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Exoplanet Biosignatures:
Future Directions
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Nancy Y. Kiang,17 Adrian Lenardic,18 Christopher T. Reinhard,19,20 William Moore,21,22

Edward W. Schwieterman,4,12,20,23,24 Evgenya L. Shkolnik,1 and Harrison B. Smith1

Abstract

We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe
empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those
emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cy-
cling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of
life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples
for how the Bayesian formalism could guide future search strategies, including determining observations to
prioritize or deciding between targeted searches or larger lower resolution surveys to generate ensemble
statistics and address how a Bayesian methodology could constrain the prior probability of life with or without a
positive detection. Key Words: Exoplanets—Biosignatures—Life detection—Bayesian analysis. Astrobiology
18, 779–824.
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1. Introduction

Over the past two decades, thousands of exoplanets
have been discovered orbiting other stars, inspiring a

quest to understand the diversity of planetary environments
that could potentially host life. Soon we will be positioned to
search for signs of life on these worlds. Upcoming missions
are targeted at obtaining atmospheric spectra of planets that
may, like Earth, sustain liquid water oceans on their surfaces.
To date, efforts to identify biosignatures on alien worlds have
focused on the dominant chemical products and surface
features of examples of life known from Earth, as well as
some theoretically modeled cases (reviewed by Schwieter-
man et al., 2018, this issue).

If we are lucky, we may be able to identify ‘‘Earth-like’’ life
on ‘‘Earth-like’’ worlds. If we are unlucky, and true Earths with
Earth-like life are rare, our current approaches could entirely
fail to discover alien life or to place constraints on the processes
of life or their frequency. Expanded efforts are necessary to
develop quantitative approaches to remote biosignature de-
tection, applicable both in cases where the stellar or planetary
context, or biochemistry is like Earth, and in cases where these
diverge significantly from what is known from Earth.

With the exception of modern Earth, there are currently
no known planets that can provide an unambiguous, easily
detectable, true-positive biosignature of life—a so-called
smoking gun. Even Earth throughout most of its history may
not have had remotely detectable biosignatures, despite the
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presence of life (Reinhard et al., 2017). A major challenge is
that the diversity of exoplanets greatly exceeds the variety of
planetary environments found within our own solar system,
such that the majority of exoplanets have no analogues in our
solar system. Examples include water worlds, massive rocky
planets, and small ice giants. The majority of discovered exo-
planets orbit low-mass stars and are subjected to very different
radiation and space plasma environments than planets in our
own solar system (Coughlin et al., 2016; Twicken et al., 2016).

A metabolic product such as O2 might be a smoking gun
signal of life on one world and not a biosignature at all on
another, leading to the possibility of false positives (see Mea-
dows et al., 2018, this issue, for an in-depth treatment of O2).
Given the limited data we can collect on exoplanets (see review
of observation capabilities in Fujii et al., 2018, this issue), and
the stochasticity of planetary evolution (Lenardic and Crowley,
2012), we may only be able to predict the properties of exo-
planets statistically (Iyer et al., 2016; Wolfgang et al., 2016).
Our uncertainty in exoplanet properties such as bulk compo-
sition, geochemistry, and climate—due both to lack of
knowledge and technical limitations on what we can directly
infer from observational data—is a major hurdle to be over-
come in our search for life outside our own solar system.

Another major hurdle is that we face significant uncertainty
in our understanding of what life is (Cleland and Chyba, 2002;
Walker and Davies, 2013). Our views of life and its defining
features have expanded in recent years with discoveries of
novel metabolisms (Hughes et al., 2001; Rappé and Gio-
vannoni, 2003; Sogin et al., 2006; Li and Chen, 2015), and
advances in synthetic biology and systems chemistry, which
challenge our assumptions about what chemistries can partic-
ipate in terrestrial life and in prebiotic chemistry (Chaput et al.,
2012; Malyshev et al., 2014; Sadownik et al., 2016). From a
first principles perspective, life is more readily understood in
terms of dynamic processes than chemical products. Yet, in
biosignature research for exoplanets, we so far have focused
primarily on the chemical products of Earth’s life.

The focus on chemical products has primarily been driven
by practical limitations of current detection methods: current
or planned exoplanet missions will be geared to detect the
presence or absence of materials, leading to a focus on what
materials could be biologically derived. In particular, this
led to a focus on the idea of the smoking gun biosignature.
O2 is the most notable example. However, even beyond the
challenges associated with false positives, this particular
smoking gun was not abundant in Earth’s atmosphere for
several billion years of its history (Lyons et al., 2014),
rendering Earth’s life undetectable by current methods for
the first few billion years of Earth’s history. Thus, even
though the process of photosynthesis was present, our cur-
rent product-based strategy would miss detecting it on in-
habited worlds like early Earth. Ultimately, in our search to
discover life, we are interested in answers to questions like:
How frequently does photosynthesis (or other life processes)
evolve in a given planetary context?

Beyond the biosignature community, life is not typically
characterized in terms of its products, but instead in terms of its
processes. Hallmark features of life, such as information pro-
cessing, metabolism, reproduction, homeostasis, and evolution
are all processes, which may generate different products in
different evolutionary and environmental contexts. To advance
our capabilities for life detection, next-generation biosignature

research must bridge our product-based detection strategy with
an understanding of the underling living processes, to identify
signatures of life in diverse planetary contexts.

A process-based understanding will allow extrapolation
to contexts different from Earth, where presumably the same
universal processes of life (e.g., evolution, information
processing, and metabolism) should operate, but may lead to
very different outcomes—that is, to different remotely de-
tectable products of life. The multitude of exoplanets dis-
covered provides unprecedented opportunity to address
fundamental questions regarding the nature and distribution
of life with large statistical data sets, but we must first better
understand the processes governing both planets and life.
Bridging processes with detectable products necessitates
new cross-disciplinary collaborations. To make progress, we
must address the following questions:

� What fundamental life processes could underlie the
chemistry we can detect on exoplanets?

� How do we infer the presence (or absence) of these
processes?

� How can understanding the processes of life inform
new ways to identify and interpret the chemical sig-
natures of life?

In what follows, we introduce a Bayesian framework
appropriate and timely for the long-term goal of searching
exoplanets for signs of life. A Bayesian method provides a
language to define quantitatively the conditional probabili-
ties and confidence levels of future life detection and, im-
portantly, may constrain the prior probability of life with or
without positive detection. To understand what is needed to
quantify these probabilities, we review emerging and future
developments of the study of life processes, their origins,
their planetary contexts, the integrated tools necessary to
model them, and the methodological tools necessary to de-
tect their consequences. These inevitably require continued
expansion of a cross-disciplinary community to develop the
conceptual frameworks required to interpret the increasing
(yet sparse) data upon which claims for the presence of life
beyond our solar system will eventually be made.

Because we are focused on future directions, we note that
the views presented herein do not represent community
consensus. The myriad challenges that come with adopting a
probabilistic framework for life detection drive the organi-
zation of this article, as resolving these challenges should be
a priority for the exoplanet research community over the
coming decade.

2. Setting the Stage: What Is Life?
What Is a Biosignature?

Des Marais et al. (2002) defined a biosignature as an ‘‘object,
substance, and/or pattern whose origin specifically requires a
biological agent’’ (Des Marais and Walter, 1999; Des Marais
et al., 2008). In this article, we follow this convention and refer
to a substance or pattern that is known to be an indicator of
biological activity (in a given planetary context) as a bio-
signature, for example, a ‘‘biosignature molecule’’ or ‘‘bio-
signature pattern.’’ More specifically, we quantify a
biosignature as a molecule, pattern, or other signal that has a
nonzero probability of occurring, conditioned on the presence
of a living process (see Section 3 wherein we define the
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probability of occurrence, and its conditionality on the presence
of life, formally P(datajlife), and provide a quantitative defi-
nition for a biosignature within a Bayesian framework). Im-
portantly, a biosignature does not imply life, it only implies a
signal consistent with life. To qualify as evidence for life, a
biosignature should be much more likely to be produced by
living processes than by abiotic processes (see Sections 7 and 8
for an in-depth discussion, and Catling et al., 2018, this issue,
for additional perspective). That is, a molecule, pattern, or
signal must be able to be produced by life to be a biosignature,

but it does not qualify as evidence for life unless life is the best
explanation for its production in a given environmental context.

A challenge for developing a quantitative framework for
assessing biosignature candidates is that life—the very thing
we hope to measure—is notoriously difficult to define. For
example, the definition of Des Marais et al. (2002) specifi-
cally refers to biological agency, yet we are far from a
quantitative framework that precisely captures what we mean
by ‘‘agent’’ (Barandiaran et al., 2009). The state of the field is
such that >100 definitions for life exist, alongside many at-
tempts to analyze them (Chyba and McDonald, 1995; Kolb,
2007; Benner, 2010; Trifonov, 2011; Bains, 2014; Mix,
2015). Some of the most common words used in defining life
are given in Table 1, demonstrating just how far from con-
sensus we truly are. Some have argued that it does not make
sense to define life until we have a theory for life (Cleland,
2012; Walker, 2017). Cleland and Chyba (2002) compared
the need of motivating theory for precisely defining life with
how water became precisely defined as H2O only after the
advent of molecular theory. A thorough review on the liter-
ature of attempts to define life is outside of the scope of this
article. However, it is important to acknowledge the critical
challenge we face in biosignature research due to ambiguities
in our ability to precisely quantify what ‘‘life’’ is.

Owing to our lack of quantitative understanding of life,
standards for the search for life have historically been

Table 1. Common Words Used in Definitions for Life

System Organic Genetic Biological
Matter Evolution Internal Capacity
Systems Materials Replication Different
Environment Reproduction Change Force
Energy Growth External Form
Chemical Information Means Functional
Process Open Molecules Mutation
Metabolism Processes Order Network
Organisms Reproduce Organisms Objects
Organization Complex State Organized
Complexity Evolve Time Reactions

Self-reproduction

Adopted from Trifonov (2011), with modifications to remove
common filler words closely related to life (e.g., alive and living).

Table 2. Disciplinary Perspectives on Signatures of Living Processes

Scientific discipline Typical measures of life and objects of study Biosignature relevance

Mathematics Theorems, proofs, calculus, algebra, number
theory, geometry, probability and statistics,
computational science (Chaitin, 2012).

The language of science. Quantitative
frameworks of relationships in nature.

Physics Motion of mass and electromagnetic energy,
quantum behavior, organization, dissipative
structures, collective behavior, emergence,
information, networks, molecular machines
(Schrodinger, 1943; Goldenfeld and Woese,
2011; Walker, 2017)

Conservation laws to constrain abiotic context.
Systems interactions of biological processes

Chemistry, biophysics Redox potential, Gibbs free energy (Hoehler,
2007; Smith and Morowitz, 2016)

Metabolic processes that alter the redox state
of the environment

Microbiology, molecular
biology, biochemistry

Cells, genes, genomes, RNA, proteins,
metabolism (Woese, 1998)

Constraints on evolutionary path requirements
for a type of life to emerge. Metabolic
products that can be strictly biogenic.

Geologists, geophysics Isotope fractionation, morphology, fossils
(Knoll, 2015)

Planet formation factors that determine
prebiotic elements. Plate tectonics to allow
a carbon cycle.

Philosophy Emergence, meaning, goal-directedness (many
reviewed in Mix, 2015)

Definitions of intelligence, optimality.

Ecology Ecosystem, community dynamics, scaling
laws, keystone species (May et al., 1974;
Pikuta et al., 2007; Amaral-Zettler et al.,
2011)

System interactions that lead to dominance or
community mixes of particular kinds of life,
determining what biosignatures will be
detectable.

Biochemistry,
geochemistry

Elemental cycling (Schlesinger, 2013),
serpentinization

Budgeting of the fluxes and stocks of
particular molecules, wherein the net
accumulated stock or phasing of fluxes may
be detectable biosignatures.

Astronomy Planetary-scale spectral signatures, molecular
line lists, remote observation (Meadows,
2005; Seager, 2014; Seager and Bains,
2015; Seager et al., 2016)

Stellar context for life determines the radiative
balance and elemental composition of a
planet. Detection of biosignatures in planetary
spectra from transits or direct imaging.
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qualitative in nature (true for both exoplanets and within the
solar system). As an example, consider an approach to the
search for life that follows the adage ‘‘I’ll know it when I
see it.’’ For different disciplines ‘‘it’’ means different things:
biochemists might cite the molecular species that constitute
‘‘life-as-we-know-it,’’ such as DNA, RNA, and amino acids,
whereas a physicist might discuss the emergence of col-
lective behavior and so on. We outline some of these dif-
ferences between disciplines, based on our own experiences
as researchers in diverse areas given in Table 2. The table is
not intended to be exhaustive (which would be a research
program in its own right), nor representative of a majority
opinion, but merely to highlight how diverse, and contro-
versial, approaches to the question ‘‘what is life?’’ can be,
just within the thinking of the authors of this article.

To evolve into a scientific discipline with testable hy-
potheses, biosignature science needs to make quantitative
predictions based on the hypothesis that life is or is not
present in a given environment. Gradually, we are developing
a language and the quantitative frameworks required for this,
but further progress will require even greater convergence of
the disciplinary perspectives given in Table 2 and more. No
one discipline is ‘‘right’’ with respect to its perspectives on
life, and each adds just one part of an emerging mosaic of
what could be the most universal and fundamental properties
of life. Here, we leverage this diversity of perspectives to
develop a unified framework for how to assess the likelihood
of life on a planet (or ensemble of planets) with a Bayesian
method.

Our goal is to liberate our search strategies as much as
possible from being entrained to specific definitions for life or
its signatures, and instead to frame the problem in terms of
what is observable and importantly what we can infer from
those observables based on what is known about nonliving
and living processes. As this article illustrates, we have much
work ahead as a community to realize the promising future
directions that could finally enable us to detect life on another
world (and be confident in our assertion of success).

3. Detecting Unknown Biology on Unknown
Worlds: A Bayesian Framework

To qualify as evidence for life in a given environment, a
biosignature should be much more likely to be produced by
living processes than by abiotic processes. For example,
with some caveats (Meadows et al., 2018, this issue), cur-
rent understanding provides confidence that geochemistry
on a planet bearing liquid water will not generate an at-
mosphere containing >1% O2, so O2 is a priori a good
biosignature. However, O2 as a biosignature may be rare:
the likelihood of oxygenic photosynthesis on other worlds is
unknown. In addition, the existence of oxygenic photosyn-
thesis does not guarantee the presence of detectable atmo-
spheric O2. Oxygenic photosynthesis on Earth predates the
great oxidation event (GOE) at 2.33 Ga (Luo et al., 2016) by
at least hundreds of millions of years (Buick, 2008), and O2

concentrations may not have been detectable to a remote
observer until the past *500 million years of Earth history
(Reinhard et al., 2017). By contrast, we might expect that if
life exists on a world with hydrothermal systems and sulfate
in its oceans, life will evolve to produce H2S; however, we
are also confident that hydrothermal systems on such a

world will make H2S abiotically, too. So, H2S on such a
world would be an ambiguous indicator of life.

These examples illustrate how, to claim detection of life,
measurements must be qualified by our expectations. Here, we
introduce a Bayesian framework for quantifying our expecta-
tions in life detection and how new data change them, which
permits the possibility of generalizing our search strategy be-
yond biosignatures of known life. We incorporate process-
based approaches to constrain the probabilities of both living
and nonliving processes to generate a particular observational
signal, as required for Bayesian inference. Catling et al. (2018,
this issue) suggest evaluation of four sets of criteria in order: (1)
the stellar properties of the exoplanetary system (e.g., if the
planet can support surface liquid water), (2) characterization of
the exoplanet surface and atmosphere, (3) identification of
biosignatures in the available data, and (4) exclusion of false
positives. Their proposed scheme is based on current knowl-
edge of biosignatures to increase confidence levels and is based
on production of biosignatures similar to those of known life.
Here, we focus on unifying diverse research areas within a
common quantitative framework to better constrain likelihoods
of living and nonliving processes, providing a means to orga-
nize current and future data in the assessment of upcoming
observational data.

Bayesian inference permits evaluating the probability of a
hypothesis (e.g., the presence of life) given a set of observed
data. The posterior probability quantifies the probability of
a hypothesis once the evidence has been taken into account.
It is calculated based on prior probability, quantifying the
probability a hypothesis is true, and a likelihood function,
which quantifies the compatibility of the evidence with the
hypothesis, that is, the probability of observing the data
given the hypothesis. Specifically, a Bayesian claim of de-
tection of life requires quantifying the following:

� The likelihood of the signal arising due to living processes.
� The likelihood of the signal arising due to abiotic

processes.
� The prior probability of the living process.

These likelihoods are cast in terms of conditional proba-
bilities, where a conditional probability is the likelihood of
observing an event, given another event has already occurred.
For example, the conditional probabilities P(H2Sjanaerobic
respiration) and P(H2Sjhydrothermal systems) quantify the
likelihood of abundant atmospheric H2S arising due to living
processes or to abiotic processes, respectively (here and
throughout the ‘‘j’’ operator means ‘‘given’’ or ‘‘conditioned
on’’ and indicates a conditional probability). H2S is not a good
biosignature in the example provided earlier precisely because
biotic production and abiotic production are both potentially
important, such that we would estimate that P(H2Sjanaerobic
respiration) *P(H2Sjhydrothermal systems) without addi-
tional contextual information. Likewise, on modern Earth O2 is
a good biosignature because the likelihood of it arising due to
life, P(O2j oxygenic photosynthesis), is much higher than by the
abiotic processes of photodissociation or volcanic outgassing,
quantified as P(O2jabiotic), for example, we expect P(O2j
oxygenic photosynthesis) >> P(O2jabiotic).

In modeling biosignatures, we have so far focused on the
likelihood of generating a particular set of observational sig-
natures, given the presence of life. However, soon we will have
observational data to actually search for life. In analyzing these
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data, we are interested in the inverse problem: what is the
likelihood of life, given a set of observational data?

A Bayesian framework permits determining the posterior
probability of life (e.g., the likelihood of life, given an ob-
servation), for a given set of observational data, based on
Bayes theorem:

P(lifejdata)¼ P(datajlife)P(life)

P(data)
, (1)

where data is intended to indicate any observable indicative of
life. This can refer to different kinds of observations: the sta-
tistics from planet surveys, the context of a particular planetary
system, or the observation of the planet itself. Here, we will not
be asking about the probability of the observation of a planet
relative to instrument capabilities and distributions in the
galaxy, as we leave this for the review by Fujii et al. (2018, this
issue) and we are in any case interested in quantifying the
likelihood of life on already identified targets. Instead, we
focus on ‘‘data’’ with regard to direct observations of a plan-
etary system and a planet that could host life. More often, a
suite of these kinds of data will be utilized. Planetary statistics
as well as insights from life on Earth can then provide theo-
retical support to interpret the direct observation of a planet by
contributing to the relevant conditional probabilities.

For example, detection of a gas in an atmosphere requires a
process-based model of that atmosphere to determine the con-
texts in which a certain mixture may be geochemically plausible
and thus whether it is a signal of abiotic or biological processes
(or both). The measured variables could be the near-infrared
(NIR) absorbance features (NIR), the planet’s mass (M), density
(q), orbital parameters (o) (for transiting planets), and the ex-
pected planetary elemental composition (c), which may be
based on the star’s composition. Some contextual parameters
will depend on the presence of life and some will not [e.g., in
general (excluding significantly advanced technological civili-
zations), we do not expect biology to significantly contribute to
a planet’s mass], leading to differences in their treatment in a
Bayesian framework (see also Catling et al., 2018, this issue).
Of those listed here, only NIR absorbance features (NIR) are in
general expected to depend on the presence of life. As such,
data¼ f (NIR). The remaining observables should, therefore, be
considered as the context of the observation, and the likelihoods
and priors must be conditioned on these. Thus, for example,
P(datajlife) = f(M, q, o, c) and P(datajabiotic) = g(M, q, o, c) are
both functions of the planetary observables (these functions
could also include stellar observables as well, or other atmo-
spheric constituents that are not themselves biosignatures but
provide context for interpreting them, see Section 7 and Mea-
dows et al., 2018, this issue). In addition, these will in general
depend on a number of variables that are not directly observ-
able, which must be inferred. Obviously, it is a long way to go
from the values of a planet’s mass, density, etc. to predicting the
observational signatures of life on its surface: hence the need for
new cross-disciplinary collaboration.

The denominator of Eq. 1 is the total likelihood of ob-
serving a given data set, and can be expanded further:

P(lifejdata)¼ P(datajlife)P(life)

P(datajlife)P(life)þP(datajno life)(1�P(life))
,

(2)

where P(dataj no life) is the probability of the data in the
absence of life, and we have used the law of total probability
to substitute P(no life) = 1 - P(life) for the prior probability
there is no life.

P(lifejdata) is what we would like to know: the posterior
probability of life, given a set of observational data. To
determine the likelihood of life in a given data set, we must
tightly constrain P(datajlife) the probability of the obser-
vational data given life is present, and P(dataj no life) the
probability of the observations arising if life is not present.
The latter term includes contributions from abiotic sources
(life is absent) or experimental noise:

P(datajno life)¼P(datajabiotic)þP(datajnoise): (3)

In addition, knowledge of P(life), the prior probability of
living processes, is required to assess the likelihood of life.

In Section 7, we explicitly treat Eq. 2 including contex-
tual information by expanding terms as joint probabilities,
for example, P(datajlife) is expanded to P(datajlife, Ci),
where Ci includes relevant contextual information for the
observation, such as the presence or absence of liquid water
(see Section 7, Eq. 14 and also Catling et al., 2017). The
measurement probability P(datajno life, Ci) can then be
interpreted as the probability of the observable in the pres-
ence of life and relevant context. To simplify discussion of
each term in the Bayesian framework presented in Eq. 2, in
most of what follows (up to Section 7), we include context
as implicit in the probabilities for living or nonliving pro-
cesses as these must in any case be conditioned on what is
known about the context for the observation.

The utility of the Bayesian approach is that it permits
separating the calculation of the prior probability of life,
P(life), from the likelihood of observational data if life is
present P(datajlife) or if life is not present P(datajabiotic).
That is, it permits quantifying the detectability of life from a
specific type of data, and thereby provides a tool for identi-
fying promising targets in our search for life without neces-
sarily knowing the prior probability of life itself, which is
currently unconstrained (discussed more in Section 7). In the
Bayesian framework, detectability can be quantified as

D¼ P(datajlife)

P(datajabiotic)þP(datajnoise)
, (4)

where the denominator is again the probability that the
signal was not generated by living processes. In the limit of
no experimental noise

Dnoise!0¼
P(datajlife)

P(datajabiotic)
: (5)

Equation (5) provides an operational definition of de-
tectability, providing a guide for our search for the best
targets for observing life, in terms of both what to look for
and where to look. As one example, the best places to look
may or may not coincide with the places life is most likely,
see, for example, the work of Desch et al. (2018). In other
words, detectability provides a quantitative means to answer
the question: given if we detect a candidate biosignature,
can we be confident life produced it?
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The detectability criterion is distinct from habitability: a
world might be habitable, but could host life that is not
detectable. The example of H2S previously mentioned pro-
vides one such example, as do cryptic or marginal bio-
spheres, or phosphate-dependent life on water worlds (Desch
et al., unpublished data). D > 1 is a quantitative threshold for
the definition of a detectable biosignature. More detectable
biosignatures have higher values of D. It should be clear that
a given observational signal may be a detectable biosignature
in one environment and not another, depending on the value
of P(datajabiotic) and how the expected measurements for
life and no life depend on context (see Sections 7 and 8 for
worked examples). This is related to the point made earlier
that a given signal may be a biosignature, but not be evi-
dence for life if D £ 1.

To bridge observations to biosignatures, the surface chem-
istry, atmospheric mass, temperature profile, outgassing rate,
and photochemistry of a planet must all be modeled, along with
any putative biological processes that could be occurring on its
surface. The modeled atmospheres can then be compared with
observed spectral features, and the plausibility evaluated of the
biogenicity of the observations. If no plausible abiotic model
can reproduce the atmospheric context for the gas at the same
level of detection, but a model including life processes can,
then we could conclude that the gas is biogenic. In such cases,
we should expect D >> 1. In such cases, confirmation of life
becomes less sensitive to the unknown prior of the a priori
probability of life (see, e.g., Sections 7 and 8).

A Bayesian approach requires good models for exoplanet
properties in the absence of life to tightly constrain P(dataj
abiotic). In many ways, this seems like it should be easier than
building models of inhabited planets: removing the biosphere
could significantly simplify models. But, we do not know
what Earth would be like without life. To model Earth without

life requires extrapolation from uninhabited environments on
Earth, from worlds considered uninhabited or from the
identification and separation of biosphere processes from
geological processes. Most of the input parameters to such
models are not known.

One effort to make a distinction at the planetary scale be-
tween inhabited and uninhabited worlds was conducted by
Krissansen-Totton et al. (2016) to compare global properties
of the Earth’s atmospheric chemical disequilibrium with that
of other (presumably uninhabited) worlds in our solar system,
including Venus, Mars, Titan, Jupiter, Uranus, and Earth.
They quantified thermodynamic disequilibria in terms of the
Gibbs free energy of the observed atmosphere minus that of
atmospheric gases reacted to equilibrium. This approach was
able to distinguish Earth’s biogenic disequilibrium as a sig-
nificant departure from that of a dead planet. The exhaustive
chemical composition will not be known, of course, for
exoplanets, so understanding of critical informative species
through models and Bayesian inference will be important to
applying similar methodology outside the solar system.

Features unobservable with current technology or at
wavelengths accessible to a specific mission may become
observable given more sensitive measurements or through
instruments capable of measuring different wavelengths (e.g.,
for the case of GJ1214b; see Charnay et al., 2015). For ex-
ample, volatile molecule chemistry outside the major con-
stituents of Earth’s atmosphere in Earth’s atmosphere is not
even known. The unpierceable ‘‘flatness’’ of the visible-NIR
(0.6–2.5mm) transmission spectrum of GJ1412b (Kreidberg
et al., 2014) illustrates that not seeing a spectral feature does
not necessarily mean that a gas is not there. Some currently
unobservable properties could in the future become observ-
able as technology advances. If no plausible abiotic model can
reproduce observed spectral features at a given detection

FIG. 1. Conceptual diagram of the Bayesian framework for detection of exoplanet biosignatures, with section guides to
this article. Color images available at www.liebertonline.com/ast

EXOPLANET BIOSIGNATURES: FUTURE DIRECTIONS 785



level, but no models including life processes can reproduce
observed spectral features either, we cannot confirm the
presence of life. The advantage of the Bayesian framework is
that even these null cases will provide valuable constraints on
estimates of priors (see Section 9), which can be updated as
additional observations become possible.

The most challenging parameter to constrain is P(life)
itself, the very thing we aim to determine by detecting life.
In the absence of a theory for life’s origins, we do not have a
means to calculate this probability ab initio. There may be
biospheres that are undetectable because the signal-to-noise
is too low or because they do not produce a measureable
signal. This is a problem of detectability (e.g., D £ 1), which
is distinct from the problem of estimating the probability of
the prior occurrence of life on those worlds. Attempts have
been made to estimate P(life) within a Bayesian framework
by Carter and McCrea (1983) and more recently by Spiegel
and Turner (2012). Both concluded that P(life) could be
close to 1 or 0 based on our current state of knowledge (we
know of only one inhabited planet, on which we have evi-
dence of only one origin for life) and that evidence for a
second sample of life is necessary to distinguish the like-
lihood that life is common from the likelihood it is rare. This
is of course the goal of the exoplanet life-detection commu-
nity. The question is, how can we develop the most effective
strategies for searching for life, faced with the challenge that
we have only trivial bounds on its prior occurrence?

One strategy is to focus on detectability, as already noted,
since we can at least identify targets where we are most
likely to detect life should it exist on a planetary surface.
Another is to leverage the statistical data sets promised by
future exoplanet science to constrain the value of this prior
(see Section 9 for discussion).

P(life) will, in practice, be decomposed into probabilities
for different living processes. We will not detect life as an
abstract concept but as a specific chemical process or orga-
nization, and different processes or organizations have dif-
ferent probabilities. For example, the probabilities for
life using oxygenic photosynthesis versus sulfate reduction
will, in general, be different. We do not know the frequency of
planets with oxygen-containing atmospheres, although we
can model this for abiotically produced O2, and in the next
20–30 years, we will start to have measured frequencies.
There are many stages of evolution in the history of life on
Earth (Maynard Smith and Szathmáry, 1995; Bains and
Schulze-Makuch, 2016), some depend strongly on history and
others have occurred independently within the branching
history of life—for example, multicellularity has evolved
independently at least seven times (Knoll, 2011; Niklas and
Newman, 2013)—although as far as we know all life on Earth
shares common origins, so statements of evolutionary ‘‘in-
dependence’’ must always be made with caution due to an
ultimate common evolutionary root for known life.

Assumptions about what biological processes are hap-
pening within a given planetary context must be made with
care. These should be informed by knowledge of potential
evolutionary pathways in a particular planetary environ-
ment, as well as how many distinct environments a planet
could potentially have on its surface. Even on Earth, there
is debate about the stages of evolution in the history of
life, which may potentially confound our analysis when
extrapolating to other worlds. This necessitates deeper

connection between the exoplanet and evolutionary biology
communities.

In what follows, we treat each relevant term in the
Bayesian framework in turn. P(datajabiotic), P(datajlife),
and P(life) (Fig. 1). P(datajabiotic) and P(datajlife) are more
readily constrained, we, therefore, first assess what is known
and future directions for calculating these likelihoods, be-
fore moving to the harder problem of constraining P(life).
Toward the end, we provide an illustrative example of the
Bayesian framework and potential directions for informing
search strategies.

3.1. Habitability in the Bayesian framework
for biosignatures

One of the most important metrics for guiding the search
for life discussed within the exoplanet biosignature com-
munity is the concept of habitability, where a habitable
world is one where we expect surface environmental con-
ditions to be compatible with Earth life. It is outside of the
scope of this article to provide a detailed discussion of
habitability (see Catling et al., 2018; Meadows et al., 2018;
Schwieterman et al., 2018, this issue), or any ambiguities
associated with definitions of habitability in relation to either
life-as-we-know-it or life-as-we-don’t-know-it. However, it
is important to acknowledge the relationship between stan-
dard definitions of ‘‘habitability’’ and its relationship with
terms in the Bayesian framework.

The most commonly referenced definition of the ‘‘habit-
able zone’’ is the radiative habitable zone, defined to be that
region around a star in which an Earth-like planet with an
N2-CO2-H2O-dominated atmosphere can have a surface
temperature that could support liquid water (Kasting et al.,
1993; Kopparapu et al., 2014). The concept of habitability

Exoplanet Biosignature Terminology Quantified
in a Bayesian Framework

Biosignature: an object, substance, and/or pattern of
biological origin, such that observational data of the
object, substance, or pattern yield P(datajlife) > 0

Detectability (D): confidence in biological origins for an
observed biosignature signal, in the Bayesian framework
D = P(datajlife)/P(datajabiotic) (in the absence of noise).
A biosignature is indicative of life if D > 1. (see Section 7,
e.g., of why having D > 1 is important).

Habitable: conditions suitable for life, where the expecta-
tion of the prior probability of life is nonzero, P(life) > 0.
It is commonly implied P(life) > 0 for ‘‘Earth-like’’ life
(P(life)Earth-like) on planets with surface liquid water (as
this delineates traditional boundaries of the ‘‘habitable
zone’’).

False positive: abiotic observations that mimic biologically
produced observables, occurring when P(datajabiotic)
is large, such that D £ 1.

False negative: biosignatures that are not detectable,
occurring when P(datajlife) is small, such that D £ 1, even
in cases where life may be present.

Antibiosignature: an object, substance, and/or pattern
that diminishes the likelihood the signal is generated by
life, such that P(datajlife) is less than in its absence
(e.g., a given piece of contextual information C is an
antibiosignature if P(datajlife, C) < P(datajlife), see
Section 7)
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implicitly makes assumptions about both P(life) and P(dataj
life), such that P(life)Earth-like and P(dataj life)Earth-like > 0
within the ‘‘habitable zone,’’ where P(life)Earth-like and
P(datajlife)Earth-like > 0 are the prior probability for Earth-
like life (by whatever definition) and the likelihood of
observing the data given Earth-like life, respectively. The
former is concerned with assumptions about the origins of
life and its evolutionary innovations (discussed in Sections
6.1 and 7.2, respectively), the latter is concerned with life’s
ability to evolve and thrive in habitable environments
(discussed in Section 5.3).

Depending on the expectation of how habitability maps to
the habitable zone, different priors can be constructed for
P(life) as a function of radius from a star (and likewise for
P(datajlife)). If one assumes inhabited worlds to be limited to
a habitable zone, then the assumption is P(life) = 0 outside of
the habitable zone (Fig. 2A). If one assumes that inhabited
worlds are possible outside of the habitable zone, but much
more likely inside the habitable zone, then P(life) > 0 but small,
outside the habitable zone, and P(life) >> 0 inside the habitable
zone (Fig. 2B) (and could be such that P(life)Earth-like-

> 0 in the habitable zone and 0 outside). If one assumes that the
habitable zone is unrelated to the distribution of inhabited
worlds, and life is equally likely at any radius from the host star,
then P(life) = constant everywhere (Fig. 2C). These are only
a fraction of all possible prior scenarios (there are as many as
there are hypotheses about the prior probability of life), and are
given with the intent to help clarify how assumptions about
habitability could translate to the quantitative formulation of
biosignature assessment within a Bayesian framework. For
example, assuming an inner radius around a host star where
conditions are too hot or radiating to allow habitable planets
implies P(life) = 0 within that boundary.

Currently, the value of P(life) in the habitable zone, or
outside it, is not well understood. P(datajlife) is much better
constrained, especially for oxygenic photosynthetic life (see

Catling et al., 2018; Meadows et al., 2018; Schwieterman
et al., 2018, this issue for discussion of biosignature ob-
servables in the habitable zone). We discuss how to advance
our understanding of P(datajlife) to other scenarios for alien
biospheres in Section 5, and P(life) in Section 6.

In this article, we focus on the detectability of life,
quantified in terms of likelihoods for biotic and abiotic
signals, rather than habitability since the latter is discussed
so extensively elsewhere (see Catling et al., 2018; Meadows
et al., 2018; Schwieterman et al., 2018, this issue). Im-
portantly, we do not necessarily need to know what makes a
planet habitable to identify planets where biosignatures can
be measured by our instruments (although habitability can
of course provide guidelines for detectability). Detectability
is distinct from habitability: a world might be habitable, but
could host life that is not detectable. Alternatively, a world
may be ‘‘uninhabitable’’ (based on our limited understand-
ing of planetary habitability, or the definition of habitable
used, e.g., lacking presence of liquid water on its surface),
yet could host life that is detectable (e.g., utilizing a dif-
ferent solvent than liquid water). This distinction between
detectability and habitability allows us to, in this article,
expand the concepts of P(life) and P(datajlife) implicitly
underlying discussions of habitability and make them ex-
plicit and quantitative. By focusing on detectability, we
hope the framework laid out in this article will be useful for
guiding the future directions of biosignature science, and
will readily accommodate changes to the community’s un-
derstanding of planetary habitability.

4. P(datajabiotic)

To reliably distinguish worlds with life from those with-
out it, we must improve our understanding of worlds without
life and their observational signatures. That is, we must
constrain P(datajabiotic). This is being pursued through

FIG. 2. Examples of the relationship between the canonical definitions of the habitable zone and our assumptions about
P(life), based on different priors. (A) A prior where a nonzero prior probability for life is limited to the canonical habitable
zone. (B) A prior where a nonzero prior probability for life is not limited to the habitable zone, but where P(life)inside_HZ >>
P(life)outside_HZ. (C) A flat prior where the prior probability for life is equally likely at any distance from the host star (not
dependent on the habitable zone). By definition, the concept of a habitable zone implies that we expect P(life) > 0 (but of
unknown value) for worlds within the habitable zone. See Section 6.3 for further discussion on P(life) and the habitable
zone. This article focuses on detectability as opposed to habitability. Many other distributions could be considered. These
examples are given to clarify how habitability might integrate into the Bayesian framework we already outline, but we do
not go into further detail on this topic in this article. Color images available at www.liebertonline.com/ast
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modeling (Domagal-Goldman et al., 2014; Harman et al.,
2015; Luger and Barnes, 2015; Krissansen-Totten et al.,
2016; Schwieterman et al., 2016), but is a much more dif-
ficult problem observationally. To guarantee the absence of
life, it would not be sufficient, for example, to make ob-
servations of planets outside of the habitable zone alone:
those worlds may well be inhabited (see discussion in
Section 3.1), and in any case may not be representative of
planets inside the habitable zone (as illustrated by the dif-
ferences between modern Earth and Venus).

Our assumptions regarding what worlds are likely to be
uninhabited are most certainly incomplete—different forms of
life may thrive in environments not compatible with our current
concepts of habitability, for example, subsurface life may
somehow have an unexpected connection to the atmosphere.
Furthermore, planets within the habitable zone that have no
obvious ‘‘smoking gun’’ biosignature may nevertheless be
inhabited, as exemplified by the early Earth that possessed a
photosynthetically active biosphere, where net production and
consumption fluxes balanced rendering atmospheric bio-
signatures challenging to detect (Reinhard et al., 2017).

These examples make clear that more work must be done to
improve models to identify observational signatures of planets
without life if we are to understand planets with life. This can
be done through a combination of detailed understanding of
abiotic processes, as developed from theoretical models, and
observational surveys that select with care likely uninhabited
worlds for observation to constrain P(datajabiotic). By better
constraining the observables of strictly abiotic planets, it will
become easier to disentangle true-positive biosignatures from
false-positive biosignatures and to understand cases where
life might be present, but not detectable. Here, we focus on
what is known and what needs to be known to determine
P(datajabiotic), including constraining external planetary
system parameters and internal planet characteristics in the
absence of life. Each context considered—stellar environ-
ment, climate, and geochemistry—also impacts P(datajlife)
and P(life) as the likelihood and prior probability of life
cannot be disentangled from its planetary context; we,
therefore, also discuss these terms where appropriate.

4.1. Stellar environment

Stars both influence planetary processes and affect our
ability to detect planetary properties, including any potential
biosignatures. Catling et al. (2018, this issue) thoroughly
summarize basic features of a parent star that influence or
serve as indicators of a planet’s atmosphere and potential
development of life, including stellar age, effective tempera-
ture, composition (metallicity), spectral irradiance to the
planet including flaring and particle flux, and whether it is part
of a multiple-star and multiple-planet system. If we are to
study the statistical probabilities for the emergence and like-
lihoods of life on different worlds, assessing the probability
distributions of each of these stellar quantities throughout our
galaxy is a key component, as each will affect the planet,
influencing P(datajabiotic) and P(datajlife), and its potential
to be inhabited, influencing P(life).

Stellar surveys to characterize properties of stars of dif-
ferent masses, and hence temperatures, continue to add to
our understanding of the potential impacts of stellar tem-
perature on the search for life. The host star’s temperature

defines the radiative habitable zone, where we expect P(life)
> 0 (at least for life like Earth’s, see Section 3.1). Astron-
omers are able to measure a star’s temperature typically to
better than 2–5% providing an accurate measure of the stellar
irradiation, at least for wavelengths dominated by the star’s
Planck (black body) function. A star’s temperature is closely
tied to its mass, and we have strong constraints on the mass
distribution in the stars in our galaxy (Reid et al., 2002; Bo-
chanski et al., 2010; Bovy, 2017). The relative abundance of
spectral types is much greater for cooler long-lived stars, for
which the habitable zone is closer to the star (0.1–0.4 AU).
This makes for a higher probability of observing transiting
planets in the habitable zone of cooler stars. The spectral en-
ergy distribution of a star’s radiation will have different im-
pacts on a planet’s climate, due to the spectral properties of its
atmospheric gas photochemistry and surface albedo, affecting
potentially all three terms of the Bayesian framework: P(da-
tajabiotic), P(datajlife), and P(life).

The lifetime exposure of planets to damaging stellar ul-
traviolet (UV) radiation is a key environmental factor for
calculating the likelihoods and priors in the Bayesian frame-
work. Increased stellar activity, through UV emission and
associated particle flux, can have dramatic effects on a plan-
et’s atmosphere (Segura et al., 2010; Luger and Barnes, 2015).
Studies have examined effects on the destruction and gener-
ation of secondary products of biogenic gases (Segura et al.,
2003, 2005; Domagal-Goldman et al., 2011; Hu et al., 2012,
2013; Hu and Seager, 2014). Although predicting atmospheric
chemistry and biosignature gases through coupled radiative-
convective/photochemical models is a mature method for
Earth, atmospheric evolution of planets and the subsequent
time dependence around perpetually UV-active stars are not
understood.

Unlike G-type stars like the Sun, M dwarfs are known to
be active, with high emission levels and frequent flares
when they are young, and this activity reduces as they age
(see Fig. 3; Shkolnik and Barman, 2014). The large vari-
ability in M star UV outputs compared with Sun-like stars
throughout their lives is just now being quantified and shows
an increased level of activity toward cooler stars (Miles and
Shkolnik, 2017). The effects of sustained high levels of
stellar activity on planetary atmospheres have not yet been
studied, in part, due to our lack of knowledge of UV flare
rates and energies across stellar ages. However, efforts to
resolve this are underway.

Explorations of the parent star role in planetary processes
are recently expanding from one-dimensional (1D) models to
three-dimensional (3D) general circulation model (GCM)-
based techniques. Rigorously quantifying atmospheric and
water vapor loss can be informed through 1D models, but is
dependent on magnetospheric shielding, which requires im-
proved constraints through measurements and additional
modeling. Interactive chemistry in GCMs for exoplanet
studies is still in its early stages; few GCMs have the radiation
capability to study atmospheric compositions that differ
substantially from modern Earth. In general, climatological
GCMs can perform time slice equilibrium climate simula-
tions given atmospheric composition (which may be provided
by 1D models) or with photochemistry within Earth-like
ranges. Conditions such as reducing atmospheres, absence of
oxygen, condensation of greenhouse gases, and change in
atmospheric mass at the edges of the habitable zone require
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further long-term model development. Thus P(datajabiotic)
is currently relatively unconstrained with respect to how
stellar activity impacts atmospheric observables.

This is, therefore, an important area for future research: M
dwarfs have far-UV to near-UV flux ratios *1000 times
greater than the Sun (France et al., 2016; Miles and Shkolnik,
2017), and represent 75% of stars. Small planets in the hab-
itable zones of M dwarfs are common, and could have abiotic
O2 and O3 levels two to three orders of magnitude greater than
for a planet around a Sun-like star, due to hydrogen escape
from stellar activity or photolysis of CO2 (Domagal-Goldman
et al., 2014; Harman et al., 2015; Luger and Barnes, 2015).
This is an example of a false positive biosignature of oxygenic
photosynthesis (Domagal-Goldman et al., 2014; Tian et al.,
2014; Harman et al., 2015; see also Meadows et al., 2018, this
issue). False positives suggest the presence of life, but occur
where P(datajabiotic) is comparable with (or larger than)
P(datajlife) confounding interpretation of biogenicity.

Conversely, M stars may also become quiescent as they
age such that they emit very little UV. The lack of UV to
generate $OH radicals can increase the detectability of bi-
ologically generated gases that would otherwise be removed
by OH (Segura et al., 2005), increasing P(datajlife). It is,
therefore, critical to determine the lifetime exposure of such
planets to stellar UV radiation, from quiescent and flare
emission levels, and explore the limitations on our ability to
predict the resultant atmospheric properties.

In terms of detectability, we should expect that for most
observables, we might associate as biosignatures, D > 1 in
some environments, but not others. For example, O2 can ac-
cumulate to high levels on lifeless planets due to runaway
water loss around premain sequence M stars (Luger and
Barnes, 2015), as already discussed. The observation of col-

lisionally induced absorption of O4 (e.g., Misra et al., 2014)
would allow one to calibrate P(datajabiotic) for this process.
In this case, P(O2jabiotic) would be large, where the presence
of atmospheric O2 is the data due to knowledge of these
abiotic processes, and we should expect D < 1. In contrast, a
planet in the habitable zone of a G-type star with properties
similar to modern-day Earth (liquid water, *1 bar of total
atmospheric pressure, percentage levels of O2, and relatively
low levels of CO2 and CO) strongly suggests a photosynthetic
origin for atmospheric oxygen (Meadows, 2018, this issue)—
in this case it is P(O2jlife) is large permitting the possibility
D > 1. Again, evaluating P(datajabiotic) for the presence of
O2 requires contextual information about stellar environment,
background atmospheric characteristics, and co-occurring
atmospheric species, but this case would yield P(datajlife) >>
P(datajabiotic) (see Section 7 for a worked toy example).

As we increase our knowledge of how planetary systems
are influenced by stellar properties, through modeling and
observations, there is a rich set of relevant phenomena to
explore. Photochemistry interacting with radiation from
different stellar types can inform our understanding of at-
mospheric chemical disequilibrium and detectable primary
and secondary biogenic species, and research on the effect of
the parent star’s UV flares on prebiotic chemistry for the
origins of life will be useful for constraining P(life) (Air-
apetian et al., 2016).

4.2. Climate and geophysics

The distribution of climate types and their variation in
time result from star–planet orbital dynamics, and interac-
tion between landmass and ocean configuration with circu-
lation patterns. To address these nuances, in recent years 3D

FIG. 3. Median X-ray, FUV, and NUV excess fractional fluxes, including upper limits, as a function of stellar age for
early M stars. The radiation environment changes in time and is more intense for young stars, potentially impacting the
probability of life emerging P(life). Adopted from Shkolnik and Barman (2014). FUV, far-UV; NUV, near-UV. Color
images available at www.liebertonline.com/ast
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GCM of rocky planet climates has emerged as a viable means
to characterize circulation patterns on a planet and its po-
tential to host detectable life (Leconte et al., 2013; Way et al.,
2016). Although 1D models remain extremely useful
(Schwieterman et al., 2018, this issue), GCMs offer a tool
to explore the variation in climate over a planet. Their
strengths are that they offer self-consistent, spatially, and
temporally varying treatment of moist convection, clouds,
atmospheric/ocean transports, and surface ice. They can be
used to investigate the effects of obliquity (Williams and
Holloway, 1982; Abe et al., 2005), eccentricity (Williams and
Pollard, 2002), and rotation rate, including tidal locking (Del
Genio et al., 1993; Del Genio and Zhou, 1996; Joshi et al.,
1997; Joshi, 2003; Merlis and Schneider, 2010; Edson et al.,
2011; Heng et al., 2011; Pierrehumbert, 2011; Wordsworth
et al., 2011; Yang et al., 2014), providing a direct way to
model the impact of exoplanet observables on climate, nec-
essary to constrain the values of P(datajabiotic) (and also
P(datajlife)). Where 1D models are subject to extreme re-
sponses, the circulation patterns in GCMs generally have
moderating effects (Shields et al., 2013), broadening the ex-
pected range where P(life)Earth-like > 0 compared with that
predicted by average conditions alone (assuming P(life)Earth-like =
0 outside of the canonical habitable zone).

GCMs can be used to broaden concepts of super-
habitability, where a world is superhabitable if it can sup-
port a larger habitable surface area than Earth (Heller and
Armstrong, 2014). Examples discussed by Heller and
Armstrong (2014) include planets with more surface area for
liquid water than the Earth has, or more islands with a
higher ratio of contact between land and sea than the Earth.
Given that we do not understand the conditions from which
life arose, defining superhabitability is a challenge. For su-
perhabitable worlds, P(datajlife) is expected to be larger
than it is for Earth-like worlds, as great habitable area lends
to higher signal strength. GCMs can also be used to study
habitability of less Earth-like planets (expanding the po-
tential for life to worlds where P(life) would otherwise be
assumed to be close to 0).

The role of ocean/continental configuration in influencing
the distribution of planetary surface conditions has yet to be
explored, with existing studies limited largely to either
Earth’s continents or all land or aqua planet configurations.
Some studies have experimented with having a planet with
one hemisphere covered by land and the other by ocean
( Joshi, 2003), continents at high or low latitudes at different
obliquities (Williams and Pollard, 2003), an equatorial su-
percontinent, an aqua planet, and planets with configurations
similar to modern Earth continents (Charnay et al., 2013).
Life feeds back to a planet’s climate by altering the com-
position of greenhouse gases in the atmosphere and chang-
ing surface albedo and water vapor conductance, which may
reinforce or enhance the detectability of life. The potential
of GCMs to characterize the extent and temporal variability
of surface conditions remains to be explored. Future direc-
tions should add more realistic physics for alternative
planetary contexts than Earth and focus on generating large
statistics for the likelihoods of a given set of observations
for both living and nonliving worlds.

GCMs also offer a means to distinguish clouds from
hazes (a potential biosignature) and to map climate zones
over the planet’s surface to surmise potential productivity,

providing models to predict P(datajlife). For example, dif-
ferential insolation on rocky planets can drive up-down
circulations that cause large spatial differences in cloud
cover and altitude, showing what windows through the at-
mosphere may be available to observe biosignatures for
different stellar types and planetary rotation rates. Other
questions to explore include whether a haze is universally a
feature of homogeneous planets, or, in cases where atmo-
spheric water vapor is detected, whether surface liquid water
could be inferred through modeling, informing P(dataj
abiotic).

Given the large parameter space, a perturbed parameter
ensemble approach is often used with Earth climate mod-
eling and could be used to establish a library of a large
number of GCM simulations covering a wide range of
conditions. From this data set, the probability that observed
properties arise from specific features such as clouds or
hazes can be inferred, generating the large statistics neces-
sary for getting tight bounds on both P(datajabiotic) and
P(datajlife). In addition, conditions conducive to observing
biosignatures could be identified for target selection on fu-
ture missions, or the large statistics may reveal patterns to
classify planetary climates (Forget and Leconte, 2014).

Surface albedo plays a principal role in the surface energy
balance of a planet, but exoplanet-observing missions in the
near future will not be able to measure this directly. GCM
studies typically prescribe the land surface albedo of a
hypothetical planet to 0.1–0.3 (Abe et al., 2005, 2011;
Wordsworth et al., 2011; Yang et al., 2014). However,
mineral shortwave albedos can range from black volcanic
rocks to white salts. A small change in albedo can signifi-
cantly change climate. For example, for an instellation S
(W/m2) and albedo a, the stellar energy intercepted per
surface area of a planet is E = S(1-a)/4. Therefore, a change
in a of, say, da = 0.01 with S = 1361 W/m2 (the estimated
solar constant; Kopp and Lean, 2011) gives an energy bal-
ance change of 3.4 W/m2. There is currently lack of a theory
for planetary evolution that would allow prediction of a
planet’s surface albedo or distribution of albedos, which is a
necessary parameter for P(datajabiotic). A community ef-
fort is needed to develop such a theory, which would depend
on element abundances, processed by mantle melting, crys-
tallization, the presence of water, and other system factors.

Other parameters difficult to constrain from observational
data as well as theory include atmospheric pressure, atmo-
spheric mass, land/ocean ratio, land topography, and ocean
depth. With near-term missions, it may be possible to measure
obliquity, eccentricity, and rotation rate through photometric
temporal variability (see Fujii et al., 2018, this issue). Theory
may also constrain rotation and obliquity in some cases:
planets sufficiently far from their star will have had little tidal
evolution, and rotation and obliquity will be hard to constrain
from physics alone (Rodrı́guez et al., 2012).

4.2.1. Coupled tectonic–climate models. In addition to
surface properties, determining the composition and internal
structure of exoplanets from orbital and transit data is
moving toward statistical approaches (Rogers and Seager,
2010; Dorn et al., 2015). Composition sets the stage for
quantifying life potential in terms of available biological
building blocks and their likelihoods. How those building
blocks are cycled over the geological evolution of a planet
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to allow for conditions conducive to the development and
evolution of life brings a temporal element, expanding the
necessity of applying statistical approaches. GCMs are be-
ing used to investigate potential climatic states that may or
may not be favorable for life. As GCMs perform time slice
equilibrium simulations, they are effectively instantaneous
models when it comes to planetary evolution—they do not
track variable greenhouse forcing due to volcanic–tectonic
activity on geological timescales.

Climate variability, on an Myr timescale or greater, is
influenced by a greenhouse forcing that is modulated by a
balance between the rates at which CO2 is expelled from
volcanoes and drawn down from the atmosphere through
chemical weathering processes (Walker et al., 1981; Stau-
digel et al., 1989; Dessert et al., 2001; Coogan and Dosso,
2015). The global rate of CO2 outgassing is governed by the
character and pace of a planet’s volcanic activity. Chemical
weathering is mechanically paced by the rates at which new
surfaces are created (Sleep and Zahnle, 2001; Whipple and
Meade, 2004; Roe et al., 2008; Lee et al., 2013, 2015). The
protracted clement climate of the Earth is, in part, a con-
sequence of this long-term carbon cycle not having gone so
far out of balance as to initiate a transition to a runaway
greenhouse or a protracted hard snowball state. The degree
to which this may be possible for planets beyond Earth, over
a significant portion of their evolution, remains unanswered.
Addressing that question has moved the community toward
coupled tectonic–climate models, as shown in Figure 4.

Using coupled tectonic–climate models to address life
potential will demand a statistical treatment given the
number of parameters associated with coupled models and
given the potential of planetary scale transitions over time.
The capacity of the global climate of a planet to transition
between multiple stable states has long been acknowledged
(Budyko, 1969). Such climate transitions were initially in-
vestigated in terms of how orbital forcings could trigger
them. However, volcanic–tectonic forcings can also trigger

transitions in the climate state of a planet (Lenardic et al.,
2016), and it has been argued that the volcanic–tectonic
state of a planet can itself also transition between multiple
states (Sleep, 2000). The potential of bistable tectonic be-
havior (multiple tectonic states existing under similar pa-
rameter conditions) has now been demonstrated by several
studies (Crowley and O’Connell, 2012; Weller et al., 2015;
Bercovici and Ricard, 2016).

Tectonic and climate transitions, over timescales of
planetary evolution, bring historical thinking into the mix in
a direct way for models that explore planetary conditions
over time, permitting the possibility of constraining P(da-
tajabiotic) and P(datajlife) for different stages of planetary
history and for different histories. This introduces the po-
tential of variable paths for planetary evolution springing
from initial conditions that can be very similar: acknowl-
edging this in a modeling framework moves us away from a
classical deterministic approach aimed at prediction. In-
stead, the objective is to map planetary potentialities in
terms of their likelihoods, constrained within the bounds of
physical and chemical laws. For example, a goal is to de-
termine the likelihood a planet of a given size and compo-
sition (with uncertainties) orbiting a particular star in a
particular orbital path, conditioned on a specified geological
time window, variable initial formation conditions, and time
variable climate forcings (orbital and/or volcanic–tectonic).
Constraints on these planetary potentialities would yield a
significant improvement in our ability to produce relative
values of P(datajabiotic) and P(datajlife)—these will be
crucial to maximizing detectability of biosignatures.

4.2.2. Community GCM projects for generating ensemble
statistics for P(datajabiotic) and P(datajlife). Many of the
planetary parameters to configure a GCM will not be mea-
surable, or will be difficult to obtain given available
observation technology, and require large computational
resources. Furthermore, efficient sampling of the parameter

FIG. 4. Modeling methodology used to explore the effects of variable volcanic–tectonic activity on planetary climate.
Solid planet dynamic models of coupled mantle convection and surface tectonics (Lenardic et al., 2016) are used to map out
variations in volcanic and tectonic activity over time for a range of planetary parameter values (left image). Results from the
solid dynamics models are then used to generate volcanic–tectonic forcing functions for zonal energy balance climate
models (Pierrehumbert, 2010) that include volcanic degassing, topography generation, and CO2 drawdown from the at-
mosphere due to surface weathering (right image). Color images available at www.liebertonline.com/ast
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space is necessary for climate sensitivity studies and gen-
erating statistical models. Constraining the parameter space
theoretically is much needed and provides avenues for
cross-disciplinary research. This may seem like a daunting
task, but the initial steps are well within reach. GCM
models, for example, can address long-term temporal evo-
lution through ensemble simulations that capture time slice
equilibrium climates along some evolutionary path. For
example, Way et al. (2016) performed model experiments
run under different solar forcings associated with different
points along the Sun’s luminosity evolution. At the same
time, models of volcanic–tectonic evolution have been
progressively mapping potential volcanic–tectonic forcings
that can be linked to simplified climate models (Lenardic
et al., 2016).

As the use of GCMs becomes more common to explore
climates of exoplanets as well as of solar system planets,
model intercomparison studies will be necessary to gain
confidence in their predictions. These complex models are
subject to their own biases as a result of particular choices in
numerical resolution and representation of physics. The
Earth climate modeling community has coordinated projects
for model intercomparisons that the exoplanet community
may consider emulating. The Palaeoclimate Modelling In-
tercomparison Project ( Joussaume et al., 1999; Pinot et al.,
1999; Saito et al., 2013) began in the 1990s to compare
studies of the Holocene. These studies also contribute to the
Climate Model Intercomparison Project, established in 1995
under the World Climate Research Program (Meehl et al.,
2000), which coordinates studies covering preindustrial,
current, and future climate scenarios. These experiments
serve as important material for the Intergovernmental Panel
on Climate Change. The modelling intercomparison project
serve to define common climate scenarios, compile data sets
for model inputs and evaluation, and agree on common
model diagnostics to aid intercomparison (Eyring et al.,
2015). Modeling groups contribute ensembles of simula-
tions that are archived for community analysis, providing
insights into model biases and strengths and weaknesses in
scientific understanding of specific aspects of climate. The
exoplanet community could utilize similar methods.

4.3. Geochemical environment

As discussed previously, the simplest approach for iden-
tifying a promising biosignature would be to search for a
‘‘smoking gun’’ (which we discussed is unlikely to exist),
something that on its own provides strong evidence for a
biosphere (e.g., for which P(datajlife) >> P(datajabiotic)).
However, this type of signal is intrinsically vulnerable to
‘‘false positives’’ as discussed in Section 4.1 (see also
Meadows et al., 2018, this issue and the example Bayesian
treatment in Section 7): contextual information about the
geochemical environment is critical for accurately evaluat-
ing P(datajabiotic). Another challenging problem is that of
false negatives (Reinhard et al., 2017), or scenarios in which
biological activity at the surface is overprinted by internal
recycling and thus remains cryptic to characterization
through atmospheric chemistry. Oxygen again provides an
instructive example (see Meadows et al., 2018, this issue)—
it may have taken hundreds of millions of years or more
(Lyons et al., 2014) subsequent to the emergence of oxy-

genic photosynthesis on Earth before O2 (or O3) could be
remotely detectable in Earth’s atmosphere.

The mechanisms underpinning the timing of this biogeo-
chemical disconnect are still not entirely understood, but
doubtless involve large-scale planetary processes unfolding
on protracted timescales, such as hydrogen escape from the
upper atmosphere (Catling et al., 2001), differentiation of
Earth’s upper crust (Lee et al., 2016), and potentially a range
of other factors. An important challenge moving forward will
be to distinguish between the P(datajlife) values of false
negatives and the P(datajabiotic) of truly lifeless worlds for
a range of potential biosignatures. This provides strong im-
petus for the development of robust models for the range of
geochemical environments produced by sterile planets.

A complementary approach toward evaluating individual
biosignature species is to search for chemical disequilibrium
within a planetary atmosphere, or between an atmosphere and
a planet’s surface (Hitchcock and Lovelock, 1967). For ex-
ample, it has become common wisdom that atmospheric
chemical disequilibrium on a planet can be a strong indication
of life (Lovelock, 1965). However, free energy from stellar
irradiance as well as from volcanic outgassing, tidal energy,
and internal heat all lead to disequilibrium even on a dead
planet. Rigorous efforts to quantify disequilibria specifically
associated with life are an active area of research. Different
metrics that have been proposed, including fluxes required for
maintaining disequilibrium (Seager et al., 2013a; Simoncini
et al., 2013; Gebauer et al., 2017), and topological measures
of the directionality of chemical reaction networks in an at-
mosphere (Estrada, 2012) (see Section 6.4.1 for more dis-
cussion of network theory applied to planetary atmospheres).

Krissansen-Totton et al. (2016) use a metric of thermo-
dynamic disequilibrium for solar system planets, quantified
as the difference between the Gibbs energy of observed
atmospheric and (in the case of Earth) surface oceanic
constituents and the Gibbs free energy of the same atmo-
sphere and ocean if all its constituents were reacted to
equilibrium, under prevailing surface conditions of tem-
perature and pressure (for those planets with surfaces). This
measure is able to show that Earth’s atmospheric chemical
disequilibrium is orders of magnitude greater than that of the
other solar system planets, and is characterized less by the
simultaneous presence of O2 and CH4 than by the disequi-
librium between N2, O2, and a liquid H2O ocean. It is im-
portant to note that the diagnostic potential of this
thermodynamic biosignature on Earth relies to some extent
on being able to delineate both the presence and basic
characteristics (e.g., ionic strength) of a surface ocean
(Krissansen-Totton et al., 2016), which provides another
example of the type of broader contextual information re-
quired for evaluating both P(datajabiotic) and P(datajlife).

Interpreting atmospheric chemical disequilibrium as a
biosignature depends very much on the geochemical and
planetary system context. The disequilibrium may be tipped
in different directions if the extant life primarily derives its
energy from the available chemical disequilibrium or from
an endergonic utilization of stellar energy for photosynthesis.
An observed disequilibrium maintained by the star or pho-
tochemistry may also be interpreted as an antibiosignature,
indicative of available energy that is not being exploited by
life. In the presence of an antibiosignature, the likelihood
P(datajlife) is decreased relative to its value in the absence of
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the antibiosignature (CO in the presence of H2O shown in
Figure 15 is an antibiosignature in this respect).

The counterargument to suggesting a given disequilib-
rium is an antibiosignature is of course the evolutionary one
that life on that world has not evolved mechanisms to ex-
ploit the relevant energy source; alternatively, the kinetics of
consumption through microbial metabolism may be out-
paced by abiotic production fluxes because biological con-
sumption is limited by some other factor. Future exploration
of disequilibrium metrics are needed to investigate other
atmospheric compositions, unusual gases, surface (liquid
bodies and rock) reactions, orbital temporal effects, plane-
tary evolution pathways that affect outgassing and internal
heat, alternative coupled ecosystem–planet interactions, ki-
netic metrics to deduce surface fluxes of biogenic and abi-
otic gases, and the uncertainties in determining species
abundances, temperature, and pressure in future remote
observations. Generating statistical data sets quantifying
how different planetary parameters and living processes
affect atmospheric disequilibria will place new constraints
on P(datajabiotic) and P(datajlife).

4.3.1. Anticipating the unexpected: statistical approaches
to characterizing atmospheres of non-Earth-like worlds.
One approach that sidesteps the need to either define the
biosignatures produced by life or the processes that produce
them is to search for any signal that is unexpected from an
abiological model of a planet. Recalling Eq. 5, we can max-
imize detectability by either maximizing the numerator,
P(datajlife), or minimizing the denominator, P(datajabiotic).
Even if there is an extremely small probability that a signal is
consistent with life, we can still identify it as a biosignature if
we can demonstrate there is yet a smaller (perhaps 0) proba-
bility for the signal to be consistent with an abiotic origin. As
highlighted previously (and in Catling et al., 2018, this issue),
there are many challenges associated with modeling abiotic
production of biosignatures on Earth-like worlds. The next
frontier challenge to address is that most work so far has
assumed that we know what gases we are modeling, with a
bias toward gases that are potential biosignatures for life on
Earth. We must develop strategies to avoid this Earth-centric
approach if we are to determine P(datajabiotic) and P(dataj
life) for the many worlds that do not fit the narrow box of
Earth-like parameters.

Expanding beyond Earth-like worlds was the impetus
behind Seager et al.’s (2016) ‘‘All Small Molecules’’ pro-
ject. This project, explicitly aimed at volatiles that could be
atmospheric signatures, seeks to determine all gases that
could stably accumulate in any atmosphere. There are a very
large number of such molecules, and so filters are necessary
to reduce this to a manageable number. In their initial study,
Seager et al. (2016) limited the data set to molecules with no
more than six nonhydrogen atoms that were likely to be
stable in the presence of liquid water. The size limit was
imposed because the number of possible molecules goes up
more than exponentially with the number of nonhydrogen
atoms, and so this made the problem computationally trac-
table: seven- and eight-atom molecules could be added in
future iterations. Water stability was required as any mole-
cule made by life that diffuses to the atmosphere has to be
stable to passage through the water in that life, and must be
stable in the presence of oceans, rain, etc. This is a con-

straint that could be relaxed if nonaqueous solvents were
considered a realistic option for future searches for life.

The goal of the project is not the *14,000 molecules in
the initial database in itself; this is a starting point. The goal
is twofold: to provide a database for future work on bio-
signatures and to provide a database of potential molecules
to probe biochemical ‘‘laws’’ proposed to govern life on
other words. We discuss the first here, and the second in
Section 5.4 on universal approaches to biosignatures.

To provide a database for future work on biosignatures,
work currently planned includes estimating from thermo-
dynamic and kinetic parameters those molecules that might
be formed geologically, and hence would be weak as evi-
dence for life, for example, because P(datajabiotic) is
nonzero and detectability is potentially low. For those
molecules that are highly unlikely to be geologically formed
on a planet, NIR signatures could be calculated to see
whether they are detectable. This requires thermodynamic
and kinetic modeling of each molecule in a planetary con-
text, calculation of NIR signatures, and integration of that
with the atmospheric composition of the target planet. This
is a substantial task in its own right, and is representative of
the interdisciplinary work essential to the future of exoplanet
life detection. Rapid methods for estimating kinetic param-
eters, NIR spectral features, etc. are a research goal for this
program. Chemical calculations of this sort are the domain of
expertise of computational chemists usually involved in
materials or pharmaceuticals discovery or in research into
catalysis, not astrobiology. A major gap in atmospheric
modeling pointed out particularly by the Seager et al. (2016)
work is lack of measured kinetic data for reaction rates of the
vast array of possible biosignature molecules with plausible
atmospheric or surface components. Even thermodynamic
data for nearly all the molecules in Seager et al.’s list (2016)
have neither been measured nor accurately estimated.
Moreover, solubilities in water are unknown, and atmo-
spheric reaction chemistry and kinetics are unknown. As a
consequence, modeling the atmospheric chemistry of these
molecules will be an exercise in expert-informed inference.

A major issue is not only that these measurements have
not been done, but also that there is little community interest
in carrying them out. Measuring the kinetics of gas reactions
at different temperatures and pressures is exacting work, but
is not rewarded by high-profile publications; at best, the data
become one set of points in a large database and it is the
database curators who get the citation. A topic for future
research is, therefore, to find new technologies for making
kinetic and thermodynamic measurements on gases, gas
mixtures, and solutions substantially faster and easier, so the
collection of meaningful data sets becomes a single exper-
iment in its own right rather than a decade-long program for
an entire laboratory (an analogy is DNA sequencing, which
can only be used to compile the databases mentioned pre-
viously for evolutionary studies because sequencing a bac-
terial genome is now a high school project, and not, as it was
20 years ago, a feat worthy of a major publication).

5. P(datajlife)

Moving from a product-based to processed-based search
strategy will better bridge biosignature research with other
active areas of research regarding universal features of life.
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Product-based biosignatures are practical: due to the limita-
tions of current detection methods, it is ultimately the chemical
products of life that we will directly observe. To interpret data
on chemical products and assess biogenicity, the likelihood of
a given signature to be the product of life must be determined.
A process-based approach is necessary to quantify these
likelihoods. Therefore, to constrain P(datajlife), we must un-
derstand the living processes generating a given observational
signal. By better constraining observables based on the kinds
of living processes present, it will be possible not only to detect
life but also begin to infer its properties to achieve the longer
term goal of characterizing it on other worlds.

5.1. Black-box approaches to living processes

In the absence of knowledge about the processes of life on
exoplanets, models typically assume biological sources
based on production rates for biology on Earth. These are
what we term Input/Output models of biosignatures. The
steady-state concentration of any atmospheric gas is a
function of its source and sink fluxes. For life detection, we
are interested in inferring the existence of biological sources.
Sinks can be studied using chemical models of atmospheric
or surface chemistry and photochemistry. Nothing need be
assumed about the internal workings of life on a planet—it is
a black box that consumes some gases and emits other gases.

To enable expanding our search beyond looking for Earth-
like life on Earth-like worlds, new approaches are necessary.
One proposed framework from Seager et al. (2013a) advo-
cates classifying biosignatures based on the processes that
produced them, with the idea to use this as a guide to whether
those processes could be predicted to be different in a dif-
ferent environment. Their classification scheme still regards
life processes each as a ‘‘black box’’ of unknown mechanism.
It is taken as a given that life requires free energy to operate,
and mass to grow and replicate. Their classification, therefore,
considers the potential inputs and outputs of the system that
could provide energy and mass to that system. Potential
biosignature waste products are considered as the output from
processes that (1) capture chemical energy, (2) capture bio-
mass, or (3) other processes. They conclude that the first two
can be constrained (if not predicted) by the chemistry of the
planet, whereas the third cannot. Here, we briefly summarize
their classification scheme. Although this scheme does not
have consensus in the community, it serves as a useful
jumping off point for further exploring process-based bio-
signature classification schemes.

5.1.1. Type classification. The type classification of
Seager et al. (2013a) provide four classification types for
biosignatures.

5.1.1.1. Energy capture (type I). Energy capture can be
achieved through life’s exploitation of chemical gradients in
the environment, as well as through harvesting of light energy.
Biogenic molecules signaling such energy capture include gases
as waste products, as well as pigments that provide the mecha-
nism for light energy harvesting (in some cases these could be
classified as type IV, due to their role in photoprotection). Ex-
amples of biogenic gases on Earth are CH4 from methanogen-
esis, H2S from sulfate reduction, and CO2 from respiration.

In principle, the type I gas products can be predicted from
knowledge of the chemical environment of life, thus pro-

viding a methodology for building statistical databases of
expected products as a function of environment, needed for
calculating P(datajabiotic). For example, Seager et al.
(2013a,b) predicted that ammonia could be a detectable
atmospheric biosignature on a terrestrial planet with a
hydrogen-dominated atmosphere on the basis of the ther-
modynamics of the atmospheric and crustal chemistries
(Bains and Seager, 2012; Hu et al., 2013; Seager et al.,
2013a), combined with a hypothetical energy-yielding me-
tabolism in that environment, with N2 + 2H2 / 2NH3.

One challenge for this approach is the diverse range of
chemical environments on Earth, as illustrated by the pro-
duction of a reduced waste product (CH4) by life on Earth,
which has a generally oxidized surface. On an ‘‘averaged
Earth,’’ methane cannot be a type I biosignature gas, but in
reduced environments it can be produced as a by-product of
energy capture from methanogenesis or from biomass fer-
mentation. Earth has many reducing niches today because it
has biology producing oxygen. Electrons are conserved, and
oxidation does not exist without reduction. Organic matter
produced by oxygenic photosynthesis serves as the substrate
for methane production during decay processes. Buried or-
ganic matter then creates anoxic subsurface environments
conducive to the production of methane.

Future work should take the diversity of coupled envi-
ronmental sources and sinks into account. It is unknown
whether a diversity of chemical environments comparable
with those of Earth is necessary for life (or whether this
diversity is itself a biosignature). The values of both P(da-
tajlife) and P(datajabiotic) may not only be a function of the
bulk composition of a planet, but also the number and va-
riety of distinct environments on its surface (see also Scharf
and Cronin, 2016, for a discussion of the role of diverse
environments in potentially increasing P(life)).

Seager et al. (2013a) demonstrated that it is possible to
extend the type I concept to estimate not only whether a gas
could be the result of exploitation of a redox disequilibrium
on a planet, but also whether that source is a plausible
source of a detectable biosignature gas. The pilot study of
Seager et al. suggests that further research on life’s need for
energy would help to focus which type I products are
plausible as detectable biosignatures.

5.1.1.2. Biomass capture (type II). The carbon on planet-
sized bodies with thin (Earth-, Venus-, or Titan-like) atmo-
spheres is likely to be mostly oxidized (CO2) or mostly re-
duced (CH4), as these are thermodynamic minima for carbon
in an oxidized or reduced environment, respectively. Life
needs to convert this into carbon in intermediate redox states
to build complex molecules; this is a chemical universal,
deriving from the nature of chemical bonds to carbon (Bains
and Seager, 2012). This requires the oxidation or reduction of
an environmental material, respectively. The input is an en-
vironmental chemical and environmental carbon, the output
is biomass and a material out of thermodynamic equilibrium
with the abiotic environment. The possible inputs and hence
outputs are, again, predictable in principle allowing the pos-
sibility of constructing probabilities for the products of bio-
mass capture, informing P(datajlife).

The case of photosynthesis illustrates both the power and
the limitation of considering a whole organism as a black
box, which considers only looking at the net reaction rather
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than the individual components being reacted (e.g., in a
biochemical pathway). Considered as a whole, the net mass
balance for an oxygenic photosynthetic organism can be
expressed as input of CO2, H2O, and light and output bio-
mass and O2 as an oxidized waste product of the reductant
H2O:

CO2þH2Oþ light! CH2OþO2 (6)

Here, CH2O is a simplified representation for a carbo-
hydrate or sugar. In this context, oxygen is the principal
output gas, and is Earth’s most notable type II biosignature
(indeed, Earth’s most notable biosignature of any sort). Si-
milarly, other oxidized (nongaseous) waste materials are
generated by anoxygenic photosynthesis (see Kiang et al.,
2007a; Schwieterman et al., 2018, this issue). The same
logic can be applied to any life in any environment—indeed
in principle the same logic could be applied to noncarbon-
based life. Using just the overall stoichiometry and ther-
modynamics of the net process of taking in environmental
carbon and energy and outputting biomass, other oxidized
(Haas, 2010) or reduced (Bains et al., 2014) products have
been suggested for other worlds. Thus this ‘‘organism-level
black box’’ approach has power in providing a framework
for suggesting overall inputs and outputs before under-
standing of internal mechanism is available for any biomass
capture process.

5.1.1.3. Other uses (type III). Life on Earth produces a
wide range of volatiles for signaling, defense, and other
functions. Here, a ‘‘black-box’’ approach is relatively pow-
erless as an explanatory tool as these processes are highly
contingent. There is no known way to predict what signaling
or defense chemicals an organism will make, starting only
from the overall physics and chemistry of its environment.
The production of type III gases is a result of the ecological
or physiological demands on the organism, themselves the
result of evolutionary contingencies and of relationships with
other organisms: data that are not accessible for exoplanets.
As a result, in principle we might consider any chemical to
be a type III biosignature, which was the motivation behind
Seager et al.’s (2016) compilation of all possible small
molecule volatile biosignatures.

5.1.1.4. Products of modification of gases (type IV). Ga-
ses produced by life can be modified by the environment,
providing a source of secondary signatures of life. Examples
include ozone (the photolytic product of oxygen) and di-
methyl sulfoxide (the oxidation product of dimethyl sulfide—
DMS). These could in principle be predicted if the environ-
ment and products of life are known, for example, for types I
and II biosignature gases, but will not be predictable for type
III biosignature gases.

5.1.2. Alternatives for type classification. Seager et al.’s
original classification (2013a) was introduced as a pragmatic
approach to the specific task of extending our understanding of
the input/output model of biosignature generation, permitting
moving beyond basing models solely on terrestrial production
rates. Suggestions at refinement do not necessarily converge
on agreed classification systems, suggesting that there may be
no exhaustive categorization method. The goal of devising

such process-based classification schemes is to probe why life
might evolve to produce a given chemical signature, as the
Seager et al. (2013a) classification was explicitly devised to
do. A process-based classification particularly is needed for
systems modeling to simulate the production of biosignatures
as well as to explore possible novel biosignatures resulting
from complex interactions along the entire pathway from me-
tabolism through biosynthesis to postprocessing in a given
planetary biogeophysicochemical system. This approach is also
useful for formalizing conditional probabilities in a Bayesian
framework as it can inform the likelihoods of producing a
particular gas conditioned on a given environmental context.

Other disciplinary perspectives pose alternatives to the
Seager et al. approach, expanding our ability to calculate
P(datajabiotic) and P(datajlife) based on black-box meth-
ods. For example, although the Seager et al. type classes
focus on gaseous biogenic products and their secondary
products in the environment, the classification could be
further generalized to include surface biosignatures that also
result from these type processes, or properties of the che-
mical networks that generate them (see Section 5.4.1).
Possible surface biosignatures include pigments, or even
morphological features. Suggestions for generalizing and
making the type classifications more precise include the
following:

5.1.2.1. Type I, energy capture. Light harvesting pig-
ments can be included as type I biosignature molecules;
although they are not the products of energy capture, they
are the means to energy capture. These include pigments of
oxygenic photosynthetic organisms, microbial rhodopsins of
archaea, and other light absorbing molecules, as summa-
rized by Schwieterman et al. (2018, this issue). Fluorescence
as a result of excess energy release or waste product from
light harvesting could also be considered a type I bio-
signature. Moving from the level of individual molecules to
the networks of their interactions, certain chemical networks
may be better at energy capture than others, suggesting yet
another metric for assessing the potential for life (see Sec-
tion 5.4.1).

5.1.2.2. Type II, biomass capture. Biomass capture could
be elaborated further. The biomass itself can be a bio-
signature and produce waste products that can also be bio-
signatures. Biomass capture can be through autotrophy
(reducing inorganic carbon, CO2) but also through hetero-
trophy (incorporation of already reduced carbon). Reduction
of CO2 into biomass does not necessarily produce waste
products immediately, but only after that biomass itself
is involved in other activities. Incorporation of inorganic
carbon into biomass can be highly complex, and the ‘‘black-
box’’ approach to metabolism can be insufficient for iden-
tifying biosignatures. If, for example, it was found that the
use of reducing equivalents generated by photon capture to
reduce CO2 necessarily produced by-products or required
other detectable properties of an organism, then these would
be candidate type II biosignatures (see Section 5.1.3 for
more details on the subtleties of type classification). Bains
and Seager (2012) made an initial attempt at such a theory
when they claimed that any biomass capture must of neces-
sity produce an oxidized by-product on an oxidized world or
a reduced by-product on a reduced world. However, this
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statement, although being a class of explanation for why
terrestrial life produces oxygen as a by-product, does not
explain why oxygen and not, for example, hydrogen per-
oxide is made. Advances in this type of analysis require an
understanding of what aspects of photosynthesis are re-
quirements of the steps in the chemical processes, and which
are evolutionarily contingent, posing challenges for con-
straining P(datajlife) (see Section 6.2).

Another candidate type II biosignature is seasonal oscil-
lations of atmospheric CO2 content due to shifting balances
of autotrophic carbon fixation versus respiration. This is
exemplified by the observed *2% seasonal amplitude in
CO2 concentration in the northern hemisphere caused pri-
marily by the growth and decay or senescence of land
vegetation (Keeling, 1960; Keeling et al., 1976; Keeling
et al., 1996; see Figure 12). However, care must be taken to
distinguish biotic from abiotic causes of seasonal fluctua-
tions; the composition of the atmosphere of Mars changes
substantially with the seasons, including gases of biological
interest such as CO and CO2 (Mahaffy et al., 2013). Al-
though the orbital and climate reasons for these changes are
obvious to us, they may be less obvious to an observer at
interstellar distances.

5.1.2.3. Type III, ‘‘other uses’’. The type III classification
is a catch-all to describe compounds whose production is not
predictable on the basis of planetary chemistry, and as such
includes biosignatures with diverse functions other than
metabolic energy or biomass capture. These can include
ecophysiological functions such as nutrient capture and
heat tolerance (e.g., isoprene), ecological functions such as
antibacterial and antimicrobial compounds (e.g., methyl
bromide), and intra- and interorganismal signaling (e.g.,
ethane). Schwieterman et al. (2015) summarized a variety of
ecophysiological and ecological functions of numerous types
of biochemicals, which include phototrophy, antioxidants,
photoprotection (screening), thermal tolerance, nutrient ac-
quisition, growth regulation, and ecological functions such as
antibiotics and signaling. Even nonchemical properties of
organisms, such as bioluminescence (Miller et al., 2005),
used for signaling, can be classed as ‘‘type III’’ (see
Schwieterman et al., 2018, this issue). The type III classifi-
cation is, therefore, one that provides a ‘‘catch-all’’ for cases
where the biosphere (considered as a black box) modeled
only in terms of metabolic processes cannot be predicted to
produce that signature. This is important in estimating the
probabilities P(datajlife): for type III biosignatures our un-
certainties in biological origins mean that the signal-to-noise
will not be sufficient for unambiguous detection and more
context will be necessary to confirm biogenicity.

Type III could be extended in two ways. It could be
subdivided into biosignatures likely to be produced for
specific purposes. Examples are retinal pigments that are
unlikely to be used as visual signaling molecules in an ex-
clusively microbial biosphere, although they may function
in related activities such as phototaxis or ion transport. It
could also be divided into functional classes in cases where
modeling of a biosphere was sufficiently sophisticated to
infer functional roles for particular class of signatures.

5.1.2.4. Type IV. Products of modification of gases were
originally considered to be the products of environmental

modification of gases, which, in turn, produce other gases.
This could be generalized to products of environmental
modification and degradation of biogenic molecules, in-
cluding gases, liquid, and solid molecules to produce other
gases, liquids, or solids. For example, the terrestrial ‘‘Black
Earth’’ Chernozem soils are the result of substantial modi-
fication of local geology by biology, and would not be found
on an uninhabited world.

Some biosignatures may be of more than one type. For
example, marine algae produce DMS as a by-product of the
breakdown of a complex biochemical dimethylsulfonio-
propionate (DMSP). DMS can be classified as a type IV
product. However, DMSP is also probably the principal
energy source for the predatory zooplankton that feed on
DMSP-containing algae, and so for them DMS is a type I
biosignature (see Schwieterman et al., 2018, this issue, for
more details). There is some debate what type O2 should be
classified as, depending around what process(es) one draws
one’s black box. For example, Seager et al. (2013a) clas-
sified O2 as a type II biosignature involved in carbon or
biomass capture, for reasons outlined previously: consider-
ing the organism as a single system, photosynthesis involves
input of CO2 and light, production of biomass, and output of
O2. However, oxygen is produced as a result of oxygenic
photosynthesis, which is achieved through several steps in
series. In the ‘‘light reactions,’’ photon energy is used to
acquire electrons from water, whereas biomass capture
through fixation of carbon from CO2 occurs in a separate
subsequent step in the Calvin–Benson–Bassham cycle,
which is the same process used by anoxygenic phototrophs.

These steps are detailed in Schwieterman et al. (2018, this
issue). Photon energies in series drive successively more
oxidized states of the oxygen evolving complex (OEC), a
highly oxidizing metallocluster that, upon reaching a critical
state, catalyzes oxidation of water, thus generating oxygen.
Part of that photon energy is further used to excite the
electron to a lower redox potential, the energy of which can
then be used in redox reactions for storage of that energy.
Photosynthesis self-generates its own chemical gradients,
both to acquire electrons from water and to support redox
reactions for energy storage. In this more detailed analysis,
oxygen is a by-product of the step of energy capture and
excitation of electrons; it is in effect the by-product of
capture of energy from an internally generated redox gra-
dient, and so is a type I product.

5.1.3. When is it appropriate to deconstruct a black
box? The black-box method can be used as a first ap-
proach to understanding biosignature production when the
underlying biological mechanism(s) are unknown. However,
the final example in the previous section highlights the
potential ambiguities involved in such a classification
scheme. Further challenges arise when the black box fails to
work entirely, and more detailed resolution of the mecha-
nisms ‘‘hidden’’ in the black box may be necessary.

For example, Eq. 6 is a net mass balance equation for an
oxygenic photosynthetic organism, in which similar terms
on both sides of the equation have been canceled. It does not
express the stoichiometry when other oxidized (nongaseous)
waste materials are generated by anoxygenic photosynthe-
sis. Applying a black box to the inputs and outputs for an-
oxygenic photosynthetic organisms reveals that some terms
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cannot be canceled, which can then motivate further in-
vestigation to explain these extra terms. As just one exam-
ple, drawing black boxes around many similar organisms
and finding that some things about them are common while
others fail to fit the same net reaction model would motivate
dissection of the mechanism(s) of photosynthesis (dividing
the black box into smaller black boxes, defined by our un-
derstanding of mechanisms). This is necessary, for example,
to generalize for both oxygenic photosynthesis and the
several types of anoxygenic photosynthesis.

It turns out that photosynthesis involves processes that
separate the activities of energy capture and biomass capture
in sequence, so a more generalized black box is expressed in
the equation:

CO2þ 2H2Aþ light! CO2þ 4Hþ þ 4e� þ 2A

! CH2OþH2Oþ 2A
(7)

The intermediate reaction reveals that the reductant H2A
must first be split to donate electrons, and the CO2 is re-
duced subsequently. When the reductant is H2O, then the
equation yields:

CO2þ 2H2Owþ light! CH2OþH2OþOw
2 gasð Þ (8),

where the superscript ‘‘w’’ denotes that the molecules in the
produced oxygen gas come from the water molecules and
not from the CO2. In the simpler black-box equation, the
H2O on the right-hand side canceled with that on the left,
but in fact it is not the same, since the source of the oxygen
atom is different. If the reductant is instead, for example,
H2S, in anoxygenic photosynthesis, then the net reaction is:

CO2þ 2H2Sþ light! CH2OþH2Oþ 2S solidð Þ (9)

This shows that specific waste products can be viewed as
obeying a common set of processes. Both the O2 and S are
the results of oxidation of an input reductant from input for
light energy to obtain electrons. In this context, they can be
seen as the type I product of energy extraction from an
internal redox gradient. Even our last generalized equation
is still a simplistic black box, depending on one’s question.
For example, as discussed in the work of Schwieterman
et al. (2017), this equation does not reveal how the light
energy is partitioned, and in fact only a fraction of it is used
in oxidizing the reductant. If addressing what wavelengths
of light can be used in different types of photosynthesis, the
black boxes must be dissected further. The reader is directed
to Schwieterman et al. (2017), which provides more details
and literature. Understanding more of the process by which
photosynthesis occurs changes our perception of how oxy-
gen is produced. (‘‘Why’’ it is produced, the final cause in
an Aristotelian sense, then depends on how one asks the
question.)

The example of photosynthesis exemplifies the value of
an interdisciplinary discussion to address biosignatures,
wherein the approaches of physicists, chemists, and bi-
ologists are together leveraged to identify the useful level of
parsimony versus complexity. The power of the black box
type of input/output model of life is that it can be im-
plemented on the basis of environmental parameters alone.

This is also its limitation, in that it says nothing about
process or mechanism—it assumes that these are unknow-
able at interstellar distances. It remains an open question to
what extent this last point is indeed true, and to which either
universal ‘‘laws of life’’ or more detailed understanding of
the necessary chemistry of specific processes could unpack
the black box (both discussed more extensively hereunder).

5.2. Life as improbable chemistry

A different kind of ‘‘black-box’’ approach focuses on the
complexity of chemical products of life, rather than classi-
fication of how they are produced. One major observable
that discriminates living things from inanimate matter is
their ability to generate similar, complex, or nonrandom
architectures in large abundance, or to affect the back-
ground. Abiotic distributions of organics tend to be smooth,
and dominated by low-molecular weight species, whereas in
life, natural selection yields distributions that are more
‘‘spikey’’ as a result of selection of functional sets of mol-
ecules (Lovelock, 1965; McKay, 2011, see Fig. 5). Life also
reliably produces high molecular weight polymers with
discrete structures and molecular weights. Although abiotic
processes can produce polymers (such as kerogens, and a
wide range of 3D mineral polymers such as diamond), they
have a wide distribution of sizes and informationally simple
structures. Relating to the Bayesian framework, the idea of
searching for low probability chemistry is the same as
guiding our search for life by high detectability D: we
should look for life where we expect no abiotic system could
produce such a signal.

One potential biosignature could be the entropy of a
distribution of molecules, distributions that are very unlikely
to occur abiotically (e.g., those that require natural selec-
tion) are less probable. In this case, the biosignature is itself
the probability of a molecule or a distribution of molecules
occurring abiotically: if the probability is very low (low
entropy), we can be confident the signal arises due to life.
Caution must be taken in assigning biological origins to
nonrandom processes, however. An example is the periodic
distributions of masses of peptides displayed in living or-
ganisms, which have a mathematical rather than biological
explanation: rather than being a product of natural selection,
this pattern can be shown to arise purely as a result of the
properties of finite ordered sums combining 20 natural
numbers (corresponding to the 20 or so biological amino
acids) (Hubler and Craciun, 2012).

Based on the probabilistic framework, complex artifacts
are themselves biosignatures, since they can potentially be
discriminated from an abiotic background. For example,
technetium (Tc) is a rare element, not produced naturally,
and has been proposed as a possible indicator of a techno-
logical civilization, since creating it requires knowledge of
nuclear physics (Paprotny, 1977; Whitmire and Wright,
1980). Complex information processing systems such as
computers and brains are also biosignatures for the same
reasoning; it is unlikely that a laptop would form sponta-
neously without the long sequence of evolutionary steps
necessary to evolve intelligence capable of constructing
such technology. Although highly improbable structures are
most often discussed as biosignatures in the search for ex-
traterrestrial intelligence (SETI) research (Drake, 1965;
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Sagan and Shklovskii, 1966), the concept of improbability is
equally applicable to molecular signatures of life. The
challenge is that we must threshold a minimum complexity
above which we can be confident P(datajlife) > P(da-
tajabiotic) for the molecule of interest.

It is not obvious how it might be possible to generalize an
approach that aims to evaluate complex objects as possible
biosignatures, particularly with respect to chemical signatures
of life. In the context of exoplanet searches for life, achieving
this on a planetary scale requires the probabilistic search for
anomalies that themselves have in-built structure. Marshall
et al. (2017), Murray et al. (2018) developed one possible
complexity measure, they call Pathway Assembly, which
quantifies the complexity of any given object as the shortest
pathway for its assembly. The measure identifies the shortest
pathway to assemble a given object by allowing the object to be
dissected into a set of basic building units, and rebuilding the
object using those units. Pathway assembly bounds the likeli-
hood of natural occurrence by modeling a naive synthesis of the
observation from populations of its basic parts, where at any
time, pairs of existing objects can join in a single step. An
object of sufficient complexity causing an observable feature, if
formed in the absence of life, would have its formation com-
peting against a combinatorial explosion of all other possible
features that are equally probable.

Pathway assembly can be seen as a way to rank the rela-
tive complexity of objects made up of the same building
units on the basis of the pathway, exploiting their combi-
natorial nature. The motivation for the formulation of
pathway assembly is to place a lower bound on the likeli-
hood that a population of identical objects or observations
could have formed or occurred abiotically, that is, without
the influence of any biological system or biologically de-

rived agent. Thus, it is assumed that objects with high
pathway assembly will only be observed if produced by life.
Conceptually, the measure is similar to Bennett’s logical
depth, a measure of complexity based on the number of
computational steps necessary to recreate a piece of infor-
mation (Bennett, 1988). The key difference is that pathway
assembly looks at the intrinsic routes for connecting objects
based upon the resources within the system. Locally, path-
way assembly could be used to rank molecules in order of
complexity, identifying a threshold above which the mole-
cule must have been produced by a biological system.
Chemical methods based on retrosynthesitic analysis (taking
a molecule and ‘‘splitting’’ it in stages to reverse engineer
transformations chemists would use in the laboratory to
synthesize the molecule) could be used to estimate the
likelihood of different pathways for the abiotic synthesis of
chemical structures (Corey, 1967; Ravitz, 2013).

For exoplanets, we are unlikely to remotely detect large
macromolecules, and the pathway assembly for remotely
detectable small molecules is in general low. In principle,
exceptions to low pathway assembly could include molecules
such as DMS and dimethyl disulfide (DMDS). These volatile
gases are produced as indirect metabolic and decay products
of both eukaryotic and prokaryotic organisms, require several
independent enzymatically mediated steps to produce, and
have no known abiotic sources (see overview in Schwieter-
man et al., 2017, their Section 4.2.5). In its current formula-
tion, pathway assembly cannot account for biogenicity of
small molecules such as DMS and DMDS, as it is necessarily
a combinatorial measure to be computable from only
knowledge of the object. Since DMS and DMDS are less than
the threshold complexity set for origins from living processes
(above which we can be confident life produced it), they

FIG. 5. Schematic illustrating the difference between abiotic (smooth curve) and biological (spikes) distributions of
organic molecules. Nonliving systems tend to produce smooth thermodynamic distributions, whereas in living processes,
only a subset of molecule species are selected (through natural selection) to form a functional set. Adopted from McKay
(2011). Color images available at www.liebertonline.com/ast
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would have low pathway assembly despite their complex
biological synthesis pathways. In addition, these specific
example gases are unlikely to build up to detectable levels in
planets orbiting stars other than inactive M dwarfs, although
they might be indirectly indicated by a C2H6 over abundance
relative to that expected for the photochemical processing of
CH4 (Domagal-Goldman et al., 2011).

Despite current limitations, the concepts driving pathway
assembly are promising for exoplanet research, and there are
potential ways forward for characterization of small mole-
cules. Expanded versions of pathway assembly can account
for the occurrence of many small molecular species occur-
ring simultaneously, by analyzing the number of possible
network pathways. This might provide fruitful new direc-
tions for assessing biological origins, or at least bound
P(datajlife). More broadly, pathway assembly should be
able to be used to connect spectroscopic signatures looking
for patterns of improbable ‘‘complex’’ behavior. An exam-
ple could be exoplanets that have complex spectroscopic
signatures made of many narrow discrete lines (such as are
emitted by ‘‘white’’ light LEDs) that occur in abundance yet
cannot be explained without technology. The key to ex-
panding this will be using the pathway assembly to develop
thresholds that are accessible by current technology or in-
spire the development of new technologies, experiments,
and approaches.

5.3. Life as an evolutionary process

The ‘‘black-box’’ approaches of the previous sections are
not concerned with the specific mechanisms mapping the
planetary input to biological output, which is both their
strength and primary limitation. The internal mechanisms of
biological processes inside the ‘‘black box’’ are the result of
evolution, necessitating a better understanding of the uni-
versals of evolution to determine the universals in an input/
output framework. In applying Earth life as the standard of
reference, we have only one past and one present to guide
inferences of how integration over microscopic effects
produces specific macroscopic biosignatures. One challenge
is disentangling contingent events (which take the form of
temporal conditional probabilities) in the evolution of life
on Earth from universal constraints that we might expect to
apply to life anywhere. Using Earth’s history of evolution,
we are effectively substituting timing, frequency, and di-
versity for likelihoods applicable to the study of exoplanets.

The universality of the genetic code and central dogma
indicate all known life on planet Earth originated from a last
universal common ancestor (LUCA) (Koonin and No-
vozhilov, 2009). However, components of LUCA, such as
archaeal and bacterial cell membrane components and met-
abolic capabilities, may have arisen independently multiple
times. Our understanding of early evolution is complicated
by the common occurrence of horizontal gene transfer
(Woese, 2004; Mushegian, 2008; Lombard et al., 2012). For
example, respiratory chain components needed for aerobic
respiration may have been laterally transferred between
bacteria and archaea, and the origins of these genes are
unclear (Kennedy et al., 2001; Boucher et al., 2003). As a
result, it is conceivable that the last common ancestor of
each extant gene may or may not have been present within
the LUCA population.

With respect to the origins of life on Earth, the existence
of an LUCA implies our sample size is N = 1, which does
not provide enough data for statistical inference about the
processes or likelihood of abiogenesis (see Section 6.1).
However, the evolutionary process on Earth has driven in-
novations over many temporal and spatial scales, permitting
the possibility of understanding more universal features of
evolutionary processes by studying many events (Fig. 6).
Generalities could then be extrapolated to other chemistries.
Thus, when taken in light of the diverse biogeochemical
contexts for life on Earth, we might consider that we have
N = many examples for calculating P(datajlife) for evolu-
tionary processes, rather than being restricted to N = 1, as is
the case for the origins of life (see discussion on P(life) for
cautions in assuming independence of evolutionary inno-
vations for constructing likelihoods).

Extinction has been a hallmark feature of life on Earth.
Therefore, in calculating P(datajlife) we must not only
consider the probability of an evolutionary innovation
emerging but also its persistence in time. It would be worth
knowing whether a planet being observed has extant life or,
if not, is otherwise suitable for the emergence of future life,

FIG. 6. Life on Earth radiated from a LUCA with a single
standard genetic code. With respect to core biochemical
components of life, this common ancestry leaves a sample
size N = 1. However, the subsequent evolution of diverse
metabolic capabilities and evolutionary lineages has resulted
in diverse trajectories, allowing the possibility of mapping
N = 1 to N = many, considering the varying coupled envi-
ronmental and biological states over geological timescales
and the number of independent convergent evolutionary
innovations and transitions (only a few of which are
shown for illustrative example). It is unknown how fre-
quently these evolutionary events, including the origin of
life, should be expected to occur on other worlds. Adopted
from Schulze-Makuch and Bains (2017). LUCA, last
universal common ancestor. Color images available at
www.liebertonline.com/ast
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or whether observables indicate that life was once present in
the past. Better understanding of evolutionary processes and
how they couple to planetary scale signatures is necessary to
make progress on these unknowns.

5.3.1. Life as a coevolution with its planet: Earth as an
example. In the years since the work of Des Marais et al.
(2002), the community has increasingly recognized the fun-
damental importance of understanding biosignatures as re-
sulting from the coupled evolution of a planet with the life
upon it. Life is a phenomenon that manifests and maintains
itself at molecular and microscopic scales, and, through
evolutionary processes tightly coupled to geochemical cycles,
has led to macroscale changes in the Earth system. Again,
using atmospheric O2 as the standard example, oxidation of
water by photosynthesis occurs at the molecular scale, and the
evolution of oxygen and the growth of organisms may be
observed in the laboratory and field in situ, but the expression
of O2 as an exoplanet biosignature requires planetary-scale
accumulation over geological timescales. Owing to the co-
evolution of the biosphere, lithosphere, hydrosphere, and at-
mosphere of Earth, life itself may be considered as a
planetary process (Smith and Morowitz, 2016).

Planets are not static, but evolve in response to stellar
context and planetary feedbacks: for living worlds, these
feedbacks include those between a biosphere and geosphere.
As evidenced by Earth’s transitions, it is possible for pre-
cursors to biotic processes to emerge on an abiotic planet,
mediating the transition to a living world, and for a living
world to transition through different phases. Because Earth
life has been exclusively microbial for the majority of
Earth’s history, it is possible that primitive unicellular life-
forms are the most common and longest lasting stage of life
on a planet (Whitman et al., 1998). Microorganisms are
thought to have evolved on Earth after catalytic and genetic
macromolecules were compartmentalized into membrane
envelopes (Lombard et al., 2012). The degree to which these
early life-forms may have metabolic activities like modern
microbes, such as lithotrophic or photosynthetic processes,
is currently unknown. It is still not well understood how
feedback between the biosphere and the geosphere shaped
the gases that would have been detectable in our own at-
mosphere during the period after life first emerged on Earth
(>3.8 Ga), but before the rise of oxygen in the Earth’s at-
mosphere made O2 a remotely detectable biosignature
(Reinhard et al., 2017).

What we do know is that biological innovations on Earth
have driven major changes in the redox state of our planet,
leading to distinct observable states and planetary bio-
signatures (Kaltenegger et al., 2007). The prime example is
the dramatic global scale transition to an oxidizing atmo-
sphere resulting from oxygenic photosynthesis carried out by
ancient cyanobacteria, detectable in the fossil rock record in
the GOE at 2.3–2.4 Ga (Luo et al., 2016). Innovations like
this are dependent on the environmental conditions that al-
low them to arise and, in turn, drive the environment, leading
to successional innovations and planetary geochemical states
that coevolve in a history-dependent manner. These states
may be stable locally or globally at different temporal scales.
Because life and the planet’s redox state coevolve, a com-
plication for building probability distributions for P(dataj
life) is that the probabilities are time dependent in a manner

that depends on the states (e.g., the dynamics are state de-
pendent, regarded as a hallmark feature of life (Goldenfeld
and Woese, 2011; Walker and Davies, 2013)), that is the
probabilities we must construct are necessarily conditional.

On Earth, the changes in oxygen content of the Earth’s
atmosphere through geological time corresponded with bio-
logical innovations of oxygenesis, nitrogen fixation, eu-
karyotic cells, multicellularity, and the arrival of plants on
land (Berner et al., 2003; Ward et al., 2016; Gebauer et al.,
2017). Each may have been made possible by the changing
geochemistry of the planet, sometimes fostered by earlier life,
and there are a number of hypotheses to support this idea. For
example, the input of H2O2 to the oceans from the thawing of
a Snowball Earth state has been proposed to serve as a tran-
sitional electron donor in the emergence of oxygenic photo-
synthesis (Liang et al., 2006).

Another hypothesis is that the scarcity of ammonium as a
nutrient in the face of oxidation at the GOE may have neces-
sitated the development of nitrogen fixation (Blank and
Sanchez-Baracaldo, 2010). The availability of oxygen allowed
by aerobic respiration drives increases in organism size and
productivity (Catling et al., 2005). In addition, the formation of
the ozone layer from atmospheric oxygen altered the spectral
quality of surface irradiance, protecting it from UV radiation
and allowing the emergence of advanced life on land, as well as
altering the color balance of light for photosynthesis and
phototrophy (DasSarma, 2006; Kiang et al., 2007a). Many of
the evolutionary developments that brought about these
transformations remain enigmatic. Some of these innovations
have arisen independently multiple times, whereas others ap-
pear unique, some with evidence of an evolutionary pathway,
but others without a clear origin. The probability of these in-
novations is a separate term in our Bayesian framework,
P(life), to be treated in more detail in Section 6.2.

For other planets, surmising evolutionary path and geo-
logical epochs for life that are not Earth-like offers a rich
challenge for interdisciplinary science. One question is what
false positives (high values of P(datajabiotic)) and nega-
tives (low values of P(datajlife)) arise over time. Oxygen
and water on a young planet orbiting a flaring M star could
be a false positive, or ambiguous where the age of the star
and timescale for life’s evolution are unknown (Luger and
Barnes, 2015). False negatives may result when bio-
signatures are not detectable until long after initial devel-
opment of the producing organisms. This could occur when
time is required to build up a biogenic product in an at-
mosphere, and for the planet’s climate and geochemistry to
shift to a different equilibrium, as exemplified by the pos-
sible 2 billion years between the first emergence of oxygenic
photosynthesis and its detection in the GOE (Lyons et al.,
2014; Cole et al., 2016).

Astrobiologists must accept that they are unlikely to de-
tect marginal biospheres that have little detectable impact on
a planet (e.g., where P(datajlife) << P(datajabiotic), even if
we expect P(life) >0). In many cases, we may be unable to
detect biosignatures from earlier organisms that are subse-
quently suppressed by later organisms and evolving che-
mical and climate conditions, those that may exist only in
obscure niches such as deep hydrothermal vents, or are
relicts in refugia toward the end of a planet’s residence in
the habitable zone (O’Malley-James et al., 2013). Yet, these
marginal biospheres might explain extant life, being its
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precursor, or relict planetary chemistry. They are also im-
portant in estimating the prior probability of life P(life), and
in obtaining reasonable estimates of the distribution of life
on other worlds.

5.3.2. Calculating conditional probabilities in biological
evolution from past biogeochemical states. From the fore-
going discussion, it is clear that our planet has gone through
many different states as Earth and its living systems have
coevolved with one another over geological timescales.
Extending our understanding of life through its history, our
N = 1 sample permits the study of many distinct biophysi-
cochemical modes that differ from the current configuration
of the coupled biosphere, geosphere, and atmosphere.
Within the exoplanet biosignature community, it is often
noted that terrestrial life represents at least two end-member
examples of an inhabited planet: the early Earth (low or
absent oxygen) and the modern Earth (high oxygen) (e.g.,
Lyons et al., 2014; see also Meadows et al., 2018, this is-
sue). Expanding this idea, each time life has radiated into a
new geochemical niche could be considered as an additional
data point: each example provides new insights into how
selective processes can yield new biochemical mechanisms
for energy acquisition and generation of biomass.

To understand potential biosignatures and their likeli-
hoods requires linking the history of different modes of
biological innovation and environmental states on Earth to
their potential planetary-scale signatures. By extension, it is
only by piecing together the histories of key molecular
components that couple metabolic activity to planetary
reservoirs that we may begin to estimate the temporal fre-
quency and distribution of comparable biosignatures on
other planets (Claire et al., 2006; Lyons et al., 2014). Two
data sets, the geological record and the genetic content of
extant organisms, provide complementary insights into this
history of how key molecular components have shaped or
driven global environmental and macroevolutionary trends
(Fischer et al., 2016; Caron and Fournier, 2017; Kacar et al.,
2017b, 2017c). Changes in global physiochemical modes
over time are thought to be a constant rather than ephemeral
feature, as life has continuously evolved protein functions
for the >3.8 billion years of life’s history on Earth. Orga-
nismal survival depends on how well critical genetic and
metabolic components can adapt to their environments,
necessitating an ability to adapt to changing conditions.
These adaptations can produce viable biosignatures where
biological rates exceed abiotic rates, for example, where
P(datajlife) > P(datajabiotic).

The geological record provides a number of biologically
dependent indicators of macroscale atmospheric and oceanic
composition, but provides little information by way of the exact
behavior of the molecular components that altered the com-
positions of these reservoirs. One proposed way to infer the
activity of ancestral molecular components is to reconstruct
protein sequences that might have been present in ancient or-
ganisms, downselecting to a subset of possible sequences that
may have been adapted to these ancient environmental con-
ditions. It should be noted that such sequences are inferred
based on the most parsimonious ancient sequence(s), given the
diversity of modern sequences, and are subject to historical
ambiguity (Benner et al., 2007; Kacar and Gaucher, 2012).
With that caveat, reconstructing ancestral phenotypes that can

lead to large-scale planetary biosignatures can be accom-
plished by identifying primitive biomolecular protein se-
quences that have impacted the cycling of C, N, S, O, or P
through global reservoirs (Kacar et al., 2017c).

Studying the interface of past molecular behavior and
environmental conditions may provide new insights into the
interpretation of deep time biosignatures on Earth. For ex-
ample, organismal and community fitness can be studied in
the laboratory, as well as rates of production of biosignature
gases. Data reconstructed through these studies may then be
compared and contrasted with independent data obtained
from primitive organic material for which there is a sus-
pected or known biological imprint. Such findings may be
critical for establishing biosignature baselines that are per-
sistent and thus considered more broadly ‘‘universal,’’ or to
identify cases where protein activity was not uniform in
Earth’s past. However, experiments incorporating these
methods also require careful design to rule out signals from
other potential artifacts impacting biosignature assessment,
such as sequence reconstructive biases or organismal re-
sponses to nonadapted substituted components. Properly
accounting for these ambiguities, the data generated from
these approaches can inform how likely a given biosignature
signal is within the space of understood catalytic proteins,
contributing to our understanding of P(datajlife).

There is an analogous approach searching for ancestral
metabolic pathways by comparing modern pathways and, in
turn, reconstructing putative ancient ancestors. This has
been an established approach to studying the evolution of
metabolic capabilities for >70 years (see, e.g., Waley, 1969).
Smith and Morowitz (2016) argue that this approach can
probe the pregenetic epoch of biogenesis, and be used to
understand the chemistry from which life arose. Although
our ability to reconstruct the exact history of life-on-Earth is
debated, these approaches illustrate that a combination of
genetic, structural, and chemical analyses of the product of
3.5 billion years of evolution can provide insights into in-
termediate states in that evolution.

Understanding the function of ancestral components can
also provide a novel means of gaining access to configura-
tions of life that deviate from extant norms. For example, it
is possible that life could have started with, evolved from, or
subsisted by uptake of a different set of monomers than
those utilized by current life on Earth (Forterre and Gri-
baldo, 2007; Braakman and Smith, 2012). By engineering
modern organisms with the behavioral properties of these
ancient components, we may explore variations of so-called
weird life, which can yield yet more significant insights into
the essential requirements for life as a universal phenome-
non. This is a common approach in the field of synthetic
biology, and indeed components of organismal genetic
machinery have been successfully replaced with synthetic
parts in functioning organisms. Examples include expanded
genetic alphabets (Malyshev et al., 2014), synthetic minimal
bacterial genomes (Hutchison et al., 2016), ancient genes
inside modern bacterial genomes (Kacar et al., 2017a,
2017c), and alternative nucleic acids (Taylor et al., 2015).

5.4. Insights from universal biology

All of the candidate biosignatures discussed thus far in
this review have focused on chemical signatures of life.
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Searching for ‘‘life as we know it’’ implies searching for
‘‘biochemistry as we know it,’’ for example, DNA, proteins,
and metabolisms like Earth’s, such as oxygenic photosyn-
thesis. Therefore, moving beyond ‘‘life as we know it’’ to
‘‘life as we don’t know it’’ with unknown biochemistry will
require developing new frameworks that address universal
aspects of living processes. The idea of ‘‘universal biology’’
has been proposed with the intent of transcending the
chemistry of life as we know it to uncover universal orga-
nizational properties of living systems (Goldenfeld and
Woese, 2011; Davies and Walker, 2016)—perhaps associ-
ated with patterns in information flow or energy transfer—
that should apply to any kind of life, even if it is based on a
radically different biochemistry.

Of the candidates for universal biology, chemical dis-
equilibria have been the most widely discussed as a potential
biosignature (Krissansen-Tottan et al., 2018). But, it is un-
clear whether disequilibria associated with life quantita-
tively differ from other planetary disequilibria, as already
discussed. In addition, some have argued that life exists to
facilitate a more rapid approach to equilibrium than would be
possible with geochemical processes alone (Shock and Boyd,
2015), such that living planets should be closer to equilib-
rium rather than farther as compared with nonliving planets.
Other candidates include universal scaling laws (West et al.,
2002; Okie, 2012), collective behavior (Goldenfeld and
Woese, 2011), network structure ( Jeong et al., 2000), or
informational structure (Davies and Walker, 2016). Although
we are only in the early stages of developing a universal
biology, insights into common organization properties of
biological systems gained over the past decade hold promise
for providing novel approaches to biosignatures in near-term
searches for life and for longer term mission planning, pro-
viding new frameworks for constraining P(datajlife) (Kris-
sansen-Totton et al, 2018).

5.4.1. Network biosignatures. Networks are used to
quantify the properties of living systems across all scales of
organization, from the chemistry within cells ( Jeong et al.,
2000) and the structure of food webs (Dunne et al., 2002) to

the organization of cities (Bettencourt, 2013). A network is
most simply described as the pattern of connections among a
system of interacting entities. Mathematically, networks are
studied using the tools of graph theory, where entities are
represented by nodes and their interactions by edges. Fa-
miliar examples include social networks, such as Facebook,
where individuals are represented by nodes and their
friendships by edges (e.g., an edge is present if two indi-
viduals ‘‘like’’ each other). Likewise, chemical species re-
acting with one another in a planetary atmosphere can be
represented graphically with a network, where one node
type represents molecular species and a second node type
represents the reactions that occur among these species (left
panel, Fig. 7). Other graphical representations are possible,
such as those involving only molecular species (and no re-
action nodes), which are connected if they participate in the
same reaction (right panel, Fig. 7).

Network representations have been used to study bio-
chemical networks associated with metabolism. Jeong et al.
(2000) demonstrated that the metabolic networks of 43 or-
ganisms, representing all three domains of life, are scale-
free networks, meaning their degree distributions follow a
power law P(k)* k-a, where P(k) is the probability that a
given molecular species participates in k reactions (in net-
work parlance k is the degree of the node, corresponding to
the number of edges connected to that node). Earth’s met-
abolic networks are, therefore, highly heterogeneous in that
there exist a few highly connected nodes (hubs) that link
numerous less connected nodes together. This property has
been explained in terms of enhanced robustness: heteroge-
neous networks are known to be more robust to the loss of
random nodes than random networks. It is, therefore, a can-
didate signature of evolutionary processes at work, providing
new ways to potentially constrain the value of P(datajlife).

The universality of metabolic network organization sug-
gests that life on other worlds might evolve to exhibit net-
work topology similar to that of Earth’s metabolic networks
(Kim et al., 2018) and, therefore, that network topology
is itself a biosignature. One hypothesis is that life could
additionally leave a topological imprint on atmospheric

FIG. 7. Two different graph-theoretic representations of the same chemical network, consisting of the reactions: H +
HCl / H2 + Cl, HCl + O / Cl + OH, and HCl + OH / Cl + H2O. Network examples adopted from Solé and Munteanu
(2004). (A) Bipartite representation where both reactions and substrates are treated as nodes. (B) Unipartite representation
where only substrates are treated as nodes.
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chemistry. To test this hypothesis, several studies have
examined the network topology of Earth’s atmosphere (Fig. 8)
and compared it with that of other worlds in our solar system
(Gleiss et al., 2001; Solé and Munteanu, 2004; Holme et al.,
2011; Estrada, 2012). The results of these comparative an-
alyses indicate that the Earth’s atmospheric reaction network
structure differs from other planetary atmospheres, and
specifically that it is more like biochemical metabolism in its
topological structure than it is like other atmospheres. In
particular, Solé and Munteanu (2004) showed that Earth’s
atmospheric chemical reaction network exhibits scale-free
topology, much like biochemical networks, whereas other
planetary atmospheres, including Mars, Venus, Titan, the
Jovian planets, are structured more like random networks.
These results resonate with the view that life is indeed a
planetary process and is deeply embedded in the Earth
system, to the point that even the network arising from the
chemical dynamics of the atmosphere is driven by life (and
not just its molecular constituents such as O2).

There are observational biases that must be accounted for in
network analyses, as we know Earth’s chemical constituents
and its reaction network to a much greater level of detail
than we do other planetary atmospheres. However, even the
major constituents contained in Earth’s atmosphere may re-
quire a more complex network to fully explain them. The
fundamental reason for this is the same as the foundations of
traditional thinking on ‘‘nonequilibrium’’ or nonsteady-state
biosignatures that have been in the minds of the exoplanet
community for decades (Lovelock, 1965; see also Section 4.3).

The introduction of nonsteady-state gases by biology
leads to additional atmospheric reactions that would other-
wise not take place. Conversely, the presence of these same
gases in a steady-state condition that does not require bio-
logical fluxes to maintain them implies that the chemistry of
the atmosphere is such that their destruction rates are slow, a
result of the atmospheric chemistry being less complex. We
can consider the classic example of O2 to illuminate this.
The known mechanisms for accumulating detectable
amounts of O2 in a planetary atmosphere are all associated
with atmospheres that are deficient in H. The results of this
are atmospheres with chemical networks dramatically less
complex due to the lack of H-bearing species and their re-
actions. Similarly, a planet without biological O2 fluxes
would not have the additional reactions that are caused by
its presence in the atmosphere. The network complexity
would instead be greatest when O2 is present in an atmo-
sphere that would otherwise destroy it rapidly. Similar
trends are hinted at in studies of alternative biosignatures as
well, such as the additional chemistry resulting from bio-
genic sulfur gases that causes C2H6 to be detectable in
exoplanet environments (Domagal-Goldman et al., 2011).

To validate this proposal, and utilize network-theoretic
biosignatures for remote detection, several lines of research
must come together. The properties that are unique to inhabited
worlds need to be fully explicated. Recent work has shown that
scale-free topology is not as common as previously claimed
(Clauset et al., 2009), and requires rigorous statistical tools to
confirm. In particular, relatively few molecular species are

FIG. 8. A network representation of
Earth’s stratospheric chemical reac-
tion network. High degree nodes are
highlighted in warm tones and lower
degree nodes in blue. Data are from
DeMore et al. (1997). Color images
available at www.liebertonline.com/
ast
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confirmed to be present in many planetary atmospheres,
meaning atmospheric networks are small, making it difficult to
obtain statistically rigorous fits for the degree distribution. For
exoplanets we will have even less data. Other topological
properties must, therefore, be studied to determine in what
ways Earth’s atmosphere differs from other worlds. Topolo-
gical properties should be analyzed across a range of kinetic
and dynamic models, varying temperature, pressure, and
composition to determine how physical effects influence at-
mospheric reaction network topology to isolate possible bio-
logical origin, and constrain P(datajlife) for network topology.
A systematic analysis of the topology of different models for
planetary atmospheres could be used to determine the likeli-
hood of specific features, given planetary and stellar context. In
addition, deeper analysis should be done for Earth to determine
how biology is driving the distinctive topological properties
observed. Finally, if validated as a biosignature, it remains to be
demonstrated how we can extract large-scale statistical prop-
erties of an atmosphere’s network from the limited data we will
obtain through remote observation. One possibility is to use
Bayesian retrieval methods, used for extracting cloud proper-
ties from atmospheric data (Line et al., 2012).

This concept is relatively new—to the exoplanet field at
least—and thus warrants further investigation. Studies of the
kinetic properties of various terrestrial worlds can test the
overarching hypothesis that Earth’s network is more complex,
and that the increased complexity is due to biology. The ap-
plication of this approach to multiple inhabited planets—
including that of Early Earth—should also be conducted. This
will allow us to understand how well this hypothesis holds, how
useful it is to constraining P(datajlife), and in, turn, how useful
it will be to future exoplanet astrobiology missions.

This illustrates one example of how considering the gen-
eral chemistry-independent properties of life may lead to
specific research proposals in life detection strategies. Deeper
research questions should also examine whether there are
other equally fundamental properties of life that can poten-
tially lead to remotely detectable consequences.

5.4.2. Universal scaling laws applicable to other
worlds? Another candidate for universal biology is the scal-
ing laws associated with trends across different biological or-
ganisms. Familiar examples from physics include critical
phenomena near phase transitions, where physical properties
such as heat capacity, correlation length, and susceptibility all
follow power law behavior. Scaling relationships take the form:

Y(kN)¼ kbY(N), (10)

where k is an arbitrary scaling parameter with scaling co-
efficient b, N is typically a measure of the size of the
system, and Y measures a property characteristic of the
system. Thus, the scaling relation provides a direct map-
ping from the value of the parameter of interest, Y, for a
system of size N, to the value of the same parameter
measured on a system of size kN. The scaling Y(kN)/Y(N)
is then parameterized by a single dimensionless number,
the scaling exponent b. A simple solution is the power law
relationship associated with scale-free network topology as
discussed in the previous section. In addition to power laws
in networks, scaling relations have been studied in biology
in phenomena as varied as patterns in species diversity

(Locey and Lennon, 2016), the organization of cities
(Bettencourt, 2013), and the structure of neural systems
(Zhang and Sejnowski, 2000). A scaling relationship of
interest for identifying universal patterns in biology, ap-
plicable to other worlds, is the allometric scaling relations,
which relate features such as metabolic rate to body to size
(West et al., 2002; Okie, 2012). These scaling relations
change through the major transitions in biological archi-
tecture (e.g., from prokaryotes to protists to metazoans, see
Fig. 9) and appear to be universally held across life on
Earth (Delong et al., 2010).

One pertinent question for exoplanet biosignature re-
search is whether these scaling relations hold at the level of
the biosphere as a whole (as it is ultimately an entire bio-
sphere we will detect remotely). It seems in many cases
they do. A recent example is work by Kim et al. (2018)
demonstrating the topology of biochemical network scales
as a function of network size across individuals and eco-
systems up to and inclusive of the biosphere-level chemical
reaction network. Biosphere and ecosystem level chemical
reaction networks are shown to have topological organi-
zation similar to that of individual organisms. It is perhaps
the fact that global biochemistry displays these topological
properties that the atmosphere has been driven toward the
particular organization in chemical network structure (dis-
cussed in the previous section); however, this is a con-
nection that remains to be worked out and is a subject of
future work. Other examples of scaling relations applicable
to ecosystems that can be scaled to biosphere-level prop-
erties include patterns in global species biodiversity (Locey
and Lennon, 2016) and in the mass allocated to predators
and prey (Hatton et al., 2015).

Scaling relations, due to their ability to predict values of
system parameters based on other measured quantities, rep-
resent one of the closest approaches so far to a predictive
theoretical biology, akin to theoretical physics. Using the
observation that cells and organisms are constrained in their
growth by resource distribution networks, predictive models
can be generated that accurately provide values for the scaling
exponents observed in a number of diverse biological systems
(West et al., 1999). However, there is as yet no unified theory
that explains the observed allometric scaling relations across
different levels of organization, nor when transitions in scal-
ing regimes should occur. Nonetheless, the existence of these
scaling relations suggests integrative frameworks for con-
straining P(datajlife). For example, modeling flux rates of
biosignature gases on exoplanets could be informed by fun-
damental bounds on flux rates for given biomass estimates
provided by universal scaling (given minimal assumptions of
a particular biological architecture), allowing us to extrapolate
to metabolisms that might exist in non-Earth-like environ-
ments. It should be noted that the universal properties asso-
ciated with scaling laws and network structure are both
statistical constraints on P(datajlife), providing fundamental
chemistry-independent bounds on our expectations for life to
generate a given observable.

6. P(life)

So far, we have focused discussion on calculation of
P(datajabiotic) and P(datajlife). The final term necessary for
calculating the posterior likelihood of life (apart from
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knowledge of experimental noise) is the prior probability for
life to exist in the first place, P(life). This is the least con-
strained and most challenging term to quantify. As we
pointed out previously, it is not sufficient to simply assign a
probability that life-as-we-know-it exists on another world
(which is unknown), but instead P(life) should be considered
as decomposable into a family of conditional probabilities for
the existence of different living processes on other worlds,
which may be similar or dissimilar to those on Earth.

Life is a path-dependent process, so each new biological
innovation is dependent on those that preceded it, thus
P(life) takes the form of conditional probabilities for each
evolutionary step (which itself may be difficult to define;
what are the relevant steps?). As an example, in assessing
the probability for multicellularity to evolve, we might de-
compose it into the following series of conditional proba-
bilities:

P(multicellularity)¼P(multicellularityjeukaryogenesis)

· P(eukaryogenesisjemerge)

· P(emerge), (11)

where we have here considered only two of the most sig-
nificant ‘‘major’’ steps. There are many more unspecified
steps that will be necessary to articulate to map the limited
observables of exoplanets to a reasonable estimate of the
prior probabilities of living processes. The prior probability

of any living process will ultimately depend on P(emerge),
the probability for life to originate. Thus, how well we can
constrain P(life) depends on how well we can constrain the
probabilities for the candidate living processes that may
have generated the signal, its evolutionary history, and ul-
timately the origins of life within that planetary context.

6.1. P(emerge): constraining the probability
of the origins of life

As noted in Section 3, attempts have been made to con-
strain P(emerge) within a Bayesian framework by Carter
and McCrea (1983) and more formally by Spiegel and
Turner (2012), with the conclusion that P(emerge) could be
arbitrarily close to 1 or 0. In other words, P(emerge) is
currently unconstrained (apart from the trivial statement that
it is not identically 0). In Spiegel and Turner (2012), it was
estimated that the likelihood for the emergence of life fol-
lows a Poisson distribution with time, such that life was
most likely to arise early in a planet’s evolution. However,
for M dwarf stars, the early stellar environment may not be
conducive to life (see Section 4.1 on stellar context) and in
general it is unknown whether life must arise early in a
planet’s evolution, or whether it could occur at any time.
Ideally, we would be able to calculate P(emerge) from
theory, but there currently are no theoretical bounds—we do
not have a quantitative definition for life nor a theory of
the emergence of life from which to do such ab initio

FIG. 9. Empirically observed scaling laws for metabolic rate as a function of body mass exhibits three major regimes,
associated with prokaryotes, protists, and metazoans (Delong et al., 2010). If these trends are universal and can be derived
from an underlying common theory, it may be possible to apply the universal scaling relations to inform P(datajlife) on
other worlds. Adopted from Okie (2012). Color images available at www.liebertonline.com/ast
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calculations (Walker, 2017). We must better understand the
mechanisms underlying the origins of life to make a case for
P(emerge).

If the emergence and evolution of life requires time, then
knowing the age of the star is valuable to assessing the
potential for life, and thus avoiding systems wherein P(life)
might be too low to confidently detect life. Measuring the
ages of stars is more accurately done for the youngest ages
when the youth diagnostics (spectroscopy, photometry, ki-
nematics, chemistry, etc.) are more clearly measureable. For
stars much older than 1 billion years, we must rely on less
precise techniques. However, from statistical studies of
many stars in various regions of our galaxy, we are able to
better refine the ages of old stars by their location in the
galaxy (i.e., disk or halo), by the composition of the stars
(high or low metallicity) and by their level of stellar activity
as most stars tend to be less active (i.e., less flaring and
slower rotation) as they age.

In Scharf and Cronin (2016), a formalism akin to the
Drake equation was proposed for estimating P(emerge) at a
planetary scale. The mean expected number of abiogenesis
events on a planet in a given time interval was suggested to
depend on four parameters: the number of potential building
blocks, the mean number of building blocks per organism
(acknowledging ambiguities in the definition of ‘‘organ-
ism’’), the size of the subset of building blocks available to
life during a fixed time interval, and the probability of as-
sembly of those building blocks. The latter term, based on
the probability of assembly, was intended as a ‘‘catch-all’’
that does not require detailed knowledge of mechanism and
could, for example, include the probability per unit time of
vesicle self-assembly, or a sequential series of steps leading
to an evolvable system. In this formulation, this probability
is the least constrained parameter, necessitating input to
constrain it from in vitro and in silico research.

One potentially fruitful path for estimating these proba-
bilities is ‘‘messy chemistry,’’ wherein the goal is to study the
statistical properties of chemical systems and their interac-
tions with other compounds, formation structures, etc. in
cases where precise composition and mechanism are not
known (Guttenberg et al., 2017). Here, ‘‘messy’’ refers to
high diversity of products, intermediates, and reaction path-
ways that cannot all be precisely identified. Analysis of the
bulk properties of geochemical organic samples provides one
example, wherein the petroleum industry has developed
methods for classifying crude oils quickly by measuring a
small subset of its properties. Applied to chemistries relevant
to the origins of life, the emergence of ‘‘life-like’’ features
could be studied statistically to estimate the likelihood of
functional polymers emerging from random mixtures, as just
one example. This could, in turn, be tied to different envi-
ronmental contexts through explorations of a diversity of
environmental parameters. One such parameter is the rate of
hydration–dehydration cycling, where wet–dry cycles have
recently become a prominent mechanism in origins of life
research for driving the abiotic synthesis of far-from-
equilibrium biopolymers (Hud and Anet, 2000; Walker et al.,
2012; Mamajanov et al., 2013). For polypeptide synthesis, the
duration of the dry phase has been shown to affect product
yield, along with other environmental parameters such as
temperature, number of cycles, initial monomer concentra-
tions, and pH (Rodriguez-Garcia et al., 2015). For cycling

driven by tides, or day–night cycling, this type of data could
place bounds on P(emerge) for exoplanets based on their
rotation rate. These and other environmental parameters
should be explored in large-scale parallel chemical experi-
ments to generate the necessary statistics.

In Scharf and Cronin (2016), it was also suggested that
multiple planet systems would have a higher value of
P(emerge), because impact ejecta exchanged between neigh-
boring planets with parallel chemistry and parallel chemical
evolution could enhance rates for development of molecular
complexity. Future modeling will need to determine whether
rates for the origins of life (or its persistence and evolution) are
enhanced for worlds that are closely neighboring other habit-
able worlds.

6.2. Biological innovations and the conditional
probabilities for living processes

Since the emergence of life on Earth, life has undergone a
number of different stages of evolution (Szathmáry and
Smith, 1995; Braakman and Smith, 2012; Bains and Schulze-
Makuch, 2016). Tracing the history of biological innovations
allows the possibility of leveraging the diverse history of life
on Earth, where N = many (see Section 5.3), to infer the
likelihood of evolutionary events based on their frequency of
independent origins. However, care must be taken to deter-
mine what is meant by ‘‘independent.’’ For example, the
probability of evolving multicellularity is dependent on the
prior probability of eukaryogenesis (at least for Earth life),
since all obligately multicellular organisms are eukaryotes
(as in the previous example). It is also dependent on the prior
probability of photosynthesis, since complex life evolved in
the presence of O2, and because O2 is widely believed to be a
precondition for large multicellular animal life.

There are many more such conditional probabilities we
could assess. Thus, although the transition to multicellularity
is itself a common occurrence in the history of life on Earth
(having evolved independently at least seven times; Knoll,
2011; Niklas and Newman, 2013), multicellularity may not
be universally common on inhabited planets if either the
probability of eukaryogenesis or oxygenic photosynthesis, or
any other steps in the pathway to multicellular life are rare.
We also must consider that all life on Earth shares a common
ancestry, so when considerations of evolutionary ‘‘indepen-
dence’’ get blurrier the further we trace conditional proba-
bilities for evolutionary events into deep history. Until we
discover another example of life with independent origins (or
have a guiding universal theory), it will be difficult to say
with certainty what the likelihood of similar evolutionary
events would be from a different starting point (e.g., a dif-
ferent biogenesis, with different chemistry).

Rare events in evolution are often associated with major
transitions or innovations. Maynard Smith and Szathmáry
(1995) identified eight major transitions, with respect to
changes in units of selection, in the history of life on Earth,
each associated with transitions in the nature of information
transfer between and within individuals. These include the
transitions of replicating molecules to populations of mole-
cules in compartments, unlinked replicators to chromosomes,
the RNA to DNA-protein world (genetic code), prokaryotes
to eukaryotes, asexual clones to sexual populations, multi-
cellularity, eusociality, and linguistic societies. Missing from
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Maynard and Smith’s scheme are metabolic innovations that
did not necessarily change what constitutes a selectable in-
dividual, but nonetheless had a significant impact on the
biogeochemical evolution of the Earth system, such as the
origins of photosynthesis and nitrogen fixation. An important
question for understanding the evolution of life on Earth is
whether or not we should expect the same innovations to
occur again if we ‘‘rewound the tape of life’’ (Gould, 1990).
A more critical question for exoplanet biosignature research
is, how frequently should we expect these same or different
biological innovations to happen on other inhabited worlds?

In Bains and Schulze-Makuch (2016), three possible hy-
potheses were proposed for the conditional probabilities of
evolutionary innovations to occur: the critical path hypoth-
esis, the random walk hypothesis, and the many paths hy-
pothesis. In the critical path scheme, innovations require
preconditions that take time to develop (determined by the
nature of the event and the geological and environmental
conditions of the planet), but once the preconditions exist,
the event happens on a well-defined timescale. In the ran-
dom walk hypothesis, the innovation is unlikely to occur
(being based on one or more highly improbable events), thus
significant time must elapse (on average) before the event
occurs (a complication arises in interpreting this hypothesis
in the event of postselection, wherein the event already
occurred, in which case a rare event could have happened
rapidly, see Carter, 2008 for discussion).

In the many paths hypothesis, the innovation requires
many random events to create a complex new function, but
many combinations can generate the same functional output,
so the chance of the innovation is high. The key steps in the
evolution of life, development of prebiotic chemistry, syn-
thesis of cellularity, and the invention of metabolism and
what pathway they took are not entirely clear. Although
modern geological, chemical, and genomic methodological
approaches are extremely powerful, there nevertheless re-
main considerable challenges to precise understanding of
the events, leading to the expansion of life on our planet.
Considerable effort may be required to understand the de-
tailed history of evolution from methods as varied as ra-
diocarbon dating, paleobiology, and molecular evolution.

We summarize here some critical gaps in our knowledge of
early events in the evolution of life on Earth. The formation of a
cell envelope serving as a permeability barrier and preventing
the free diffusion of chemicals into and out of cells and ability
to produce and store cellular energy were probably an essential
prerequisite of the emergence of life on Earth. It is unclear
whether life is necessarily ‘‘cellular,’’ although it is difficult to
envision possible alternatives. Our current knowledge of how
chemiosmotic coupling and cellular energy metabolism
evolved from cellularity and set the stage for evolution of the
LUCA, most likely with an universal genetic code already
established, which subsequently evolved into all life on Earth,
is sketchy at best (Weiss et al., 2016).

The very early appearance of the electron transport chain,
membrane complexes responsible for fundamental respira-
tory processes in all prokaryotic cells, also remains an en-
igma. Although they are found in both bacteria and archaea
on Earth and may be used for redox reactions of nitrogen,
sulfur, and oxygen gases, the precise evolutionary steps ta-
ken in their development still confound modern molecular
phylogenomic analysis (Castresana and Saraste, 1995). Si-

milarities between a variety of chromophores—for example,
porphyrins with different metal ion centers within membrane
proteins of the electron transport chain and photosynthesis—
remain tantalizing (see review in Schwieterman et al., 2018,
this issue). Generation of an electrochemical gradient used to
drive adenosine triphosphate synthesis through chemios-
motic coupling is a common nearly universal theme (Racker
and Stoeckenius, 1974), the basis of which deserves further
attention.

The emergence of oxygenic photosynthesis involved con-
servation of photosystem structures that evolved in earlier
organisms but also added a unique molecule, the OEC, which
is responsible for oxidation of water but whose origin remains
elusive. A number of hypotheses have been forth, though
none yet has reached consensus. These hypotheses span ap-
proaches from the biophysics of transitional electron donors,
generally in the context of geochemical environment (Blan-
kenship and Hartman, 1998; Dismukes et al., 2001; Sauer and
Yachandra, 2002; reviewed at the time by Blankenship et al.,
2007; Fischer et al., 2016); phylogenetics to constrain lineage
and timing (Xiong and Bauer, 2002; Soo et al., 2017); and
reconstruction of evolutionary relationships among the re-
action center proteins and their biosynthesis pathway (Car-
dona et al., 2015; Cardona, 2016). This work to date advances
knowledge of the origins of oxygenic photosynthesis on
Earth. However, the likelihood of the OEC capability arising
given a conducive geochemical setting, that is, the likelihood
of another planet developing oxygenic photosynthesis by the
same method, is difficult to constrain.

The light-harvesting apparatus for photosynthetic organ-
isms, both oxygenic and anoxygenic, has arisen in multiple
forms, utilizing a variety of pigments, all of which, however,
obey the same principles, reviewed in Schwieterman et al.
(2018, this issue). This variety of colors, of interest to as-
trobiologists as potential biosignatures such as the vegetation
red edge (again see Schwieterman et al., 2018, in this issue
for a review), arises from adaptation as well as acclimation to
optimize for the organisms’ spectral light environment. Only
a very few theoretical modeling efforts have attempted to
predict the optimal absorbance spectrum for light harvesting
based on various efficiency constraints, with notably differ-
ent approaches by Milo (2009), Marosvölgyi and Gorkom
(2010), and Punnoose et al. (2012). Long-held assumptions
about the primacy of chlorophyll a (Mauzerall, 1973; Björn
et al., 2009) have now been challenged by the recent dis-
coveries of far-red chlorophylls in oxygenic phototrophs (Li
and Chen, 2015; Allakhverdiev et al., 2016; Ho et al., 2017).
The details of these optimality models are beyond the scope
of this article, but their diverse approaches and the existence
of far-red chlorophylls indicate unknowns about the innova-
tions that lead to diversity in the same type of life process.

Biological innovations may be classified through disci-
plinary perspectives in addition to that of biologists, raising
the question of where to draw the black box for bio-
signatures. For example, light-capturing chemistry is not
unique to photosynthesis, but a range of other structurally
and evolutionarily unrelated pigments are used for the
capture of light energy (DasSarma, 2006). The key pigment
in terrestrial photosynthesis—the family of chlorophyll
molecules—is structurally related to a number of other
porphyrin derivatives such as heme used in energy transfer
and oxygen handling (see summary in Schwieterman et al.,
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2018, this issue). However, other light-capturing pigments
include a range of isoprene pathway derivatives such as
carotenoids and retinal, although not all of these are used for
obtaining electrons for carbon reduction on Earth. These
both suggest that the evolution of light-capturing chemistry
is not a unique event and opens questions about what fea-
tures are universal (as opposed to evolutionarily contingent)
that we might search for signs on other worlds. At the same
time, whether some types of pigments had to evolve first or
were completely independent, including their evolution,
relative abundance, and by-products is of significant interest
for detection of biosignatures.

7. A Bayesian Framework Example:
Detecting Atmospheric Oxygen

So far, we have introduced the Bayesian framework as a
quantitative formalism for life detection and discussed each
of the terms necessary to implement it with high confidence
to the problem of detecting life on an exoplanet. To dem-
onstrate how our proposed framework might work in prac-
tice, we work through a toy model of detection of O2. We
focus on O2 as it is one of the best characterized bio-
signature candidates: biological production of O2, as well as
the possibilities for false positives, is better understood than
other potential exoplanet biosignatures (see, e.g., Meadows
et al., 2018, this issue). As should be clear by now, we do
not know the relevant probabilities to properly assess like-
lihoods or priors yet—this is a major subject for future
exoplanet research as we have emphasized throughout this
article. In the examples we provide here, we, therefore,
assume an example and number for illustrative purposes
only. In the absence of known likelihoods and priors, our
examples are meant to be conceptual, rather than rigorously
quantitative: we aim to illustrate how the possibility of false
positives can inform design of optimal search strategies.

From Eq. 2, assuming detection of O2 is the relevant
observable, the posterior probability of life given a set of
observational data may be formulated as

Here, the likelihoods correspond to possible measure-
ment outcomes: P(O2jerror) is the likelihood of failure in
our detection apparatus and captures the possibility of fal-
sely detecting a positive signal of O2 when there is no O2

present (or conversely formulated differently could corre-
spond to failure to detect O2 when it is present); P(O2jlife)
and P(O2jno life) are the two mutually exclusive hypotheses
for explaining a positive measurement of the presence of O2

(viz. biotic or abiotic production, respectively). The goal is
to determine P(lifejO2)—that is the probability of the de-
tection of O2 in a planetary atmosphere is actually indicative
of life. For illustrative purposes, we assume P(O2jlife) = 0.1,
such that 10% of worlds with life will produce detectable
signatures of atmospheric O2: this estimate is approximately
the fraction of time Earth has had detectable levels of bio-
logically produced O2 in its atmosphere (whether or not it is
a reasonable estimate is another story, see Section 6.2).

P(O2j no life) will eventually be constrained by observations
of planets without life and by better planetary models
(discussed in Section 5). Here, we somewhat arbitrarily
assume P(O2j no life) = 0.2, that is, 20% of planets without
life have detectable O2 in their atmosphere (for reasons that
will become clear hereunder). Typically we expect (or want)
the measurement error to be small P(O2jerror) = e (where e
is much smaller than the likelihoods for true detection). The
relevant likelihoods are summarized in Figure 10 for the two
hypotheses: life and no life.

In the examples that follow, we assume the prior proba-
bility for life is unconstrained (see Section 7 for discussion),
that is, it is uniformly distributed with a value given by
P(life) = pl, and to simplify calculations we assume e = 0.
Although determining e will be critical for weighing options
for optimal mission designs, we can simplify calculations
for the conceptual example presented here by treating it as a
negligible term. The posterior probability of life using these
values is plotted in Figure 11, which yields the trivial result
our confidence in detection of life scales with our prior
belief in the presence of life as the correct hypothesis (see
also Fig. 19).

The power of Bayesian analysis is it permits updating
confidence in a hypothesis based on accumulation of evi-
dence and additional knowledge constraining likelihoods
and priors. Repeated measurements can enable posterior
probabilities to deviate significantly from the priors due to
filtering through likelihoods, allowing confidence in statis-
tical inference even in cases where the priors are unknown
(as is the case for the unknown prior P(life)). For our toy
model example, we can imagine a scenario where inde-
pendent observations of exoplanets each yield a positive
result for detection of O2 (or conversely we might consider
narrowing our focus on a single target and taking repeated
independent measurements each transit, see end of this
section). Naively, we might get out the champagne to cel-
ebrate the discovery of life, but running the proper Bayesian
analysis could lead to a different conclusion depending on
the relative likelihoods for our observation.

Assuming for simplicity our measurements are Bernoulli
distributed (‘‘yes’’ or ‘‘no’’—we detect O2 or we don’t), the
number of positive results will follow a Binomial distribu-
tion, with probability mass function:

P(data¼X)¼ n

x

� �
px(1� p)n�x, (13)

where x is our measurement (in this example, the number of
planets with confirmed O2), n is the number of planets we
have taken measurements (the same as x in this example
since we assume every observation yields a positive result
for simplicity), and p is the probability of positive mea-
surement (taken from the likelihoods in Fig. 11).

If our prior probability of life is anything less than certain
( pl = 1), using Eq. 13 as our measurement distribution and
assuming we have positive detection of O2 for every planet

P(lifejO2)¼ [P(O2jlife)]þP(O2jerror)]P(life)

[P(O2jlife)þP(O2jerror)][P(life)þP(O2jno life)þP(O2jerror)]P(no life)
: (12)
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in our sample, our posterior likelihood of life actually de-
creases as we gain more evidence for atmospheric O2, as
shown in Figure 12. In this case, increasing our number of
independent measurements decreases our confidence in de-
tection of life. Why? This is due to the existence of false

positives, and more specifically that false positives have a
higher likelihood of generating the observational signal. In
our example, the false positive is more likely to yield the
measurement than a true positive: we said 20% of lifeless
worlds have atmospheric O2, whereas only 10% of worlds
with life have O2 atmospheres. Even if life is the more likely
prior hypothesis, our confidence in biogenicity can be sig-
nificantly diminished if nonliving processes are more likely
to produce the same signal. This example illustrates why it
is important to tightly constrain the likelihood of the data
both in the presence of life and in its absence: if a bio-
signature is more likely to be produced abiotically than
biotically, we will not be able to use it to confidently detect
life without additional context.

The importance of context is already well established for
the case of interpreting biogenicity of O2, as reviewed in

Meadows et al. The Bayesian framework allows us to quan-
tify when and how context can permit distinguishing between
the hypotheses of biogenic or abiotic sources. Context can be
included within the Bayesian framework by expanding Eq. 12
with respect to context for the observation:

Here, i sums over all contributing context, where each Ci

represents contextual information necessary for interpreting
the biogenicity of the given biosignature(s) (O2 in this ex-
ample). In Meadows et al. (2018, this issue), several dif-
ferent examples of relevant contextual information were
presented, which could enable identifying false positive
cases of O2. These include the concomitant presence of CO2

and/or CO in the atmosphere, or the absence of H2O (see
Fig. 2, Meadows et al., 2018).

To illustrate a case where context is included, we next
consider an example wherein the relationship between bio-
logical and abiotic O2 production and the presence or ab-
sence of H2O are taken into account, and assign probabilities
following the tables in Figure 13 (ignoring measurement
error). In this example, we assign a uniform prior for the
probability there is no life and a highly heterogeneous prior
for life: 99% of life occurs in aqueous environments and just
1% with no water (again we are pulling numbers out of hats
for illustrative purposes, for this example it does not matter
much except that the probability of life in the presence of
water should be higher than in its absence). We assume life
cannot produce atmospheric O2 without water (hence
P(O2jlife, no H2O) = 0), and we assume half of our 20% of
abiotic worlds producing O2-rich atmospheres do not have
appreciable H2O. Substituting these probabilities into Eq. 14,
we see in Figure 14 our confidence in our detection of life is
significantly improved relative to the example shown in
Figure 12 after many observations, but nonetheless declines
with increasing observations as the measurements become
more and more consistent with the abiotic explanation.

We next consider a second piece of context from the O2

false positives literature: the presence or absence of atmo-
spheric CO, with probabilities assigned now as shown in
Figure 15 (again, numbers are purely illustrative). Adding
this piece of contextual information does finally yield an
increased confidence in our detection of life with repeated
confirmation of atmospheric O2 on repeated independent

FIG. 10. Parameters for the toy model case of detecting O2 without additional knowledge of false positives. The prior
probability is distributed between our two hypotheses: either life produced the signal (with probability pl) or it did not (with
probability 1-pl). The likelihoods of observing O2 are set to illustrative values of 10% for life and 20% for no life (such that
nonliving worlds produce detectable atmospheric O2 more frequently than worlds with life).

FIG. 11. In the absence of additional contextual infor-
mation, the posterior probability of life after detection of O2

scales with our assumptions about its prior probability
(which is currently unconstrained, see Section 7), see also
Figure 19.

P(lifejO2)¼+
i

P(O2jlife, Ci)P(life, Ci)

P(O2jlife, Ci)P(life, Ci)þP(O2jno life, Ci)(1�P(life, Ci))
: (14)
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observations, as shown in Figure 16 (where our confidence
is now more heavily constrained by our prior because the
likelihoods are less distinctive with respect to the two hy-
potheses). The reason is we have finally isolated a case
where P(O2jlife) > P(O2jno life) in the left table of Figure 15
(row 3, highlighted in blue). Note, this condition is precisely
that we described as Detectability in Section 4, Eq. 5. Here,
we see an explicit example of why detectability is impor-
tant: it is only in cases where a biosignature is detectable
that we even have a chance of increasing confidence levels
in detection of life above our prior assumptions.

The examples provided here are highly contrived and
serve to illustrate a few key points. The only observational
data we included in any of the examples were detection of
atmospheric O2. The posterior probability of life changed
through each of the examples presented not because of ad-

ditional observational data on the frequency of planets with
atmospheric O2, but because of additional contextual in-
formation provided by other data (which could be due to
constraints from models or observational data), which per-
mitted placing the likelihood of the observed signal within a
larger set of possibilities. Our posterior probability for life
only increased once we isolated at least one scenario with
high detectability, that is, where P(datajlife) > P(datajno
life). This highlights the importance of constraining both
P(datajlife) and P(datajabiotic).

Identifying cases where P(datajlife) > P(datajabiotic) will
be critically important to discovering life with high proba-
bility (especially in the face of unknown priors) and provi-
des a guide for what contextual information must be better
constrained to increase our confidence in discovery of life.
In particular, we did not consider cases where context is an

FIG. 12. Posterior probability of life as a function of repeated independent observations of O2 (Nobservations is discrete,
continuous curves are shown here to better illustrate trends). Model parameters are from Figure 10 (with e = 0), using Eq. 13
for the measurement distribution as described in the text. Shown are cases for varying assumptions about the prior
probability of life P(life). Color images available at www.liebertonline.com/ast

FIG. 13. Parameters for the toy model case of detecting O2 with additional contextual knowledge of the joint probability
of O2 and H2O for living and nonliving worlds. The prior probability is again distributed between our two hypotheses: either
life produced the signal (with total probability pl) or it did not (with total probability 1-pl). We assume life is much more
likely in the presence of H2O than not. The likelihoods of observing O2 are set to illustrative values of 10% for life and 20%
for no life, where nonliving processes are just as likely to yield atmospheric O2 whether H2O is also present or not and it is
assumed life does not produce O2 in the absence of H2O.
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observable (e.g., where presence of H2O or CO is detected
in addition to O2). Detection of contextual observables that
discriminate between true and false positives will further
constrain the posterior probability of life. Cases where a
given piece of contextual information significantly increases
detectability should inform prioritized measurements for
future missions. In addition, any constraints on P(life)
coming from origins of life research or evolutionary biology
(Section 7) or from statistical analysis of exoplanet data sets
(Section 9) are important for narrowing the space of possi-

bilities—in this regard, information about what environ-
ments life cannot emerge or be sustained is just as valuable
as information about where it can be.

One point of note from the mentioned example was the
use of multiple independent measurements taken on differ-
ent exoplanets to confirm biological origin for atmospheric
O2. Currently, our search strategies are designed to get high
resolution spectra by repeated measurements of a single
target, for example, by accumulating independent observa-
tions over multiple transit events to accumulate enough

FIG. 14. Posterior probability of life as shown in Figure 12, where now additional contextual information about the co-
occurrence of O2 with H2O is taken into account (as shown in Fig. 12, Nobservations is discrete, continuous curves are shown
here to better illustrate trends, and observations can be interpreted as independent measurements). Model parameters are
from Figure 13, using Eq. 14. Shown are cases for varying assumptions about the prior probability of life P(life). Color
images available at www.liebertonline.com/ast

FIG. 15. Parameters for the toy model case of detecting O2 with additional contextual information of the joint probability
of O2, H2O, and CO for living and nonliving worlds. The prior probability is again distributed between our two hypotheses,
either life produced the signal (with total probability pl) or it did not (with probability 1-pl): we assume life is much more
likely in the presence of H2O than not, and uniformly distributed over worlds with CO. The likelihoods of observing O2 are
set to illustrative values of 10% for life and 20% for no life, where nonliving processes are most likely to support
atmospheric O2 when H2O and CO are also present, and living processes are most likely to support atmospheric O2 when
H2O is present but CO is not. Highlighted in blue is the case where D > 1, i.e., P(O2jlife) > P(O2jno life).
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information to resolve spectral features, since single transits
may miss important signals. An example is the analysis of
the thermal emission spectrum of the hot Jupiter HD
209458b by Line et al. (2016), where five transits where
analyzed with the fourth producing no detectable signal (see
Line et al., 2016). In this example, the detection error e
would be quite high (e = 0.2).

We did not consider detection error explicitly in the ex-
amples presented here, but it could significantly impact our
ability to determine whether or not a signal is due to the
presence of life. For example, one could do an analysis
similar to that presented here, but instead of using obser-
vations over multiple planets, consider multiple transits for
the same exoplanet. In this case, measurement error coupled
with the possibility of false positives (see, e.g., Gunn et al.,
2016) could make it such that even in cases we might a
priori expect a positive signal to be indicative of life, high
confidence in detection of life might not be possible even
with many transits worth of data. It is unclear at present
whether a search strategy focused on getting high-resolution
spectra for a single target or lower resolution data on mul-
tiple target will ultimately be the best strategy for high-
confidence detection of life (the trade-offs are discussed in
more detail in the next section). Bayesian analysis, properly
weighing the impact of measurement error, and accounting
for the likelihoods of abiotic and biotic signals could help
inform future mission design by determining search strate-
gies that maximize confidence in true detection of life.

8. Tuning Search Strategies Based
on the Bayesian Framework

From the forgoing examples, it should be clear that our best
strategy for life detection is to identify those cases where
P(datajlife) >> P(datajabiotic), that is, those scenarios where

a given biosignature is overwhelmingly more likely to be
produced by life than not (see, e.g., ‘‘life as improbable
chemistry’’ in Section 6.2). This is true whether we aim to
target individual worlds and obtain high-resolution data over
many transits, or whether we target many worlds to generate
ensemble statistics on exoplanet properties. Even in cases
where detectability is high, the posterior for life may be dif-
ficult to constrain if the discriminating context is not directly
observable and/or P(life) is low. We also face the challenge
P(life) is currently poorly constrained. Based on the statistical
framework provided by the Bayesian approach, there are two
strategies that can be employed in the development of future
missions to search for life: the first is to maximize our
confidence in P(datajlife) and the second is to maximize
our confidence in P(datajabiotic). These are not neces-
sarily mutually exclusive, and we next provide examples to
demonstrate how our confidence in these terms, coupled with
constraints on P(life), can inform mission design.

As noted previously, current search methods for detecting
life focus on observing a single target over long periods of
time to increase the resolution of our data. If we have
properly accounted for context, we might expect that over
time observations of an inhabited planet should lead to an
increase in the likelihood a given observed signal is pro-
duced by life, P(datajlife). Conversely, subsequent obser-
vations of an uninhabited world should lead to a decrease in
P(datajlife).

As an illustrative example, we can consider the case of an
inhabited planet, observed with a UV-visible-infrared mission
such as HabEx or LUVOIR (see Fujii et al., 2018, this issue).
Over time, either of these missions would provide continued
accumulation of knowledge of the exoplanet system. In terms
of biosignatures, such a mission might first detect O3, then O2,
then CH4. This would be followed by tighter constraints on the
compositions of each of these gases, and detection and

FIG. 16. Posterior probability of life as shown in Figures 12 and 14, where now additional contextual information about
the co-occurrence of O2 with H2O and CO is taken into account (as shown in Fig. 12, Nobservations is discrete, continuous
curves are shown here to better illustrate trends, and observations can be interpreted as independent measurements). Model
parameters are from Figure 15, using Eq. 14. Shown are cases for varying assumptions about the prior probability of life
P(life). Color images available at www.liebertonline.com/ast
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measurement of the surface distribution of oceans, continents,
and potentially a red edge-like effect from pigments. Even-
tually, we may see seasonal variations in gases (Fig. 17), which
we could hypothesize reflected their production or consump-
tion by biology. And with subsequent missions operating at
different wavelength ranges, the surface climate could be de-
termined, isotopic measurements made, and trace gases iden-
tified. In each of these steps, our confidence in the presence of
life, P(datajlife), would increase as we expect for many of these
observables P(datajlife) >> P(datajabiotic) (the more such
observables the better).

As mentioned at the end of Section 7, one of the advan-
tages of a well-developed Bayesian framework is that it can
quantitatively inform observational strategies. For example,
in the mentioned scenario, detectability provides a metric to
determine the more valuable observations (those where
P(datajlife) >> P(datajabiotic), which is true whether tar-
geting individual exoplanets or ensembles), for placing
tighter constraints on the concentrations of biogenic gases or
observations of the temporal variability of those gases over
seasonal time periods.

Another scenario is that the observational spectra do not
match our models, which could occur either for P(datajlife)
or for P(datajabiotic). Although there are challenges with
constraining both P(datajabiotic) and P(datajlife), arguably
the latter term is the one that will provide the greater sta-
tistical uncertainty. One question is then how can we best
constrain P(datajabiotic) based on our planetary models to
maximize our confidence that deviations from the expected
observations arise due to life?

The best way to constrain P(datajabiotic) will be to
conduct large statistical surveys of uninhabited worlds, as
discussed in Section 4. So far, data sets of this nature are
scarce for exoplanets and nonexistent for Earth-like

worlds. One notable example for hot Jupiter exoplanets is
the 19 transiting examples with published transmission
spectra obtained with the Hubble/WFC3 G141 NIR grism.
A majority of these (10 of 19) report a detection of H2O in
their atmosphere (see Iyer et al., 2016). Recently, it was
shown that the individual spectra of these planets coherently
average to produce a predictable characteristic spectrum
(Iyer et al., 2016), which is reproducible with simple for-
ward models, providing confidence that there exists a rep-
resentative spectrum for at least a significant fraction of hot
Jupiter exoplanets (Fig. 12). In this case, individual spectra
do not fit our models well (P(datajabiotic) is small), due to
stochasticity in planetary evolution and in our measure-
ments. However, the characteristic averaged spectrum can
be reproduced by models (high P(datajabiotic)). It is an
open question whether representative spectra will also ac-
curately describe ensemble spectra of Earth-like worlds.
Given the limited data we can collect on exoplanets (see
review of observation capabilities in Fujii et al., 2018, this
issue), and the stochasticity of planetary evolution (Lenar-
dic and Crowley, 2012), it may be that we are only able to
assign with high confidence a likelihood P(datajabiotic) for
exoplanet spectra by fitting our models probabilistically
(Fig. 18).

An advantage of a statistical approach to life detection is
that it allows for the combination of a range of observa-
tions, including integrating over time and sampling large
statistical data sets. The combination can place bounds on
the three terms of the Bayesian framework. For example,
we can sum observations across planets and ask how our
confidence that life exists on an exoplanet is changed by a
new observation. If P(life) = 0.25 (e.g., life is not rare, with
a 1 in 4 chance of an exoplanet being inhabited) for an
ensemble of 11 exoplanets, then a simplistic calculation

FIG. 17. Seasonal variation in pCO2 as an example where we might expect P(datajlife) >> P(datajabiotic), leading into an
enhanced posterior probability for life. Volume mixing ratio measurements CO2 are sourced from the NOAA at Mauna Loa,
Hawaii, for the 1995–2000 time interval (Thoning et al., 2015). The seasonal change in CO2 in the northern hemisphere is
mostly reflective of the seasonal growth and decay/senescence of land-based vegetation (Keeling et al., 1996). These data
were obtained from the NOAA’s Earth System Research Laboratory (https://www..esrl.noaa.gov/). NOAA, National
Oceanic and Atmospheric Association. Color images available at www.liebertonline.com/ast
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suggests that we have a 95% chance that life exists on at
least one of them. Here, a null result is almost as significant
as a positive result. If we survey a sample of planets that
are candidates for supporting a particular life process, and
we find no evidence of that process on those worlds, we
gain important information for constraining P(life), for
example, P(life) << 1.

This kind of analysis can also provide a guide to direct
how many planets we must survey to detect life, depending
on how frequently we expect life to occur. Building on the
examples of the previous section, we provide another toy
model to illustrate how, within a Bayesian framework,
large statistical surveys can increase our confidence level
in detection of life. One challenge for the community is to
decide credible levels for detection of life. In Catling et al.
(2018, this issue), confidence levels were proposed in
terms of the value of the posterior probability, for example,
>90% was proposed as ‘‘very likely inhabited.’’ In the
examples of the previous section, we mostly focused on
cases where life is fairly common, with a 10% or greater
probability for a given planet to be inhabited. Even in the
final example, where our confidence level increases with
successive measurements, we are still sensitive to our
prior, and would not be confident in our measurement if
life if it were not extremely common (observing additional
context could help).

What happens if life is rare? Or if we do not get lucky and
draw 10 worlds each with detectable atmospheric O2? We
showed in Figure 11 an example of how P(lifejO2) can vary
with P(life) for a hypothetical case where P(O2jlife) <
P(O2jno life). As we illustrated, this scenario is not favor-
able for detectability. However, even if P(O2jlife)*
P(O2jno life) or P(O2jlife) >> P(O2jno life), such that the

scenario does favor detection, we might still not have high
confidence in our detection of O2 as evidence for life if our
prior probability for life is small. Figure 19 shows how our
posterior probability of life changes (assuming one transit
measurement) for different values of P(no lifejO2). Even in
cases where the signal is unlikely to be produced abiotically
(red curve, P(O2jabiotic) = 0.001, corresponding to a 0.1%
probabilty for an uninhabited world to have detectable levels
of atmospheric O2), if life is not common (e.g., P(life) < 0.1,
vertical gridline) our posterior probability for life will not be
‘‘very likely inhabited’’ (e.g., it is <90%). In this case, data
on more worlds are necessary to determine whether life is a
viable hypothesis.

Our current approach to biosignature assessment on
exoplanet assumes we will be lucky enough to identify a
target with detectable atmospheric O2 to begin with. In
cases where life is rare, or the biosignature of interest
(atmospheric O2) is rare, an ensemble approach to detec-
tion provides an alternative strategy for discovering life to
that of repeating measurements on a single target. To il-
lustrate this, we assume the number of inhabited worlds is
Poisson distributed (see, e.g., Spiegel and Turner, 2012),
rather than uniformly distributed as in the previous ex-
amples. That is, for a sample of exoplanets of size N, the
probability of life arising k times is assumed to take the
form

PPoisson(k, k, N)¼ e� kN (kN)k

k!
, (15)

where k is the probability per planet of life developing.
The probability to have no life in a sample of N worlds is
then

FIG. 18. Top: Normalized HST/WFC3
IR transmission spectra of 10 exoplanets
with reported H2O detections combined
with a weighted mean to create a repre-
sentative spectrum of H2O-bearing
exoplanets. Bottom: Comparison of rep-
resentative spectrum (black) to single pla-
net models (see Iyer et al., 2016 for
details). Adopted from Iyer et al. (2016). If
this turns out to be the case, the community
may need to shift focus to thinking about
also detecting life deterministically, by
analyzing coherently averaged spectra of
many candidate worlds. HST, Hubble
Space Telescope; IR, infrared. Color ima-
ges available at www.liebertonline.com/
ast
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P(no life)¼PPoisson(0, k, N)¼ e� kN , (16)

with

P(life)¼ 1� e� k N : (17)

For illustrative purposes, we assume life is detectable when
O2 is observed, but also that life is rare. We assume P(O2jlife)
> P(O2jno life), with P(O2jlife) = 0.1 (10% of inhabited
worlds produce detectable O2 in their atmospheres) and
P(O2jno life)) = 0.01 (only 1% of uninhabited worlds produce
detectable atmospheric O2, in contrast to the 20% of the last
section). We consider two cases: life occurs on 1 in 100
worlds (k¼ 0:01) and life occurs on 1 in 1000 worlds
(k¼ 0:001) and assess the posterior probability of life as-
suming the fraction f(O2) of the total number of exoplanets
observed (Nexoplanets) have detectable O2 (a positive signal in
Eq. 13). The trends for P(lifejO2) are shown in Figure 20, for
measurement distributions with 1%, 2%, 3%, 4%, and 5% of
worlds having detectable atmospheric O2. When the per-
centage of observed planets with O2 is low*1%, consistent
with the expected abiotic likelihood of P(O2jno life)) = 0.01
(1% of uninhabited worlds have detectable O2), our posterior
probability for life approaches zero as additional data are
accumulated. However, if the percentage of observed planets
with O2 is much higher than our expectation for an ensemble
of exoplanets with no life, then our confidence in the hy-
pothesis of life as the correct explanation for the data in-
creases with our number of samples at a rate determined by
the rarity of our prior (here whether we have a 1 in 100 or 1 in
1000 chance of a world being inhabited).

It is worth noting that a small sample size with a large
fraction of O2 is not sufficient to generate a posterior for
life that is ‘‘very likely,’’ since it is also possible for a
random sample of worlds without life to produce such a

distribution. As the sample size increases, it becomes in-
creasing unlikely that the abiotic distribution of uninhab-
ited worlds with O2 atmospheres will deviate significantly
from the expected value of 1%. In large samples of ob-
servations, deviations from the expected abiotic value,
therefore, lend support to the hypothesis that life is gen-
erating O2 on a fraction of the worlds (here, we consider a
case where P(O2jlife) > P(O2jno life), but this works
equally well if the inverse is true, so long as the expected
fraction of planets with atmospheric O2 differs far signif-
icantly for inhabited and uninhabited worlds).

The mentioned example highlights how the actual (as
yet) unknown value of P(life) can be critical to determin-
ing the most effective search strategy. If life is common
(P(life) >> 0), it may make sense to target individual worlds
and obtain high-resolution spectra, as is the proposed search
strategy for James Webb Space Telescope. However, if life
is uncommon, we may be highly unlikely to be so lucky as
to stumble on the right target. In this scenario, a more op-
timized search might, for example, take lower resolution
spectra of more worlds to generate better statistics. This was
the strategy for Kepler, as at the time P(planets) was un-
known. Kepler observed a huge field of stars, rather than
obtaining more data on a smaller number of stars, as the
likelihood of stars hosting planets at the time was unknown.
A similar strategy may be necessary to determine the like-
lihood of planets hosting life.

In other more established fields, such as particle physics,
confidence intervals are set at standard values for claiming
discovery. For example, discovery of the Higgs particle was
announced only after the five-sigma detection level was met
(even though there were hints previously), meaning there is
a chance of only 1 in 3.5 million the signal was generated by
a random process. Astrobiologists could adopt a similar
standard, using a statistical approach to place bounds on the
credible interval (the Bayesian’s answer to the confidence

FIG. 19. The posterior probability of life after detection of O2 will depend on the likelihood the observed signal can be
produced abiotically. If life is not common (e.g., P(life) <0.1, vertical gridline), even in cases where uninhabited worlds
rarely produce O2 atmospheres (red curve, P(O2jabiotic) = 0.001), detection of O2 on a single exoplanet leaves the posterior
probability of life is much less than certain (e.g., P(lifejO2) < 0.9), meaning we cannot conclude the world is ‘‘very likely
inhabited.’’ Color images available at www.liebertonline.com/ast
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interval) for the prior probability of life (e.g., a credible
interval for k in the previous example, which for a given
sample size, expected distributions of P(datajabiotic) and
P(datajlife) could be statistically constrained). Such an ap-
proach would increase confidence in the value of the prior
probability of life, in turn increasing our ability to infer its
presence on individual exoplanets. Future community ef-
forts should focus on establishing community standards for
credible intervals for detection of life.

9. Conclusions

The continued rapid increase in discovered exoplanets
in the coming years will make it necessary—as well as
possible—to calculate the likelihood of a given observation

being produced by an inhabited planet. This, in turn, re-
quires a concerted effort to build comprehensive systems
models of planets that include the myriad interactions of the
biosphere with other planetary systems as we have reviewed
here. Such models must also be flexible to be applicable to
planets with a variety of compositions, sizes, orbital prop-
erties, orbiting stars with a variety of properties, etc. In this
article, we have presented a discussion of the necessary
tools, disciplines, and methods necessary to build, assess,
and improve such models and improve our estimates of
P(datajlife), P(datajabiotic), and P(life). We summarize
many of these in Table 3.

We highlighted a set of possible future directions for
research on exoplanet biosignatures, suggesting promising
directions that are not yet mainstream methods, but hold

FIG. 20. The posterior probability of life assuming a fraction f(O2) of the Nexoplanets observed have detectable levels of
atmospheric O2. Shown are cases where the prior probability of life is 0.01 (A) and 0.001 (B). Color images available at
www.liebertonline.com/ast
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potential to revolutionize our search strategies in years to
come. A major hurdle to be overcome in the coming de-
cades is our lack of constraints on P(life), and in particular
P(emerge), the likelihood for the origins of life. This is one
area where exoplanet science will need to interface with
new communities, including those studying evolutionary
biology, the coevolution of Earth and life, and the origins
of life. Exoplanet scientists will gain knowledge of con-
straints on the relevant terms in the Bayesian framework,
informed by Earth’s life and attempts to attract universal
principles. In turn, our expanding observational searches
for life should take advantage of the ensemble statistics we
will be able to generate in the coming decades to inform
our understanding of the distribution of life, placing ad-
ditional observational constraints on P(datajabiotic),
P(datajlife), and possibly even P(life), for example,
by identifying planetary environments where no life is
found (P(datajabiotic) matches well with observations)
and those environments where life may be generating the
observed spectra (eight P(datajabiotic) are not explana-
tory, but P(datajlife) could be).

By combining the efforts of these diverse communities,
amalgamating deep knowledge of Earth, its life, and their
coevolution with constraints afforded by the plurality of
exoplanets, we have the first opportunity in history to put
quantitative bounds on the distribution of life in the Uni-
verse. As emphasized in this article, this will require a
concerted multidisciplinary and international effort, as
should be expected from the enormity of the task of dis-
covering life beyond Earth.
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Table 3. Summary of Observational, Theoretical, and Empirical Research Necessary

to Constrain Variables in a Bayesian Framework for Life Detection

P(datajabiotic) P(datajlife) P(life)

Stellar context
Stellar observations

Statistical constraints on age, Teff, composition, irradiance, etc.
X X X

Stellar impact on atmospheres
Models of stellar activity on atmospheric observables, e.g., lifetime

exposure to UV

X X

Planetary context
Planets without life

Observational data of planets without life to constrain abiotic models
X

Atmosphere observations
Statistical data on frequency of biosignature gases in

exoplanet atmospheres

X X

Global climate models of exoplanets
Identify favorable/unfavorable conditions for life and generate

statistical data sets of likelihood of observations

X X

Geochemical modeling
Model physical contexts more relevant for exoplanets than that of Earth

X X

Catalog small molecules
Expand available data on kinetic and thermodynamic properties of

small molecules that may be present in exoplanet atmospheres

X X

Living processes
Coevolution of life and Earth

Statistical data and models for past biogeochemical states in the
history of Earth

X X

Frequency of major transitions
Constraints on the likelihood of major evolutionary innovation

X

Origins of life
Theory and experiments to constrain probability for life to emerge

X

Thresholds in chemical complexity
Identify cases where observable much more likely to be produced

by life than not

X

Universal biology
Identify network and other properties of life on Earth likely to be universal

X X

UV, ultraviolet.
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Maynard Smith, J. and Szathmáry, E. (1995) The Major Tran-
sitions in Evolution. Freeman, Oxford University Press, New
York, NY.

McKay, C. (2011) The search for life in our Solar System and
the implications for science and society. Phil Trans R Soc A
369:594–606.

Meadows, V.S. (2005) Modelling the diversity of extrasolar
terrestrial planets. Proc Int Astron Union 1:25–34.

Meadows, V.S. (2017) Reflections on O2 as a biosignature in
exoplanetary atmosphere. Astrobiology 17:1022–1052.

Meadows, V.S., Reinhard, C.T., Arney, G.N., Parenteau, M.N.,
Schwieterman, E.W., Domagal-Goldman, S.D., Lincowski,
A.P., Stapelfeldt, K.R., Rauer, H., DasSarma, S., Hegde, S.,
Narita, N., Deitrick, R., Lustig-Yaeger, J., Lyons, T.W.,
Siegler, N., and Grenfell, J.L. (2018) Exoplanet bio-
signatures: understanding oxygen as a biosignature in the
context of its environment. Astrobiology 18:630–662.

Meehl, G.A., Boer, G.J., Covey, C., Latif, M., and Stouffer, R.J.
(2000) The coupled model intercomparison project (CMIP).
Bull Am Meteorol Soc 81:313–318.

Merlis, T.M. and Schneider, T. (2010) Atmospheric dynamics
of Earth-like tidally locked aquaplanets. J Adv Model Earth
Syst 2:17.

EXOPLANET BIOSIGNATURES: FUTURE DIRECTIONS 821



Miles, B. and Shkolnik, E. (2017) HAZMAT II. Ultraviolet
variability of low-mass stars in the Galex archive. XI. Astron
J 154:67.

Miller, S.D., Haddock, S.H., Elvidge, C.D., and Lee, T.F.
(2005) Detection of a bioluminescent milky sea from space.
Proc Natl Acad Sci U S A 102:14181–14184.

Milo, R. (2009) What governs the reaction center excitation
wavelength of photosystems I and II? Photosynth Res 101:
59–67.

Misra, A., Meadows, V., Claire, M., and Crisp, D. (2014) Using
dimers to measure biosignatures and atmospheric pressure for
terrestrial exoplanets. Astrobiology 14:67–86.

Mix, L.J. (2015) Defending definitions of life. Astrobiology 15:
15–19.

Murray, A., Stuart, M., and Leroy, C. ‘‘Defining Pathway
Assembly and Exploring its Applications.’’ arXiv preprint
arXiv:1804.06972 (2018).

Mushegian, A. (2008) Gene content of LUCA, the last universal
common ancestor. Frontiers 13:4657–4666.

Niklas, K.J. and Newman, S.A. (2013) The origins of multi-
cellular organisms. Evol Dev 15:41–52.

Okie, J.G. (2012) Microorganisms. In Metabolic Ecology: A
Scaling Approach, edited by R.M. Sibly, J.H. Brown, and A.
Kodric-Brown, John Wiley & Sons Ltd., Oxford, pp 133–153.

O’Malley-James, J.T., Greaves, J.S., Raven, J.A., and Cockell,
C.S. (2013) Swansong biospheres: refuges for life and novel
microbial biospheres on terrestrial planets near the end of
their habitable lifetimes. Int J Astrobiol 12:99–112.

Paprotny, Z. (1977) Nonradio methods of SETI. Postepy As-
tronautyki 10:39–67.

Pierrehumbert, R.T. (2010) Principles of Planetary Climate.
Cambridge University Press, New York, p 652.

Pierrehumbert, R.T. (2011) A palette of climates for Gliese
581g. Astrophys J Lett 726:5.

Pikuta, E.V., Hoover, R.B., and Tang, J. (2007) Microbial ex-
tremophiles at the limits of life. Crit Rev Microbiol 33:183–209.

Pinot, S., Ramstein, G., Harrison, S.P., Prentice, I.C., Guiot, J.,
Stute, M., and Joussaume, S. (1999) Tropical paleoclimates at
the Last Glacial Maximum: comparison of Paleoclimate
Modeling Intercomparison Project (PMIP) simulations and
paleodata. Clim Dyn 15:857–874.

Punnoose, A., McConnell, L., Liu, W., Mutter, A.C., and Ko-
der, R. (2012) Fundamental limits on wavelength, efficiency
and yield of the charge separation triad. PLoS One 7:e36065.

Racker, E. and Stoeckenius, W. (1974) Reconstitution of purple
membrane vesicles catalyzing light-driven proton uptake and
adenosine triphosphate formation. J Biol Chem 249:662–663.

Ravitz, O. (2013) Data-driven computer aided synthesis design.
Drug Discov Today Technol 10:e443–e449.

Reinhard, C.T., Olson, S.L., Schwieterman, E.W., and Lyons,
T.W. (2017) False negatives for remote life detection on
ocean-bearing planets: lessons from the early Earth. Astro-
biology 17:287–297.
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Abbreviations Used

DMDS¼ dimethyl disulfide
DMS¼ dimethyl sulfide

DMSP¼ dimethylsulfoniopropionate
FUV¼ far-UV

GCM¼ general circulation model
GOE¼ great oxidation event
HST¼Hubble Space Telescope

IR¼ infrared
LUCA¼ last universal common ancestor

NIR¼ near-infrared
NOAA¼National Oceanic and Atmospheric

Association
NUV¼ near-UV
OEC¼ oxygen evolving complex

UV¼ ultraviolet
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