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Weak hysteresis in a simplified model of the L-H transition

M. A. Malkov and P. H. Diamond
Center for Astrophysics and Space Sciences and Department of Physics, University of California,
San Diego, La Jolla, California 92093-0424, USA

(Received 19 September 2008; accepted 9 December 2008; published online 20 January 2009)

A simple one-field L-H transition model is studied in detail, analytically and numerically. The
dynamical system consists of three equations coupling the drift wave turbulence level, zonal flow
speed, and the pressure gradient. The fourth component, i.e., the mean shear velocity, is slaved to the
pressure gradient. Bursting behavior, characteristic for predator-prey models of the drift wave -
zonal flow interaction, is recovered near the transition to the quiescent H-mode (QH) and occurs as
strongly nonlinear relaxation oscillations. The latter, in turn, arise as a result of Hopf bifurcation
(limit cycle) of an intermediate fixed point (between the L- and H-modes). The system is shown to
remain at the QH-mode fixed point even after the heating rate is decreased below the bifurcation
point (i.e., hysteresis, subcritical bifurcation), but the basin of attraction of the QH-mode shrinks
rapidly with decreasing power. This suggests that the hysteresis in the H-L transition may be less
than that expected from S-curve models. Nevertheless, it is demonstrated that by shaping the heating
rate temporal profile, one can reduce the average power required for the transition to the

QH-mode. © 2009 American Institute of Physics. [DOI: 10.1063/1.3062834]

I. INTRODUCTION

The high confinement regime (H-mode) discovered by
the ASDEX team' a quarter-century ago is widely regarded
as a fundamental breakthrough in magnetic confinement
physics. Yet, the transition mechanism from the low (L) to
high (H) confinement mode is not fully understood.”™® There
are transport models, which are instrumental in furthering
our understanding of the transition. However, because of the
complexity of transition phenomenon, they tend to be in-
creasingly, if not excessively, detailed.” " Therefore, there is
high demand for a simple, illustrative theoretical model with
a minimal number of crifical quantities responsible for the
transition. Such models usually yield or encapsulate basic
insight into complicated phenomena. Some obvious practical
questions are: Does an observed transition occur at the mini-
mum power or it can be reduced by adjusting other param-
eters, or can the power be reduced after the transition to
H-mode? Understanding of the character of bifurcation (e.g.,
sub- versus supercritical, etc.) and hysteresis (if present) is
required for the answer. In the quest of such simple physical
models, there are two avenues to explore.

One avenue is to develop a preferably one-dimensional
(1-D) evolutionary model with a minimal set of variables.
Since such models are often still complicated, one is forced
to turn to steady state solutions. Also, some of the variables
are not described self-consistently or obtained only numeri-
cally. All these shortcomings obscure the essence of L-H
transition phenomenon. Under these circumstances a second,
complementary approach based on zero-dimensional (0-D;
i.e., spatially averaged, Galerkin-type) models becomes use-
ful (see, e.g., Refs. 14 and 15). The 0-D models may be
reduced by a projection technique from the 1-D continuous
media models or from their more general prototypes. The
advantage of 0-D models is that the dynamics of L-H
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transition can be studied using powerful tools of the bifurca-
tion theory of dynamical systems. It is this second approach
that this paper pursues.

The most likely mechanism behind the L-H transition is
an E X B shearing of turbulent eddies (drift wave, DW) that
actually drive the tlransport.lf’"24 The E X B shear flow comes
in two flavors. One flavor is the mean flow in which the
radial electric field E, and thus the plasma poloidal velocity
change smoothly in r and are nearly stationary. The other is
the zonal flow (ZF) with a radially irregular behavior varying
slowly in time. An important difference between the two is
that the mean flow does not need to be sustained by DW
turbulence and thus can shear the DWs to zero, while the
second one (ZF) is fed on the DW turbulence and decays via
collisions if the DWs vanish. This suggests that both the
mean flow and the zonal flow must act in concert with each
other, suppressing the DW turbulence and transport. Clearly,
the primary driver of the DW turbulence, i.e., the pressure or
density gradient, must also be included to close the feedback
loop. Such a line of arguments led the authors of Refs. 25
and 26 to develop a minimalistic 0-D model where the DW
turbulence, both the mean and zonal flows, and the driving
pressure gradient are included. A slowly increasing heat
source powers the pressure gradient to let the system evolve
from the L-mode through a transient oscillatory behavior
into the quiescent H-mode. In the latter regime, neither DW
nor ZF survives and only the mean flow persists, supporting
an enhanced pressure gradient. Thus, an intermediate, oscil-
latory mode has been reproduced and its possible relation to
the dithering observed in many experiments27 prior to the
establishing of H-mode has been discussed. Note that a third-
order model that does not distinguish between the zonal and
the mean flows was suggested earlier in Ref. 28.

The purpose of the present paper is to study all possible

© 2009 American Institute of Physics
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stationary regimes including the intermediate mode, their
stability, and transition dynamics. Specifically, the following
questions will be addressed:

(1) stability of stationary regimes, their classification de-
pending on physical parameters;

(2) classification of transitions (character of bifurcations,
role of initial conditions), critical role of the zonal flow;

(3) power up/down asymmetry, the depth of hysteresis;

(4) structure and dimensionality of the phase space where
an essential dynamics occur (center manifolds);

(5) role and physical cause of nonlinear oscillations preced-
ing the transition (dithering), extent of the dithering
above the transition threshold.

It should be noted that the L-H transition through the
dithering phase is still difficult to describe within the con-
tinuous media type models mentioned above ! Although
those models do reproduce bursting, the pressure gradient
has been included, only not self-consistently (as opposed to
the present 0-D model), in the form of a fixed DW growth
rate. The bursting results from the interplay between the DW
and ZF turbulence (predator-prey type dynamics). The fixed
DW growth rate means that the “prey’s” living resources are
fixed. It is thus logical to start with an extension of a 0-D
model to a higher level by describing the transition phase
with a self-consistent evolution of the mean pressure gradi-
ent and the mean flow.”2°

In the next section, we first demonstrate the necessity of
such an extension by considering limitations of a simplest
two ordinary differential equation (2-ODE) model with a
fixed pressure gradient (DW instability growth rate). We also
develop a more complicated 3-ODE model introduced in
Refs. 25 and 26 by analyzing its fixed points and other in-
variant manifolds. In Sec. IIl we consider the stability of
those invariant manifolds setting a stage for studying various
transition scenarios in Sec. IV. We summarize and discuss
the results in Sec. V.

Il. ZERO-DIMENSIONAL MODELS
FOR LH TRANSITIONS

A. A simple 2-ODE Lotka-Volterra model

There exists an extensive literature on ODE models of
the L-H transition. Most of them are 3-ODE autonomous or
time-dependent systems (typically with a variable heating
rate). One such system will also be the subject of the present
paper. However, to make contact with the fundamental ideas
that are behind the low-dimensional dynamical systems, we
start with a simplest 2-ODE model. One of the first such
models was suggested in Ref. 32 (see also Ref. 33). It de-
scribes the evolution of temperature fluctuations and the
shear flow. It can be transformed into the following dimen-
sionless systems with only one parameter:

dQ
= = T-wh, (1)
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ar =(1-Q)T. (2)

dt
Here the variable () represents a square of properly normal-
ized shearing rate and 7 represents the square of temperature
fluctuation level. The growth rate of the thermal instability is
normalized to unity (as seen from the second equation),
while the viscous damping of the flow is represented by the
only parameter of the system: w. The system of Egs. (1) and
(2) is a familiar Lotka—Volterra system emphasizing ecologi-
cal resemblance of many popular L-H transition models of a
“predator-prey” family. Here the shearing rate () is a preda-
tor with a natural death rate w living on the prey 7 with a
unity reproduction rate. The system can be written in the
form

dQy 1-wT
= ; 3)
dr  1/Q-1
where it shows an obvious first integral
T+ Q —1In(QT*) = const. (4)

This reveals the phase portrait of the system completely.
There is a hyperbolic singular point at Q=7T=0 (L-mode)
with one stable (7=0,1>0) and one unstable ({2=0,
T>0) invariant manifold. The second singular point is a cen-
ter at (=1, T=u (H-mode), so that the rest of the phase
plane (,7>0) is covered by closed orbits around this
point. Obviously, the system by itself does not make any L-H
or H-L transition for that reason. Note that since Eqgs. (1) and
(2) possess the above integral, they can easily be rewritten
in a Hamiltonian form, using the variables &=In{) and
n=In T with the Hamiltonian H=exp(&)+exp(zn)—&é—un.>*
However, we use a different formalism below.

In general, the dynamics of this system is a trivial rota-
tion around the H-mode, which can be most efficiently de-
scribed by transforming Egs. (1) and (2) to the Poincaré nor-
mal form. This can be conveniently done by introducing a
complex variable z instead of ) and 7. The new variable z
characterizes the deviation from the H-mode singular point:

2= N Q- 1) +i(T - p). (5)

For z, we have the following equation that can be derived
from the system (1) and (2):
dz — s o

—=—iVuz-— -7). 6
5= Npe— k(-2 (6)
Here, Z denotes a complex conjugate (c.c.) of z and k=i/4
+1/4\p.. The first step to the Poincaré normal form is to
remove the quadratic terms from Eq. (6) by transforming
=W

] 1
Z=w—l,—£<w2+—wz). (7)
Vu
Using this new variable, Eq. (6) can be rewritten as
J 2 _
—W=—i\$w+${w2<KW+5W)+c.c}. (8)
dt 7 3

Transforming to yet a new variable w~ u, introduced by
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1|« K>
W=u+—<ub_ts+_|u|2b_t—K2 3), ©)
MmN 2 3
we finally obtain the Poincaré normal form
du — 1+ M 2)
_— = l\" ul 1 - u . 10
di H ( 2442 J (10)

Since |u|=const is an integral of motion, the system dynam-
ics is a simple circular motion around the origin =0 with
the following angular frequency:

[ L+pu 2)
= 1— . 11
w w( 24,u2|u| (11)

With increasing amplitude |u|, the frequency decreases to
zero when the trajectory reaches the second fixed point
(L-mode).

As we have already mentioned, this system does not
intrinsically describe any L-H transition, but merely the os-
cillations around the H-mode fixed point, which in the limit
of w—0 become strongly nonlinear reaching the L-mode
fixed point. Of course, since this system is structurally un-
stable, it may be easily modified in such a way that the center
at the H-mode will become a stable or unstable focus and
both fixed points may become connected (or a limit cycle
may be formed). However, the question arises as to whether
the description of the L-H transition phenomenon by modi-
fying a structurally unstable dynamical system is justified
and whether a structurally stable dynamical system with an
intrinsic transition is preferable. We believe that the last
question should be answered in the affirmative. The sponta-
neous character of L-H transitions has been repeatedly ob-
served in experiments.]8

There are a number of models in the literature that ex-
hibit a spontaneous L-H transition when parameters are set
close to their critical values. These models are more compli-
cated than the system considered above, yet they allow a
comprehensive analysis. They have more variables (typically
3-ODE systems and more; see, e.g., Refs. 14, 28, 31, and
35-39) and often a large number of parameters. Clearly, the
model selection criteria, apart from the sound physics behind
them, should be based on their capability to reproduce key
experimental facts such as spontaneous L-H transitions, char-
acteristic intermediate regimes (such as dithering), or hyster-
esis. In the next section we consider one recent model of this
kind.

B. 3-ODE system

The L-H transition model formulated in Refs. 25 and 26
operates on the following four quantities: (i) drift wave tur-
bulence level &, (ii) drift wave driving temperature gradient
N, (iii) zonal flow velocity Vg, and (iv) mean flow shear V.
Note that the latter quantity is slaved to the temperature gra-
dient, V=dN?, where d is a constant, so that the system is
actually of the third order (3-ODE). The dynamical system
was originally introduced in the following form®

d&
Z_:(J\/’—alg—azdzNﬂ—%Vép)g, (12)
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AV b,E )

dr _(1 + byd® N A (13)
AN
— == (c,E+ )N +q(7). (14)
dr

Apart from the driver ¢(7) in Eq. (14) (heat source), which
will play a role of the main control parameter in our studies
of different equilibria of the system, this system has as many
as nine other parameters; e.g., a;, b;, ¢;, and d. These param-
eters and various terms have the following meanings. The
first term on the right hand side (r.h.s.) of Eq. (12) represents
the drift wave instability driven by the pressure gradient. The
instability has a scaled growth rate . The other terms are:
nonlinear saturation with the coefficient a; and suppression
of DW by the mean and zonal flow (coefficients a, and a).
The first term on the r.h.s. of Eq. (13) describes the ZF gen-
eration by the Reynolds stress in the DW turbulence (b,
with the suppression effect from the mean flow b,). The
physical meaning of this suppression effect is the refraction
of the DWs in a sheared mean flow, which is also present in
Eq. (12). The second term on the r.h.s. of Eq. (13) corre-
sponds to the linear (collisional) damping of ZF (b5). Equa-
tion (14) describes the relaxation of the pressure gradient A/
due to the turbulent diffusion (the first term on the r.h.s.,
coefficient ¢;) and the neoclassical transport c;.

A detailed explanation and derivation of various terms in
Egs. (12)—(14) can be found in Ref. 40 (see also Refs. 3, 6,
34, and 38 for more recent and more general discussions).
We merely note here that Bian and Garcia™ associate the
turbulent transport term with the convective transport of the
pressure. Since both interpretations result in the same (qua-
dratic) dependence of the transport term on the fluctuation
amplitude, most probably they are indistinguishable within
0-D models. A related question is that of whether the electric
field shear reduction of particle and heat fluxes can be ad-
equately accounted for within such models. Since the reduc-
tion leads to the formation of transport barriers, it can hardly
be included into these models without re-deriving them from
nonlocal standpoint.

To start, we note that the number of parameters in Egs.
(12)—(14) can be reduced to five by rescaling the variables
and time. First of all, one can set d=1 since d can be ab-
sorbed into a, and b,. After introducing the following res-
caled variables, and time ¢,

173 13 13 12 173
N=a,"N, E=aa,°E, U=a,"a3Vs, t=a,",

along with a new set of parameters

2[91 Cy Cq
9= 273 P="q3 0= 23>
14, a, aa,
(= by ﬂ_lﬁalam
- s - 2 s
a;% by

the system of equations (12)—(14) can be rewritten as

dE
Z:(N—N“—E—U)E, (15)
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0.5 -

QH
0 ! 1 !

0 0.5 1

N

FIG. 1. Singular points of the dynamical system given by Eqs. (15)-(17).
The equilibria are shown as the intersection points of the three curves,
each of which nils one of the three right hand sides of the system in the
U=0 projection. The curve connecting the origin with N=1 is given by
E=N(1-N?%), the rising curve is given by E=7(1+{N*), while the falling
curve is from the heat balance N=q(p+cE)~". The latter also intersects the
E=0 axis at the stable equilibrium point QH (see text). The parameters are
9=19, #=0.12, p=0.55, 0=0.6, {=1.7, and ¢=0.58.

dU E

ol e (1o
dN

Z=q(t)—(p+ dgE)N. (17)

It is worthwhile to summarize here the important features of
this dynamical system. Note that some of them were identi-
fied in Refs. 25 and 26. Depending on the parameters, the
system given by Egs. (15)—(17) has up to the four fixed
points, as illustrated in Fig. 1 using a N—E projection. With
increasing ¢, the system typically (but not for all values of
other parameters and initial conditions) evolves from what
we call an L-mode to a transient (intermediate) oscillatory
T-mode, then to H-mode and finally to a quiescent H-mode
(or QH-mode).

e the L-mode is characterized by
U=0,

(18)
E=E, =N, (1-N})>0,

where N; is the smaller of the two positive roots of the
equation

N*(1 —N3)+£N= (19)

Q=

Here, ¢ is assumed to be constant or slowly varying in
time.

e The transient mode fixed point (T-mode) can be conve-
niently described by the following sequence of relations:

Er=n(1+{Ny), (20)

Ur=N{(1-N;) - Ep, (21)
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__ 4
g p+0oE;

(22)

« The H-mode is given by E;=Ny(1-N;,), where Ny is the
larger root of Eq. (19).

e Quiescent H-mode (QH-mode) establishes when the heat
balance curve [Eq. (22)] intersects the N axis (E=U=0).
Obviously, Noy=q/p at this fixed point [Eqgs. (15) and
(16)].

Note that the L- and H-modes share the property U=0,
but £#0. The T-mode is characterized by both E#0 and
U+#0, while in the QH-mode, U=E=0. For both H- and
QH-modes to exist, it is necessary that Nog=¢/p> 1, which
is also the stability condition for the QH-mode.

Figure 1 shows the arrangement of the fixed points for
one particular set of parameters when all the fixed points of
the system exist. Clearly, some of the fixed points may dis-
appear while parameters change. For example, the H-mode
obviously fails to exist when QH-mode on the N axis goes
below unity. As we noted, for the H-mode to exist, it is
necessary that g/p> 1. Note that if the latter is not the case,
then also the QH mode is unstable, according to Eq. (15). On
the other hand, for H- and L-modes to coexist, the heating
parameter should not exceed a limit g, | <q/p<Gupa/p-
It can be obtained by assuming that the curves given by Egs.
(21) and (22) touch each other and the L- and H-modes
merge into one. The value of pressure gradient at this point is
determined by

N 2( , 15 )
=— +—0og—-p]|.
30 P 4Uq P

The exact analytic expression for ¢, is cumbersome and
we do not reproduce it here. A simple upper bound to g,
which can be obtained from the requirement N<1, is
qg<(4p+30)/5.

As it was already mentioned, we consider ¢ as the main
control parameter and we generally follow the bifurcation
sequence as ¢ increases. Note that Refs. 25 and 26 studied
the bifurcation of the system given by Egs. (12)—(14) by
making ¢(7) slowly growing in time from zero to some final
value sufficient to reach the QH-mode in each run, so that all
the transitions occur consequently on much shorter time
scales. Here we study the reduced system given by Egs.
(15)—(17) using two different approaches. The first approach
is to treat g as a fixed control parameter and look for the
fixed points and limit cycles that may branch off from some
of these fixed points. In particular, we study the Hopf bifur-
cation of the T-mode equilibrium into a limit cycle on a
center manifold of the system. The center manifold here is a
two-dimensional attractor of our three-dimensional system
formed by eigenspace spanned on the two purely imaginary
complex conjugated eigenvalues. The third eigenvalue has
Re A <0, which ensures local attraction to the center mani-
fold. We also consider stability of equilibria and the transi-
tion from the limit cycle to a next equilibrium. This eluci-
dates conditions under which the transitions to higher modes
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such as, e.g., L—T, T—H, or T— QH occur. Special atten-
tion is paid to the reverse transition and to the question of
hysteresis.

The second approach aims at testing the possibility of
reaching one of the H-mode fixed points at lower values of
average power input {(¢(z)) by choosing properly modulated
heating rate ¢(¢), which makes the fixed point a stable attrac-
tor. This resembles the stabilization of an inverted pendulum
by applying an oscillating force. A ramification of this ap-
proach is to study power up/down asymmetry in order to
better understand the character of hysteresis.

lll. STABILITY OF THE FIXED POINTS

The first simple result about the stability of the fixed
points described in the previous section relates to the U=0
(no ZF) manifold. The fixed points are the L- and H-modes,
and the QH-mode which, however, also requires E=0 (no
DWs). The stability of the QH-mode is obviously guaranteed
by the condition N>1, or by

glp>1. (23)

The sufficient condition for the stability of the U=0 mani-
fold in general follows from the consideration of a function

VIN)=N=(1+{nN* -7 (24)
[see Eq. (16)]. In particular, if V(N,,,,) <0, where
Ninax = 4_1/3(1 + §77)_1/3

is the maximum point of V(N), the manifold U=0 is stable.
The stability condition can thus be written as

(1 + '3 >3/493, (25)

Note that the stability condition of the U=0 manifold is in-
dependent of the control parameter g. The manifold U=0 is
a center manifold of this system, and when the stability con-
dition V(N) <0 is fulfilled, the dynamics is limited to this
manifold and remains essentially two dimensional.

Having established the criterion for the system to remain
on the U=0 manifold, we turn to the conditions under which
the fixed points L and H may become unstable, under the
constraint U=0; i.e., if the inequality (25) holds. Since both
the L and H fixed points are determined by Eq. (19), we can
use the same equations for L, H modes and write

E=EL,H+E1’

N=NL’H+N].

Next, we linearize the system given by Egs. (15) and (17)
around these fixed points assuming U=0. The result can be
written as one second-order equation for, e.g., N;:
d*N,
? + (EL,H +p+ ‘TEL,H)Nl —Eu
XLONL 44N = 1) = p= 0E N1 =0. (26)

The instability condition can be obtained in a straightforward
way and reads

Phys. Plasmas 16, 012504 (2009)

N.u(5N; y=2) > plo.

Now, after differentiating the left hand side (Lh.s.) of Egq.
(19) with respect to N, the above inequality becomes equiva-
lent to the condition of choosing the larger root of Eq. (19);
i.e., the one to the right of the maximum point of its Lh.s.
Therefore, the instability condition can be fulfilled only for
the H-mode. We thus draw the following conclusions about
the routs to the improved confinement modes:

* Since the L-mode is stable on the U=0 manifold, any tran-
sition from L-mode to a higher confinement mode occurs
by leaving the U=0 manifold; i.e., the zonal flow must be
generated.

* Since the H-mode is a saddle point on the U=0 plane, the
reverse (H— L) transition can occur on U=0 manifold.

These simple properties of the transition dynamics will
be illustrated below.

Next, we consider the stability of the transient fixed
point given by Egs. (20)-(22). As opposed to the previous
case the center manifold associated with this singular point
of the system is not limited to any of the three coordinate
planes in the (E,U,N) space. Nevertheless, as we shall see,
there is one essentially negative eigenvalue at this fixed point
so that there is a local manifold transversal to the corre-
sponding eigenvector, to which all the trajectories rapidly
attract and the further dynamics occur on this two-
dimensional manifold. To study stability in this situation we
linearize Eqgs. (15)—(17) around the fixed point [which is
given by Egs. (20)—(22)] by representing E,U and N as
follows:

E:ET+E1, U:UT+U1, N:NT+N1.

Here, E|, U, and N, are assumed to be small. Rescaling time
as t'=FE;t for convenience, we obtain the following system
of equations:

dE,
W=—E1 - U - BNy,
dU,
gy = ME— kN (27)
dN,
W = - 'le - VEI .
In addition, we have introduced the following notations:
U, 49¢ULN3.
M: , K= N
E(1+{Ny) (1+¢Np)?
v=0oN/E;, vy=0+p/lEr B= 4N3}— 1.

The equation for the eigenvalues \ takes the form
M+ (y+ DN+ (y+ u—vBN+ yu + v =0. (28)

Of the three roots of this equation, one is real and negative
for the values of parameters of interest. We denote it by
A;<0, while the two remaining N\, are complex and

N;=\,. As the control parameter ¢ increases (with all the
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other parameters fixed), the real parts Re \; , cross zero at
some critical value of g=gq,,, and the system undergoes Hopf
bifurcation to a limit cycle whose amplitude grows with
q—q.,.>0. For g<gq,, the fixed point is a stable focus.

To see how the loss of stability occurs at g=gq,, it is
convenient to separate the stable eigenvalue A3 from A .
For, we use the following substitution:

2 1 +1
>\=V—E\/§(7—72—1)+M—BV¢—yT, (29)

and work with ¢ rather than with N. For ¢, we obtain the
following equation,

4 +3p+w=0, (30)
where we have denoted
29 +3(y+ DBBr—y) +9uRy—1) +27vk +2
" 6\3[3(y= 7~ 1)+ u— By

31)
From Eq. (30), we can express one of the roots ¢; as
3 =—sinh(3 sinh™" w),

so that A3 will be given by Eq. (29) with ¢=¢;. The other
two roots can thus be expressed through ¢; using the qua-
dratic equation, which can be derived from Eq. (30):

&+ drp+ B3+ 3 =0,

The two remaining roots are
—
1 N3 ——
hra=- 5¢3 * Bl L+ ¢3.

Using Eq. (29) again, we obtain from the last equation the
following criterion of instability of the transient fixed point:

Vi (y= 92— 1) + - By sinh(Lsinh™ w) > y+ 1.
(32)

Although the last condition is a general one, it is somewhat
impractical due to the large number of parameters involved.
However, in terms of the main control parameter g, it is
locally equivalent to g > gq,.

IV. TRANSITION DYNAMICS

The location of singular points (Fig. 1) along with their
stability analysis presented in the previous section helps to
understand the transition dynamics. For sufficiently low ¢,
only the L-mode is stable, which lies in the plane U=0 and is
characterized by a finite level of the drift turbulence given by
Eq. (18). As the control parameter ¢ grows, so that E exceeds
the critical level of the zonal flow stability

E, = 5(1+{Ny),

the zonal flow is generated. The only stable point for this set
of parameters is the transient oscillatory fixed point (stable
focus), which, however is situated outside of the U=0 mani-
fold [see Egs. (20)—(22)] so that the system leaves the U=0
manifold and moves to the transient fixed point. However,
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FIG. 2. Upper panel: Transition from H to L and then to the transient
oscillatory (T) mode, which is stable focus for the given set of parameters,
shown in variables N and E. The heating rate ¢=0.47; other parameters are
fixed at the same values as in Fig. 1. The transition starts from the overpow-
ered state near the H-mode and proceeds to the unstable H-mode, then to the
unstable L-mode, and finally to the stable transient mode. Lower panel:
Transition to the T-mode shown for U.

the dynamics is richer than that. In particular, as it is seen
from the previous section, the H-mode corresponds to a
saddle point on the U=0 plane so that it contains both stable
and unstable invariant manifolds. The significance of this is
demonstrated in Fig. 2, where the system undergoes a series
of transitions for the fixed values of parameters. The solution
starts from an overpowered state near H-mode which is un-
stable along with the QH-mode, since g <g.;. As we just
mentioned, however, the H-mode fixed point has a stable
manifold, so some trajectories are attracted to the H-mode,
and stay there for a very long time (z=400, for the particular
trajectory shown in Fig. 2). The system then makes a quick
transition to the L-mode. Although the latter is also unstable
for the given parameters, the above argument about the
stable manifold of the saddle point applies as well so that the
system stays in the L-mode for another 150 units of time.
Thus, both H- and L-modes constitute distinct metastable
states for the given values of parameters. Eventually, the
system transits to the oscillatory stable state, which is the
only stable fixed point in this case. Note that metastable
states have been observed earlier by Hu and Horton' in
11-ODE system.

The further evolution of the system is possible only
when parameters are changed. The most natural such change
is to increase g. As soon as it crosses the threshold g=g,,, the
T-state becomes unstable [see. Eq. (32)]. As we found in the
previous subsection, this fixed point undergoes a Hopf bifur-
cation into a limit cycle that grows with growing criticality
parameter g—gq,.>0. At small g—g, >0, the limit cycle os-
cillations are nearly linear in character, similar to the decay-
ing oscillations at the final stage the T-mode relaxation dy-
namics, shown in Fig. 2. However, even a slight increase of
q gives rise to the strong nonlinear oscillations, in which the
zonal flow activity comes in bursts (Fig. 3). Each burst of the
zonal flow causes strong suppression of the drift wave activ-
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FIG. 3. Developed limit cycle oscillations around the oscillatory transient
fixed point prior to the transition to the QH-mode, g = 0.58.

ity and, as a result, significant increase of the temperature
gradient N.

Finally, after some small increase of ¢ up to g=¢.
=~=().582, the limit cycle disappears and the orbit attracts to
the QH-mode fixed point (Fig. 4). Note that the transition
itself is preceded by the strongest zonal flow burst, strong
enough to damp the drift wave turbulence completely, thus
facilitating the transition to the QH-mode.

It should be emphasized that the above critical value
of the control parameter ¢ arises at the transition to the
QH-mode from the vicinity of the T-mode, or more precisely
from the local center manifold associated with the T-mode
fixed point (e.g., the limit cycle). One can find other initial
conditions that are away from the basin of attraction of
the T-mode fixed point and the system will transit to the
QH-mode for smaller values of g, down to approximately
q=0.54. This will be discussed in more detail below.

A. Hysteresis

After the conditions for the forward transition from T- to
QH-mode have been determined, the question whether the
inverse transition occurs at the same value of the control
parameter ¢ is in order. The answer to this question essen-
tially depends on how close to the QH fixed point the initial
conditions are set. This is similar to the forward transition
described earlier. For initial conditions set no farther than
ON, 68U, and 6E~0.01 from the QH-mode fixed point, the
inverse transition to the T-mode fixed point can be delayed in
the heating parameter g down to ¢==0.55, which is the sta-
bility boundary for the current set of parameters [Eq. (23)].
If, however, the trajectory of the system starts farther away
from the QH-fixed point, it attracts to the T-mode for
progressively higher values of ¢, which tends to the instabil-
ity threshold of the limit cycle around the T-mode fixed
point. This makes the hysteresis phenomenon not well pro-
nounced. An accurate determination of the basin of attraction
of the QH-mode fixed point for subcritical values of
q<{qi:=0.582 is beyond the scope of this paper. It appears,
however, that the role of hysteresis in the T— QH-mode
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FIG. 4. Destruction of the limit cycle and transition to the QH-mode fixed
point at ¢=0.582.

transition is not very important. The reason for that is the
following. Although there is a region of bistability

0.55 < q < 0.8,

where both the T-mode and the QH-mode are stable, the
basins of attraction to these fixed points seem to be limited to
the respective local center manifolds. Besides that, the inter-
val of bistability (i.e., hysteresis) is less than 10% of the
critical value of the control parameter q.

The above discussion is illustrated in Fig. 5, where four
trajectories are shown for ¢=0.56; i.e., well inside of the
bistability range. The first thing to notice is that the H-mode
fixed point separates trajectories tending to the T-mode from
those eventually making their way to the QH-mode. These
two kinds of trajectories are marked in Fig. 5 as 2,4 and 1,3,
respectively. It is clear that the orbits 1,2 and 3,4 run close
together on the opposite sides of the H-mode stable manifold
(separatrix) and then diverge along the unstable manifold and
are ultimately attracted to the QH- and T-mode singular
points, respectively. Therefore, the hysteresis is sensitive to
the initial conditions and not robust.

It is important to emphasize that the forward and back
transitions to the QH-mode are not symmetric, even though
the hysteresis is not well pronounced. The fundamental
asymmetry is in that the forward transition from a stable
L-state proceeds, as the power input g increases to the stable
QH-state through the oscillatory, intermediate T-mode, so
that the system goes out of the U=0 plane. The back transi-
tion QH—L typically occurs on the U=0; i.e., without ZF
excitation. This property of the system is demonstrated in
Fig. 6.

B. Stabilization of the QH-mode fixed point

Apart from the hysteresis described above, the QH-mode
can be stabilized at a subcritical heating level by applying
modulated rather than constant heating rate g. We illustrate
the stabilization phenomenon in Fig. 7. In addition to the
constant g=g=0.54 [which corresponds to a slightly unstable
QH-mode, Eq. (23)] we add the modulated part §=0.08. The
QH-mode then sustains for about 150 dimensionless time
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FIG. 5. Three-dimensional trajectories, shown for the following set of
initial conditions N=1.1, 0.7, 0.8; U=0.01 (in all three cases);
E=0.01, 0.03, 0.05. Other parameters are fixed at the same values as in
Fig. 1.

units, as opposed to the runs with g=0, where the QH-mode
quickly decays to the T-mode going through the metastable
states near the H- and L-modes (Fig. 2).

V. SUMMARY AND CONCLUSIONS

In this paper we have investigated a low order (3-ODE)
model of L-H transition formulated earlier in Refs. 25 and
26. Particular emphasis has been made on the study of the
oscillatory transient mode which appears to be a key for
understanding the dynamics of the L-H transition.

The principal results of this study are:

(1) There are as many as four stationary states of the system
(singular points of ODEs) which can be organized by
growing pressure gradient (and generally by the increas-
ing control parameter ¢) in the following manner:
L-mode, transient oscillatory T-mode, H-mode, and, fi-
nally, the quiescent H-mode (QH). Physically, their
meaning is as follows. In the L-mode, the DW instability
driven by the pressure gradient saturates due to the non-
linearity of the DW mode and due to the mean flow. The
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FIG. 6. Sequence of transitions shown for ¢(z) slowly varying from
q=0.47 (stable L-mode condition) to ¢g=0.62 (stable QH) and back. Other
parameters are the same as in Fig. 1.

ZF is not active. With the increasing power the T-mode
is activated in which the ZF is generated and provides an
additional suppression of the DW which, in turn, drives
ZF. This feedback loop naturally results in an oscillatory
behavior of the T-mode, which can be attributed to the
dithering observed in various experiments on the L-H
transition.'® In the H-mode, the ZF is again suppressed
completely as in L-mode, but the pressure gradient is
higher because of the multiplicity of the DW stationary
states, caused by their nonlinear pressure gradient de-
pendence. In the QH-mode, not only the ZF but also the
DW vanishes completely and the heat production is bal-
anced by the neoclassical transport.

(2) We identified center manifolds of these fixed points.
These are two-dimensional attractors which the system
orbits quickly approach when they are close to the cor-

0 100 200 300 400

200
time

FIG. 7. Stabilization of the QH-mode by the modulation of heating rate g.

The upper panel shows a numerical solution with the average g=0.54, the

oscillatory part g=0.08, and the modulation frequency w=0.31. The initial

conditions are chosen close to the QH-mode with U=E=0.01. The lower

panel shows the run with g=0 and for the same values of the remaining
parameters.
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responding fixed points. The further dynamics unfolds
essentially on these center manifolds.

(3) The center manifold associated with the L.H and QH
equilibria is simply the U=0 plane (zero zonal flow in-
tensity), while on the T-mode center manifold all the
three variables are active. The T-mode is a stable focus
that undergoes Hopf bifurcation to a stable limit cycle
when g > q,.. When ¢ increases further, g > g, the limit
cycle solution is destroyed, and the system proceeds to
the QH-mode. While the T-mode center manifold does
not coincide with any coordinate plane of the three vari-
ables, it is still two dimensional and therefore the dy-
namical chaos is absent. This fact was not revealed from
more detailed previous models with large numbers of
equations (see, e.g., Ref. 14).

(4) There is a parameter range of bistability where both the
T- and QH-modes coexist and are stable (or the stable
limit cycle around T-mode exists) which underpins hys-
teresis. The hysteresis range is relatively narrow, less
than 10% of g

(5) The L mode is a stable node on the U=0 center mani-
fold, while the H-mode is a hyperbolic fixed point on
this manifold. The latter fixed point has thus a stable
invariant manifold (branch of a separatrix), but being
hyperbolic is unstable in general. However, a distinct
metastable state at the H-mode, that persists for a few
hundred dimensionless time units, is identified. The
L-mode, when unstable with respect to the zonal flow
generation, also constitutes a strong attractor on the U
=0 manifold. The corresponding metastable state can
last for more than 100 time units before it leaves the
U=0 manifold and transits to the T-mode.

(6) Transition from L-mode to higher stable confinement
modes (T or QH) cannot be made without zonal flow
generation, even though zonal flow eventually dies out
when the system reaches the QH-mode. Physically, the
T-mode occurs when the system is powered at an inter-
mediate rate (between the L- and QH-modes) and cannot
be overridden at the ramp-up stage.

(7) However, the reverse QH— L transition is not symmet-
ric with the forward transition in that it can occur with-
out ZF generation, which is also indicative of hysteresis
(see Ref. 4).

The above results allow one to describe time-dependent
L —H transition including quiescent H-mode and the oscil-
latory transient mode. The three-dimensional dynamical sys-
tem utilized in this paper is clearly the minimal one to fea-
ture these aspects of the transport bifurcation. On the other
hand, it is simple enough to allow one to construct the two-
dimensional center manifolds near the respective singular
points of the system, to study their structure, and to estimate
the strength of hysteresis associated with the transition. In
particular, bursting and dithering are interpreted by standard
means of the theory of dynamical systems as a limit cycle on
the center manifold near the transient oscillatory (T) fixed
point. In addition, it is demonstrated mathematically that the
zonal flow excitation is a necessary step in a transition to an
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improved confinement mode, even though the latter may ul-
timately eliminate the zonal flow.
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