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The statistical significance filter leads to overconfident expectations of replicability
Shravan Vasishth (vasishth@uni-potsdam.de)

Department of Linguistics, University of Potsdam, Potsdam 14476, Germany.

Andrew Gelman (gelman@stat.columbia.edu)
Department of Statistics, Columbia University, New York, NY 10027, USA.

Abstract

We show that publishing results using the statistical signif-
icance filter—publishing only when the p-value is less than
0.05—leads to a vicious cycle of overoptimistic expectation
of the replicability of results. First, we show analytically that
when true statistical power is relatively low, computing power
based on statistically significant results will lead to overesti-
mates of power. Then, we present a case study using 10 exper-
imental comparisons drawn from a recently published meta-
analysis in psycholinguistics (Jäger et al., 2017). We show that
the statistically significant results yield an illusion of replica-
bility. This illusion holds even if the researcher doesn’t con-
duct any formal power analysis but just uses statistical signifi-
cance to informally assess robustness (i.e., replicability) of re-
sults.
Keywords: Statistical significance; p-values; replicability

“‘. . . in [an]. . . academic environment that only publishes
positive findings and rewards publication, an efficient
way to succeed is to conduct low power studies. Why?
Such studies are cheap and can be farmed for significant
results, especially when hypotheses only predict differ-
ences from the null, rather than precise quantitative dif-
ferences and trends.” (Smaldino & McElreath, 2016, p.
5)

Introduction
The statistical significance filter tells us that significant
results—those findings in which the p-value is less than
0.05—are positively biased. The statistically significant esti-
mate is, by definition, more than t standard errors away from
zero, where t is some critical value determined by a statistical
test (such as the t-test) and the pre-specified Type I error (the
probability, under repeated sampling, of incorrectly rejecting
the null hypothesis).

Statistical power is the probability, under repeated sam-
pling, of correctly rejecting the null hypothesis assuming that
the parameter of interest has some true point value µ.1 It is
well-known that when statistical power is low, the effect (the
sample mean) will tend to be exaggerated. These are referred
to as Type M errors by Gelman and Carlin (2014) (also see
Gelman & Tuerlinckx, 2000). This exaggeration of effects
has been noticed in previous work (Hedges, 1984; Lane &
Dunlap, 1978), and most recently in neuroscience and epi-
demiology, where Button et al. (2013) refer to the exagger-
ation of effects in neuroscience as the “winner’s curse” and
“the vibration of effects.” In related work, Ioannidis (2008)

1In order to compute power, we need to have an estimate of the
true effect, the sample size, and an estimate of the standard devia-
tion.

discusses this exaggeration of effects in epidemiological stud-
ies in terms of the vibration ratio: the ratio of largest to small-
est observed effects.

These overestimates get published and fill the literature.
Now consider what happens when researchers design a new
study. They read the literature and see all these big effects,
then plan their next study. They do a power calculation based
on these big effects and get an exaggerated estimate of power,
and can easily convince themselves that they have a high pow-
ered study. Alternatively—and this is probably the more com-
mon route in many fields, such as psychology—they don’t
do a formal power analysis, but just rely on the informal ob-
servation that most of the previously published results had a
significant effect and so the effect must be present.

A related observation about overestimation comes from the
replication attempts reported by the Open Science Collabora-
tion (2015). The authors report that the magnitude of the pub-
lished p-values from the original studies were predictive of
replication success. As they put it (p. 943): “. . . correlational
evidence is consistent with the conclusion that variation in
the strength of initial evidence (such as original P value)
was . . . predictive of replication success . . . ” From this, re-
searchers might erroneously conclude that lower p-values are
generally more predictive of replication success. In other
words, an erroneous conclusion would be that a lower p-value
suggests a higher probability that the effect can be detected in
future repeated studies.

We show that if statistical significance is used as a filter
for publishing a result, and the observed effect (or p-value) is
used to determine replicability, this will lead the researcher
to overestimate replicability. We demonstrate this point ana-
lytically, and then present a case study involving 10 reading
studies in psycholinguistics that illustrates this illusion.

The relationship between p-values and
estimated power

Assume for simplicity the case that we carry out a one-sided
statistical test where the null hypothesis is that the null hy-
pothesis mean is µ0 = 0 and the alternative is that µ > 0.2

Given some continuous data x1, . . . ,xn, we can compute the
t-statistic and derive the p-value from it. For a large sample
size n, a normal approximation allows us to use the z-statistic,
Z = X̄−µ0

σX/
√

n , to compute the p-value. Here, X̄ is the mean, σX

the standard deviation, and n the sample size.

2The presentation below generalizes to the two-sided test.
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The p-value is the probability of observing the z-statistic
or a value more extreme assuming that the null hypothesis is
true. The p-value is a random variable P with the probability
density function (Hung, O’Neill, Bauer, & Kohne, 1997):

gδ(p) =
φ(Zp−δ)

φ(Zp)
, 0 < p < 1 (1)

where

• φ(·) is the pdf of the standard normal distribution, Nor-
mal(0,1).

• Zp, a random variable, is the (1-p)th percentile of the stan-
dard normal distribution.

• δ = µ−µ0
σX/
√

n is the true point value expressed as a z-score.
Here, µ is the true (unknown) point value of the parameter
of interest.

Hung et al. (1997) further observe that the cumulative dis-
tribution function (cdf) of P is:

Gδ(p) =
∫ p

0
gδ(x)dx = 1−Φ(Zp−δ), 0 < p < 1 (2)

where Φ(·) is the cdf of the standard normal.
Once we have observed a particular z-statistic zp, the cdf

Gδ(p) allows us to estimate power based on the z-statistic
(Hoenig & Heisey, 2001). To estimate the p-value given that
the null hypothesis is true, let the true value be µ = 0. It
follows that δ = 0. Then:

p = 1−Φ(zp) (3)

To estimate power from the observed zp, set δ to be the
observed statistic zp, and let the critical z-score be zα, where
α is the Type I error (typically 0.05). The power is therefore:

Gzp(α) = 1−Φ(zα− zp) (4)

In other words, power estimated from the observed statis-
tic is a monotonically increasing function of the observed z-
statistic: the larger the statistic, the higher the power estimate
based on this statistic (Figure 1). Together with the com-
mon practice that only statistically significant results get pub-
lished, and especially results with a large z-statistic, this leads
to overestimates of power. As mentioned above, one doesn’t
need to actually estimate power in order to fall prey to the
illusion; merely scanning the statistically significant z-scores
gives an impression of consistency and invites the inference
that the effect is replicable and robust. The word “reliable” is
frequently used in psychology, presumably with the meaning
that the result is replicable and represents the reality.

A direct consequence of Equation 4 is that overestimates
of the z-statistic will lead to overestimates of power. For ex-
ample, if we have 36 data points and the true effect is 0.1 on

Observed Z−score

P
ow
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0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: The relationship between power and the observed z-
score. The larger z-scores are easier to publish due to the sta-
tistical significance filter, and these published studies there-
fore give a mistaken impression of higher power.

some scale and standard deviation is 1, then statistical power
is 15%.3

If we now re-run the same study, collecting 36 data points
each time, and impose the condition that only statistically sig-
nificant results with Type I error α = 0.05 are published, then
only observed z-scores larger than 1.64 (for a one-sided test)
would be published and the power estimate based on these
z-scores must have a lower bound of

GZα
(α) = 1−Φ(1.64−1.64) = 0.5 (5)

Thus, in a scenario where the real power is 15%, and only z-
scores greater than or equal to zα are published, power based
on the z-score will be overestimated by at least a factor of
0.5/0.15=3.33. Call this ratio the Power Inflation Index (PII).

Now, lower p-values are widely regarded as more “reli-
able” than p-values near the Type I error probability of 0.05.4

This incorrect belief, widely shared by editors, reviewers, and
authors in areas like psychology and linguistics, has the effect
that studies with lower p-values are more likely to be reported

3This can be confirmed by running the fol-
lowing command using R (R Core Team, 2014):
power.t.test(delta=0.1,sd=1,n=36,alternative =
"one.sided",type="one.sample").

4Treating lower p-values as furnishing more evidence against the
null hypothesis reflects a misunderstanding about the meaning of
the p-value; given a continuous dependent measure, when the null
hypothesis that µ = 0 is true, under repeated sampling the p-value
has a uniform distribution (see proof in the Appendix). This has the
consequence that, when the null is true, a p-value near 0 is no more
surprising than a p-value near 0.05.
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and published, with the consequence that the PII will tend to
be even higher than the lower bound discussed here.

We turn next to a case study involving psycholinguistic
data that illustrates the illusion of replicability.

Case study: Interference effects in reading
studies

To illustrate the illusion of replicability, we consider the
10 experiments that were reviewed in the literature review
and meta-analysis presented in Jäger, Engelmann, and Va-
sishth (2017). These were psycholinguistic studies in which
the dependent measure was reading time in milliseconds of
words. The experimental manipulation involved pairs of sen-
tence types where one type was easier to read than the other;
the empirical phenomenon of interest here is interference in
working memory. Here, an appropriate statistical test is the
two-sided paired t-test (one could do a one-sided t-test, al-
though this is less common in psycholinguistics).

We had the raw data from these 10 studies and so were
able to carry out the pairwise comparison. As discussed in
detail in Jäger et al. (2017), theory predicts an effect with a
negative sign. The original results as published were analyzed
on the raw milliseconds scale, but here we analyze the data on
the log milliseconds scale because the reading time data were
log-normally distributed.

A summary of the pairwise t-test is shown in Table 1. From
the table, it is clear that the studies consistently found neg-
ative values for the coefficient; this consistent result raises
our confidence in the reproducibility of the result. A formal
power analysis based on these studies, also shown in the last
column of the table, leads to estimates of power ranging from
17 to 60%.

t d n se s pval power
1 -1.9 -0.1 40 0.0 0.2 0.1 0.3
2 -3.1 -0.1 32 0.0 0.1 0.0 0.6
3 -1.5 -0.0 32 0.0 0.2 0.2 0.2
4 -2.1 -0.0 32 0.0 0.1 0.0 0.3
5 -1.7 -0.0 32 0.0 0.1 0.1 0.2
6 -2.6 -0.1 28 0.0 0.2 0.0 0.4
7 -1.6 -0.0 60 0.0 0.2 0.1 0.2
8 -3.2 -0.1 44 0.0 0.2 0.0 0.6
9 -1.9 -0.1 60 0.0 0.2 0.1 0.3

10 -2.6 -0.0 114 0.0 0.2 0.0 0.5

Table 1: Results from the paired t-tests for the 10 experimen-
tal comparisons. Shown are the t-score, the effect d in log
ms, the sample size n, the standard error se, the standard de-
viation s, and the p-value. The t-tests were done on the raw
data from the original studies (the t-values reported here may
deviate slightly from the published t-values). Also shown is
the power estimated from each study.

Using a Bayesian random-effects meta-analysis to
estimate the power function

In Table 1, we calculated power based on the individual stud-
ies. As discussed above, these will tend to be overestimates
because there is a preference to publish effects with low p-
values. How can we check this for the 10 studies? True power
is unknown so we have no basis for comparing the power es-
timates from individual studies with a true value for power.

One way to arrive at a conservative estimate of the true
power given these 10 studies is to carry out a Bayesian
random-effects meta-analysis (Gelman et al., 2014). This
hierarchical modelling approach allows us to determine the
posterior distribution of the effect, which can then be used
for computing an estimate of power. As discussed in Button
et al. (2013), using estimates from a meta-analysis yields a
more conservative estimate of power. In the random-effects
meta-analysis, this conservativity arises due to the shrinkage
property of hierarchical models: Larger sample studies re-
ceive a greater weighting in determining the posterior than
smaller sample studies. Note, however, that even here the
power may be an overestimate due to the fact that the studies
that go into the meta-analysis are likely to have publication
bias. But as we show below, the estimates of power from
individual studies tend to be ever larger.

The random-effects meta-analysis model was set up as fol-
lows. Let yi be the effect size in log milliseconds in the i-th
study, where i ranges from 1 to n. Let µ be the true (un-
known) effect in log ms, to be estimated by the model, and
µi the true (unknown) effect in each study. Let σi log ms be
the true standard deviation of the sampling distribution; each
σi is estimated from the sample standard error from study i.
The standard deviation parameter τ represents between-study
variability.

Then, our model for n studies is as follows. The model as-
sumes the i-th data point (the effect observed on the log ms
scale) yi is generated from a normal distribution with mean
µi and some standard error σ, estimated from the sample’s
standard error. Each of the true underlying means µi are as-
sumed to be generated from a normal distribution with true
mean µ and between-study standard deviation τ. We assign
Cauchy(0,2.5) priors to the parameters µ and µi, and a trun-
cated Cauchy(0,2.5) prior for the between-study standard de-
viation τ, truncated so that τ is greater than 0. The model can
be stated mathematically as follows:

Likelihoods:

yi | µi,σ
2
i ∼Normal(µi,σ

2
i ) i = 1, . . . ,n

µi | θ,τ2 ∼Normal(µ,τ2),

Priors:
µ∼Cauchy(0,2.5),

µi ∼Cauchy(0,2.5),
τ∼Cauchy(0,2.5),τ > 0

(6)
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Figure 2: Posterior distributions of the estimated effect (µ̂),
and the standard deviation of estimate of the between-study
variability (τ̂) in the random-effects meta-analysis.

We fit the model using Stan 2.14.2 (Stan Development
Team, 2016), running four chains with 4000 iterations (half
of which were warm-ups). Convergence was successful, as
diagnosed using the R̂ diagnostic (Gelman et al., 2014). The
posterior distributions of µ̂ and of the between-study standard
deviation τ̂ are shown in Figure 2. The posterior mean of
the effect is -0.05 log ms, with 95% credible interval [-0.08,-
0.03]. Next, we use this estimate of the posterior distribution
to compute a power distribution.

Computing the power distribution using the posterior dis-
tribution of the effect An analysis of reading studies, in-
cluding the ones considered here, showed that the precisions
(the inverse of the variance) in reading time studies have mean
values 16.3 and standard deviation 7.07 (the unit for precision
is 1/log ms2). Since precision can be modelled as a Gamma
distribution, we assumed that precisions are distributed as
Gamma(α = 5.3,β = 0.3). These parameters of the Gamma
distribution were computed by taking the mean x̄ and stan-
dard deviation s of the precisions, and then deriving the pa-
rameters of the Gamma distribution by solving for α and β.
We use the fact that for a random variable generated from a
Gamma distribution with parameters α and β, the expectation
µ and variance σ2 are:

E(X) =
α

β
= µ and Var(X) =

α

β2 = σ
2 (7)

Having obtained the estimate of the effect (through the
meta-analysis) and the distribution of the precisions, we used
these estimates to carry out 100,000 Monte Carlo simula-
tions to derive a power distribution for different sample sizes
(n = 20, . . . ,50) in the following manner. For each sample
size, we repeatedly computed power after obtaining:

• one sample for the effect by sampling from the distribution
Normal(−0.05,0.01); this is the posterior distribution of
the effect derived from the random-effects meta-analysis;

• one sample for the precision by sampling from the
Gamma(5.3,0.3), and then converting this to a standard
deviation.

Such a Monte Carlo sampling procedure gives a probability
distribution of power values and allows us to quantify our un-
certainty about the estimated power by taking all sources of
uncertainty into account—the uncertainty regarding the ef-
fect, and the uncertainty regarding the standard deviation.

Figure 3 shows the resulting power distributions for power
given different sample sizes. These power distributions are of
course only estimates, not the true power; and as Button et
al. (2013) point out, are probably slight overestimates if the
studies themselves have publication bias.

The power distributions illustrate two important points.
First, the range of most likely power values is remarkably
low for typical sample sizes used in psycholinguistic read-
ing experiments relating to interference effects (see Table 1).
As an aside, we note that our estimates are similar to those
from a recent review of 44 meta-analyses of research in so-
cial and behavioural sciences published between 1960-2011;
they report a mean power of 0.24 with most studies suggest-
ing power to be below 0.4 (Smaldino & McElreath, 2016, p.
6, Fig. 1). The second observation is that the power values
computed from individual studies (the red dots) tend to be
overestimates relative to the mean of each power distribution
shown. The power from each study tends to be higher than the
mean of each power distribution. Of course, if the statistical
power of the original studies were very high (approximately
80% or higher), then the overestimation problem would dis-
appear or at least be negligible.

We can quantify the overestimation of power by computing
the Power Inflation Index: the ratio of the power computed
from individual studies to the power distribution computed
using Monte Carlo simulations. If power is overestimated,
then the distribution of the PII will be such that the mean
ratio will be greater than 1. These distributions of PIIs are
computed for a typical sample size used in psycholinguistic
studies (n=20, 30, 40) in Table 2. Here, we can see that the
PII can be as high as 12.

Discussion
We have shown that if statistical significance is used to decide
whether to publish a result, overestimates of the effect will
tend to be published, leading to an over-enthusiastic belief in
the replicability of the effect.

Recently, the replication project reported by Open Sci-
ence Collaboration (2015) showed that only 47% of the stud-
ies they investigated could be replicated. One factor causing
these failures to replicate could have been low power in the
original studies. Even before the replication project, Cohen
(1962, 1988) and others have repeatedly warned against run-
ning low-powered studies. Despite these injunctions, many
researchers do not believe that there is a problem of low
power. For example, Gilbert, King, Pettigrew, and Wilson
(2016) contested the 47% replication rate and argued that
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Figure 3: Power distributions for different sample sizes (log
reading times). The histogram shows the power distribution
(generated through Monte Carlo sampling; see text for de-
tails). The red dots show power estimates from the 10 individ-
ual experimental comparisons considered in this case study.
The white dot shows the mean of each power distribution.

n=20 n=30 n=40
Study 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

1 1.37 4.64 0.98 3.95 0.76 3.47
2 3.67 12.45 2.63 10.61 2.04 9.30
3 1.08 3.67 0.78 3.13 0.60 2.74
4 1.95 6.61 1.40 5.64 1.08 4.94
5 1.41 4.76 1.01 4.06 0.78 3.56
6 3.06 10.37 2.19 8.83 1.70 7.75
7 0.76 2.59 0.55 2.20 0.42 1.93
8 2.99 10.12 2.14 8.62 1.65 7.56
9 0.98 3.34 0.71 2.84 0.55 2.49

10 1.02 3.47 0.73 2.96 0.57 2.59

Table 2: The 95% credible intervals of the Power Inflation In-
dex for each of the 10 experimental comparisons, for different
sample sizes. The Power Inflation Index can be as large as 12.

the replication rate may be much higher, perhaps even “sta-
tistically indistinguishable from 100%.” The objections of
Gilbert et al. (2016) were largely based on arguments about
the lack of fidelity to the original design, but it is possible that,
in addition to concerns about fidelity, Gilbert et al. are, like
many researchers, generally overconfident about the replica-
bility and robustness of their results. This overconfidence is
also evident in reading research in psycholinguistics, where it
is routine to run experiments with sample sizes ranging from
20 to 40 participants. Recent work has argued that sample
sizes of 20-40 partipants may be too low for reading studies
on interference (Jäger et al., 2017). We are hopeful that fu-
ture work will take this finding into account when planning
studies.

Currently, the replication problems in psycholinguistics are
serious. For example, in recent work (Mertzen, Jäger, & Va-
sishth, 2017) we carried out six replication attempts of two
eyetracking experiments published in the Journal of Mem-
ory and Language. We were unable to replicate any of the
claims in the paper. There is thus an urgent need to attempt to
replicate published results, and not just in psycholinguistics.
For example, Makel, Plucker, and Hegarty (2012) present a
quantitative analysis of the low rate of successful replications
in psychology (1%). Other fields are also affected. For ex-
ample, Button et al. (2013) have shown that in neuroscience
studies, power may also be quite low, ranging from 8 to 31%.
Smaldino and McElreath (2016) have shown through a 50-
year meta-analysis in behavioural science that power has not
improved (mean power: 24%). In biomedical sciences, ap-
proximately 50% of studies have power in the 0-10%5 or 11-
20% range (Dumas-Mallet, Button, Boraud, Gonon, & Mu-
nafò, 2017).

Despite these indications, many researchers remain over-
confident about the robustness of their results. This overcon-
fidence is in part due to the statistical significance filter.

Concluding remarks
We have shown that the statistical significance filter directly
leads to over-optimistic expectations of replicability of pub-
lished research. Even if the researcher doesn’t conduct any
formal power analyses, they can fall prey to this illusion be-
cause of the informal assessment of replicability afforded by
the statistical significance filter. We illustrated the illusion
of replicability through a case-study involving 10 published
experimental comparisons.

Many psychology journals are beginning to require that
power analyses be included in submitted manuscripts. But
our results, echoing those of others who have studied this
problem, suggest that such analyses, which invariably are
based on previously published work, will tend to provide
overestimates of power.

To resolve or at least reduce this problem, we offer two
pieces of advice. First, we recommend entirely abandon-

5Note that this range is an error; power cannot be less than 5% if
Type I error is set at 5%.
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ing the concept of power, which is based on the idea that
“p < .05” is a win, an attitude that fails miserably when ef-
fect sizes are small and measurements are noisy. Second,
when performing design analysis, consider possible effect
sizes based on subject-matter understanding; see Gelman and
Carlin (2014) for further discussion of this point. It can make
sense to consider a range of reasonable effect sizes.

Appendix
Here, we review the well-known proof that for a point null
hypothesis and a continuous dependent variable, the distribu-
tion of the p-value under the null is Uni f orm(0,1).

When a random variable Z comes from a Uni f orm(0,1)
distribution, then the probability that Z is less than (or equal
to) some value z is exactly z: P(Z ≤ z) = z.

The p-value is a random variable, call it Z. The p-value is
computed by calculating the probability of seeing a t-statistic
or something more extreme under the null hypothesis. The
t-statistic comes from a random variable T that is a transfor-
mation of the random variable X̄ : T = (X̄−µ)/(σ/

√
n). This

random variable T has a CDF F .
We can establish that if a random variable Z = F(T ), then

Z ∼Uni f orm(0,1), i.e., that the p-value’s distribution under
the null hypothesis is Uni f orm(0,1). This is proved next.

Let Z = F(T ). Then: P(Z ≤ z) = P(F(T ) ≤ z) =
P(F−1F(T )≤ F−1(z)) = P(T ≤ F−1(z)) = F(F−1(z)) = z.

Since P(Z ≤ z) = z, Z is uniformly distributed, that is,
Uni f orm(0,1).
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