report microcystin values (R2 = 0.51 and R2 = 0.52,
respectively) (Figure 7). The mean values appeared to detect microcystin best below 10 μg/l
while the 90th percentile MCI values detected microcystin at higher values, between 100 and
1,000 μg/l. NDCI had the strongest relationship with Sentinel-3 MCI values of the three
Sentinel-2 spectral indices tested in this study, although this was a weak correlation (R2 = 0.18
for mean MCI values and R2 = 0.14 for 90th percentile values) (Figure 8). The highest agreement
between Sentinel-3 MCI and Sentinel-2 NDCI values exist in low (near 0) and midrange
(300-400 MCI values and 0.2-0.4 NDCI values) for the 90th percentile comparison.
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Figure 7. Sentinel-3 comparisons with FHAB incident report microcystin values using
logarithmic regressions for: a) mean MCI values [y = -19.4 + 22.8 ln x], and b) 90th percentile
MCI values at the lake or reservoir scale [y = 48 + 42.2 ln x]. The x-axis is shown using a
logarithmic scale.

Figure 8. Sentinel-3 comparisons to 90th percentile NDCI Sentinel-2 values using linear
regressions for: a) mean MCI values [y = 9.68E-04*x + 0.235], and b) 90th percentile MCI
values at the lake or reservoir scale [y = 4.72E-04*x + 0.196].

4. Discussion

4.1. Sentinel-2 Satellite’s Ability to Assess FHAB Incident Reports

The best fit between the Sentinel-2 spectral indices tested in this study and the FHAB blooms
from the FHAB Incident Reports database was NDVI (R2 = 0.34) at the buffer (200m) scale.
This index leverages the near-infrared and red wavelengths, which have been used in line height
algorithm estimates of chlorophyll-a in turbid waters (Zeng and Binding 2019), but have also
been used to assess microcystin-producing algal species (Ma et al. 2021; Teta et al. 2016, 2021;
Douglas Greene, LeFevre, and Markfort 2021). Although NDVI is not sensitive to phycocyanin
as MCI is, this index was relatively successful in identifying FHABs with microcystin levels
between 100 and 1,000 μg/l at the 200 m buffer scale in this study. NDVI did not accurately
predict lower microcystin values because this index tends to overestimate low chl-a values due to
a saturation phenomenon (S. Huang et al. 2021; Viso-Vázquez et al. 2021). NDVI performed
best with “warning” and “danger” advisory levels, as these reports tend to correspond to high
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(median: 64 μg/l) microcystin values. Specifically, this index was best able to predict microcystin
levels in several sampling locations of Glen Helen, Clear Lake, and Iron Gate Reservoir because
images associated with these blooms had little atmospheric effect, meaning Rayleigh scattering
and noise in the red band were reduced (S. Huang et al. 2021), and because of the high
microcystin values (99 μg/l, 135 μg/l, and 220 μg/l, respectively) of these events. Also, the
statistical significance between this index and non-bloom events demonstrates that it can
distinguish algal blooms from background reflectance values.

However, it was surprising that NDVI outperformed NDCI, as the latter index has been largely
successful in other related studies (Page, Kumar, and Mishra 2018; Beck et al. 2016;
Rodríguez-Benito, Navarro, and Caballero 2020; S. J. Weber et al. 2020). The reasons for this
may involve the clarity of the lakes and reservoirs, as NDCI was developed for more turbid
waters (S. Mishra and Mishra 2012), and the concentrations of microcystins evaluated in this
study, as NDCI was not as successful at predicting many blooms over 10 μg/l. Despite the
diminished performance of NDCI in predicting microcystin levels in this analysis, we
recommend future researchers consider this spectral index in their algal bloom monitoring
assessments, especially in studies that involve chl-a measurements and low to moderate
microcystin concentrations. Furthermore, R2 values observed in this study may improve by
leveraging a more automated model selection and ranking approach to arrive at a best-fit
parsimonious multivariate model in which all predictors are significant (Marques Ramos et al.
2020; C. Yang et al. 2019; Calcagno and de Mazancourt 2010). This could entail using a
stepwise multiple regression that involves a combination of forward selection and backward
elimination to identify significant variables (Olusegun, Dikko, and Gulumbe 2015; Ghani and
Ahmad 2010; Zhang 2016). Resulting model performance could be evaluated using the Bayesian
information criterion (BIC) and Akaike’s information criterion (AIC) (Kuha 2004) to improve
the goodness of fit in this study. Results from this research would also likely improve if the
FHAB incident reports included chl-a measurements, or if chl-a measurements from other
sources such as the National Water Quality Monitoring Council’s Water Quality Portal were
available for our study period in California (Papenfus et al. 2020), as the Sentinel-2 indices we
tested are used to evaluate chl-a and general greenness rather than microcystin.

Overall, Sentinel-2 indices performed fairly well at the lake or reservoir scale across the three
indices. We evaluated lakes and reservoirs at the 90th percentile index value, while buffers were
evaluated by computing the mean index value of Images 2 and 3 per bloom. The 90th percentile
index value may be a better measure of potentially toxic blooms because it identifies the highest
pixel values which likely reflect localized regions of high microcystin concentrations, while the
average may dilute these values. The B3B2 index did not perform well in this study because the
green and blue wavelengths could not distinguish between blooms and non-blooms (Figure 6).
Finally, although relationships between microcystin values and spectral index values were
stronger at the lake or reservoir scale, the 200 m buffer scale allowed for a greater number of
comparisons (n = 39 compared to n = 28) using Sentinel-2 imagery (Figure 2). This increase in
comparisons is because the buffered areas were less frequently impacted by cloud interference
and we could therefore derive spectral index values from these satellite images. The buffered
areas allowed us to expand our monitoring capacity by nearly 40%, which is helpful particularly
during cloudy periods of the year.
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4.2. Sentinel-3 Satellite’s Ability to Assess FHAB Incident Reports

The Sentinel-3 MCI performed best in Clear Lake and Isabella Lakes when compared to FHAB
incident reports because these are large lakes with microcystin data in their reports. Smaller
bodies of water including Iron Gate and Hensley Lake also had microcystin data and were large
enough to be included in the FHAB Data Viewer, although there were many missing pixels that
led to less accurate 90th percentile MCI values. Sentinel-3’s coarse resolution was unable to
resolve smaller bodies of water (< 2 km2) with high microcystin values that Sentinel-2 was able
to capture, including Red Lake and Lake Chabot. The FHAB Data Viewer Sentinel-3 satellite
imagery analysis is currently available at the lake or reservoir scale, so we therefore did not
evaluate blooms at the 200 m buffer scale using Sentinel-3 data. MCI outperformed all of the
Sentinel-2 indices in comparison to FHAB microcystin data because of its use of the spectral
shape at 681 nm, which can identify chlorophyll-a absorption as a proxy for cyanobacteria
biomass (S. Mishra et al. 2019). Other wavelengths that are useful in cyanobacteria identification
include 620 nm and 665 nm (S. Mishra et al. 2019), and the Sentinel-2 spectral indices tested in
this study do not center on either of these wavelengths. Previous studies have successfully used
the Cyanobacteria Index applied to Sentinel-3 Ocean and Land Colour Instrument data to
estimate cyanobacteria distributions (Vander Woude et al. 2019; Sharp et al. 2021; Timothy T.
Wynne and Stumpf 2015; T. T. Wynne et al. 2008). Finally, in comparison to Sentinel-2 imagery,
NDCI had the strongest relationship to microcystin values (R2 = 0.18), although this is relatively
low because of the differences in wavelengths used in both indices. Therefore, Sentinel-3 data
from the FHAB Viewer can be used with moderate confidence to examine microcystin levels in
larger lakes such as Clear Lake and Lake Isabella.

4.3. Implications for Cyanobacteria Monitoring with Satellite Imagery

This study provides the first attempt to integrate two statewide HAB monitoring efforts: the
FHAB incident reports and the FHAB Data Viewer. The methods suggested in this study can
allow water quality managers to assess potentially toxic blooms at higher spatial scales than
currently available. The use of Google Earth Engine provides a rapid assessment of both current
and historical blooms across a large study area such as the state of California, and additional time
series analyses such as monthly, seasonal, and interannual assessments can be made to further
understand particular bloom dynamics. Furthermore, the downscaling of cyanobacteria bloom
detection enables water quality managers to locate specific regions within a lake or reservoir to
focus sampling efforts and alert recreational users to avoid hazardous areas. The integration of
Sentinel-2 imagery into the existing FHAB Data Viewer would expand analysis from 255 to over
14,000 lakes and reservoirs, which would greatly improve our understanding of algal blooms in
California.

As other spectral indices and machine-learning algorithms continue to be evaluated for their use
in FHAB detection, the potential for high resolution imagery from Sentinel-2 or PlanetScope’s
8-band mission to integrate into the existing FHAB Data Viewer will become a closer reality.
PlanetScope’s 8-band imagery at 3 m spatial resolution includes a new coastal blue, green,
yellow, and red-edge band (in addition to pre-existing PlanetScope bands) that could be
applicable to algal bloom monitoring, and this mission includes near-daily global coverage since
August 2021. Spectral indices such as the Floating Algal Index (Hu 2009; Cao et al. 2021),
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Surface Algal Bloom Index (Alawadi 2010), Fluorescence Line Height (Beck et al. 2016), and
the Maximum Chlorophyll Index (Pirasteh et al. 2020) can also be explored further and applied
to high spatial resolution data like the PlanetScope 8-band imagery. Harmonizing products from
PlanetScope, Sentinel-2, and Landsat can result in high spatial (3 m), spectral (including red
edge, near-infrared, and shortwave infrared bands), and temporal (daily) (Johansen et al. 2022)
imagery for algal bloom monitoring. Incorporating higher-resolution satellite imagery into algal
bloom monitoring apps will enable greater pairing with crowdsourced and participatory
observations, thereby expanding the number of lakes and reservoirs that are monitored not only
within the FHAB Data Viewer but also on other platforms such as CyAN.

Future satellite missions such as Landsat 10, which is proposed to include an orange
phycocyanin band, will revolutionize this field by providing greater spatial and spectral
resolution to enable cyanobacteria detection in concert with in situ analysis. However, while
phycocyanin identification through Sentinel-3 and the proposed Landsat 10 sensors can detect
cyanobacteria, this type of data cannot determine whether the identified cyanobacteria will create
microcystins or other cyanotoxins. Therefore, hyperspectral imagery at high spatial resolutions,
such as an upgraded version of the International Space Station’s Hyperspectral Imager for the
Coastal Ocean, will allow detection to the level of cyanobacteria genera that will enable a better
understanding of the potential toxins produced (Dierssen et al. 2020; Wolny et al. 2020).
Integration of these higher spatial and spectral resolution missions into the existing FHAB Data
Viewer will allow for greater mitigation of toxic bloom events in a variety of lakes and reservoirs
throughout California, thereby reducing the risk of illness and mortality for humans and animals
such as dogs and cattle that reside and recreate around these waters.

5. Conclusions

This study demonstrates how high resolution satellite imagery can be used to fill in the gaps of
two very useful and different FHAB datasets within the state of California. Improving the spatial
capabilities of algal bloom detection in conjunction with on-the-ground bloom reporting will
expand the ability to rapidly monitor and manage potentially dangerous public health events.
Although there remains a spectral mismatch between incident reports of smaller lakes and
reservoirs and high resolution satellite imagery bloom detection, we can use indices such as
NDVI to monitor a majority of blooms with high levels of microcystin (> 100 μg/l)  at the 200 m
buffer scale. Furthermore, the use of Google Earth Engine in this study provides an efficient,
cost-effective, and widespread methodology for assessing algal blooms across California,
promoting the ultimate goal of creating accurate, near-real time alerts of algal blooms within the
state. The current FHAB data resources in California are incredibly helpful in reducing the
exposure of humans and animals to toxic algal blooms using crowdsourced and participatory
data. High spatial resolution imagery will broaden satellite detection capacity of lakes and
reservoirs by nearly 55 times within the state of California, and methods from this study can be
adapted to help water quality managers, dog owners, and swimmers stay safe from potentially
toxic blooms in water bodies throughout the world.
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Chapter 5: Lessons Learned and Future Directions of High-Resolution
Remote Sensing of Algal Blooms

Freshwater algal blooms, both harmful and non-harmful, are important topics of study
within the remote sensing community. Whether it is to evaluate the spatial distribution of
filamentous algae in riverine ecosystems or the potentially toxic algae in reservoirs and lakes, it
is vital to be able to map the spatial and temporal characteristics of such blooms. Rivers are the
main arteries in freshwater ecosystems, transporting nutrients, gasses, water, and aquatic life to
the ocean (Meybeck 2003), and lakes and reservoirs are vital because they store most of Earth’s
liquid surface freshwater (Gao 2015). We want to preserve and manage these environments not
only for their ecological value but also for their ecosystem services such as transport of goods,
irrigation supply, and recreational opportunities (Daily 2012). Remotely sensed methods to
monitor freshwater harmful algal blooms in rivers, lakes, and reservoirs have involved
red-green-blue (RGB), multispectral, and hyperspectral sensors on UAVs, airplanes, and
satellites over the past several decades. This dissertation examined algae and aquatic plants in a
non-wadeable river using a drone (Chapter 2: Application of UAV Imagery to Detect and
Quantify Submerged Filamentous Algae and Rooted Macrophytes in a Non-Wadeable River),
algal bloom dynamics in two reservoirs using Sentinel-2 satellite imagery (Chapter 3: Mapping
Algal Bloom Dynamics in Small Reservoirs using Sentinel-2 Imagery in Google Earth Engine),
and compared two statewide datasets of freshwater harmful algal blooms in California using
Sentinel-2 data (Chapter 4: Integrating Crowdsourced Incident Reports with Satellite Imagery to
Understand Algal Blooms in California Lakes and Reservoirs). This work investigated both
“good” and “bad” algae in various freshwater environments of California using high-resolution
imagery to understand how algal dynamics differ across landscapes, bodies of water, seasons,
and years. Here I discuss the primary results, lessons learned, challenges, and future areas of
research for improved management of algal bloom remote sensing.

There are many lessons learned throughout this dissertation. Chapter 2 taught me that
there is a greater distribution of aquatic plants than filamentous algae just below the most
downstream dam of the Klamath River, Iron Gate, and there is a greater distribution of
filamentous algae than aquatic plants closer to the Pacific Ocean within this body of water. I
learned lessons about collecting quality UAV data. For example, flying a drone in the morning
(between about 10 and 11:30 am during the summer months in mid-latitude regions) helped
reduce solar glare and made it possible to capture the best images over water. I was able to detect
algae down to nearly 2 m under the surface of the water in a clear portion of the Klamath River,
which provides promising evidence for benthic algal surveys in deep rivers. In terms of algal
bloom classification, I found that pixel-based supervised classification worked better than
object-based image analysis and unsupervised classification when using drone imagery. Chapter
3 demonstrated that the highest concentration of chl-a and microcystin toxins detected in Copco
and Iron Gate Reservoirs from 2015 to 2020 occurred during wet years, particularly in August
2019, likely due to nutrient influx from runoff during these wet years. The Normalized
Difference Vegetation Index (NDVI) and the Normalized Difference Chlorophyll Index (NDCI)
were the best spectral indices applied to Sentinel-2 imagery for surface bloom detection in this
study. Chapter 4 demonstrated that crowdsourced reports of freshwater blooms in lakes and
reservoirs have been increasing throughout California since 2019, with the majority of blooms
occurring in August and September. About 30% of these reported blooms contain microcystin
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toxins at the Warning (6 μg/l microcystins) and Danger (20 μg/l microcystins) bloom advisory
levels and Sentinel-3 imagery is moderately successful at capturing these toxic blooms in larger
(> 2 km2) lakes and reservoirs. ArcGIS Pro, R, and Python in a Jupyter Notebook were efficient
tools to process drone and satellite imagery in each of these studies, and Google Earth Engine
was the favored tool among all projects because it enabled rapid time series analyses for multiple
years of satellite imagery, eliminated the time needed to back up data, and did not require the
storage of hundreds of gigabytes of satellite data on a harddrive. Scale was a prominent theme
throughout this dissertation. UAV imagery was able to resolve features within centimeters, while
Sentinel-2 and 3 imagery was limited to between 10 and 300 m per pixel. I recommend using
drone imagery for studies that require the democratization of data (choosing when to fly and how
close to fly to the target, thereby selecting the spatial resolution), with the caveat that drone
image processing can be more cumbersome and storage-heavy than the cloud computing of
satellite imagery collections available on Google Earth Engine (such as Landsat, Sentinel-2, and
Sentinel-3). I recommend processing satellite imagery in Google Earth Engine when more than
10 images are involved, otherwise ArcGIS Pro (and the Planet ArcGIS Pro Add-In v2.2) are
great for this endeavor.

The biggest challenges observed throughout this dissertation involved solar glint, clouds,
and resolution limitations. In Chapter 2, it proved difficult to stitch images over homogeneous
scenes of water, so I chose to capture individual images with the drone and process them
separately instead of building mosaicked images. I also found it more difficult to obtain clear
imagery over a fast-moving river than over lakes and reservoirs because of the ripples, currents,
and impacts of wind on the water’s surface. The biggest limitations in Chapter 3 involved the
temporal mismatch between in situ water quality observations, which were monthly, and
cloud-free Sentinel-2 images within five days of the sample. Although the five-day time
difference did not negatively impact results as I had anticipated, I recommend finding imagery
that coincides with as close to the sampling date as possible. In Chapters 3 and 4, I discussed
how Sentinel-2 imagery, and even Sentinel-3 imagery, cannot identify algal species and therefore
cannot determine the toxicity of a bloom. These are limitations inherent to the sensors
themselves, and improvements in the spectral properties of future sensors can help resolve this
issue.

A final limitation concerns the likelihood of inaccurate landscape representations and
spectral noise in the satellite imagery. Pixels located on the edges of an image or land cover
category can present reflectance value artifacts which may alter the validity of the
satellite-derived data. Differences in pixel brightness, including within mixed pixels, can create
false positives for algal bloom detection, although they sometimes can be detected and removed
using the NIR and red-edge wavelengths (S. Mishra et al. 2019). Additionally, certain
atmospheric correction algorithms, such as iCOR, can account for adjacency effect issues, or the
influence of neighboring pixels on a given pixel’s spectral value, for Sentinel-2 imagery and
have been proven to succeed in inland aquatic environments (Cillero Castro et al. 2020).
Fortunately, edge effect and land adjacency issues did not pose large concerns in our studies
because satellite data were captured in small regions that did not overlap with pixel values from
adjacent bridges, shorelines, or image edges. Addressing these challenges and considering future
directions of research in this field will enable more precise algal bloom monitoring in rivers,
lakes, and reservoirs, also helping us achieve several of the United Nations’ Sustainable
Development Goals (L. T. Ho and Goethals 2019).
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The first future direction proposed for algal bloom investigations involves improved
spectral resolution to gain greater information on the algal genus and potential toxin production
of each bloom. Hyperspectral imaging offers large advantages to multispectral mapping of algal
blooms because instead of analyzing several broad wavelengths, researchers can derive specific
phytoplankton group information from hundreds of narrow wavelengths. Several hyperspectral
satellite sensors that have been used in this field include Hyperion, the Compact High Resolution
Imaging Spectrometer (CHRIS), and Hyperspectral Imager for the Coastal Ocean (HICO) (Shen,
Xu, and Guo 2012; Kutser 2009), although these missions are not always sensitive to aquatic
environments (Dierssen et al. 2020). The National Aeronautics and Space Administration
(NASA)’s planned launch of the Pre-Aerosol Clouds and Ocean Ecosystem (PACE) sensors will
provide greater spectral resolution, with 90 bands ranging from 350 to 800 nm (Kudela et al.
2015). Other hyperspectral missions that may be useful for algal bloom monitoring include
Sentinel 5’s TROPOspheric Monitoring Instrument (TROPOMI), The University of Tokyo,
Japan’s Picosatellite for Remote-sensing and Innovative Space Missions (PRISMA), the German
Environmental Mapping and Analysis Program (EnMAP), the European Space Agency’s
Copernicus Hyperspectral Imaging Mission for the Environment (CHIME), and NASA’s Surface
Biology and Geology mission (SBG), previously known as HyspIRI (Dierssen et al. 2020).
Dierssen et al. proposes a hyperspectral database to track algal diversity across the world that
includes standardized correction algorithms, in situ data, aerial imagery, algal taxa, water quality
parameters, and metadata information (Dierssen et al. 2020). This type of database, perhaps
similar to the open-sourced OpenAerialMap (https://openaerialmap.org/) database for UAV
imagery, would revolutionize the ability to access high spectral and spatial data for blooms
across the globe.

The second future direction of freshwater algal bloom monitoring involves strengthening
our understanding of the causes of blooms, especially for toxic algae. While we know that most
algae respond positively to increased temperatures and irradiance, water column stratification,
and nitrogen, phosphorus, and silicate availability, we still do not fully understand why toxins are
expressed in certain species and at specific times (D. M. Anderson, Cembella, and Hallegraeff
2012). Furthermore, we do not understand how different stages of toxicity during an algal bloom
affect trophic cascades within aquatic food webs (Berdalet et al. 2014). It is important to grasp
why specific algal bloom groups (i.e. cyanobacteria, diatoms) have variable responses in terms of
nutrient inputs and toxin production in different environments across the world (Elser, Marzolf,
and Goldman 1990). The impacts of grazing and predation on algae also need further
exploration, as these dynamics have been shown to alter relationships between algal
proliferation, depending on the season (X.-L. Wang et al. 2007). Methods that could improve this
inquiry include dynamic factor analysis (Zuur, Tuck, and Bailey 2003) applied to high-resolution
imagery of algal blooms to explore relationships between chl-a or bloom toxin data and factors
such as nutrients, water temperature, and water residence times. Another statistical technique that
has been developed to analyze aquatic time series data is the Multivariate Autoregressive
Space-State (MARSS) model, which has been applied to systems including fisheries (Nally et al.
2010; Hampton et al. 2013), freshwater phytoplankton communities (Scheef et al. 2012), and
turtle migration (Holmes, Ward, and Wills 2012). This technique is helpful in analyzing
ecological time series data to discern species’ interactions and responses to human influences
and environmental drivers (Hampton et al. 2013), and thus it can be used to understand factors
that contribute to freshwater HAB events. With improved covariate and variate data to ascertain
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causes of blooms, freshwater algal bloom research can help water quality managers understand
why proliferations occur to better monitor and predict future events.

My final recommended future direction is the promotion of freshwater algal bloom
forecasting. State-of-the-art modeling of future blooms involves estimating water residence
times, nutrient inputs, chl-a concentrations, currents, and weather patterns (Janssen et al. 2019;
Stauffer et al. 2019). One existing algal bloom forecasting tool is the California-Harmful Algae
RiskMapping program (CHARM), which provides near-real time 3 km forecasts of
Pseudo-nitzschia spp. blooms and potential for a toxin called domoic acid along the California
coast (C. R. Anderson et al. 2016). However, many algal bloom forecasting tools are developed
for marine environments because they can be paired with oceanic models and satellite missions
that are designed for large-scale marine analysis. Future research should involve a greater focus
on freshwater algal bloom alert systems. Also, freshwater data involving nutrient loads, water
temperatures, and residence times are infrequently collected due to financial and time constraints
inherent to in situ data acquisition (Kroeze et al. 2016; Fink et al. 2018). Therefore,
remotely-sensed products that can estimate these parameters at relatively high spatial and
temporal scales would vastly improve the ability to forecast these blooms. Furthermore, tools
that leverage online cloud computing such as Google Earth Engine would enable these
predictions to be near-real time. Machine-learning algorithms used within these environments,
such as support vector machines, random forest, and artificial neural networks, would also
increase the detection capabilities of forecasted models (R. C. Cruz et al. 2021). The ability to
more accurately predict blooms and potentially toxic occurrences will open the door to greater
collaboration with agriculturists who may be adding nutrients into the water system during
critical algal proliferation periods. Improved forecasts will also impact regulatory policies such
as Total Maximum Daily Loads (TMDLs), which are designed to limit the total pollutants that
enter impaired waters as defined by the Clean Water Act (Karr James R. and Yoder Chris O.
2004). Finally, near-real time forecasts will help communicate to the public when water quality
may be dangerous, reducing illnesses and even death by decreasing exposure to toxic blooms.

In conclusion, the remote sensing of algal blooms has drastically improved with the
inclusion of higher spectral, spatial, and temporal sensors on UAVs, airplanes, and satellites. In
particular, hyperspectral sensors allow for more accurate detection to the genus level, which gets
closer to identifying toxin-producing species. Gaining a greater understanding of the factors that
contribute to blooms helps us interpret and predict future blooms for more informed
management. As climate change and industrial farming are projected to contribute to greater
freshwater algal growth with warming waters, lower oxygen levels, and higher terrestrial and
atmospheric nutrient additions (Gobler 2020; Glibert 2020), it is imperative that methods to
monitor these events become more frequent and accurate. Methods tested in this dissertation can
be implemented at local, state, and national levels to integrate into the management of algal
species, fisheries, nutrient inputs, shoreline erosion, and recreational activities (L. T. Ho and
Goethals 2019). Increased resolution in freshwater bloom monitoring has implications in dam
removal restoration efforts, reducing public health risks, and protecting our drinking and
irrigation water from potential poisons in rivers, lakes, and reservoirs across the globe.
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