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Abstract

REGRESSION THROUGH FUNCTIONAL DATA ANALYSIS

by

Kevin Amilcar Guillen

This thesis delves into the world of Functional Data Analysis (FDA) and its

analog of Principal Component Analysis (PCA) termed Functional PCA (FPCA).

While a brief primer on traditional PCA sets the stage, the main emphasis is on

the richness of FDA—a branch of statistics focusing on data represented as curves

or surfaces—and the nuances that distinguish it from conventional data analysis

techniques. From this foundation, the thesis elaborates on FPCA and its inher-

ent capability to handle the infinite-dimensional nature of functional data, with

methodologies rooted in Hilbert spaces. The core exploration revolves around

extensions of standard definitions and theorems in statistics, then ends with an

application of FPCA in the realm of forecasting. Empirical demonstrations high-

light the potential and advantages of utilizing FPCA for prediction tasks. In

synthesizing the areas of traditional statistics and functional analysis, this thesis

highlights FPCA in the landscape of data analysis.
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Chapter 1

Introduction

1.1 Introduction

Functional data analysis (FDA) is a statistical branch analyzing data represented

as curves or surfaces, termed functional data. Originating early as the 1950s, it

matured in the late 1980s due to Ramsay and Dalzell [8]. This data is inherently

infinite dimensional, and samples of functional data are considered to be functions,

so almost all analysis is performed in Hilbert and Sobolev spaces [2]. Due to this

change in setting from traditional statistical analysis, much work has to be put

in to extend traditional methods. Our focus will be on the extension of one

of these methods, Principal Component Analysis (PCA) for forecasting. Since

FDA is a blend of statistics and functional analysis we must first have a general

understanding of both areas.

1.2 Statistics

There are a variety of philosophies, methodologies, and tools for conducting sta-

tistical analysis. Here we are going to briefly carve through one important method
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of analysis, since the functional analog of this method is our focus.

Definition 1.2.1. Let X be a random variable with a finite set of possible out-

comes x1, . . . , xk each with probability p1, . . . , pk respectively. The expectation of

X is defined as,

E[X] = x1p1 + · · ·+ xkpk,

Take X to be a p-dimensional random vector (X1, . . . , Xp)
T having (co-)variance

matrix ,

K = E[(X −m)(X −m)T ]

where m is the expectation of X. The (co-)variance matrix has the following

eigenvalue-eigenvector decomposition,

K =

p∑
j=1

λjeje
T
j ,

for eigenvalues λ1 ≥ · · · ≥ λp ≥ 0 and their associated orthonormal eigenvectors

ej = (e1, . . . , epj)
T , j = 1, . . . , p that satisfy,

eTi Kej = λjδij,

where δij is the Kronecker delta. Using the eigenvector decomposition we can

define principal components,

Zj = eTj (X −m),

which are linear combinations of original variables with the weight of eij applied to

Xi in the jth component, representing its importance to Zj, measured specifically

by,

Cov(Zj, Xj) = λjeij.
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Using this, one can represent X through,

X = m+

p∑
j=1

Zjej,

since e1, . . . , ep provide an orthonormal basis for Rp. In language, this is just

showing that we can represent X through a weighted sum of eigenvectors, which

are obtained from K, with the weights being the eigenvalues (and they are un-

correlated). Under this perspective the eigenvalues are referred to as scores, since

their values represent how much variance is captured.

During analysis, one usually chooses to use n of these components where n < p,

since using n components measures the relationship between the variables in X

up to an arbitrary percentage. So, one does lose information from using fewer

components, but dimensional reduction is achieved. The amount of information

captured or lost as a consequence of using n components is easily measured since

the total variance of X is,

V =

p∑
j=1

λj,

where the variance of the jth component is,

V ar(Zj) = eTj Kej = λj,

so, using a subset of components {Zjk}k∈I (where I is some index), we retain,

1

V

∑
k∈I

λjk ,

of the information. Since one knows how much information each component cap-

tures, one can leverage them to perform outlier detection, pattern detection, fore-

casting, and many other applications. This is the basis of principal component

analysis.
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Chapter 2

Functional Analysis

Before getting into functional data analysis we must first lay out key definitions

and theorems that will be needed. All of these definitions and theorems are

common, and their proofs can be found in [1], [3], [11] or elsewhere.

2.1 Preliminaries

Definition 2.1.1. Let (E,B, µ) be a measure space and for p ∈ [1,∞), denote by

Lp(E,B, µ) the collection of measurable functions f on E that satisfy
∫
E
|f |p dµ <

∞. Define,

‖f‖p =

(∫
E

|f |p dµ
)1/p

(2.1)

when f ∈ Lp(E,B, µ).

Definition 2.1.2. A function f : E → X is called simple if it can be represented

as

f(ω) =
k∑
i=1

IEi
(ω)gi

for some finite k, gi ∈ X, and Ei ∈ B.
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Definition 2.1.3. Any simple function f(ω) =
∑k

i=1 IEi
(ω)gi with µ(Ei) < ∞

for all i is said to be integrable and its Bochner integral is defined as∫
E

fdµ =
k∑
i=1

µ(Ei)gi.

Definition 2.1.4. A measurable function f is said to be Bochner integrable if

there exists a sequence {fn} of simple and Bochner integrable functions such that

lim
n→∞

∫
E

‖fn − f‖p dµ = 0.

In this case, the Bochner integral of f is defined as∫
E

fdµ = lim
n→∞

∫
E

fndµ.

2.2 Linear Functionals and Operators

From here forward, B(H,R) or B(H) refers to the dual space of H, Hilber-Schmidt

operators will be abbreviated as HS, and the collection of HS operators in the dual

of H is denoted by BHS(H,R), and the norm in the Hilbert space this collection

makes is denoted as ‖·‖HS.

Theorem 2.2.1. Let X1, X2 be Banach spaces, f a Bochner integrable function

from E to X1, and F ∈ B(X1, X2). Then Ff is Bochner integrable and,

F
(∫

E

fdµ

)
=

∫
E

Ffdµ.

Corollary 2.2.2. Let H1, H2 be separable Hilbert spaces. Given a measure space

(E,B, µ), for a measurable map G on E taking values in BHS(H1,H2) 2.2.1 de-
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mands G to be Bochner integrable if,∫
E

‖G‖HS dµ <∞.

For any such G, ∫
E

(Gf)dµ =

(∫
E

Gdµ

)
f (2.2)

for all f ∈ H1.

Proof. For any fixed f ∈ H1 define a mapping K that maps G ∈ BHS(H1,H2) to

Gf ∈ H2. We can then rewrite (2.2) as,∫
E

K(G)dµ = K

(∫
E

Gdµ

)
. (2.3)

Since K ∈ B(BHS(H1,H2),H2) and the operator norm of G is bounded above by

‖f‖1, meaning (2.3) is simply a result of 2.2.1

Theorem 2.2.3. Suppose that H is a Hilbert space with inner product and norm

〈·, ·〉, ‖·‖ and F ∈ B(H,R). There is a unique element eF ∈ H called the repre-

senter of F with the property,

Fx = 〈x, eF〉 ,

for all x ∈ H and ‖F‖ = ‖eF‖

Definition 2.2.4. Let X be an inner-product space with M ⊂ X. The orthogonal

complement of M is the set,

M⊥ = {x ∈ X : 〈x, y〉 = 0, ∀x, y ∈M}.

Theorem 2.2.5. Let H be a Hilbert space with M a subset of H. Then,

(a) M⊥ is a closed subspace.
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(b) M ⊂ (M⊥)⊥.

(c) (M⊥)⊥ = M if M is a subspace.

Theorem 2.2.6. Let F ∈ B(H1,H2), for real Hilbert spaces H1, H2. Then,

(a) (F∗)∗ = F .

(b) ‖F∗‖ = ‖F‖.

(c) ‖F∗F‖ = ‖F‖∗.

(d) ker(F) = (im(F∗))⊥.

(e) ker(F∗F) = kerF and im(F∗F) = im(F)∗.

Definition 2.2.7. Let x1 ∈ H1 and x2 ∈ H2, the tensor product operator (x1 ⊗1

x2) : H1 → H2 is defined by,

(x1 ⊗1 x2)y = 〈x1, y〉1 x2,

for y ∈ H1. When H1 = H2 we simply use ⊗.

Theorem 2.2.8. Let x1 ∈ H1 and x2 ∈ H2, then ‖x1 ⊗1 x2‖ = ‖x2‖2 ‖x1‖1 .

Proof. For x1 6= 0 we have,

‖x1 ⊗1 x2‖ = sup
‖v‖=1

‖〈x1, v〉x2‖2 6 ‖x2‖2 ‖x1‖1 ,

with equality when v = x1/ ‖x1‖1.

Now some common key properties relating to self-adjoint and compact opera-

tors.
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Theorem 2.2.9. Let F be a compact, self-adjoint operator on a Hilbert space H.

The set of nonzero eigenvalues for F is finite or is made up of a sequence tending

towards 0. Each nonzero eigenvalue has finite multiplicity and eigenvectors cor-

responding to different eigenvalues are orthogonal. Let λ1, λ2, . . . be eigenvalues

ordered such that,

|λ1| ≥ |λ2| ≥ . . . ,

and let e1, e2, . . . be the corresponding orthonormal vectors obtained using Gram-

Schmidt orthogonalization as necessary for repeated eigenvalues. Then {ei} is an

orthonormal basis for imF and,

F =
∑
i≥1

λiei ⊗ ei.

So, for every x ∈ H,

Fx =
∑
i≥1

λi 〈x, ei〉 ei.

Theorem 2.2.10. Let the continuous kernel K be symmetric and nonnegative

definite and K the corresponding integral operator. If (λi, ei) are eigenvalue and

eigenfunction pairs of K, then K has the representation,

K(s, t) =
∞∑
i=1

λiei(s)ei(t),

for all s, t with the sum converging absolutely and uniformly.
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Chapter 3

Functional Data Analysis

3.1 Functional Data

A stochastic process is an indexed collection of random variables which are defined

on a common probability space (Ω,F ,P). Let us refer to the indexed set as E.

This is simply the following collection,

{X(t, ω) : t ∈ E,ω ∈ Ω} ,

with X(t, ·) is a F measurable function of Ω, and will be shortened to just X(t).

Once we observeX(t) for all elements in our index set E, the stochastic process has

then been realized, leaving us with a collection of real numbers. This collection is

referred to as a sample path for the process. Functional data analysis’ (FDA) main

concern is the development of methodology and tools for the analysis of data that

represent these sample paths, where usually the index set is some closed interval,

specifically [0, 1]. This leads to the analysis of observations that are functions on

[0, 1] and the data sets are now viewed as a collection of random curves.

We cannot actually observe functional data since we will encounter numerical

issues at one point. Due to this fact, analysis usually has to be predicted on n
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points through [0, 1] for each sample path, which is finite dimensional data and

one could be drawn to do traditional multivariate analysis. This would be fine

if the data were not functional data, which is when we have significantly more

observations than we do sample paths, multivariate analysis begins to run into

many problems as this difference increases [9] which is where the strength of FDA

is highlighted.

3.2 Statistics In a Hilbert Space

There are two somewhat different perspectives of functional data. The first is that

functional data are realizations of random variables that take values in a Hilbert

space; this is the random element perspective. The second view is that functional

data is really sample paths of a stochastic process; this is the stochastic process

perspective. FDA is the first line of thought, but to begin, one needs to lay a

foundation for the study of Hilbert space valued random variables, so we should

have concepts such as mean and covariance in this abstract environment.

Let χ be a random element of a separable Hilbert space H defined on a proba-

bility space (Ω,F ,P). One notion of the mean is the following.

Definition 3.2.1. If E ‖χ‖ < ∞ the mean element of χ, m, or simply the mean

of χ is defined as the Bochner integral,

m = E(χ) =

∫
Ω

χdP.

This gives us a natural extension of the mean of a random variable to the case of

random elements. Roughly speaking, it is a weighted sum of possible realizations

of χ that returns another non-random element of H. Naturally, what follows after

expectation is a type of variance measure, we define the analog as follows.
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Theorem 3.2.2. Assume that E ‖χ‖2 <∞. Then,

E ‖χ−m‖2 = E ‖χ‖2 − ‖m‖2 ,

where m is the mean of χ.

Now the next natural step is extending the concept of covariance. Recall that

for a random p−vector X we have its covariance as,

E[(X − EX) (X − EX)T ] = E [(X − EX)⊗ (X − EX)] .

This is a p× p matrix and therefore an element of B(RP ). For Hilbert spaces we

build on this idea, if χ is a random element from our Hilbert space, we define the

covariance operator as follows.

Definition 3.2.3. Assume that E ‖χ‖2 <∞. Then the covariance operator for χ

is the element of B(H) given by the Bochner integral,

K = E[(χ−m)⊗ (χ−m)] :=

∫
Ω

(χ−m)⊗ (χ−m)dP.

Where m is the mean of χ.

Now we provide an extension of a common covariance identity in finite dimen-

sions.

Theorem 3.2.4.

E[(χ−m)⊗ (χ−m)] = E(χ⊗ χ)−m⊗m.

Proof. We have χ⊗m, m⊗χ, and m⊗m as HS operators, and m⊗m specifically

is constant in Ω while,

E ‖χ⊗m‖HS = E ‖m⊗ χ‖HS = ‖m‖E ‖χ‖ ,

11



so, it holds if for all g ∈ H,

E(m⊗ χ)g = E(χ⊗m)g = (m⊗m)g = 〈m, g〉m,

which follows from Corollary 2.2.2

Generally we assume that m = 0 and will state otherwise if not, reducing the

above to,

K = E(χ⊗ χ) :=

∫
Ω

(χ⊗ χ)dP.

Now we have the following key properties of the covariance operator which will

help build towards an analog of PCA,

Theorem 3.2.5. Assume that E ‖χ‖2 < ∞. Then for any f, g ∈ H we have the

following:

(a) 〈Kf, g〉 = E [〈χ, f〉 〈χ, g〉].

(b) K is a nonnegative-definite trace-class operator with,

‖K‖TR = E ‖χ‖2 .

(c) P
(
χ ∈ imK

)
= 1.

Proof. (a) Notice that K ∈ BHS(H), allowing us to apply Corollary 2.2.2, granting

us,

Kf =

(∫
Ω

χ⊗ χdP
)
f =

∫
Ω

χ 〈χ, f〉 dP,

for any f ∈ H. Then applying Theorem 2.2.1 to the linear functional Tf := 〈f, g〉

gives us our desired result.
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(b) The nonnegative definite property follows from (a), to show that K is trace

class, we let {ei}i∈I be a orthonormal basis for H. Now observe that,

‖K‖TR =
∞∑
j=1

〈Kej, ej〉 =
∞∑
j=1

E 〈χ, ej〉2 = E ‖χ‖2 <∞.

(c) Using (d) of 2.2.6 we have,

(imK)⊥ = kerK∗ = kerK,

since K is self-adjoint, therefore for any f ∈ (imK)⊥,

E
[
〈Kf, f〉2

]
= 〈Kf, f〉 = 0.

Implying that χ is orthogonal to any function in (imK)⊥ with probability one.

Then, by part (c) of 2.2.5 we have,

χ ∈ (imK)⊥⊥ = imK,

with probability one.

Now with (b) of 3.2.5 and Theorem 2.2.9 we have the foundation of functional

PCA,

Theorem 3.2.6. The covariance operator K possesses an eigen decomposition,

K =
∞∑
i=1

λiei ⊗ ei.

The eigenfunctions {ei}∞i create an orthonormal basis for imK, and their respec-

tive eigenvalues {λi}∞i are non-negative and either finite or a sequence that tends

to 0. For nonzero eigenvalues, their multiplicity is finite.

Recalling that a (co)variance matrix of a random vector has a spectral decom-
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position, this theorem is an extension of exactly that. Then, like in the finite

dimensional case, with this theorem and Theorem 3.2.5 we have an extension of

principal component decomposition, which opens the doors to functional PCA.

Theorem 3.2.7. Assuming that the covariance operator K has the eigen decom-

position in 3.2.6. Then,

χ =
∞∑
i=1

〈χ, ei〉 ei

with probability one, where 〈χ, ei〉 are uncorrelated random variables with mean

zero and variances λi for all i ≥ 1.

This is our extension of principal component decomposition stated formally.

Similarly to the finite dimensional case, Theorem 3.2.7 provides one with a wide

range of uses and properties, one is the following.

Theorem 3.2.8. Let {gi}∞i=1 be some orthonormal basis for H then,

E

∥∥∥∥∥χ−
n∑
i=1

〈χ, gi〉 gi

∥∥∥∥∥
2

= E ‖χ‖2 −
n∑
i=1

〈Kgi, gi〉

which can be minimized by taking gi = ei for i ∈ {1, . . . , n}

Proof. We have already,

E

∥∥∥∥∥χ−
n∑
i=1

〈χ, gi〉 gi

∥∥∥∥∥
2

= E ‖χ‖2 + E

∥∥∥∥∥
n∑
i=1

〈χ, gi〉 gi

∥∥∥∥∥
2

︸ ︷︷ ︸
?

−2E

〈
χ,

n∑
i=1

〈χ, gi〉 gi

〉
,

where for ? above we have,

E

∥∥∥∥∥
n∑
i=1

〈χ, gi〉 gi

∥∥∥∥∥
2

= E

〈
χ,

n∑
i=1

〈χ, gi〉 gi

〉
,

which leaves,

E

∥∥∥∥∥χ−
n∑
i=1

〈χ, gi〉 gi

∥∥∥∥∥
2

= E ‖χ‖2 − E

〈
χ,

n∑
i=1

〈χ, gi〉 gi

〉
,

14



= E ‖χ‖2 −
n∑
i=1

E 〈χ, gi〉2

= E ‖χ‖2 −
n∑
i=1

〈Kgi, gi〉 .

Then by (b) of Theorem 3.2.5 we have ‖K‖ = E ‖χ‖2 and then applying Corollary

2.2.2 complete our proof.

This establishes the tools needed for principal component decomposition, but

that alone does not tell us everything about relationships between variables. One

may want to explore dependence between two groups of variables. Recalling

though in the finite dimensional case one needs a cross-covariance matrix, and

just how we established existence of a covariance operator, we can establish the

existence of a cross-covariance operator.

To begin, we first make some amendments to our setting. Suppose we in-

stead have two random elements χ1, χ2 defined on probability space (Ω,F ,P)

taking values from separable Hilbert spaces H1,H2 respectively. Also suppose

that E ‖χi‖2 <∞ for i = 1, 2. As before, assume that their mean is also 0 unless

otherwise stated.

Then, we define the cross-covariance operator for χ1, χ2 to be defined as the

Bochner integral,

K12 =

∫
Ω

(χ2 ⊗2 χ1)dP.

The justification for existence follows from the covariance operator. Then for any

ω ∈ Ω we have χ2(ω)⊗2χ2(ω) which is a HS operator with norm ‖χ1(ω)‖1 ‖χ2(ω)‖2,

letting us apply Theorem 2.2.1 to show that this integral is well-defined as an el-

ement of BHS(H2,H1). Now, just as Theorem 3.2.5 demonstrated key properties
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of the covariance operator, it is extended to this cross-covariance operator with

the following theorem.

Theorem 3.2.9. Assuming that Eχ1 = Eχ2 = 0 and both E ‖χ1‖2
1 and E ‖χ2‖2

2

are finite, then for any g ∈ H1 and f ∈ H2,

(a) 〈K12f, g〉1 = E [〈χ1, g〉1 〈χ2, f〉2].

(b) |〈K12f, g〉1| 6 〈K1g, g〉1/21 〈K2f, f〉1/22 .

(c) K12 has adjoint,

K21 =

∫
Ω

(χ1 ⊗1 χ2)dP.

Proof. Parts (b) and (c) follow from (a), and we have (a) in the same fashion we

have (a) of Theorem 3.2.5.

In traditional multivariate analysis, the generalized correlation measure is pro-

vided by the matrix,

R12 = K1/2
1 K12K1/2

2 ,

where K1, K2, and K12 are the covariance and cross-covariance matrices for the

two random variables of interest. Canonical correlation usually centers around the

singular value decomposition of this measure. Following this pattern of extension,

we would like there to be an extension of this in our Hilbert space of random

elements, but unfortunately, the compactness of our operators makes them non-

invertible in infinite dimensions.

Still though, we can at least establish an analog of the measure R due to Baker

[5].

Theorem 3.2.10. There exists an operator R12 ∈ B(H1,H2) with ‖R12‖ 6 1

such that K12 = K1/2
1 R12K1/2

2 .
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Proof. First, let (λ1i, e1i) be eigenvalues and eigenfunctions of K1 and Pn the

projection in H1 of span{e1i, . . . , e1n}. Then, we have for every f ∈ H2,∥∥∥PnK−1/2
1 K12f

∥∥∥2

1
=
〈
K12f,PnK−1

1 K12f
〉

1

6 〈K2f, f〉1/22

〈
K1PnK−1

1 K12f,PnK−1
1 K12f

〉1/2

1
by (b) of 3.2.9

= 〈K2f, f〉1/22

∥∥∥PnK−1/2
1 K12f

∥∥∥
1∥∥∥PnK−1/2

1 K12f
∥∥∥

1
6 〈K2f, f〉1/22 by dividing∥∥∥PnK−1/2

1 K12f
∥∥∥

1
6
∥∥∥K1/2

2 f
∥∥∥

2
,

which we have for any n. Thus, for every f ∈ H2 we have,∥∥∥K−1/2
1 K12f

∥∥∥
1
6
∥∥∥K1/2

2 f
∥∥∥

2
.

Then, if f ∈ im
(
K1/2

2

)
in that f = K∈1/2f0 for some f0 ∈ H2 we obtain,

‖K−1/2
1 K12∈−1/2f︸ ︷︷ ︸

R12

‖1 6 ‖f‖2 ,

meaning that R12 is bounded on im
(
K1/2

2

)
with norm at most 1. Now, we can

extend R12 to the closure through the extension principle [3], with the exten-

sion having the same norm. Lastly, we define R12f = 0 for f in the closure of

Im(K1/2
2 )⊥ to complete the definition of R12 on all of H1, as desired.

As in the finite dimensional case, this operator gives us a measure of dependence

between our random variables χ1 and χ2.

When ‖χ1, g‖1 and ‖χ2, f‖2 are bivariate normal for all g ∈ H1 and f ∈ H2, the

mutual information (how much information one variable says about the other) of

χ1 and χ2 is finite if and only if R12 is HS and its norm is strictly less than 1
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[5]. This concludes our extensions of common statistical tools and objects to the

Hilbert space setting.

3.3 Stochastic Process

We now explore the other line of thought which is viewing functional data as

a stochastic process. Our setting is a probability space (Ω,F ,P) with stochas-

tic process X = {X(t) : t ∈ E}. Where X is representing a random function

that is partially observed or realized. Under measure-theoretic assumptions of a

stochastic process, X(t) is a random variable, but this does not demand X(·) to

be a random element of L2(E,B(E), µ). Because of this, conditions have been

established as to when this is guaranteed [2]. With this established, we begin our

exploration. The mean function of the stochastic process X is defined as,

m(t) = E[X(t)],

and the covariance kernel as,

K(s, t) = Cov(X(s), X(t)),

for s, t ∈ E.

Definition 3.3.1. A second order process is defined as a stochastic process, X,

with well-defined mean function and covariance kernel.

It is clear that the covariance kernel K is nonnegative definite simply by defi-

nition of covariance.

Definition 3.3.2. A mean square continuous process is defined as a stochastic
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process such that,

lim
n→∞

E[X(tn)−X(t)]2 = 0.

Theorem 3.3.3. Let X be a second order process. Then, X is mean square

continuous if and only if its mean function and covariance kernel are continuous.

Proof. (⇒) First we show continuity of the mean function

|m(s)−m(t)| = |E[X(s)−X(t)]| 6
(
E[X(s)−X(t)]2

)1/2 → 0,

which follows from our assumption of Definition 3.3.2. Now we assume thatm(t) ≡

0, covariance kernel continuity follows from,

K(s, t)−K(s′, t′) = (K(s, t)−K(s′, t)) + (K(s′, t)−K(s′, t′))

applying Cauchy-Shwarz inequality we have,

|K(s, t)−K(s′, t)| 6 K1/2(t, t)(E [X(s)−X(s′)]
2
)1/2,

|K(s′, t)−K(s′, t′)| 6 K1/2(s′, s′)(E [X(t)−X(t′)]
2
)1/2,

which, as with the mean function, follow from our assumption of Definition 3.3.2.

(⇐) By definition we have,

E [X(s)−X(t)]2 = K(s, s) +K(t, t)− 2K(s, t) + (m(s)−m(t))2,

and the continuity of the mean function and covariance kernel imply Definition

3.3.2.

Just because X is a mean squared continuous process does not mean it is always

a random element of any Hilbert space. Regardless, we have the following integral
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operator on L2(E,B(E), µ) which is well-defined,

(Kf)(t) =

∫
E

K(t, s)f(s)dµ(s),

where µ is of finite measure. This K is the covariance operator of X. Then by

Theorem 2.2.10,

K(s, t) =
∞∑
i=1

λiei(s)ei(t).

Now, in the event that X is also a random element of H we have the following.

Theorem 3.3.4. Let X = {X(t) : t ∈ E} be a mean square continuous process

that is jointly measurable. Then,

(a) The mean function m belongs to H and coincides with the mean element of

X in H.

(b) The covariance operator E(X⊗X) is defined and coincides with the operator

K.

(c) For any f ∈ H,

IX(f) =

∫
E

X(t)f(t)dµ(t) = 〈X, f〉 .

Proof. Refer to [4].

We end the examination of stochastic processes here, since what we have so far

is sufficient for our purposes.

3.4 Sampling

Now, we explore large-sample results that will be of use in inference problems

under FDA. Assume that one has independent realizations X1, X2, . . . , Xn of some
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real valued variable X with expectation m. In many situations we have that,

Xn =
1

n

n∑
i=1

Xi,

converges almost surely to m (Strong law of large numbers), and after normaliza-

tion, it roughly has a Gaussian distribution (Central limit theorem). It would be

wonderful to have extensions of these essential results for when Xi is a random

element of a Hilbert space, fortunately we do!

Now we let χ1, χ2, . . . be random elements in H, and we denote the sum of the

first n as,

Sn =
n∑
i=1

χi

Theorem 3.4.1. Assuming that the collection {χi}ni=1 is pairwise independent

with m = 0, we have,

E ‖Sn‖2 =
n∑
i=1

E ‖χi‖2 .

Proof. Take {ek : k ≥ 1} to be an orthonormal basis for H, since we have pairwise

independence in the collection {χi},

E 〈χi, ek〉 〈χj, ek〉 = E 〈χi, ek〉E 〈χj, ek〉 = 〈Eχi, ek〉 〈Eχj, ek〉 = 0,

when i 6= j. Proceeding we have,

E ‖Sn‖2 =
∞∑
k=1

E 〈Sn, ek〉2 =
∞∑
k=1

n∑
i=1

E 〈χi, ek〉2 =
n∑
i=1

∞∑
k=1

E 〈χi, ek〉2

=
n∑
i=1

E ‖χi‖2 .

Now we provide an extension of the Strong law of large numbers.
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Theorem 3.4.2. Assume χ1, χ2, . . . be pairwise independent, and independent

and identically distributed (i.i.d.) with E ‖χ1‖ <∞. Then,

lim
n→∞

1

n
Sn = Eχ1,

almost surely.

The outline of this proof follows from Etemadi’s clever proof of Strong law of

large numbers [4].

Proof. Define,

χ′i = χiI(‖χi‖6i),

where I is the indicator function. Similar to before we also define,

S ′n =
n∑
i=1

χ′i.

Let [α] denote the integer part of α. Now, take kn = [αn] for α > 1 and {ek}∞k=1

to be an orthonormal basis for H. We now apply Theorems 3.2.2 and 3.4.1, and

Markov’s [1] inequality to obtain,

∞∑
n=1

P

(
ε <

∥∥S ′kn − ES ′kn
∥∥

kn

)
6 ε−2

∞∑
n=1

k−2
n

kn∑
i=1

E ‖χ′i‖
2

= ε−2

∞∑
i=1

E ‖χ′i‖
2
∑
n:kn≥i

k−2
n .

Then following the results from [11] chapter 2 we get a last inequality,

ε−2

∞∑
i=1

E ‖χ′i‖
2
∑
n:kn≥i

k−2
n 6 4(1− α−2)−1ε−2

∞∑
i=1

E ‖χ′i‖
2
i−2.

We have though,

∞∑
i=1

E ‖χ′i‖
2
i−2 =

∞∑
i=1

i−2

i−1∑
j=0

E
[
‖χi‖2 I(j6‖χ1‖6j+1)

]
(3.1)

22



=
∞∑
j=0

E
[
‖χ1‖2 I(j6‖χ1‖6j+1)

] ∞∑
i=j+1

i−2 (3.2)

6 C
∞∑
j=0

(j + 1)−1E
[
‖χ1‖2 I(j6‖χ1‖6j+1)

]
, (3.3)

for a C < ∞. We have (3.3) bounded by E [χ1], so we can apply Borel-Cantelli

[1] and see that,

lim
n→∞

S ′kn − ES ′kn
kn

= 0,

almost surely. Then, applying Lebesgue’s dominated convergence theorem,

lim
n→∞

‖Eχ′n − Eχ1‖ 6 lim
n→∞

E ‖χ1‖ I(n<‖χ1‖) = 0

=⇒ lim
n→∞

∥∥∥∥ES ′knkn
− Eχ1

∥∥∥∥ 6 lim
n→∞

1

kn

kn∑
i=1

‖Eχ′i − Eχ1‖ = 0

=⇒ lim
n→∞

S ′kn
kn

= Eχ1,

almost surely. Then, with Borel-Cantelli, we have that X ′n = Xn eventually with

probability 1,

lim
n→∞

Skn
kn

= Eχ1, (3.4)

almost surely. Now, we have m(n) ∈ N such that,

km(n)−1 = [αm(n)−1] < n 6 [αm(n)] = km(n).

Using this, we have∥∥∥∥Snn − Skm(n)

km(n)

∥∥∥∥ =

∥∥∥∥Skm(n)

n
−
Skm(n)

km(n)

+
Sn − Skm(n)

n

∥∥∥∥
6

(
kn(n)

n
− 1

)∥∥∥∥Skm(n)

km(n)

∥∥∥∥+
1

n

km(n)∑
i=n+1

‖χi‖
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6 (α− 1)

∥∥∥∥Skm(n)

km(n)

∥∥∥∥+
1

n

km(n)∑
i=n+1

‖χi‖ .

Now, with (3.4) we have,

lim
n→∞

∥∥∥∥Skm(n)

km(n)

∥∥∥∥ = ‖Eχ1‖ 6 E ‖χ1‖ ,

almost surely. Then, by the standard Strong law of large numbers for real values

we are guaranteed that both,

1

km(n)

km(n)∑
i=1

‖χi‖︸ ︷︷ ︸
♥

,
1

n

n∑
i=1

‖χi‖︸ ︷︷ ︸
♣

→ E ‖χ1‖ ,

with probability 1. Meaning,

lim sup
n→∞

1

n

km(n)∑
i=n+1

‖χi‖ = lim sup
n→∞

(
km(n)

n
♥−♣

)
6 (α− 1)E ‖χ1‖ ,

almost surely, and thereby giving us,

lim sup
n→∞

∥∥∥∥Snn − Skm(n)

km(n)

∥∥∥∥ 6 2(α− 1)E ‖χ1‖ ,

and as one lets α ↓ 1 we get our desired result.

In all, we now have an analog of the Strong law of large numbers in a Hilbert

space setting. Now all that is left is to get an analog of the Central limit theorem,

which is just convergence in distribution. To do so, we need a notion of weak

convergence for probability measures.

Definition 3.4.3. Let P,Pn for n ≥ 1 be probability measures on (H,B(H)). Pn
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converges weakly to P if,∫
H
f(x)dPn(x)→

∫
H
f(x)dP(x),

for any bounded and continuous functions f on H, this is denoted as Pn
p−−→ P

For random elements χ, χn for n ≥ 1 we say that χn converges in distribution

if,

P ◦ χ−1
n → P ◦ χ−1,

and denote it by χn
d−−→ χ [1].

Now we lay out some necessary tools in order to get our Central limit theorem.

Definition 3.4.4. An arbitrary set of probability measures {µα}α∈I on (H,B(H))

is tight if for any ε > 0 there exists a compact set W such that,

inf
α∈I

µα(W ) ≥ 1− ε.

For any S ⊂ H and any ε > 0, let,

Sc = {x ∈ H | inf {‖x− z‖ : z ∈ S} 6 ε} .

Theorem 3.4.5. Let {µα}α∈I be a family of probability measures on (H,B(H)).

Assume that for each ε, δ > 0 there exists a finite subset {y1, . . . , yk} ⊂ H such

that,

(a) infα∈I µα(Sc) ≥ 1− δ where S := span {y1, . . . , yk}.

(b) infα∈I µα({x ∈ H : |〈x, yj〉| 6 r, j = 1, . . . , k}) ≥ 1− δ for some r > 0.

Then, {µα}αI
is tight.

Proof. Refer to [1] chapter 4.
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Theorem 3.4.6. Let χ, χn for n ≥ 1 be random elements in (H,B(H)). Assume

that 〈χn, f〉 → 〈χ, f〉 in R for all f ∈ H and for each ε, δ > 0, there exists a finite

dimensional subspace S such that,

inf
n≥1

P(χn ∈ Sc) ≥ 1− δ,

for Sc defined as in Theorem 3.4.5. Then χn
d−−→ χ.

Proof. Refer to [1] chapter 4.

Now, we construct a Central limit theorem analog for random elements in a

Hilbert space.

Theorem 3.4.7. Let χ1, χ2, . . . be i.i.d. random elements in H with mean 0 and

E ‖χ1‖2 <∞. Then,

ζn :=
1√
n

n∑
i=1

χi
d−−→ ζ,

where ζ is a Gaussian random element of H with covariance operator equal to

E(χ1 ⊗ χ1).

Proof. This will follow from Theorem 3.4.6. First, by the standard Central limit

theorem for reals, for any f ∈ H the distribution of 〈ζn, f〉 converges to

N(0, 〈E(χ1 ⊗ χ1), f〉), which is the distribution of 〈ζ, f〉.

Then, let {ej} be an orthonormal basis for H and let SK = span {e1, . . . , eK}

be the S from Theorem 3.4.5. Let ζnK and ζ ′nK be the projections of ζn on SK and

S⊥K respectively, and let χiK be the projection of χi on S⊥K . Then, for any ε > 0,

P(‖ζ ′nK‖ 6 ε) = P(ζn ∈ ScK).

Then by Chebyshev’s inequality,

P(‖ζ ′nK > ε‖) 6 ε−1E(‖χ′1K‖
2
),
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which will be smaller than any δ for K sufficiently large. This satisfies both

conditions for Theorem 3.4.6, giving us our Central limit theorem.

Now, we will discuss actually estimating these objects. As before, let H be a

separable Hilbert space and χ be a random element of said space. Assume that

one observed i.i.d. samples χ1, . . . , χn from χ. We want to estimate the mean,

m, and the covariance operator, K. Similar to traditional methods, we define our

sample mean and covariance operator as follows

mn =
1

n

n∑
i=1

χi

and

Kn =
1

n− 1

n∑
i=1

(χi −mn)⊗ (χi −mn).

Now applying our sampling results, we obtain the following immediately about

our sample mean.

Theorem 3.4.8. If E ‖χ1‖ < ∞ then mn → m almost surely. If E ‖χ1‖2 < ∞

then we have in H,
√
n(mn −m)

d−−→ ζ,

where ζ is Gaussian with mean 0.

We also have the following asymptotic properties of the sample covariance op-

erator.

Theorem 3.4.9. If E ‖χ1‖2 < ∞ then Kn → K almost surely. If E ‖χ1‖4 < ∞

then in BHS(H),
√
n(Kn −K)

d−−→ β,
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where β is our Gaussian random element with mean zero and covariance operator,

E((χ1 −m)⊗ (χ1 −m)−K)⊗HS ((χ1 −m)⊗ (χ1 −m)−K).

Proof. First,

Kn =
1

n− 1

n∑
i=1

(χi −m)⊗ (χi −m)− n

n− 1
(mn −m)⊗ (mn −m),

where the former conclusion follows directly from our Strong law of large numbers

3.4.2 and Theorem 3.4.9. The latter follows from our Central limit theorem 3.4.7

if,

E ‖(χi −m)⊗ (χi −m)−K‖2
HS <∞.

With Theorem 3.2.2 we have the following though,

E ‖(χi −m)⊗ (χi −m)−K‖2
HS 6 E ‖(χi −m)⊗ (χi −m)‖2

HS = E ‖χi −m‖4 ,

and the right most equality is clearly finite, giving us our desired result.

This concludes exploration of the purer side of FDA. Although everything ex-

plored to this point cannot be fully observed in practice due to the nature of

infinity, the results will still be used with what follows in the last section.

3.5 Confidence

In traditional statistics and in finite dimensions, once sampling is done, a sample

mean and sample covariance matrix is calculated. From there, usually there is a

desire to make an inference on the whole population from the sample, specifically

how the sample mean generalizes to the population/true mean. This is done

through the Central limit theorem to create a confidence interval. One can try to
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replicate this for sample paths,

Xi(tj) = Yi(tj) + εi(tj),

where i is the ith sample path, and tj is our time index. In this situation we model

Xi through what is believed to be its true underlying function Yi with some noise

εi from the observation itself. Calculating the sample mean as,

m(tj) =
1

n

n∑
i=1

Xi(tj).

This is still discrete, as mentioned at the start, so some form of interpolation

is performed to turn these discrete sample paths into actual curves (Fourier, B-

splines, Monomial). So, we will have a curve for each Yi based on whatever choice

of interpolation, and then a curve for the mean function m based on the same

interpolation as well.
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Figure 3.1: Two sample paths and mean.

If we took the confidence interval of the mean function (before interpolation)
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at each time sample, of course the mean will always be between the confidence

interval at each time step as seen in Figure 3.2. One might then have the desire

0 20 40 60 80 100 120 140

0.6

0.8

1.0

1.2

1.4

1e6 Confidence Intervals
Mean
Lower
Upper
Confidence Range

Figure 3.2: Confidence band for each time step.

to interpolate the mean and the confidence intervals under the same interpolation

to generate a type of confidence band. One will stumble onto the issue though

that the continuous mean function in between time steps can sometimes travel

outside these confidence bands as seen a few times in Figure 3.3, in that case

even the upper limit confidence band goes below the lower limit confidence band

which makes no real world sense. The reason this option is explored in the first

place is that even though we have a functional Central limit theorem, generating

confidence bands for our sample mean function that makes sense cannot be done

analytically. Many refer to proper confidence bands as simultaneous confidence

bands, since a confidence interval must make sense for any point in time on the

continuous space, not just at the discrete time steps. There is much effort put into

coming up with ways to obtain these simultaneous confidence bands using other
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Figure 3.3: Mean function traveling outside of confidence bands.

statistical methods such as Bootstrapping [7] or implementing Bayesian inference

[8]. We will not dive into these methods here, but it is worth mentioning.

3.6 Functional PCA

Recall in the finite dimensional case, when one has a p-dimensional random vector

X with expectation m and covariance matrix K, if,

K =

p∑
i=1

λieie
T
i ,

is the eigen-value/vector decomposition for the covariance matrix, one could de-

compose X as,

X = m+

p∑
i=1

Ziei.

Where the random variables Zi = eTi (X −m) are of mean zero and uncorrelated

with variance λi. These random variables are the principal components of X.
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Each of these principal components explain a portion of variance from the original

data, meaning if one is willing to sacrifice some portion of variance and only use

n components (where n < p) then one can form a substitute of X (within their

tolerance) and achieve dimensional reduction in the process.

We can achieve this dimensional reduction in the infinite dimensional setting

as well, through what we have built up, and specifically the functional analog of

principal components.

Now translating our workspace, suppose that χ is a random element of a Hilbert

space H instead and E ‖χ‖2 <∞. Now with Theorem 3.2.6, we know that χ has

a covariance operator K that admits the spectral decomposition,

K =
∞∑
i=1

λiei ⊗ ei.

We also know from Theorem 3.2.7 that,

χ = Eχ+
∞∑
i=1

〈(χ− Eχ), ei〉 = m+
∞∑
i=1

Ziei,

where Zi are of mean zero and uncorrelated random variables, with variance λi.

One might be able to sniff out now that the multivariate analysis equivalent of

PCA is merely a case of when our Hilbert space is Rp!

Now, when we have a stochastic process X = {X(t) : t ∈ E} that also happens

to be a random element of a Hilbert space H, functional PCA emerges. By theorem

3.3.4, knowledge of the covariance operator K is equivalent to knowing the process

covariance kernel,

K(s, t) = Cov(X(s), X(t)),
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and by Theorem 2.2.10, when X is mean-square continuous,

K(s, t) =
∞∑
i=1

λiei(s)ei(t),

with {(λi, ei)}∞i=1 being the eigen sequence for the H integral operator correspond-

ing to K, and that the sequence converges absolutely and uniformly in s and t.

We have by Karhunen-Loeve expansion [7],

X(t) = m(t) +
∞∑
i=1

Ziei(t),

with m(t) = EX(t) and,

Zi =

∫
E

(X(t)−m(t))ei(t)dµ(t).

Which is our functional principal component decomposition analog. By truncat-

ing the infinite sum to the first N terms, for a large enough N , one can obtain a

good approximation of the infinite sum, and thereby creating a substitute of X

that captures most of its information, but with only N components. In the infinite

dimensional case, the effect of dimensional reduction is significantly more power-

ful, which is why much effort is put into showing existence and finding principal

components.
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Chapter 4

Applications

4.1 Introduction

First, recall that functional data is generally considered data that has significantly

more observations than sample paths. So, the dataset for our application will be

on the weekly sales for 50 stores over 3 years. In this case we have 156 observations

for 50 sample paths as seen in Figure 4.1. We will be doing this application in

Python, using Pandas, NumPy, and scikit-learn libraries. Our aim will be to

forecast weekly sales based on given data. To do so, we will conduct regression

through functional PCA.

4.2 Forecasting

First, we turn our discrete sample paths into continuous curves that live in L2[0, 1].

Our method of choice will be both BSpline (Figure 4.2) and Fourier interpolation

to compare performance. Of these store curves though, we will only use 80 percent

of them as our sample since this will be our training data, and we can test on the

unused 20 percent. We generate a sample covariance operator and obtain the top
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Figure 4.1: Sample paths weekly sales for 50 stores.

three principal components as seen in Figure 4.3.

Where fPC 1, 2, and 3 of Figure 4.3 have an explained variance of 4.52 · 1013,

2.83 · 1011, and 1.52 · 1011, with the explained variance ratios being 0.983, 0.0062,

and 0.0033 respectively. With fPC 1 being the best followed by 2 and 3. This

means these three curves capture about 99 percent of the variance in the data and

should be able to model the data well. Let Z1, Z2, and Z3 be the functional com-

ponents respectively. Now, we want to create a function using all these functional

components,

Y (t) = β1Z1(t) + β2Z2(t) + β3Z3(t) + β4,

where βi are optimal constants such that Y fits a given sample of data best under

the least squared error measurement. If one is using more principal components,

it would be best to use an optimization algorithm such as Gradient Descent, but

since we only need to optimize four constants, we can do this analytically. Let

35



0 20 40 60 80 100 120 140

0.5

1.0

1.5

2.0

2.5

3.0

3.5
1e6 BSpline Rep. of Functional Data

Figure 4.2: BSpline interpolation of discrete data.

A(t) be the actual sales for time t. We want to minimize the following,

E =
1

N

N∑
i=1

(β1Z1(ti) + β2Z2(ti) + β3Z3(ti) + β4 − A(ti))
2,

E =
1

N

N∑
i=1

(Y (ti)− A(ti))
2.

To optimize, we simply need to find the values for when the gradient of E is 0.

Taking the partial derivative of E with respect to β1 and setting it equal to 0 we

get the following,

0 = Eβ1,

0 =
2

N

N∑
i=1

(β1Z1(ti) + β2Z2(ti) + β3Z3(ti) + β4 − A(ti))Z1(ti),

N∑
i=1

A(ti)Z1(ti) =
N∑
i=1

(β1Z
2
1(ti) + β2Z2(ti)Z1(ti) + β3Z3(ti)Z1(ti) + β4Z1(ti)).

The rest follow similarly, then we can turn this into a system of linear equations
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Figure 4.3: The best 3 functional principal components.

and obtain the following,

N∑
i=1



Z2
1(ti) Z2(ti)Z1(ti) Z3(ti)Z1(ti) Z1(ti)

Z1(ti)Z2(ti) Z2
2(ti) Z3(ti)Z2(ti) Z2(ti)

Z1(ti)Z3(ti) Z2(ti)Z3(ti) Z2
3(ti) Z3(ti)

Z1(ti) Z2(ti) Z3(ti) 1





β1

β2

β3

β4


=

N∑
i=1



A(ti)Z1(ti)

A(ti)Z2(ti)

A(ti)Z3(ti)

A(ti)Z4(ti)


.

Then with this function Y , we can predict for future moments in time for ti where

i > N , as seen in Figure 4.4 where we forecast for the weeks following the 80th

week; Figure 4.5 is our prediction with Fourier interpolation.

As seen in Figures 4.4 and 4.5, this regression can predict future trends some-

what well. The average root mean squared error (RMSE) across all the training

data was 18174.48 and 19070.76 under Fourier and BSpline interpolation respec-

tively. The reason we are looking at the performance under both types of interpo-

lation is that data may work better in FDA under different types of interpolation.
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Figure 4.4: Regression plotted against actual store sales under BSpline interpola-
tion.

As one may guess, periodic data is usually better under Fourier interpolation [2].

This guideline lines up with our data, since our data spans across 3 years, and we

are able to see periodic trends. Going back to our RMSE though, these errors may

seem large, but relative to the average weekly sales for these stores, it translates

to about a 2-3 percent error. Running this training and testing split data under

traditional PCA and performing regression there, we get an RMSE of 23381.804,

which is about a 4-5 percent error. If one wanted to see a bigger difference in

performance, in favor of functional PCA, it is best to work with functional data

where the amount of time steps is significantly larger than the amount of sample

paths [2]. Since, at least for time series data, FDA is performed when the time

unit is in minutes or seconds.
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Figure 4.5: Regression plotted against actual store sales under Fourier interpola-
tion.

4.3 Conclusion

Overall, performing regression through functional PCA on functional data is

promising in practice as seen by our results, and in general, FDA is promising

as a whole. Recall that the extensions do not end here, and one could utilize

the cross-covariance operator and perform correlation analysis [2][3], making use

of other data features. As we can see, viewing sample paths as curves living in

a function space can yield insights one may not observe or expect in performing

traditional data analysis. Through this exploration, we can begin to appreciate

the richness of FDA from blending statistics and functional analysis.
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