UC Berkeley
CUDARE Working Papers

Title
Econometric Models of Discrete/Continuous Supply Decisions under Uncertainty

Permalink
https://escholarship.org/uc/item/2m92m79x

Authors

Hanemann, W. Michael
Tsur, Yacov

Publication Date
1982-03-01

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/2m92m79x
https://escholarship.org
http://www.cdlib.org/

T,
d
¢ J%

LUniversity of California, Berkeley.
Dept. of agricultural and resource
eConomics ;
Working Paper |95

Working Paper No. 195

ECONCMETRIC MODELS OF DISCRETE/CONTINUOUS
SUPPLY DECISIONS UNDER UNCERTAINTY

by

W. Michael Hanemann and Yacov Tsur

e
mIANMINE FEUNDATION 5
;&Giﬂlﬂlﬂ;fURAL ECONCMILS

LIBRARY

DEC o197

California Agricultural Experiment Station
Giannini Foundation of Agricultural Economics
March 1982



ECONOMETRIC MODELS OF DISCRETE/CONTINUOUS
SUPPLY DECISIONS UNDER UNCERTAINTY

By W. Michael Hanemann and Yacev Tsur

1. Introduction

This paper is concerned with the theoretical specification and estima-
ticen of econometric models of discrete/continuous supply decisions by
economic agents who face uncertainty with respect to output prices and/or
vields., Until very recently, economic theorists and econometricians have
paid very little attention to the discreteness of the choices made by indi-
vidual agents:; they have focused almost exclusively on purely continuous
choices., Yet in reality discrete choices, and discrete choices interrelated
with continuous choicesg, are a pervasive phenonomenon. For example, a nro-
ducer may be able to produce many crops, but may choose to specialize in
gsome of them; the decision to grow certain crops is the discrete choice,
while the decision how much of the selected crops to plant is the continuous
choice. Another example is where a producer is growing a certain crop and
-faces, say, a binary choice between two mutually exclusive techniques for
growing the crop — e.g., whether to employ one type of irrigation technology
or another, or whether to grow the crop under a federal government commodity
preogram or not. The diserete choice is which technology tc use or whether
to participate in the program; the continuous choice is how much of the crop
to plant. A third example is where an input to the production of a crop,
say a drying or storage facility, is available in only two or three alterna-
tive sizes; the discrete choice is which size facility to dnvest in, and the
centinuous choice is how much of the crop to plant.

In all of these cases the discrete and the continucus choices are

interrelated: the optimal continuous decision depends on the outcome of



the discrete cholce, and vice versa., Therefore, both choices must be

modeled gimultaneously. We face two challenges in seeking to do this. The
first ig rhe problem of developing theoretical models to explain the discrete
and continuous choices in a manper which is consistent with a single under—
lying utility~of-profit maximization decision. The second is the problem of
developing statistical techaniques for estimating the resulting discrete and
continuous supply functions., These issues are discussed, respectively,

in sections 2 and 3.

In section 2 we extend Hanemann's [5,6] analysis of discrete and
continuous consumer demand moedels to the context of producer supply under
uncertainty. The key concept here is the notion of a "random supply” model,
in which some componments of the supplier's production or utilitv-of-profit
functions are treated as being random from the viewpoint of the econometric
investigator. It is this random component which generates the stochastic
structure employed in the estimation of the discrete and continuous supply
functions., The estimation is discussed in section 3 in a very general
framework, which covers not only the specific supply models developed in
section 2 but also other supply models and demand models such as those devel-
oped by Duncan [3] and McFadden [13]. We show that these models can be regard-
ed as special types of switching regression models which invelve an N-fold
switching instead of the binary switching that is commonly assumed. More-
over, because the discrete and continuous supply functions both flow from
the same underlying tﬁeoretical model of optimization by an economic agent,
there are additional restrictions on the coefficiente and disturbance terms
appearing in these functions. We show how these restrictions can be exploit-
ed in an efficient estimation procedure. Finally, in section 4 we summarize
our conclusions and suggest some wavs In which the analysis of this paperx

can be further extended.



2. Theoretical Models

The purpese of this section 1s to explain the general structure of
discrete/continuous models of supply under uncertainty, and to metivate
their estimation by showing how they can be cast in the form of z statis~
tical model of switching regression. In order to create a statistical
framework for estimating these models it is necessary to pestulate that
some component of the supplier's production or utility funmction is random
from the viewpcint of the econometric investigator. Before describing
this random supply model, however, it is convenient to begin by summar-~
izing a "deterministic" model of supply under uncertainty, where this
random component is absent — this is done in secticn 2A. The correspond-

ing random supply model is presented in section ZB.

A. Deterministic Models

We shall first summarize the standard deterministic model of purely
continuous supply under uncertainty and then generalize this to the case
of discrete/continuous supply cheices under uncertainty. We focus on the
special case of a supplier of a single product, who faces no explicit
constraints on his production decision (such as a limit on the availability

of land or credit). His profir, 7, is given by

{(2.1) T =pg - clw, q) - b

where p is the product price, q is the amount of product supplied, c(*)
is a variable total cost function generated by some production function,
and b is fixed costs. We assume that the producer facesg uncertainty with
respect to the product price. His subjective density will be dencted fp’

; 1 s - , .
with mean y and variance o2. The producer has a utility-of-profit function,

Vo

1

u{m), with u" > 0, and u" % 0 depending whether he is rigsk-prone, risk-



neutral, or risk-averse, To allow for the possibility that his risk
preferences depend in a parametric manner con his individual characteristics,
5, we shall write v = u{m; 8).

The producer chooses an output level, ¢, so as to maximize his expected

utilicy
(2.2) max v(q) = max Jun(q, p); s) £.dp .
The solution to the producer’'s maximization problem will be denoted

q{}, w, b; 8). Substituting this into the maximand in (2.2) yields the

indirect expected utilitv-of-profit function,

(2.3) v(l , w, by s) = U(q(u, w, b; s).

By a standard application of the envelope theorem it can be shown that

ov(u, w, b; s)

i = * 1
(2.4) 5 qu, w, by sYE{u'}
k1 - _— - t
(2.5) v(p, w, by 8) = -~glu’}

ab
where

lu'} = [u'lpq(y, w, b; 8) - ¢(w, qGi, w, b; 8)) ~b; sl £,dp .

Hence, we have the equivalent of Hotelling's lemma for production decisions

under uncertainty

‘ _ _ 8v(u, w, b; s)/3u
(2.6) q(, w, by 8) = aviu, w, b; s)/3b

It follows that, as with the theory of supply under certainty, there
are two methods for generating a particular parametric supply model. The
direct (primal) appreoach is to specify a particular utility function and

density, fp’ and then solve the resulting maximizarion preoblem (2.2) for



g(*} and v(+*). The indirect (dual) approach is to start by specifving
an indirect expected utility-of-prefit function, v(*), which satisfies
the appropriate requirements for such a function, and then to derive the
output supply function from (2.6). An alternative, related, approach is
to start by specifying an output supply function, q(+), which satisfies
the appropriate requirements for such a function, and then integrating
(2.4 and (2.5) to obtain the corresponding indirect expected utility-
of-profit function. The feasibility of this last approach remains to be
seen.

This completes our account of the standard, deterministic, purely
continuous model of supply under uncertainty. Before proceeding to the
corresponding discrete/continuocus supply model, we pause to give an example
based on the primal approach. This particular example will be continued
throughout this paper.

Example.

We assume constant returns to scale with respect to the variable

inputs, so that the total variable cost curve can be written

(2.7) c{w, q) = c(wyq

where c{w) is a unit variable cost function. We also assume constant
absolute risk aversion:

(2.8) a(i: ) = 1 - o 08T

where a(s), the absolute risk aversion coefficient, is allowed to vary with
the. characterdistics of the producer. In particular, if the preducer's
wealth is one of these characteristics, this formulation allows for the
possibility of, say, abscolute risk aversion declining with wealth across
individuals while being constant for a given producer making a given risky

decision. It follows from (2.8) that expected utility is



(2.9 u(g) = 1..Mb<wa(s)q)ea(s)c(w)q+-a(s)b

where Mp(-} is the moment generating function associated with fp. if

fp ~ Ny, ﬁp), then

a(s)?q?s”
)

M [~a(s)q]l = exp[-a(s)uq +
v 2

and expected utility becomes

(2.10)  v(@) = 1-exp{-a(s) (ma-c(wg-b) + (a(s)?q?02)/2].

Alternatively, if fp is the gamma distribution with parameters 7y, A, where

v = v/A and G; = v/3x%, then

2 _ 2
M I-a()] = ) M 4 age)ql” MY
P “p %
and
SCLT A =~/ % G (sye (w)q +ab
(2.1 (@ =1-Gp P S+ als)q) e TR
P P

For the normal case, the maximization of (2.10) yields

H-c(w) 1
og a(s)

(2.12) q{u, w, by s8) =

Thus supply increases with expected unit profit (u-c(w)), and decreases

with the variance of prices, 0;, and the supplier’s risk aversion, a.
Substituting (2.12) into (2.10) yields the indirect expected utility-of-

profit function

(Li-—c(.w})zi

252
f_CFp

(2.13) v{u, w, b; s) = 1~-expl[a(s)h -

Altermatively, in the gamma case maximization of {2.11) vields

C(W)E{ 1
gg a{s)c(w)

(2.14) q{i, w, by 8) = {”'"



u “(‘s-%/dp)2 U
(2.15) v(u, w, by s) = i'"(E?§59 exp [ Ty -c(w)) +a(s)b] .
P

We now introduce the possibility of a discrete choice by the producer
in addition to the continuous supply decision discussed above. Specifically,
we assume that the producer faces ¥ mutually exclusive discrete choices.
Examples of such discrete choices might be: which of N mutually exclusive
production technologies to employ; in which of N mutually exclusive loca-
tions to produce; which of N mutually exclusive types of fixed equipment
to use alongside of the variable inputs; or whether or not to participate
in a federal government commodity program. In general, we can assume that
each discrete alternative 1 presents the producer with a particular vector
of varigble input prices, wj; a particular variable cost function, cj(wj,q);
a particular fixed cost, b,; and a particular distribution of output prices,

fp’(p), with mean.pjand variance g° We also allow for the possibility that
|

P
the producer's individual characteristics, s, may vary with the discrete
choice, and hence that his utility funcrion u{+), may vary with j.

Suppose, for the moment, that the producer has decided to select the

th , ch s
i discrete alternative. Conditional on this decision, his profit is

j‘f‘m . ."“C-(Wrs A "'"b
P.4q 5, qJ)

3 3] i’

where qj is his output under the jth discrete alternative, and his expected

utility is
2.16 U, gy = ju (m,(q.,p, )5 s, 0f, . dp, .
(2.16) slap) fu}( slay0py)s 80 Fp dpy

His continuous supply decision conditional on this discrete choice is

gj(uj, Wj’ b,; s.) which is obtained by maximizing (2.16). His expected
utility on making this supply decision is



-

2017 v.(U,,w,,b,3 s 0=1uv.(a,(u,, w,, b,; s,)).
{ ) 3(3 RN 3) ECQJ(LJ “3 ; 3))

it is evident from this derivation that the conditional cutput supply
function, aj('), and the conditional indirect expected utility~of~profit
function, gj('), have all the standard properties of an output supply function
and an jndirect expected utility-of-profit function as outlined above. In
particular, the relation (2.6) carries over

av.(u,, w,, h.; s.)/%u,
J(bJ 4 1 J) U?

2.18 q.(e., w,, B3 8.) = =
( ) qJ(uJ w s.)

S 3v w., b.: s.)/0b
j(}"lj, j, j’ j) j

All of the foregoing is conditional on the producer's selecting discrete

alternative j. His discrete choice can be represented hy a set of binary

valued indices, di’ ...,dN, where d, = 1 if alternative j is selected, and
d, = 0 otherwise. His overall continuocus and discrete maximization problem

is to select dys »++5 4 and dl, cvesd. 80 as to maximize

N N

N
2.19 zd .0, (q.
( ) 2d 3(qj)

subject to

d, = Oor 1, Zd; = 1.
N J

The seolution for the discrete choices, denoted dj = dj(?’ ""“N’ LAEIEERR

b b

W.

NE 8 , SN) or, more compactly, dj = dj(u, w, b; 8), =1,

g2 Pyl Sy e
«.., N, are functions of the full set of input costs and cutput prices.

Similarly, the solution for the continuous cholces — the unconditional supply
functions — will be dencted qj = qj(ps w, b: ). Finally, the unconditional

indirect expected utility-of-profit function is v(u, w, b; s8), defined as

N
(2.20) v, w, b; 8) = %dj(u,w,b; s)ﬁj(qj(‘u, w, b; s)).



These unconditional functions are related to the ceonditional functions

derived above in the following manner:

1 4fF v (1. w i8> v.{u,w.,b,; s.), all i
; if Vj(gﬁ’ “j’ bji Sj} > \l(‘l Wes By 1)

(2.21) dj(%i,w,b; g) =

¢ otherwise

il

2.22 Ay, w, by s d. (U, w, by 8) g. (U, w.,b.; £.)
( ) qj(u ) J(L )qj(j 5

3 3

1 M = mas v : PR, v H 1.
(2-23) V()Ja W, b; s) ﬂﬂ‘({vl(ul: WI, b}’ Sl)) :VN( LL:\I’ wab S))

.
E]
N

These relations are of considerable practical importance, because they can
be used to derive the properties of the unconditional functions from those of
the conditional ones. However, this will not be explored further here.
Instead we now turn te the random supply models, after first continuing the

example started ahove.

Example,

For the model (2.7) - (2.9), under the assumption that the pj’s are

.

1
and indirect expected utility-of-profit functions are

independently distributed with £p. ™ N(pj, 5% ), the conditional ocutput supply

JP

_ o~ e, {(w,)
(2.28) Q0w b s = A3
ST A
2
o= c,{w,.)
[% 3( 5 i

52
ip

2.25 v, W, w,,b.; 5.) = I —expia, {(s8.)b, .
( ) 3(J J 3 J) © p{ J( 3) N ;

The corresponding uncenditicnal functions can be obtained by direct appli-~

cation of (2.21) - (2.23).

B. Random Supply Models

A random supply model arises when one assumes that, although all the
elements of the producer's decision — his cost function, his subjective proba-

bility density for the output price, and his own utility-of-profit function —



are known for sure to him, they contain some components which are unobservable
to the econometric investigator, and are treated by the investigator as

random variables. This formulation embodies two notions which, fer practical
purpeses, are indistinguishable: the idea of a wvariation in technology,
informaticn or preferences among a population of individual economic agents,
and the concept of unobserved variables in econometric models. These compo-

u ,
P and e , which may be scalars or vectors.

nents will be denoted by EC, £
In each case, they are fixed constants (or functions) for the individual
producer, but for the investigator they are random variables. For example,
because of unobservables or inter-agent variation in the production technol-
ogy, the individual producer's cost function appears to the investigator

to be of the form cj(w_, qj; Eg); or, because of differences in perceptions
among preoducers, the individual preducer's subjective probability density
for output prices appears to the investigator to be of the form fpj(pj; eg};
or, finally, because of variations in risk preferences or unobservable

components in profits (including fixed costs), the individual producer's

utility~of-profit function appears to the investigator to be of the form

One can generate different random production models depending on which

of these sources of randomness one chooses to emphasize and on how one

incorporates them. In order to avoid committing ourselves at this point teo

a specific random production model, we will refer to these random components

cellectively as Ej; Ej could be Eg, E?, E?, or some combination of them.

3
Accordingly, we write the direct expected utilitv-of-profit function asso-
. . h ) . -
clated with the jt discrete alternative in general terms as U*<qj; Ej)‘
i
A similar set of random terms exists for each discrete alternative., We

denote the overall set of random terms hy € = (Ei""’ EY)' For the econo-

metric investigator this is a multivariate random variable with some joint

10



density function, denoted f:(el, ...,QN); for the individual producer,
however, it i1s a set of fixed constants.
The individual producer's decision problem is to select Gps +ees Gy and

dl,..., dV 30 as to maximize

(2.26)

It A

d.v.(q.; €.
jY3tays &)

subject to éj =0 or 1, de = 1.

The supply functioens generated by this maximization problem parallel those
developed in the previous section, except that they new involve a random

component from the point of view of the econometric investigator. Suppose

h

the producer has decided to select the jt discrete alternative. If he

maximizes ﬁj(qj; ej) this vields the conditional supply function, aj(uj’ wj,

bj; Sj’ Ej) and the conditicnal indirect expected utility-of-profit function,
V.0, w,, b3 s.,€.) U 0q.(M,w.,b,; s.,6.), €,]. These still have the
A R R R R 15 (s S R B 3

properties mentioned in the previous section; in particular,

3. (U, w.,b.18.,6.) =a.(M, w.,b.3 5., E{u'}
(2.27) *“;L(J A R J} QJ( 373 bJ j* 3 j

B

My

2.28 W, (4, w,,b, 5., €,
( ) J(H} wJ ; sJ 3)

db,
3

It

~E{u!l
J

v (K, w,, b s, €.)/3u
N I R R B

2.29 q.(H,w ,b.; s,,6,) =~
Dyl By 9y gy N Y
The quantities ij and Gj are known numbers to the producer but, because his
decision is incompletely observed, they are random variables for the investi-
gator. In particular, let fG(;E’ ...,GN) be the joint density of Gl’ s Yy
induced by fe(-).4

Similarly, the unconditional discrete choice indices generated by the

11



solution of (2.26), dj(u, w, 0} 8, =), i=1, ..., N, are random variables,
Let Ei = ;i-gj’ i# j and let Fg(zl,.

joint c.d.f. of the gi's. Then the mean of the expected value of the

T Ziipr Bygp ""ZN) be the

discrete choice indices, £{d.} = PJ, is

(2.30)  PI(y, w, by s)

K

Priv, (u,,w,,b.18,.,8.)> v.(u., w . - .
J(UJ }’ _}, i j)mvl(;‘i, V\vi, bi, Si, g,i),all i}

= FECO, ey O).

The unconditional supply functions generated by (2.26) denoted qj(u, w, &}
8, €}, 3 =1, ..., N, are also random variables, as is the unconditional
indirect expected utility~of~-profit function obtained by substituring
these unconditional supply functions and the discrete choice functions
into the mawimand in (2.26); this will be denoted v(U, w, b; s, £€). These
unconditional functions are related to the conditional functions by

formulas similar to those for the deterministic production model:

2.31 . sy Wy b; 8, ¢ = d(i w, '3 S, € ~.( Ly W,y DLios,, n‘)
( ) qj(p 3 os, £) 5 My W, D3 c)qj Hyp Wyo Dy 84 gy

(2.32) vi(y, w, b; s, €£) = max{ V1<U1’ Wy Bysosys el),--.,

vN(uR, Wys Pl S EN)}.

In order to construct the probability distributions of these random

variables, we introduce the sets A, = {e|v. (u., w., b.; 8., £.0 > v_ (.,
’ “ 3 7 Lelvs g wys bys s e 2 vy Gy

Wi bi’ S5 Ei), all i}, i=1, ..., 8. Let fEiE&Aj be the conditiconal

joint density of € .,Ew given that Eﬁéj; i.e., given that discrete
L

10

alternative j is selected. Then the probability density ef ajg i.e., the

conditional probability Pr{qj = q[qj > 0}, denoted fq i >O(q}, can he
i
using (2.29). The proba-~
N
bility density of a5 i.e., the unconditional probability Pr{qj==q},

obtained by a change of wvariable from fgihfﬁ
f)‘:’:“"

denoted fq-(q)’ therefore has thé form
]

12



1-Pj q =0
(2.33) £, (q) = { ol
9 qu}@j> O(q) P g > 0.

Thus, given a sample of T producers, where j* is the index of the discrete
choice selected by the tth producer and q*t is his observed supply, the like~

lihood function of the sample is, from (2.33),

(2.34) L = 4y > ot} .

J

Finally, let fG.[ﬁe;A.(s) be the conditional density of ;j’ i.e., the condi-
J 3
tional probability Pr{§j==s{5j3:§i, all 11; this is obtained from conditional

joint density f_ by a transformation of variables. The mean of this

4€£Aj

distribution is

(2.35) E{ngaj > v, all i} = [jisf§j{€€iAj(s)ds.

From (2.32) the mean of the distribution of v(u, w, b; s, €) is given by

(2.36)  mlvi =L Blvy|vy > ¥, all 1}-p .
3

This completes our account of the general structure of random supply
discrete/continucus choice models. The crucial ingredients in these models

are the conditional indirect expected utility-ef-profit functions, Gj(u W, ,

3T
bj; Sj’ Ej), j=1, ..., N, and the joint density fg(-). With these one can

construct the densities fv(-), {+), which are used to form the

fe]ee;Aj

discrete choice probabilities and the conditiconal and unconditional densities
of the ¢.'s. As noted above, different random supplv models can be generated
by allowing the aj's to enter the conditional indirect expected utility-of-
profit functions in different wavs or by making different assumptions ahout
their joint distribution, but these models will all conform to the general
structure outliped above.

The estimation of rhese discrete/continuous supply models will be

13



discussed in detall in the next section. However, we will make one general
comment here. First we must draw attention to an alternative way ¢f repre-
senting the unconditional supply functions, besides (2.31). Purely for

notational convenience we consider the case where N==2.5 The unconditional

supply functions may be written

avi(ui! wf' b}.; sl’ 51)13111

T, Ghy, 9, b3 8y, €0/50, 1€ vy Qeps ws B3 o8y €0 2 V(g wos Byi 8y, €5)

(2.37) q =
3;2{329 wzr b2; 523 52)/3"52

- " otherwise .
39, (Hys Wyy Byi 8y, €,)/0h,

Since the $§'s are functions of several variables-—-uj, wj, bj’ Sj’ eto. =
it is convenient at this point to refer expiicitly to the coefficients of

these wvariables, which we denote by the wector £. Therefore, we now write
the conditional indirect expected utilitv-of-profit functions as §j(pj, wj,

b,: 8., Ej, BY. Then (2.37) can be written svmbelically as

g, (¢, , w, b, 8., €,, B} ifh(lisﬂlwlwyb;b;s»svele,5>_>__0
(2.38) q = 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2

gzﬁuz, W, bz; 855 Eys By othervige

where g1(°) and gz(') are the ratios of the derivatives of ;l(.) and 52(~),
and h{*) = ;L(°)-§2(°); these functions will be linear or nonlinear in £
depending upon the underlying structure of the Gj(-) functions.

The purpose of the formulation (2.38) is to demonstrate how our theo-
retical random supply model generates a statistical switching regression
model, The general (binary) single-equation switching regression model can
be written in the form

P : . "
G (X5 By, £ AL H(Z v, 1) 20

b

(2.39) Y

G, (X

9 E.) otherwisge

.2
22 "2 B2

where Y is the dependent variable, Xl, XZ and 7 are exogenous variables,

B,s B

12 Bos and v are the coefficients to be esimated, and 51, £,, and n are

14



random error terms. Our supply model (2.38) is clearly a special case of
(2.39) where, because the discrete and continuous choices both flow from
the same underlying expected utility-of-profit maximization problem, the
variables Xl and XZ are known transformations of the variables in 7, the
coefficients 21 and 82 are the same as the coefficients v, and the random

terms &£, and are directly related to the random term n. We can therefore

t 52

estimate the random supply model (2.38) by any of the techniques developed
for the switching regression model (2.39), while taking advantage of the
special structure of our model. This 1s the subject of the following section.
To illustrate the ideas discussed above in a more concrete form we now continue
and terminate the example started in section 2.A.

Example,

Our starting point is the deterministic discrete/continuocus supply (2.24)

and (2.25). Tc allow for the snobservable elements which are treated by the

econometric investigator as random variables, we might in general write

2.40a w2y =28, (w,)Y + &
( ) QJ(WE 3 C3<WJ) N

(2.40)  o? (ePy =42 4+ P
ir 3] iy ]

{2.40¢ a(s.; e =8 (s) + "
) 3< | J) J< ] 3

where "~" gignifies the nonstochastic variables or functions observed by the

investigator. Substitutien of (2.40) iato (2.24) and (2.25) yields

o (o
(2.41) Ej(wj, wos bisosg, €)= Hy=8w) ey ) |
f,(s.)+eld
B2 + Ep :
i 5 I
u [, -8 (w)-e" 1°
(2.42) v (u.,w,s b3 8., 6) = 1-expl@,(s)b, +e.b, = 517 540"y j .
5y Wy by sy g PREgIEIDy TPy S 5 oo 3
Zﬁjp + Zej
The model is closed by specifying a joint distribution for ET,..., eg, 8?,...,
&
P u u
Exs €y vons g

15



We will work through these steps for a simplified version cf this model
in which the random terms e? and b are omitted, leaving oniy the random
J
term g£.. That is, we assume that the random supply model arises from uncb-
e 1t

servable variation in the producer's risk preferences. Dropping the "u

superscript, we rewrite (2.40c¢) as
2.43) a.{s,; e.) =5 B, + g,
( 3(3’ J) %3 3

where Sj is a row vector of K observed exogenous variables representing attri-
butes of the individual producer or the discrete alternative which influence
his degree of risk aversion, and Bj is the associated (Kx1) vector of coeffi-
clents to be estimated — for the sake of generality we allow both § and £

to vary with the discrete choice, i. We assume that €1€2 have a bivariate

normal distribution with mean zero and scme covariance matrix I,

(2.44) z

a5

OQur formulation thus allows for the possibility that cov(ei, 82) # 0. The
correlation of the random terms across the discrete choices could be generated
by asgsuming that the coefficients le, ""EjK are themselves random, in the
manner of Hausman and Wise [ 7 ]. More generally, it could arise because the
same extraneous unobserved factors influence the producer's risk aversion in

a similar way across different discrete choices. Finally, to simplify the
model further, we assume that the investigator ohserves the unit costs, Cj’
and so does not have to estimate the cost functions, cj(wj}. Thus, for each
given producer, the observed variables are o Cps Hys uz, Gi » Gzp, bi’ bz,

P

1 and 82, as well as the producer's actual supply decision — both his dis-—

crete choice and his continuous choice. The unknowms are 81, 82, and the

3

elements of 7.

Accordingly, for a given producer the model can be written as:
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q, = (—=g—t) s i€ 1' > 0
1 Glp SE + 1
. (u2~c2) 1 if I' < 0
2 Z 2
. Gap TSyt e
. (Ml-cl}i (hz-cz)zﬁ
LI - I ] P L. .- - - £ R T
I [1 ex?“blsl“i4-b1°l > 1111 exp1b28232-+b2€2 " 1.
oip “O2p
Define Yj = (uj*'cj)/qjcg, i=1,2. An equivalent way of formulating the model is
= 2 i
(2.45a) Yl S}..b,.1 + €, ifI>0
(2.450) Y2 = SZBZ + €5 if I <0
,~e)? (u,-c)”
(2.45¢) I = b,S5,B. 1 1 2 2
- - + - .
2272 - by SBy 207, 2% Pygg = Byfy

Alternatively, define

Zz = (bzsz’ 4)] Z2 = {0, bzsz)
X, = (5, 0 X, = (0, S,)
G, ~e)? (L, -c )
207, 209
i
8 = (82)

Then, the model (2.453) can be written in its most general form as

(2.46a) Y, = Xiﬁ + €

. if 1>0

i

(2.46D) Y, = X8 +¢ if T <0

2 2

P
2.46¢) W, = 284+ Z v + b.c
¢ i T

£

4
(2.464d) I =¥, ~-W

where ¥ = 1. The estimation of switching regression models with the structure

of (2.46) 1s discussed in the next section.
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3. Estimation

In this section we discuss the estimation of the following statistical

model:

(3.1) thrxjte%x;tajJrgjt o= 1, ..., N

(3.2) wjt = zjts + z}‘t«{j + njt j=1,...,N

(3.3) I(jﬁ)tuwjtmwlt 1, 4 =1, ...,N, 1 #3
(3.4 Y. is observed if 1 >0 forall 1 #3, 3= 1, ...,N,

jt (38t
where, for each observation t =1, ..., T, th and th are each K-dimensional
vectors of known constants, X;t is a K+~dimensional vector of known constants,
Z;t is a K™ -dimensional vector of known constants, B, Sj and Yj are, respec-—

tively, K-, K+~, and K™'-dimensional vectors of unknown parameters, and

6t = {elt,..., Eﬁt} and n, = (nit’ . "nNt) are N-dimensional multivariate
normal random variables with mean zero and covariance matrices Zr:(ﬁij) and
E= {Eij), respectively, which are nonsingular and independent of t.6 For
each t we observe the exogenous variables th, Xét’ th, and Z+§t’ i=1, ..., N.
We do not observe th or E(j)t’ but we do observe the indicator variables

1 4f T, >0 all §#82
(3.5) d, = (35)e 3= 1, ..., N

0 otherwise

and, if djt = 1 we also observe th. Finally, the random vectors £, and nt

are related to one another in some known way. An example is where
3.6 = a, E + v
(3.6) Tie T %555 T Ve

where the ajt's are known constants and the vjt's are i.i.d. N{Q, gi); hut

other relations are possible. This type of statistical model arises whenever
one has a theoretical microeconomic model of discrete/continuocus supply or
demand decigions, where the discrete and continuocus choices both flow from

the same underlying random profit or random utility maximization process.

18



A producer supply example is given in the previous section; a consumer demand
example is given in Hanemann [5].

In the terminology of Amemiva [ 2 ] and Lee et al. [11], the model {(3.1)~-
{3.5) is a generalized probit regression model. It represents a generalization
to N-dimensions of the binary switching regression models presented in Lee and

].7 However, (3.1)-(3.5) is not the most

Trost [12}, Lee [10], and Heckman [8,9
general possible formulation of an N-fold switching regression model. It has
two distinctive features: (i) some of the coefficients which appear in the
continuous choice equations (3.1) alsoc appear in the discrete choices, {(3.3)-
(3.4), namely 8; and (ii) the disturbance terms in the discrete choice equa-
tions are a known function of those in the continuous equations. Both of

these features result from the underlviang theoretical model of simultaneous
optimization of discrete and continuous choices by an economic agent. This
special structure is exploited in the estimation procedure described below.

In particular, it enables us to identify and estimate the off-diagonal ele-
ments in £, which is not gemerally possible when the disturbance terms in

(3.1) and (3.2) are unrelated — see, for example, [12,p. 365]. Duncan [3]
presents an N-fold discrete/continuous supply model with a structure gimilar

to that of (3.1)-(3.5). However, for the purposes of estimation he assumes
that the disturbances in the discrete choice equations are independent of these
in the continuous choice equations. As will be shown below, practical proce-
dures exiat for estimating the model consistently without invoking this
assumption.

Refore continuing, it is convenient tc introduce some new notation. For

i £4 h N i i t SR = R VO S .
each j, define the (N-1) dimensional vector H{;)t (U(jl)t’ ’1(3, 1=y’
. . s vae . 7 U, . = n -n, . 1L ix tati z
U(J, j+1) e ’U(jN)t)’ where J(Jg)t e njt n matrix notation we can
write
(3.7) D.n

Vit T P304
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. . ; . th .t
where Dj ig an (N-1) by N matrix with +1 and -1 in the 2 and j h cells of
each row, and zeros elsewhere.g Inder the above assumptions, U(j) is an (N~1)
dimensional multivariate normal random vector with mean zero and covariance

matrix Qj = (i Yy =D EZD%. The diagonal elements of this matrix are

3, Rk 3

@ = var (U d the ofi-diagonals are w, = cov{u,,, U, .
j’}% ( ( 2’))9 an Z WJ’Q‘k ( (}5@)’ (Jk))
Note that there are some restrictions on the covariance matrices Ql""’ QW
because by definition, U(jl) = WU(Rj)' In particular, for all £ and j,

a@ 2 ﬂ(ﬁi g Hence, although there are N covariance matrices Qj and each

b >
has (N-1) dlagonal elements, there are only N{(N-1)/2 distinct wg % terms.
Hd

From (3.2)-(3.5) the condition for th te be chserved ig that

-+ + - .
< (Z- - zgt)g'f‘ th j"'Zﬁ‘tYQ - Q(Ji}t(S,YJ,Yi), all & :Ié 3.

(3.8 Vesne S Gy

Alternatively, define the (N-1) dimensional vector of normalized differences

)}, where

U, Uk s ey UE . uF,
e =™ Ohne (i, 3-De VG, e

3+ %oy

v,
(ijmt

(-9 Oy TP, M,

Then, V% ig multivariate normal with mean zero and covariance matrix 0%

) E

(m? Qk)’ whaere the diagonal terms are all unity and the off-diagonals are
b

* = U U = V2 2 .
R I S T R CIS U T PG T

In terms of these normalized differences, the condition for th to be

observed is that

(3 11) Uk < (-’7 -7 ) g 4 7+ Yj _?'i‘ __,_ulg'_,_w = A% {8 Y Y )
(3% — >t it o jigzg—"—' ot N (i8¢t i’ e
e i, 2 i, 1
all L#3.
For future reference, the density of u( ) will be denoted 2 (J( )3 ?*).

For each j, the joint density of e and U{ y ig N-dimensional multivariate

normal with mean zero and covariance matrix
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[ 2 ¥
S 1 ) Gj T.

{3.12) El L (fa‘, ugj)) S = 1+ oi

(1) N J
vhere T) = (T . qs ooy T T,. . s ey To,ond aud T, = coviz,, U%,
" 3T TG0 TE, -0 TG, D “(5m) i SFRM Y
= cov(aj, V(4 R))/V’ o It follows that the conditional density of Ej given
% . is univariate normal with mean T° 0% 'u¥,. and variance (g -71! Q%7 ),
(i) L G D h| J
which we denote (f sorinE=lux o gf - TinRtr ),

I T Rt B e I

Given a sample of T observations, let i* be the index of the discrete
choice mode in the tth observation (this will vary with t}, so that dj*t= 1

and d, =0 all £ # 3j*, and let the observed continuous choice be Yj . The

.Q,t Ei

likelihood function for this sample is

T
(3.13) L= I L.
t=1
where
3 = - - it :
(3.14) o= Prleg, =¥ —¥ 8 Niae Bya M 08agye S Mgagye 211 2650
+ ’
Pr{aj*t Yj*t" xj*ts_xj*s &j*'u?j*)t < ﬁ?j*)t} . prw?j*i)t-i&,(‘j*l)t' all 14 3#}
J
P Ak A% 2
- e Eon,ae-1ye BT, gmeye Lawre Ly L Xt s ool .
!»..m "'I_m I_m e I.m é(Yj*t Xj*tﬁ X}*CEJ*,Tj Q;*I')‘(‘j*)raj j*ng*‘ q*

e Ot O D O pagye o AUy B8 gy s Py

In principle, all of the unknowns in the model — @, 81, ...,BN, Yys cr s YN,X
and T — could bhe estimated by full information maximum likelihood based on

{3.13)-(3.14). TFollowing the argument of Amemiya [ 1], it can be shown that

the MLE is consistent and asymptotically normal and efficient. In practice,
however, this will be computationally burdensome unless N is smaller than 5

or 6. Moreover, the normal equations will generally have multiple roots

because of the nonlinearity of (3.14) and, unless one starts from an initial
consistent estimator, there is no guarantee of convergence to the global MLE.
Accordingly, we will employ a multi-stage estimation procedure origin-

ally developed bv Amemiya [ 1], Heckman (9] and Lee [10], modified to
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allow for the special structurs of (3.1)}~(3.3). The first step involves a
probit model applied to the purely discrete choice represented by (3.8) or

(3.11). TFor each observation t, the probability that Y?*t ig observed is

I3 ! A%
(3, 15}!’-}* . {d?j*l)t . ,{ ? %, i%-1}¢t fﬁ?j*’j*‘!‘l}t‘-_ ! 3*Nt é\_ (\.*
t i @ -

; . L . boev ey duFE Lo
e N R R CLTR TS b ML CLAR LD i

The likelihood function for the probit model is

T o,
(3.16) AR P?f‘ )

Using maximum likelihood or, if there are grouped data, weighted least squares,
one can obtain estimates of the parameters in (3.13) which are consistent but
not efficient, since they ignore the information contained in the data on
the continuous choices.

It is important to note that, because the conditions (3.8) and (3.10)
are observationally indistinguishable, we do not obtain estimates of B and
Yo oo Yo from the probit model. Rather we obtain estimates of the N{(N-1)/2

terms RB/vw E , the N(N~-1)/2 terms v, /Y02 _ , the N(N~1)/2 terms v./vw? .
, 2 17795 g 27795 g

..., the N(Nmi)/Z terms YN/VMZ Similarly, we obtain estimates of the
of f-diagonal terms in @1, ...,Qﬁ, not ﬁl, ...,QN. However, as Duncan

points out, if there is at least one non-homogeneous exact restriction on

the elements of B or Yj that is available exogenously, it can be employed to

identify the N(N-1)/2 terms Jm% 2 and, hence, tc identify 3 and Yoo oees Yy
¥

Failing this, we would have to impose the normalization

2 - 2 2,__2 - s
(3.16) Wy g F var(u(j’g)) ER + gj ng 1 all j #2

in order to identify &, the Y 's and 0 from the probit analysis

P
‘1 N
of the purely discrete choice data. This would be unattractive bhecause it
entails N{(N-1}/2 restrictions on N(¥+1)/2 free elements of the covariance

matrix Z. Moreover, if % is a function of §, as is implied bv most theoretical

random supply models, it entails restrictions on ¥, which further reduce the
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ganerality of the model. Fortunatelv, however, the normalization (3.16) ecan

be avoided because we also have information from the continuous choices, Yl,

]

«eey Y., which serve to identify the w? s. This occurs in the second step

N 3,8

of the estimation procedure.

Recall that for each t we ohserve only one of the Yj‘s, Y,, : the one

3?Ct
obsarved is determined by the conditions (3.8) or (3.10). Therefore, follow~
ing the argument of Amemiva [2] and Heckman, the first two moments of the
observed continuous choice variable are

.;.,
3,17 p{Y,.  !vY.  observed} = X, 2+X., & +Iie.
( ) J::t! Jnt J}{t 3;:!: 3 j:\

ESﬁ < fk
eVl e 2 G e
all f# 3%}

+ z
Hé'x. 8. - .¢T v A .
KL J*CT3 0 RF R (FFL) (3Rt

%
sre Ve £

i

vig , all & # i}

. ; } *
(3.18) V{Yj*tlyj*t observed) () e

2 1 A
=0T, T, T
j* (3% (3% (9

where

(3.19a) (30, 0y 5 0> O /30% I

Ao = v . (A%, 0, 0%),
G2t (e Gyl Pe1 Gy s 0005

2 % . % Y/OA% A"
i R AL R Ll 01 St 6 O N

0, 0%,
3}

(3.19b) A{j*) = @(A* . l(j*>k(jk)s
(3*)’

@le('; o, Q?) being the c.d.f. associated with ¢N~1(.; O,ﬁ??). Hence, the
appropriate regression model for the observed continuous choices is

+

.20 Y, = + 8, = L T, aohoa
(3.20) ; Bineh * %ia¥y gijT(J*%)K(J“ﬁ)t

+ t=1,...,T
j*t j¥t Ej

*t

where Eﬁ*t = Yj*t - E{Yj*tin*t observed! is a normal disturbance, indepen-
dent of the regressors in (3.20), with a zerc mean and a variance given by
the right-hand side of (3.18). Therefore, following Heckman [9), one could

use the fitted probit moedel to form consistent estimates of k(j*ﬁ)t’ insert

these as regressors in (3.20) and fit it by least squares — by 0OLS or, taking
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account of the heteroscedasticity implied by (3.18), by GLS. This vields
consistent estimates of £, @l,..., @N, and T(ll)""’ T{NN)' However, bhecause
the regression invelves estimated regressors, the usual formulas for the
covariance matrix of these coefficient estimates would need to be modified.

The disadvantage of this approach in the present context is that, when
one compares the estimates of 2 obtained from the estimation of {3.20) with
the estimates of Sfﬁgsz'obtained from the probit model, there will be K
estimates of each of the N(N-1)/2 terms @; g.g An alternative procedure

s

which combines the information from the discrete choices with that from the
continuous choices and yields unique estimates of 3 and the ME,R‘S is the

following. TFor each observation t, write the regression model (3.20) as

N(N-1)/2 equations (for simplicityv, we illustrate this for the case where

N = 3):
k4 E
= Va2 + - T ) +
&j*t (Xjf‘t‘/'“z_“") OJ X ch Lf4% (j*i)}\(jﬂ“ﬁ,)t E;}-‘ct
3.21 Y,, = == x2 + X .. B8 - I T + B
G20 Ty 7 =c¢”“ S ey T EL T Gee T By

<
)

+
- e -3 A e .
gre T (et S 08,5 5 T R T g amoe t ke
b

Use the probit estimates of B/Vw? 5.8 to form the regressors (X /’ ) and

run the regression (3.22) with TN(N-1)/2 "cbservations,”" treating the Jm% ¢
3

terms as the coefficients to be estimated, together with 81,..., GN and

?(11),..., T(N&). One can then multiply the N{N-1)/2 coefficient estimates

el
from the probit model by the consistent estimates Vu? from the regression

.0
model (3.21} to obtain unique and consistent estimates of & and ASEIEERE
Similarly, one can multiply the estimates of the off~diagonal terms in ﬁ?,
- Q§ obtained from the probit model by the estimates J:gt;' to obtain
consistent estimates of the off-diagonal terms in QE""’ QN. Since Qj =

D.5D', where D, is a known matrix, one can then chtain consistent estimates
Iy
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of the covariance matrix E. TFurther, by applving the relations in (3.18) to

the second moments of the estimated residuals from (3.21) one can obtain

ot L, ol
1’ YU

consistent estimates of Consistent estimates of the off-diagonal
terms in Z can be obtained using the estimates of T and Tj, as well as the
relarions (3.6).

It is worth emphasizing why we care about the uniqueness of the esti-

s vy 8. The standard procedure for estimating switching

mates of £ and 3
1 N

regression models is to obtain a set of consistent estimates for all the
_unknowns and to employ these as initial values for an iterative maximization
of the £full likelihood function for the discrete and continuous choices
combined. If one were following this procedure, it would be unimportant
whether or not a unique set of ccefficient estimates could be obtained from
the probit and regression models. However, when N is at all large, the likeli-
hood function (3.13)-(3.14) is computationally intractable. This arises not
just because an {N-1) integral is invelved — after all, the same is true of
the likelihood function for the probit model (3.15) — but also hecause the
integrand in (3.14) has a particularly complex structure, considerably more
complex than that of the integrand in (3.153). Therefore, following Duncan,
we assume that even a single Newton Raphson iteration of the normal equations
for the full model is impractical and the only coefficient estimates availa—
ble are those from the probit and regression models.

If cov(ej, U?j)) ETj==O, then all the terms in l(j*, 2)drop out from
(3.20) or (3.21), and the coefficient estimates obtained from these regres~
sion models are MLE's and, hence, fully efficient. If Tj# 0, as seems more
plausible, the estimates are consistent but thev arve not fully efficient.

—

In this context it may be worth treating the estimates of 8//u? p and vmi .

] R

cbtained in the manner described above ag stochastic prior information and
applying the Theil-Goldberger [15] mixed regression procedure, as an addi-

tional step after the estimaticn of (3.21). For simplicity, we illustrate
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this for the case where N=3 and, say K= 3; the additional regression model is

. TR ST DU T N SN S
3*1 31 IRLTI* ggye (GROTGR) 0 TR

~

Y,oom =X, B+ X, 8., = I T, P aaane T oL
J"“T J=T -}‘.1‘ i*% ,Q,’;’é'i* (:]"‘i%}f (J “).',)f L’J“T
f— 1y e |
/J)z = = }L,_‘ -+ i
v, 2 #ai,E 1 1
A 2,
2 32 : = 18 4+
(3.22)  Vui , (‘/w2 ) =18, L
1,2
A §3 .
L4 0 = = 1
ui, g G =ty Ty
1,2
~ 82
1,3
~ Bg -
z == 5 + 1)
2,3
where Sk is the ktb element of B, In the general case, the regression
model (3.22) involves Tﬁﬁ[ﬁig:glwkxn-lg "observations.! The disturbance

J{ N~
terms associated with the last [éi%mél~kK-nl] observations have the form:

~

(3.23) W, = ﬂ%’z( 8,/VBT ) - By

= Ve & A!n’d;z - (B VDT 2 Am2 /A — 2
ey o LB IVEr o) = (SR )T+ (B ) [Vef 5 =% 5l

10

Hence, plim (&) = 0. Application of OLS — or alternatively, GLS - to
1

(3.22) will vield consistent estimates of § which fully expleit the informa-
ticn contained in the constraint that these coefficients are common to both

the discrete and the continuous choices.ll
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4. Conclusions

In section 2 of this paper we have shown how to construct theoretical
models of disecrete and continuous supply decisions, where hoth sets of deci-
gions flow from a single underlying utility-of-profit maximization problem.
In addition to describing the general preocedure for creating such models, we
have developed a specific model based on the exponential utility-of-profit
function and the normal distribution for output prices which is suitable for
empirical application. One area for future research is the development of
other models based on alternative utility-of-profit functions and/or output
price probability distributions. The kev issue here, which is still
unresclved, is whether the duality relationship between the indirect
expected utility-of-profit function and tha output supply function, (2.4),
can be effectively exploited to generate a variety of parametric supplyl
models.

In order to create a statistical framework for estimating the discrete/
continuous supply models, it is necessary to postulate that some component
of the supplier's utility or production function is random from the viewpoint
of the econometric investigator. By introducing this random term in differ-
ent wavs, or by making different assumptions about its probability distribu-
tion, one can generate different discrete/continuous supply models. In
this paper we have assumed trhat the random element is normally distributed,
which leads to a probit model of the discrete choices. We could alternatively

have emploved the extreme value distribution, which would have yvielded a

logit model of the discrete choices. Moreover, rather than intreducing the

random element in an arbitrary manner, we have sought to give it an economic
interpretation by ldeantifying it with a gpecific parameter of the model w
the producer's coefficient of risk aversion, in our specific model. Other

ways of defining an economically meaningful random element deserve to be
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axplored, and the same model-building philosophy can be applied to the
profit-maximization models of Duncan [3] and McFadden [13].

As for the estimation of discrete/continuous cholce models, we have
developed a very general statistical model which applies net only to the
specific supply models developed in section 2 but also to scome of the
demand and supply models of Hanemann [(], Duncan, and McFadden. We have
shown that these discrete/continuous choice models can be regarded as
instances of a multivariate switching regression model with an N-fold
switching, which generalizes the binary switching model that has appeared
in the literature. Moreover, because the discrete and continuous choices
both result from the same underlying optimization decision by an economic
agent, there are additional restrictions on the coefficients and disturbance
terms of the equations for the discrete and the continuous cheices. The
main focus of our discussicn in section 3 has been how to expleit these
common restrictions in an efficient estimation procedure.

Duncan, who discusses this issue, assumes that only the coefficients
are common to the discrete and continuous choice equations while the dis-
turbance terms are unéorrelated. However, we find this assumption unsatis-
factory — given that both sets of cheoices result from a single optimization
decision, it seems more plausible to assume that the random terms which
influence the agent's discrete choice are related to those which influence

his continuous choice. As we have shown, practical procedures exist for

consistently estimating the discrete and continuous cheoice equatrions with-
out invoking Duncan's assumption. In order to obtain efficient estimates,
it iz dimportant to incerporate the results of fitting the discrete choice
equation in the estimation of the continuous choice equations. Our innova-~
tion here is to treat this as a problem of mixed estimation with endogenous

stochastic information. Most previcus discussicons of the value of information
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in regression analysis, such as [15], have only considered the case of
exogenous prior information. However, it can be shown that there is still
an efficiency gain with endegenous information. The magnitude of this gain
remains to be tested in an empirical application, which will be reported

geparately.
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FOOTNOTES

1. This assumption of output price uncertainty can also be extended
to Include the notion of yield uncertainty: dinterpret g as the ex-ante
anticipated output and p as the "effective price” — i.e., actual price times
the ratio of actual to anticipated output. It is necessary under this inter-
pretation to assume that variable production costs, c¢{+), depend on planned
output rather than actual output, which is not unreascnahle. It is not

possible, however, to include the netion of input price uncertainty in

this formulation.

2. The dual approach to the generation of continuous supply models under
uncertainty is investigated by Hallam, Just and Pope [4] , who describe

the requirements for the functions v{+) and q(-).

3. In all these examples we can actually assume intra-agent as well as inter-
agent variability — i.e., although an individual's technoleogy, informaticn
and preferences are fixed at the point of each decision, they may vary
between decisions in a manner which is partly unobgervable to the investi-

gator and is taken by the investigator to be random.

4. We assume that f;(-) and the other derived probability distributions
described below exist and are well defined. Wote that, if the random
terms Cj enter the conditional indirect expected utility-of-preofit func-

tions in an appropriate manner, they might disappear from the ratio on

the right-~hand side of (2.29). In that case the conditional supply, qj’

would not be a random variable for the investigator; in effect, the exis-

tence of an unobsrrvable component of the producer's decision affects

his discrete choice but not his continuous choice.

5. The following development involving (2.37)-(2.39) can readily be extended
to the case of N> 2, This will be discussed in section 3.
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10.

-

Actually we could allow I to vary with t as long as we imposed some further
structure on Zl""’ Zw, for example by adopting the random coefficient

specification of Hausman and Wise [ 7], Similarly, we could allow I to

vary with t.

Amemiva [2], Lee [10] and Heckman [8] each offer a version of a multivariate
switching model, but their models have a different structure from ocurs:
their medels involve essentially a binary discrete choice, whereas our formu-

lation involves an N-fold discrete choice.

At this point we will suppress the observation index, t, unless this

causes an ambiguity,

Duncan, who assumes the presence of exogenous infeormation which uniquely

identifies £ and the wg K'S from the probit estimates, faces a different
>

over—-identification problem. When one fits the regression model (3.20},
there are then twe consistent estimates of £, one from the probit model and
the other from the regression. Dencote these two estimates by §1 and @2,
and their respective estimated covariance matrices by 61 and 92. Duncan

propeses to resolve this over-identification by taking a weighted average

of the two estimators, which itself is consistent: £= (Vzlivvzi)“l

Tl f\'!__}/\
G788,

N(Nwi}_+

5 K~ 11 observatrions in (3.22) instead of

The reason why we add |
TK observations is to aveid a dependence relation among the disturbance
terms assoclated with the additional observations, *1’ &2, etc. Suppose,

for example, that we added the following row teo (3.22):

@1
aL T, T e
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{10.) Then, since

& A e
1,2 71""*1,2 ~ 1,2~ 2/ P 2
- 3
0,5 (B Ve 50 1,3 (Bp7Y0y 50
the disturbances would satisfy the identity $E$4 = ¢q$6.
L
11, Strictly speaking, the regression medel (3.22) is not the same as Theil-

Goldberger's mixed regression because it invelves endogenous stochastic
information, in the sense that cov(gj*t’ﬁh) # 0. Nevertheless, using the
results in Rothenberg [14, p. 47 =81, it can be shown that the estimation of
(3.22) must bring some gain in efficiency, at least in finite samples. The
magnitude of this gain is currently being investigated. A further possibilicy

is to estimate (3.22) iteratively: afrer fitting (3.22), compare the

estimate of B with the estimate of (ﬁ/vwg .
*

obtain a new estimate of Vw2 2 and then vefit (3.22%, until the estimate

»

Y from the probit model to

of £ converges.
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