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ABSTRACT OF THE DISSERTATION

Design, Modeling, and Control of an Electrostatic Suspension Platform for Thin Disks

by

Kenneth Ernest Pyle

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2023

Professor Robert T. M’Closkey, Chair

This dissertation describes the design, modeling, and testing of a system to electrostatically

suspend and manipulate a silicon disk between two sets of stator electrodes. Dual variants of

the system are investigated for two disk sizes to yield four total electrode-disk configurations

that differ in transduction schemes and the number of disk degrees of freedom that must

be actively regulated. Transformers couple the electrodes into pairs that measure disk-

electrode differential capacitances and exert electrostatic forces on the disk. There is no

physical contact with the disk when it is suspended. Both disks are six-degree-of-freedom

systems, however, yaw motion is not measurable using either electrode arrangement and

in-plane translations of the smaller disk are passively stabilized by the fringe electrical field.

Contributions of the dissertation include the development of a modeling paradigm that is

easily adapted to additional electrode-disk geometry, the design and fabrication of a new

levitation platform that eliminates actuator-sensor feedthrough, the development of a novel

parametric fitting technique for open-loop unstable systems from closed-loop data, and the

synthesis of a family of robust multivariable controllers.

The first electrode arrangement uses common electrodes for both control and sensing,

however, redundant use of the electrodes produces significant feedthrough from the con-

trol inputs to the electronic pick-offs. Feedback controllers are designed for the smaller
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disk to maximize robustness to perturbations of the plant’s normalized coprime factors and

multivariable loop-shaping techniques are used to improve closed-loop performance. The

disk is suspended and comparisons between the analytical model and empirical data are

made. Estimates of the RMS uncertainties of the disk position reveal nanometer- and sub-

microradian-level precision for the vertical and rotational degrees of freedom, respectively.

A new levitation platform aimed to eradicate actuator-sensor feedthrough is designed and

fabricated. The updated system utilizes similar transduction methodology, however, the

electrodes used for sensing and actuation are segregated. Analytical models are generated

and multivariable controllers robust to various forms of uncertainty are synthesized. This

system is under development for non-contact testing of micro-scale devices.
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CHAPTER 1

Introduction

This dissertation develops a modeling paradigm and investigates various robustly stabiliz-

ing controllers for the electrostatic suspension of a silicon disk between two sets of stator

electrodes. Four electrode-disk configurations are examined –two separate disks will each be

analyzed for two electrode arrangements. The first electrode arrangement utilizes a com-

mon set of electrodes for both differential capacitance sensing and electrostatic actuation,

however, this configuration creates feedthrough from the control signals to the electrical

measurements. Successful suspension of each disk requires that the feedthrough be effec-

tively mitigated in the measurements. The second electrode arrangement splits the system

into separate control and sense electrodes to eliminate actuator-to-pick-off feedthrough. The

disks vary in size such that the smaller disk is stabilized laterally by electrostatic forces from

the fringe electrical field; meanwhile, weak fringe field forces act on the larger disk requiring

active regulation of in-plane translational motion. All four electrode-disk configurations are

capable of measuring and controlling the vertical position, roll, and pitch degrees of freedom

of the disks. Disk yaw is unobservable in all cases due to the uniformity of the disks and

the lateral translational degrees of freedom are essentially unobservable for the smaller disk.

Yaw moments cannot be applied with either electrode arrangement.

The levitation platform establishes a prototype “testbed” that will be scaled down

to study the dynamics of micro-electromechanical systems (MEMS). Of particular inter-

est are the characterization of low-loss resonators used in high-sensitivity vibratory gyro-

scopes [CWY14, SAA15, DSC17, WLG21]. Etched from silicon wafers and often doped,

these devices are known for their high level of precision due to exceptional signal-to-noise

ratios. When excited, they generate vibratory responses that appear as degenerate pairs
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of resonant modes. The performance of the gyroscope is dependent on the time constants

associated with specific modes, where longer time constants indicate superior performance.

Resonator testing has traditionally required mounting the stem to a solid substrate –typically

another silicon wafer via a gold adhesion layer –however, the coupling between a vibrating

mode of the resonator and supporting substrate is a path for energy loss in the mode. It

is challenging in micro-scale devices to measure the coupling, however, any motion of the

suspended stem in response to the vibrating mode provides direct evidence of resonator-

substrate coupling and can be used to guide modifications of the resonator to reduce its

severity. The electrostatic “bearing” is proposed to meet this need.

Electrostatic suspension is established when a conductive object comes into contact with

an electric field of sufficient magnitude. Such an electric field is typically generated using

stator electrodes to provide the necessary charge required for counteracting the gravitational

force. In the simplest case, an electrostatically levitated body can be modeled as a parallel

plate capacitor –the electrode and body each constitute one plate. The electrostatic force

that can be exerted on the body is capped by the dielectric strength, defined as the minimum

electric field at which an insulator becomes electrically conductive. Electrical breakdown is

typically characterized by the breakdown voltage, which, for any gaseous medium like air,

is a function of the ambient pressure, gap distance, and dielectric [HN82]. The relationship

between the electrostatic force, F , and plate gap, z,

F =
1

2z
Cv2 =

ϵA

2z2
v2, (1.1)

limits the levitation gaps to the MEMS-scale. Magnetic fields provide an alternative mode

of suspension, however, the necessity of large coils to produce the magnetic field and inabil-

ity to suspend non-ferromagnetic materials motivate the selection of electrostatics for this

dissertation.

Electrostatic bearings were originally developed for high-precision inertial instruments

based on spinning spherical rotors which are suspended in an electrostatic field [Atk67,

Atk75]. More recent research has produced micro-scale rotors [TTM02, HGL05]. Spher-

ical rotors require stabilization of the three translational degrees of freedom –the rota-
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tional degrees of freedom are sensed and regulated with a separate mechanism. The ab-

sence of physical support for the rotor eliminates most frictional torques, which improves

the accuracy, sensitivity, and life of the sensor. For non-spherical geometry, electrostatic

levitation of silicon and aluminum disks, thin rings, and square glass plates are reported

in [JHK95, JYH98, WYT10, MEF03, JH98]. The applications cited in these references focus

on the contactless manipulation of semiconductor wafers and disk drive media. Suspension

requires stabilization of the out-of-plane translational, roll, and pitch degrees of freedom.

These references employ transduction schemes that separate actuation and measurement

functions. The in-plane translational degrees of freedom are passively stable due to the cen-

tering forces created by the fringe electrical field acting on the platform sidewalls, or in the

case of the ring, actively stabilized by radial electrodes. Active stabilization of the disk’s

five degrees of freedom has been reported in [AM21], though wide bandwidth rejection of

feedthrough coupling is required. Poor feedthrough rejection at high frequencies, as well

as the implementation of an unstable feedback controller, are possible causes of unreliable

suspension.

The first contribution of this dissertation is the development of a modeling framework

that is applied to the system in [AM21]. A smaller disk is then fabricated to simplify

suspension through passive stabilization of the lateral degrees of freedom. Due to uncertainty

in the transformer-based transduction system, the uniformity and coplanarity of the disk-

electrode gaps, fringe field and squeeze film damping forces, and incomplete cancellation of

the feedthrough, an initial controller is synthesized for the smaller disk to robustly stabilize

the disk with respect to perturbations of a coprime factorization of the analytical model. The

initial controller successfully suspends the disk and enables the identification of a parametric

plant model from closed-loop data. Analysis of the parametric model yields information on

the input and output directions associated with the unstable plant modes and guides the

selection of well-conditioned input and output transformations that decouple the vertical,

pitch, and roll measurements. The noise spectra associated with these kinematic variables

show they are measured with high precision. A new electrode arrangement is constructed

and analytical models are generated for both disk sizes from the detailed modeling paradigm
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outlined. Stable controllers are synthesized and closed-loop stability margins to coprime

factor perturbations and multiplicative input and output uncertainty are predicted.

This dissertation is divided into two parts that correspond to the two different electrode

arrangements. Empirical data is only presented in Part I since testing of the second elec-

trode arrangement has not commenced. The dissertation is organized as follows: Chapter 2

describes the layout of the first electrode set and its transduction scheme and derives a de-

tailed model for the larger disk; Chapter 3 reviews several challenges presented by the work

in [AM21] that will be solved herein; Chapter 4 develops two multivariable controllers for

the smaller disk and presents experimental results; Chapter 5 describes the revised electrode

arrangement and makes comparisons to the previous electrodes; Chapter 6 computes a model

of the smaller disk with the second generation electrodes and designs a stabilizing controller;

Chapter 7 follows the blueprint of Chapter 6, but for the larger disk; Chapter 8 summarizes

the contributions and presents opportunities for future work on the topic; the appendices

provide additional modeling computations.
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Part I

The Feedthrough Dilemma
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CHAPTER 2

System Description and Modeling

This chapter provides a detailed description of the electrodes and transduction electronics for

the first electrode arrangement, as well as the analytical modeling technique and assumptions

made in generating the model. Only the larger disk is considered for now: the smaller disk

is the focus of Chapter 4.

2.1 System Description

A 41mm radius disk is etched from a double side polished, 400µm thick silicon wafer. The

disk is sputtered with conductive films of 5 nm titanium and 1µm aluminum to create an

equipotential surface. Pertinent parameters related to the disk geometry are highlighted in

Table 2.1. Two identical sets of electrodes –a top set and a bottom set –are used to suspend

the disk by exerting forces normal to the disk. The electrostatic forces are capable of applying

a net vertical force and two independent in-plane moments on the disk, as well as lateral

forces when the disk is not parallel to the electrodes. The electrodes, shown in Figure 2.1,

are patterned on glass plates as two concentric annuli, where each annulus is partitioned into

four identical sectors to produce eight electrodes per glass plate. The glass plates are oriented

Table 2.1: Larger Disk Parameters

Symbol Description Value
rd disk radius 41mm
hd disk thickness 400µm
m disk mass 4.92× 10−3 kg
Jt transverse-axis moment of inertia 2.07× 10−6 kg·m2

Js spin-axis moment of inertia 4.14× 10−6 kg·m2
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Figure 2.1: Exploded view of the initial electrode configuration.

normal to gravity and parallel to one another such that the top and bottom electrodes are

mirror images of each other. The top and bottom electrodes –Etij and Ebij , respectively,
where {i, j ∈ N | i ≤ 2, j ≤ 4} –are labeled according to “annular index”, i, and electrode

number, j. The inner ring of larger electrodes, corresponding to i = 1, are referred to as the

primary electrodes and the outer ring of electrodes, that is, i = 2, are the lateral electrodes.

The primary electrodes are grouped into four pairs of facing electrodes, i.e., electrodes Et11
and Eb11 form a pair. These electrodes are used to exert electrostatic control forces on the

disk and measure differential electrode-disk capacitances in order to regulate and sense the

disk’s vertical position, pitch, and roll. The lateral electrodes, meanwhile, are used strictly

for sensing in-plane motion of the disk and are grouped in antipodal pairs where the top

and bottom electrodes are shorted. The lateral degrees of freedom are coupled to angular

rotations of the disk so that in-plane motion is stabilized by using the primary electrodes to

tilt the disk. Disk yaw cannot be measured nor can yaw moments be applied to the disk.

The electrodes are patterned on the glass plates using a titanium adhesion layer followed

by a conductive stack of silver and gold, where the gold cap prevents oxidation. The 100×
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125mm glass plates are 2mm thick and the metal deposition thicknesses are 10 nm, 2µm,

and 200 nm for Ti, Au, and Ag, respectively. Each primary electrode has an area of 10.3 cm2,

meanwhile the lateral electrode areas are 3.44 cm2. To avoid electrical breakdown, a 20µm

layer of photoresist is baked onto each of the electrode sets, which also has the effect of

increasing the disk-electrode capacitances due to the additional dielectric. The layer of

photoresist is extended to a majority of the glass plates, leaving only the gold bonding pads

on the exterior of the plates exposed. Precision shims are used to set the gaps between

the disk and electrodes. Four sets of 229µm shims and 400µm silicon spacers etched from

the same wafer as the disk are stacked on the bottom plate’s photoresist, beyond the outer

radii of the lateral electrodes, as shown in Figure 2.2. The top plate rests on the spacers

to constrain the disk to a 229µm range of vertical motion. When the disk is horizontally

suspended such that its center of mass lies at the geometric center of the assembled system,

134µm separate the disk surface vertically from each electrode set and the edge of the disk

is perfectly centered between the inner and outer radii of the lateral electrodes. When

viewed from above in this configuration, the disk overlaps 1.65 cm2 of each lateral electrode.

Additional parameters related to the electrode geometry are provided in Appendix A.

The transduction scheme for the primary electrodes will now be discussed. These elec-

trodes are paired using the primary leads of center-tapped transformers that are supplied

with fixed amplitude, 25 kHz sinusoidal currents. A separate transformer is used for each

electrode pair and the transformer-electrode connection is displayed in Figure 2.3 for two

adjacent electrode pairs. The center taps bisect the primary windings such that the primary

winding inductances are identical on either side of the center tap and the carrier frequency

is selected so that variations in the electrode-disk capacitances do not discernibly change

glass plates

electrodes and bond pads

photoresist

silicon disk and spacers

aluminum shims

air

Figure 2.2: Electrode-disk gaps (not to scale).
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Figure 2.3: Schematic of the transformers that couple the top and bottom primary electrodes.
The supply transformer that produces the center tap currents for two adjacent electrode pairs
is shown to the right. The two remaining primary electrode pairs are configured identically.

the impedance looking into the center tap. This guarantees that the center tap current is,

to first-order, evenly split between the top and bottom electrodes irrespective of the disk

position. Within any electrode pair, the center tap produces AC electric potentials on the

top and bottom electrodes that have the same phase.

In order to maintain the disk at ground potential, the current flow onto the disk by

one electrode pair must be balanced by an equivalent current flow from the disk onto a

different electrode pair. This is achieved using additional “supply” transformers to provide

the center tap currents to two adjacent electrode pairs. By connecting one of the primary

leads of a supply transformer to one center tap and the other primary lead to the companion

center tap, the current entering the two center taps are equal in magnitude and opposite in

sign. Since any positive charge deposited on the disk by one electrode pair is removed by

the adjacent electrode pair, the disk remains at ground potential. The supply transformer

for two adjacent electrode pairs is shown to the right in Figure 2.3, where the anti-phase
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currents, ict1 and −ict1 , supply the two center taps. The 25 kHz carrier is sourced by a signal

generator. An additional supply transformer is required for grouping the {Et13 , Eb13} and

{Et14 , Eb14} electrode pairs. The simplicity of preserving the disk at ground potential using

transformer-supplied center taps motivates the use of an even number of primary electrode

pairs to measure and control the disk’s vertical position, tilt, and roll. Only three electrode

pairs are required for regulating these degrees of freedom, however, maintaining the disk at

ground potential by implementing center tap currents 120◦ out of phase with one another

is difficult in practice. Thus, the proposed system utilizes four primary electrode pairs: two

groups of electrode pairs with each pair coupled by a supply transformer.

Pairing the primary electrodes using transformers provides a convenient way of measuring

the position of the disk via differential capacitances. Any mismatch in the gap between the

disk surface and each electrode within a given pair creates a nonzero potential across the

transformer primary winding. The resulting flux in the transformer core produces an AC

voltage drop across the transformer secondary winding, vsj , whose amplitude is indicative of

the capacitive imbalance and provides a measure of the disk’s vertical position local to the

primary electrode pair. Each “sense voltage”, vsj , is demodulated with the 25 kHz carrier

signal to yield a baseband signal proportional to the disk’s position within the gap. A

convenient null position of the disk is established since equivalent top and bottom electrode-

disk gaps results in zero voltage drop across the transformer secondary winding. When

the disk is suspended in this central position, the primary electrode-disk capacitances are

estimated as 77 pF.

Each primary electrode pair is also used to exert electrostatic control forces on the disk

by adding a control voltage, vcj , in series with the transformer secondary load via resistor Rc.

The control signal is modulated to operate at the same 25 kHz frequency as the center tap and

produces anti-phase sinusoidal potentials on the top and bottom electrodes. The net electric

potential on each electrode is a superposed 25 kHz signal containing both the center tap and

control components. Attractive electrostatic forces are exerted on the disk proportional to

the square of the electrode potentials, however, the disk’s inertia acts as a low-pass filter that
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effectively attenuates the 50 kHz components such that the disk reacts to the mean-square

value of the electrode voltages. Redundant use of the electrodes for both actuation and

sensing intrinsically couples the control signals to the measurements, i.e., “feedthrough” from

vcj to vsj obscures the disk measurements if left uncompensated. High fidelity identification

and cancellation of this feedthrough coupling is required to suspend the disk.

The transduction scheme employed in the lateral channels is now discussed. The lateral

electrodes are also paired using center-tapped transformers (see Figure 2.4), however, the

primary leads are connected to antipodal electrodes. These transformers are identical to

those used for the primary electrodes and the center taps are supplied with constant, albeit

lower, amplitude 25 kHz currents that are generated using a supply transformer. Only one

group of lateral electrodes –two electrode pairs coupled by a supply transformer –are neces-

sary for measuring in-plane motion of the disk. Consider for now only the top electrodes and

assume that the disk is constrained to lie horizontally, i.e., angular rotations are not possible.

Any lateral translation of the disk in a single degree of freedom increases the capacitive area

between the disk and one electrode and decreases the capacitive area between the disk and

opposite electrode. The resulting capacitive imbalance generates a voltage drop across the

transformer secondary load whose amplitude is indicative of the disk’s lateral position. When

angular rotations of the disk are considered, the voltage across the transformer secondary

load is no longer strictly related to the electrode-disk overlap areas since the capacitances

are also dependent on the gaps between the disk surface and the electrodes. For example,

if an increase in electrode-disk overlap area is accompanied by an equal increase in distance

between the disk and electrode, then no change in capacitance occurs. By shorting the top

electrodes to the bottom electrodes to act as a single electrode, nonzero angles are accounted

for since any increase in the gap between the disk and top electrode results in a decrease in

the gap between the disk and bottom electrode by the same amount, and vice versa. The par-

allel capacitance between the disk-top electrode “capacitor” and the disk bottom-electrode

“capacitor” remains constant as long as the overlap area is unchanged. Thus, when the top

and bottom lateral electrodes are shorted together, the voltage drop across the transformer

secondary load is dependent only on the lateral position of the disk. Convenient null posi-
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Figure 2.4: Schematic of the transformers that couple antipodal pairs of lateral electrodes
to sense in-plane translational motion of the disk.

tions are also established for the lateral electrodes since zero amplitude voltage drops across

the transformer secondary loads indicate that the disk is centered between the antipodal

pairs. The sense voltages for the lateral channels, vs5 and vs6 , are also demodulated by the

25 kHz carrier signal.

A dSpace DS1104 digital signal processor (DSP) interfaces between the transformer elec-

tronics and digital filters discussed in detail in the following chapters. The DSP generates the

system’s inputs, uj, and samples the electronic pick-offs to produce the discrete-time signals,

gk, k = 1, ..., 6, at a 5 kHz rate. Analog electronics are used to perform all modulation of the

control signals and demodulation of the sense signals, as well as signal amplification. The

control modulation phases, ψcj , are selected to maximize the voltage differentials between

the top and bottom electrodes, meanwhile the demodulation phases, ψsk , are set to maximize

the DC component of the demodulated sense signal with respect to changes in the electrode-

disk gaps. Low-pass analog Butterworth filters are used to smooth the DSP outputs and

avoid aliasing. A schematic of a single input/output channel of the analog subsystem of

the plant is shown in Figure 2.5. The lateral electrodes are removed from the figure for
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Figure 2.5: Diagram of the disk, primary electrodes, transformers, and analog conditioning
(lateral electrodes are not shown). The disk is offset from the geometric center of the
electrodes and the primary electrode footprints are traced on the disk top surface. The
discrete-time signals u1 and g1 are specified and measured, respectively, by the DSP. This
schematic depicts one input/output channel representative of the primary electrodes. The
lateral channels exhibit similar output signal conditioning.

clarity and these electrodes exhibit similar analog-to-digital interfacing, however, no input

signal is present in these channels. A digital feedforward filter, F , is used to compensate

the feedthrough coupling in the primary channels and is considered internal to the plant.

This filter operates in parallel to the subsystem, G, whose input is u = [u1 u2 u3 u4]
T and

output is g = [g1 g2 g3 g4 g5 g6]
T (see Figure 2.10). The plant outputs, denoted ζk, are equal

to the subtraction of the feedforward filter outputs from the sampled anti-aliased signals.

No feedthrough is present in the lateral channels so ζ5 and ζ6 are equivalent to g5 and g6,

respectively.

2.2 System Model

2.2.1 Disk Dynamics

Two coordinate frames are defined to describe the position of the disk relative to the elec-

trodes. The inertial N-frame is designated with an origin, ON, at the geometric center of

the electrode sets. The N1- and N2-axes lie in a plane parallel to the glass plates with the
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axes bisecting the electrode footprints1 when viewed from above and the N3-axis pierces the

geometric center of each glass plate. The origin of the disk-fixed B-frame, OB, is located

at the disk’s center of mass, with the B1- and B2-axes within the plane of the disk and the

B3-axis oriented normal to the disk. The disk dynamics are parameterized by the generalized

coordinates q = [x y z θ φ]T , where {x, y, z} characterize translations of the disk’s center

of mass relative to the N-frame and {θ, φ} describe an Euler-angle sequence about the N1-

and B2-axes, respectively. Since the electrodes are incapable of both measuring yaw rotation

and applying yaw moments to the disk, this degree of freedom is ignored. The relationship

between the two coordinate frames is displayed in Figure 2.6, where the rotation matrix from

the inertial frame to the body-fixed frame is given by

RBN =




cosφ sin θ sinφ − cos θ sinφ

0 cos θ sin θ

sinφ − sin θ cosφ cos θ cosφ


 . (2.1)

The angular velocity of the B-frame, and hence disk, in the N-frame is represented by

¯
ωBN = θ̇

¯
n1 + φ̇

¯
b2. (2.2)

Underbar notation will be used throughout this section to specify a directional vector in

three-dimensional space. The {
¯
n1, ¯

n2, ¯
n3} vectors represent unit vectors along the {N1,N2,N3}-

directions, respectively, and {
¯
b1, ¯

b2, ¯
b3} are unit vectors that point along the disk’s principal

axes, i.e., {B1,B2,B3}. An additional A-frame is defined as an intermediate frame in the

Euler angle sequence shown in Figure 2.6, however, all vector computations in this section

are performed in the N- and B-frames. When the disk is suspended centrally between the

electrodes (q = 0), the N- and B-frames are coincident.

The disk’s governing equations of motion are developed using Kane’s method, a vector-

based approach to computing the generalized forces acting on a system using partial veloci-

ties. These forces are classified into two categories –generalized active forces, F , consisting of

1The electrode footprints are the projections of each electrode’s perimeter onto the disk plane along the
N3-direction.
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Figure 2.6: Left: Relationship of the inertial, N, and disk-fixed, B, coordinate frames. Right:
1-2 (θ − φ) Euler angle sequence. An intermediate A frame is depicted, though all compu-
tations are performed in the N- and B-frames.

all contact and body forces acting on the disk, and generalized inertia forces, F⋆, considered

the “ma” side of Newton’s second law of motion,

F = F⋆. (2.3)

Both conservative and non-conservative forces are present in the system, however, constraint

forces are not modeled. Calculating the generalized active forces requires knowledge of the

resultant forces and moments acting on the disk, as well as the partial velocities of all points

where forces are exerted and partial angular velocity of the disk. A free body diagram of all

forces acting on the disk (gyroscopic terms are neglected) is shown in Figure 2.7. Included

in the model are the gravitational force, viscous damping effects, and the electrostatic forces

exerted by the electrodes. The disk and electrodes are assumed to act as parallel plate

capacitors and the distributed electrostatic force exerted on the disk by each electrode is

consolidated into a point force located where the disk center plane intersects an imaginary

vertical line interpolating the projections of the electrode-disk overlap centroid onto each of

the glass plates. This line is represented by {N1 = x̄ij,N2 = ȳij}, where (x̄ij, ȳij) characterizes
the electrode-disk overlap centroid (viewed from above) for the {Etij , Etij} electrode pair. All

centroids are computed in Appendix A and are assumed to be dependent only on the lateral

position of the disk. Since the disk is assumed to be an equipotential body, the electrostatic

point forces are oriented normal to the disk. The vertical and two torsional squeeze film

damping coefficients, cz and {cθ, cφ}, respectively, are estimated in Appendix C and the

corresponding forces and moments are proportional to the vertical and angular rates. Disk

shearing relative to the glass plates is modeled by Couette flow and the analogous viscous
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Figure 2.7: Free body diagram of the disk (not to scale). The electrostatic forces exerted
by the electrodes are {Ftij , Fbij}, the viscous damping coefficients are {cx, cy, cz, cθ, cφ}, and
gravitational acceleration is denoted ag.

damping coefficients, {cx, cy}, are also predicted in Appendix C. All viscous damping effects

are assumed to act on or about the disk’s center of mass. Acceleration due to gravity is

denoted ag.

All forces and moments exerted on the disk are located at or about the disk’s center of

mass or where the disk center plane intersects the vertical centroid lines. The positions of

these points in the N-frame are given by

¯
rOB

= x
¯
n1 + y

¯
n2 + z

¯
n3

¯
rPij

= x̄ij
¯
n1 + ȳij

¯
n2 + zij

¯
n3,

(2.4)

where
¯
rOB

is the position of the disk center of mass,
¯
rPij

is the position of point Pij, the
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point where the disk center plane intersects with the vertical centroid line corresponding to

electrode pair {Etij , Etij}, and zij represents the vertical deflection of the disk at point Pij.

The vertical deflections of the disk can be evaluated in terms of the generalized coordinates by

rewriting the position vectors with regard to their translation relative to OB. The conversion

between reference points is given by

¯
rPij

=
¯
rOB

+
¯
rPij/OB

, (2.5)

where
¯
rPij/OB

is the position of Pij relative to OB:

¯
rPij/OB

= (x̄ij − x)
¯
n1 + (ȳij − y)

¯
n2 + (zij − z)

¯
n3. (2.6)

Based on the coordinate frame definitions,
¯
rPij/OB

·
¯
b3 = 0, yielding the vertical deflections

zij = z + (x− x̄ij) sec θ tanφ+ (ȳij − y) tan θ. (2.7)

The velocities of all points where forces are exerted on the disk are computed by vector

differentiation of the position vectors in (2.4). All differentiation is performed in the N-frame,

denoted by the N subscript in the velocity vectors,
¯
vPN, where P is a placeholder for the point

at which the velocity is computed. The velocity of the disk center of mass in the inertial

frame is given by

¯
vOBN = ẋ

¯
n1 + ẏ

¯
n2 + ż

¯
n3 (2.8)

and the velocity of point Pij is represented by

¯
vPijN = ẋ

[
∂x̄ij
∂x ¯

n1 +
∂ȳij
∂x ¯

n2 +

((
1− ∂x̄ij

∂x

)
sec θ tanφ+

∂ȳij
∂x

tan θ

)

¯
n3

]

+ ẏ

[
∂x̄ij
∂y ¯

n1 +
∂ȳij
∂y ¯

n2 +

(
−∂x̄ij
∂y

sec θ tanφ+

(
∂ȳij
∂y

− 1

)
tan θ

)

¯
n3

]
+ ż

¯
n3

+ θ̇
[
(x− x̄ij) sec θ tan θ tanφ+ (ȳij − y) sec2 θ

]
¯
n3 + φ̇ (x− x̄ij) sec θ sec

2 φ
¯
n3,

(2.9)

where the expression for the vertical deflections in (2.7) is used.

Kane’s method provides flexibility in selecting the generalized speeds, υ, which are chosen

for mathematical convenience and/or physical relevance. In the general case, the generalized

speeds are parameterized by

υ = Y (q, t)q̇ + Z(q, t) (2.10)
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such that the motion of the system is entirely determined at any given time if the generalized

coordinates and generalized speeds are known. For the disk system, the generalized speeds

are defined as υ = q̇, where Y = I and Z = 0 and the generalized speeds are identical to

the generalized velocities of a traditional Lagrangian formulation. The velocities in (2.8)

and (2.9) can be written in terms of the generalized speeds according to

¯
vPN = (

¯
v̂P)

T
υ+

¯
ṽP(q, t), (2.11)

where
¯
v̂P is called the partial velocity of point, P, in the N-frame and

¯
ṽP represents all

terms independent of υ. The partial velocity vector for each point describes the directions

associated with each of the generalized speeds. The partial velocities in the N-frame at each

of the points where forces are exerted on the disk are evaluated as

¯
v̂OB

=




¯
n1

¯
n2

¯
n3

0

0




,
¯
v̂Pij

=




∂x̄ij
∂x ¯

n1 +
∂ȳij
∂x ¯

n2 +
((

1− ∂x̄ij
∂x

)
sec θ tanφ+

∂ȳij
∂x

tan θ
)
¯
n3

∂x̄ij
∂y ¯

n1 +
∂ȳij
∂y ¯

n2 +
(
−∂x̄ij

∂y
sec θ tanφ+

(
∂ȳij
∂y

− 1
)
tan θ

)
¯
n3

¯
n3

((x− x̄ij) sec θ tan θ tanφ+ (ȳij − y) sec2 θ)
¯
n3

(x− x̄ij) sec θ sec
2 φ

¯
n3




(2.12)

and are stacked in the vectrix,
¯
V̂ , according to

¯
V̂ =

[
¯
v̂OB ¯

v̂P11 ¯
v̂P12 · · ·

¯
v̂P24

]
. (2.13)

The angular velocity of the disk in the N-frame can be similarly expressed as

¯
ωBN = (

¯
ω̂B)

T
υ+

¯
ω̃B(q, t), (2.14)

where
¯
ω̂B = [0 0 0

¯
n1 ¯

b2]
T is the partial angular velocity of the disk.

The unconstrained generalized active forces are computed according to

F =
¯
V̂ ·

¯
R +

¯
ω̂B ·

¯
MOB

, (2.15)

where
¯
R = [

¯
ROB ¯

RP11 ¯
RP12 · · ·

¯
RP24 ]

T is the column vectrix of resultant forces acting on each

of the points and
¯
MOB

is the sum of the moments acting on the disk about its center of mass.
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The resultant forces are given by

¯
ROB

= −cxυ1
¯
n1 − cyυ2

¯
n2 − (mag + czυ3)

¯
n3

¯
RPij

= Fnij¯
b3,

(2.16)

where Fnij = Ftij − Fbij is the net force acting on the disk at point Pij. The only moments

modeled are the torsional squeeze film damping terms,

¯
MOB

= −cθυ4
¯
n1 − cφυ5

¯
b2. (2.17)

Plugging the pertinent partial velocities, angular velocities, resultant forces, and moments

into (2.15) yields

F =




−cxυ1 + sinφ
∑

i,j Fnij

−cyυ2 − sin θ cosφ
∑

i,j Fnij

−czυ3 −mag + cos θ cosφ
∑

i,j Fnij

−cθυ4 +
∑

i,j βijFnij

−cφυ5 + secφ
∑

i,j (x− x̄ij)Fnij




, (2.18)

where βij = (x− x̄ij) tan θ sinφ+(ȳij−y) sec θ cosφ. The generalized active forces constitute

the left-hand side of the disk equations of motion described by Newton’s second law. The

motion of the disk is characterized once the generalized inertia forces that constitute the

right-hand side of (2.3) are also computed. The generalized inertia forces are calculated

according to

F⋆ =
¯
v̂OB

·
¯
R⋆ +

¯
ω̂B ·

¯
M⋆

OB
, (2.19)

where the inertia resultant is given by

¯
R⋆ = maOBN

= mυ̇1
¯
n1 +mυ̇2

¯
n2 +mυ̇3

¯
n3. (2.20)

The inertial moment acting about the disk center of mass,
¯
M⋆

OB
, is equal to the time derivative

of the disk’s inertial momentum in the N-frame:

¯
M⋆

OB
=

N

¯
HOBN

, (2.21)

where
¯
HOBN is the disk’s inertial momentum about its center of mass in the N-frame and the

N stacked above
¯
HOBN indicates that the time derivative is taken with respect to the inertial
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frame. The inertial momentum is a function of both the angular rotation of the disk and

the disk’s inertia,

¯
HOBN =

¯
ωBN ·

¯̄
IOB

, (2.22)

where
¯̄
IOB

= Jt
¯
b1¯
b1+Jt¯

b2¯
b2+Js¯

b3¯
b3 is the inertia dyadic (tensor) of the disk about its center

of mass. The inertia dyadic is written in the B-frame since the {B1,B2,B3}-axes are the

principal axes of the disk, i.e., the inertia matrix is diagonal in the B-frame. The transverse-

and spin-axis moments of inertia of the disk are denoted Jt and Js, respectively, and their

values are provided in Table 2.1. Plugging the inertia dyadic and angular momentum of the

disk into (2.22) yields

¯
HOBN = Jtυ4 cosφ

¯
b1 + Jtυ5

¯
b2 + Jsυ4 sinφ

¯
b3. (2.23)

Although the inertial momentum is written in the B-frame, its time derivative in the N-frame

can be computed according to

N

¯
HOBN

=
B

¯
HOBN

+
¯
ωBN ×

¯
HOBN (2.24)

to yield

N

¯
HOBN

= ((Js − 2Jt)υ4υ5 sinφ+ Jtυ̇4 cosφ)
¯
b1 +

(
(Jt − Js)υ

2
4 sinφ cosφ+ Jtυ̇5

)
¯
b2

+ (Jsυ4υ5 cosφ+ Jsυ̇4 sinφ)
¯
b3.

(2.25)

With each of the terms in (2.19) evaluated, the generalized inertia forces are given by

F⋆ =




mυ̇1

mυ̇2

mυ̇3

2(Js − Jt)υ4υ5 sinφ cosφ+ (Js sin
2 φ+ Jt cos

2 φ)υ̇4

(Jt − Js)υ
2
4 sinφ cosφ+ Jtυ̇5




. (2.26)

Computing (2.3) and substituting the time derivatives of the generalized coordinates for the

20



generalized speeds produces the ensuing set of nonlinear equations governing disk motion:

mẍ = −cxẋ+ sinφ
∑

i,j

Fnij

mÿ = −cyẏ − sin θ cosφ
∑

i,j

Fnij

mz̈ = −cz ż −mag + cos θ cosφ
∑

i,j

Fnij

(
Js sin

2 φ+ Jt cos
2 φ
)
θ̈ = −cθθ̇ + 2(Jt − Js)θ̇φ̇ sinφ cosφ+

∑

i,j

βijFnij

Jtφ̈ = −cφφ̇+ (Js − Jt)θ̇
2 sinφ cosφ+ secφ

∑

i,j

(x− x̄ij)Fnij .

(2.27)

The governing equations of motion can also be obtained using energy formulations that

rely on a generalization of Lagrange’s formulation based on Kane’s Method. The generalized

Lagrangian, L, is defined as

L(q, υ, t) = K(q, υ, t)− V (q, t), (2.28)

where K is the generalized kinetic energy and V is the potential energy present in the disk.

The generalized Lagrangian and generalized kinetic energy are identical to the standard

definitions of the Lagrangian and kinetic energy, respectively, however, the generalized ve-

locities, q̇, are replaced with the generalized speeds. In the presence of non-conservative

forces, Kane’s equations for disk motion are given by

d

dt

(
∂L
∂υ

∂q̇

∂υ

−1)
− ∂L
∂q

+
∂L
∂υ

∂q̇

∂υ

−1∂q̇

∂q
= Fnc

T ∂q̇

∂υ

−1

, (2.29)

where Fnc are the non-conservative forces acting on the disk. Only the viscous damping

forces are non-conservative. All remaining generalized active forces are conservative forces,

denoted Fc, that are related to the disk’s potential energy according to

Y TFc = −∂V
∂q

T

. (2.30)

Computing the disk’s potential energy from (2.30) is tedious due to the presence of elec-

trostatic forces acting on the disk, nevertheless, plugging (2.28) and (2.30) into (2.29) and
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recognizing that the generalized speeds are equal to the generalized velocities simplifies the

disk’s equations of motion to

d

dt

(
∂K
∂υ

)
− ∂K
∂q

= Fc
T + Fnc

T . (2.31)

The generalized kinetic energy is evaluated by computing the kinetic energy,

K(q, q̇, t) =
1

2
m
¯
vOBN ·

¯
vOBN +

1

2¯
ωBN ·

¯
HOBN, (2.32)

and replacing q̇ with the generalized speeds according to (2.10):

K =
1

2

[
mυ21 +mυ22 +mυ23 +

(
sin2 φJs + cos2 φJt

)
υ
2
4 + Jtυ

2
5

]
. (2.33)

Taking the partial derivatives of K with respect to υ and q,

∂K
∂υ

=
[
mυ1 mυ2 mυ3

(
Js sin

2 φ+ Jt cos
2 φ
)
υ4 Jtυ5

]

∂K
∂q

=
[
0 0 0 0 (Js − Jt) sinφ cosφυ24

]
,

(2.34)

the left-hand side of (2.31) is given by

d

dt

(
∂K
∂υ

)
− ∂K
∂q

=




mυ̇1

mυ̇2

mυ̇3

2 (Js − Jt) υ4υ5 sinφ cosφ+
(
Js sin

2 φ+ Jt cos
2 φ
)
υ̇4

Jtυ̇5 + (Jt − Js) υ
2
4 sinφ cosφ




T

, (2.35)

which is equal to (F⋆)T . Since the right-hand side of (2.31) is equal to FT , the equations of

motion generated via energy formulations confirm the disk’s governing equations presented

in (2.27).

The glass plates constrain angular deflections of the disk to less than 3mrad, so invoking
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the small angle approximation simplifies the disk equations of motion to

mẍ = −cxẋ+ φ
∑

i,j

Fnij

mÿ = −cyẏ − θ
∑

i,j

Fnij

mz̈ = −cz ż −mag +
∑

i,j

Fnij

Jtθ̈ = −cθθ̇ + 2 (Jt − Js)φθ̇φ̇+
∑

i,j

(ȳij − y)Fnij

Jtφ̈ = −cφφ̇+ (Js − Jt)φθ̇
2 +

∑

i,j

(x− x̄ij)Fnij .

(2.36)

Nevertheless, the equations remain nonlinear. A linearization about a nominal operating

setpoint is pursued in Section 2.2.5. The electrostatic forcing terms in (2.36) confirm basic

Newtonian mechanics principles: the vertical force is comprised of the net force exerted by

all electrodes and the net electrostatic moments are simply the sum of each electrostatic

force multiplied by its corresponding moment arm. A distinguishing feature of the system is

the intrinsic coupling present between the lateral and tilt degrees of freedom. Lateral forces

are produced by tilting the disk, so using the primary electrodes to control angular rotations

of the disk provides a means of regulating in-plane motion of the disk.

2.2.2 Electrostatic Forces

Charge differentials between the (grounded) disk and each of electrodes result in net electro-

static forces on the disk. Since the system geometry constrains the roll and pitch angles to

less than 3mrad, the disk and electrodes are modeled as parallel plate capacitors in which

the disk is assumed to be a thin rigid body so that the capacitive gaps are characterized

by deflections of the disk center plane and measured at the centroids of the electrode-disk

overlap areas. The vertical positions of the points on the disk where the lines given by

{N1 = x̄ij,N2 = ȳij} intersect the disk center plane in the N-frame are given in (2.7), how-

ever, the small angle approximation simplifies this expression to

zij = z + (x− x̄ij)φ+ (ȳij − y)θ. (2.37)
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The gaps between the top electrodes and the disk are quantified by subtracting zij from

the nominal gap when the disk is suspended in its nominal equilibrium position (q = 0).

Similarly, the gaps between the disk and bottom electrodes are assessed by adding zij to the

nominal gap.

The capacitances between the disk and electrodes are estimated by modeling each parallel

plate capacitor as two series capacitors –one for each dielectric medium, air and photoresist.

The top and bottom capacitances assocated with the air gaps are given by

Cair,tij =
εairε0AEij
zsh
2
− zij

Cair,bij =
εairε0AEij
zsh
2
+ zij

, (2.38)

respectively, where εair is the relative permittivity of air, ε0 is the vacuum permittivity, and

zsh is the shim thickness, and

Cpr =
εprε0AEij

zpr
(2.39)

is the capacitance across the layer of photoresist, where εpr is the relative permittivity of the

photoresist and zpr is the photoresist thickness. The thicknesses of the mediums that establish

the capacitive gaps are listed in Table 2.2. The net top and bottom capacitances for the

dual-dielectric gaps, Ctij and Cbij , respectively, abide by the series capacitance relationship

1

Ctij

=
1

Cair,tij

+
1

Cpr

1

Cbij

=
1

Cair,bij

+
1

Cpr

. (2.40)

Solving for Ctij and Cbij yields

Ctij =
εairε0AEij

zsh
2
+ εair

εpr
zpr − zij

Cbij =
εairε0AEij

zsh
2
+ εair

εpr
zpr + zij

. (2.41)

Let ε = εairε0 and define an “effective” nominal gap,

z0 =
zsh
2

+
εair
εpr

zpr, (2.42)

that is not dependent on the disk position. Using the expression in (2.42), the net top and

bottom capacitances are given by

Ctij =
εAEij

z0 − zij
Cbij =

εAEij

z0 + zij
, (2.43)

respectively.
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The electrostatic energy stored in the top and bottom electrodes, Wtij and Wbij , respec-

tively, are given by

Wtij =
1

2

Q2
tij

Ctij

Wbij =
1

2

Q2
bij

Cbij

, (2.44)

where Qtij is the electrical charge stored on electrode Etij and Qbij is the charge stored on

electrode Ebij . The pull-in forces acting on the disk, assuming no charge losses, are computed

as

¯
Ftij = −∂Wtij

∂z ¯
b3 =

1

2

Q2
tij

C2
tij

∂Ctij

∂z ¯
b3 =

1

2

εAEij

(z0 − zij)
2v

2
tij¯
b3

¯
Fbij = −∂Wbij

∂z ¯
b3 =

1

2

Q2
bij

C2
bij

∂Cbij

∂z ¯
b3 = −1

2

εAEij

(z0 + zij)
2v

2
bij¯
b3,

(2.45)

where the current-voltage relationship for a capacitor is used to introduce the electrode

voltages, vtij and vbij , for electrodes Etij and Ebij , respectively. The magnitudes of
¯
Ftij and

¯
Fbij comprise the electrostatic force terms of the previous section, denoted Ftij and Fbij ,

respectively. The magnitude of the net electrostatic force acting on the disk due to an

electrode pair, Fnij , is

Fnij =
εAEij

2

(
v2tij

(z0 − zij)
2 −

v2bij

(z0 + zij)
2

)
. (2.46)

The potentials are part of the electrical subsystem states and their presence shows how the

disk response is dependent on the transformer voltages:

mẍ = −cxẋ+
εφ

2

∑

i,j

AEij

(
v2tij

(z0 − zij)
2 −

v2bij

(z0 + zij)
2

)

mÿ = −cyẏ −
εθ

2

∑

i,j

AEij

(
v2tij

(z0 − zij)
2 −

v2bij

(z0 + zij)
2

)

mz̈ = −cz ż −mag +
ε

2

∑

i,j

AEij

(
v2tij

(z0 − zij)
2 −

v2bij

(z0 + zij)
2

)

Jtθ̈ = −cθθ̇ + 2 (Jt − Js)φθ̇φ̇+
ε

2

∑

i,j

(ȳij − y)AEij

(
v2tij

(z0 − zij)
2 −

v2bij

(z0 + zij)
2

)

Jtφ̈ = −cφφ̇+ (Js − Jt)φθ̇
2 +

ε

2

∑

i,j

(x− x̄ij)AEij

(
v2tij

(z0 − zij)
2 −

v2bij

(z0 + zij)
2

)
.

(2.47)
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Table 2.2: Gap Parameters for Electrode Configuration I

Symbol Description Value
zsh shim thickness 229µm
zpr photoresist thickness 20µm
z0 “effective” nominal electrode-disk gap 119µm

These nonlinear equations of motion can be compactly expressed by the set of coupled first-

order differential equations

d

dt


q
q̇


 =


 q̇

f(q, q̇, wtf)


 , (2.48)

where wtf characterizes the transformer states.

2.2.3 Transformer Dynamics

The transformers are modeled to include non-idealities such as leakage inductances, winding

resistances, and stray capacitance. Each of the transformers are assumed to be identical,

though only the primary electrode transformers are connected to the control inputs and

the connections to the electrodes vary for the primary and lateral cases. A schematic of

the non-idealized primary electrode transformer is displayed in Figure 2.8, which shows the

transformer connections to the electrodes and control signal, vcj . The supply transformers

are not modeled, however, they produce a nearly constant amplitude current,

ict1 = act1 cos (ω0t) (2.49)

for the primary electrodes, that serves as a second input to the transformer subsystem in

Figure 2.8. Note that ω0 is the 25 kHz carrier frequency. All resistances, inductances, and

capacitances (excluding the variable electrode-disk capacitances) were evaluated using an

impedance analyzer in [AM21] and are listed in Table 2.3 for reference. An overdetermined

set of equations is developed for the primary electrode transformers using first-order current-
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Figure 2.8: Non-idealized primary electrode transformer model. Mutual and leakage induc-
tances, winding resistances, and parasitic and interwinding capacitances are modeled.

voltage relations:

Ctij v̇tij = itij − ipij

Cbij v̇bij = ibij + ipij

Cp

(
v̇tij − v̇bij

)
= ipij

Cw1

(
v̇1ij − v̇4ij

)
= itwij

Cw2

(
v̇3ij − v̇5ij

)
= ibwij

L1i̇1ij −Mpi̇2ij −Msi̇3ij = vctij − v1ij

−Mpi̇1ij + L2i̇2ij +Msi̇3ij = vctij − v3ij

−Msi̇1ij +Msi̇2ij + Lsi̇3ij = v5ij − v4ij

Ll

(
i̇twij

+ i̇3ij
)
= v4ij − vsij

v1ij − vtij = R1itij

v3ij − vbij = R2ibij

vctij = idijRd

v5ij = R3

(
ibwij

− i3ij
)

vsij = Rsisij

vcj − vsij = Rcicj

icti = idij + i1ij + i2ij

i1ij = itij + itwij

i2ij = ibij + ibwij

itwij
+ i3ij + icj = isij .

(2.50)

This system of equations is compactly written in the state-space form

Mtf1j(q)ẇtf1j = Atf1wtf1j + (−1)j−1Bct1ict1 +Bvvcj

vs1j = Ctf1wtf1j

j = 1, 2, 3, 4 (2.51)
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Figure 2.9: Non-idealized lateral electrode transformer model. The inductances, capaci-
tances, and resistances internal to the transformer are modeled identically to the primary
electrode transformers. Only the electrode connections and lack of a voltage source differ
from the primary electrode transformers.

for each primary electrode transformer, where all currents and voltages, excluding the center

tap current and control voltage input, comprise the 19-state vector, wtf1j . The subscript “1j”

indicates that the transformer is connected to the {Et1j , Eb1j} electrode pair. The (−1)j−1

term in front of the center tap current input signal accounts for the alternating sign of the

signal between adjacent channels created by the supply transformers. While the phase of

each control voltage input must be adjusted accordingly, the (−1)j−1 term is omitted from

the Bv input matrix since it is accounted for upstream in the modulation phases, ψcj .

An electrical schematic of the transformer connection to the lateral electrodes is also

provided (see Figure 2.9) since the electrode-transformer configuration differs for the primary

and lateral electrodes. No control signal is presented to the lateral transformers and the

center tap current,

ict2 = act2 cos (ω0t) , (2.52)

is operated at a lower amplitude than ict1 . The equations of motion for each lateral electrode

transformer are nearly identical to those in (2.50), however, the icj state and vcj input are

removed and the top and bottom electrode-disk capacitances are replaced with the electrode-
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Table 2.3: Transformer Circuit Parameters

Symbol Description Value
L1, L2 primary inductances 2.1H
Ls secondary inductance 1.53mH
Ll leakage inductance 2.47µH
Mp primary-primary mutual inductance 2.1H
Ms primary-secondary mutual inductance 56.7mH
Cp parasitic capacitance 17 pF

Cw1 , Cw2 interwinding capacitances 70 pF
R1, R2 primary winding resistances 504Ω
R3 secondary winding resistance 0.54Ω
Rc control resistor 150Ω
Rs shunt resistor 150Ω
Rd current sink resistor 1MΩ

disk capacitances of antipodal electrodes. Because the top and bottom lateral electrodes are

shorted, the electrode-disk capacitors for Et2j and Eb2j act in parallel and the net capacitance

between these electrodes and the disk is given by

Cn2j = εAE2j

(
1

z0 − z2j
+

1

z0 + z2j

)
. (2.53)

The overdetermined set of coupled first-order equations for each lateral electrode transformer

is succinctly written as

Mtf2j(q)ẇtf2j = Atf2wtf2j + (−1)j−1Bct2ict2

vs2j = Ctf2wtf2j ,
j = 1, 2 (2.54)

where the state dimension is 18. The j = 1 set of equations is written with respect to

the E21-E23 electrode pair (the top/bottom electrode subscript is omitted here since the top

and bottom electrodes are shorted and act in parallel as a single electrode). Similarly, the

transformer connected to the Et22 , Eb22 , Et24 , and Eb24 electrodes is represented by the j = 2

set of equations in (2.54).

The six transformer subsystems collectively act as the six-input/six-output system

Mtf(q)ẇtf = Atfwtf +Bctict +Bcvc

vs = Ctfwtf ,
(2.55)
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whose inputs, ict and vc, and output, vs, are

ict =


ict1
ict2


 , vc =




vc1
...

vc4


 , vs =




vs1
...

vs6


 ,

where each of sense voltages, vsij , has been relabeled so that the subscript “ij” is replaced

with the subscript “k” according to the relationship

k = 4(i− 1) + j





i = 1, j = 1, 2, 3, 4

i = 2, j = 1, 2.

For example, vs12 becomes vs2 and vs21 becomes vs5 . Using this notation, the subscript indices

are representative of the measurement number, i.e., vs1 is the first measurement and vs6 is

the sixth and final measurement. This notation was adopted in Section 2.1 and the sampled

signal gk is electrically connected to the transformer signal vsk . The state vector in (2.55) is

given by

wtf = [wtf11 wtf12 wtf13 wtf14 wtf21 wtf22 ]
T

and the aggregate state-space matrices are

Mtf(q) = diag (Mtf11 ,Mtf12 ,Mtf13 ,Mtf14 ,Mtf21 ,Mtf22) ∈ R112×112

Atf = diag (Atf1 , Atf1 , Atf1 , Atf1 , Atf2 , Atf2) ∈ R112×112

Ctf = diag (Ctf1 , Ctf1 , Ctf1 , Ctf1 , Ctf2 , Ctf2) ∈ R6×112,

Bct =




Bct1 0

−Bct1 0

Bct1 0

−Bct1 0

0 Bct2

0 −Bct2




∈ R112×2, Bc =




Bv 0 0 0

0 Bv 0 0

0 0 Bv 0

0 0 0 Bv

0 0 0 0

0 0 0 0




∈ R112×4,

where diag(·) represents the block diagonal concatenation of the matrix arguments. The

transformer states are coupled to the disk’s kinematic variables, q, by the matrix Mtf , which

contains the electrode-disk capacitances. Model reduction using a singular value decompo-

sition is performed in Section 2.2.5 so that the redundant constraints in (2.55) are omitted.
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Table 2.4: Analog Filter Parameters

Symbol Type Poles Corner Frequency
Hsm low-pass Butterworth 2 5 kHz
Haa low-pass Butterworth 4 1 kHz

2.2.4 Analog Filtering Dynamics

The analog filtering electronics are also modeled and are based on the filter parameters

provided in Table 2.4. The input electronics are governed by

ẇsm = Asmwsm +Bsmu

vc = CcCsmwsm,
(2.56)

where Cc = kc diag(cos(ω0t + ψc1), . . . , cos(ω0t + ψc4)) is the diagonal matrix of sinusoids

describing the analog multiplier and amplification, and (Asm, Bsm, Csm) characterizes the

Butterworth smoothing filters with state variable wsm. The analog gain on the input elec-

tronics, kc, is equal to 9.3. The modulation phases of adjacent channels are 180◦ out of phase

with one another to account for the alternating sign of the current in adjacent channels cre-

ated by the center tap supply transformers, i.e., ψc2 = ψc1 + π. Furthermore, these phases

are chosen so that a positive uj results in a net lifting force acting on the disk relative to the

{Et1j , Et1j} electrode pair. The dynamics of the output electronics are represented by

ẇaa = Aaawaa +BaaCsvs

g = Caawaa,
(2.57)

where Cs = diag(ks1 cos(ω0t+ψs1), . . . , ks6 cos(ω0t+ψs6)) characterizes the analog demodula-

tor and sensing amplification, and (Aaa, Baa, Caa) describes the Butterworth anti-alias filters

with state vector waa. The analog transduction gains for the sense electronics vary by chan-

nel. The gains corresponding to the primary electrode measurements, i.e., {ks1 , . . . , ks4},
are each equal to 1.9, meanwhile the lateral channel gains, ks5 and ks6 , take on the value 6.3.

Differences in the phase of each transformer subsystem created by the alternating signs of

the center tap supply currents are accounted for in the demodulation phases, ψsj , so that an

increase in the vertical position of the disk local to each primary electrode pair results in a
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positive change in gj. Similarly, positive motion along the N1- and N2-axes is measured as

net positive changes in g5 and g6, respectively. The coupled, time-varying dynamics of the

analog subsystem of the plant are collectively governed by

ẇsm = Asmwsm +Bsmu

Mtf(q)ẇtf = BcCcCsmwsm + Atfwtf +Bctict

d

dt


q
q̇


 =


 q̇

f(q, q̇, wtf)




ẇaa = BaaCsCtfwtf + Aaawaa

g = Caawaa.

(2.58)

2.2.5 Linearization About Operating Point

The governing equations of motion are nonlinear and overdetermined, however, small signal

linearization about a nominal operating point is used to evaluate a linear time-periodic

approximation of the plant. Futhermore, careful selection of the DSP sampling period to be

an integer multiple of the carrier signal period yields a time-invariant discrete-time estimate

of the system. The desired nominal setpoint is q̄ = 0, ˙̄q = 0 since the disk is designed to be

suspended at the center plane between the glass plates. A periodic solution of (2.58) exists

at this setpoint because the mean value of all forces and moments acting on the disk sum

to zero when a constant nonzero control input, denoted ū, is applied to counteract gravity.

Due to the rectification of transformer primary voltages vis-à-vis (2.45), the 2ω0 components

of the forces and moments are neglected since the disk’s inertia effectively attenuates these

signals. When the disk is suspended in its nominal position, the periodic solution of the

transformer states is given by

w̄tf(t)
r
= (ȷω0Mtf(q̄)− Atf)

−1
[
Bct Bc

]

 act

−kcEcCsmA
−1
smBsmū


 eȷω0t, (2.59)

where act = [act1 act2 ]
T , Ec = diag(eȷψc1 , . . . , eȷψc4 ), and ȷ is the imaginary unit, not to

be confused with the subscript, j, that indicates the electrode number. Linear variational
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equations are computed by introducing perturbation variables to each of the plant inputs,

outputs, and states:

u = ū+ δu

q = 0 + δq

wsm = w̄sm + δsm

q̇ = 0 + δq̇

g = ḡ + δg.

wtf = w̄tf + δtf

waa = w̄aa + δaa

The bar notation represents the signals that are a solution of (2.58) at the setpoint and

{δu, δsm, . . .} represent the deviations. The matrix Mtf(q) is continuously differentiable for

all physically realizable disk configurations and is approximated in a neighborhood of q̄ = 0

by

Mtf(q) ≈Mtf(q̄) +
∂Mtf

∂x
(q̄)

︸ ︷︷ ︸
Mx

δx+
∂Mtf

∂y
(q̄)

︸ ︷︷ ︸
My

δy +
∂Mtf

∂z
(q̄)

︸ ︷︷ ︸
Mz

δz +
∂Mtf

∂θ
(q̄)

︸ ︷︷ ︸
Mθ

δθ +
∂Mtf

∂φ
(q̄)

︸ ︷︷ ︸
Mφ

δφ. (2.60)

Substituting the perturbed variables and (2.60) into (2.58) and retaining only the linear

terms produced by approximating M(q) yields the set of first-order differential equations

δ̇sm = Asmδsm +Bsmδu

M(q̄)δ̇tf = BcCcCsmδsm + Atfδtf − (Mxδx +Myδy +Mzδz +Mθδθ +Mφδφ) ˙̄wtf

δ̇q = δq̇

δ̇q̇ = ∇wtf
f(q̄, ˙̄q, w̄tf)δtf +∇qf(q̄, ˙̄q, w̄tf)δq +∇q̇f(q̄, ˙̄q, w̄tf)δq̇

δ̇aa = Aaaδaa +BaaCsCtfδtf

δg = Caaδaa,

(2.61)

where ∇wtf
f , ∇qf , and ∇q̇f are the gradients of the generalized forces and torques with

respect to wtf , q, and q̇, respectively.

The transformer subsystem, however, is overdetermined: wtf contains 112 states yet the

rank of M(q̄) is 36. A model reduction via a singular value decomposition-based coordinate

transformation resolves the overdetermined constraints. A singular value decomposition of
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M(q̄) is expressed as

M(q̄) =
[
U1 U2

]

︸ ︷︷ ︸
U


Σ1 0

0 0




V

T
1

V T
2




︸ ︷︷ ︸
V T

, (2.62)

where the unitary U and V matrices are partitioned such that U1 ∈ R112×36, Σ1 ∈ R36×36,

and V1 ∈ R112×36. A new set of transformer perturbation coordinates are defined according

to

δtf =
[
V1 V2

]

δ1
δ2


 (2.63)

so that δ1 comprises the states of the truncated model, i.e., the essential states for describ-

ing the transformer dynamics, and δ2 constitutes the states that have no impact on the

transformer dynamics.

Plugging (2.62) and (2.63) into (2.61) produces

U1Σ1δ̇1 = BcCcCsmδsm + AtfV1δ1 + AtfV2δ2 −MqẆ tfδq, (2.64)

where Mq = [Mx My Mz Mθ Mφ] and Ẇ tf = diag ( ˙̄w, ˙̄w, ˙̄w, ˙̄w, ˙̄w). Independently left multi-

plying by UT
1 and UT

2 yields the set of equations

Σ1δ̇1 = UT
1 BcCcCsmδsm + UT

1 AtfV1δ1 + UT
1 AtfV2δ2 − UT

1 MqẆ tfδq

0 = UT
2 BcCcCsmδsm + UT

2 AtfV1δ1 + UT
2 AtfV2δ2 − UT

2 MqẆ tfδq,
(2.65)

where UT
2 AtfV2 is invertible so that δ2 can be expressed in terms of δsm, δ1, and δq:

δ2 = −
(
UT
2 AtfV2

)−1
UT
2

(
BcCcCsmδsm + AtfV1δ1 −MqẆ tfδq

)
. (2.66)

Plugging this expression for δ2 into the differential equation describing the essential states of

the transformer dynamics and defining Q = V2
(
UT
2 AtfV2

)−1
UT
2 and R = Σ−1

1 UT
1 (I − AtfQ)

yields

δ̇1 = RBcCcCsmδsm +RAtfV1δ1 −RMqẆ tfδq. (2.67)

The non-essential states propagate through the model via the disk and anti-alias filter dy-

namics, however, these states are easily removed by recognizing that

δtf = −QBcCcCsmδsm + (I −QAtf)V1δ1 +QMqẆ tfδq (2.68)
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so that the reduced-order analog dynamics can be written as

δ̇sm = Asmδsm +Bsmδu

δ̇1 = RBcCcCsmδsm +RAtfV1δ1 −RMqẆ tfδq

δ̇q = δq̇

δ̇q̇ = −∇wtf
f(q̄, ˙̄q, w̄tf)QBcCcCsmδsm +∇wtf

f(q̄, ˙̄q, w̄tf) (I −QAtf)V1δ1

+
(
∇wtf

f(q̄, ˙̄q, w̄tf)QMqẆ tf +∇qf(q̄, ˙̄q, w̄tf)
)
δq +∇q̇f(q̄, ˙̄q, w̄tf)δq̇

δ̇aa = −BaaCsCtfQBcCcCsmδsm +BaaCsCtf(I −QAtf)V1δ1

+BaaCsCtfQMqẆ tfδq + Aaaδaa

δg = Caaδaa,

(2.69)

where 76 states have been shed from the model in (2.61). Collecting all essential perturbation

states in the state vector δ, the model is compactly expressed as the time-varying state-space

realization

δ̇ = Aδ(t)δ +Bδδu

δg = Cδδ.
(2.70)

An approximate time-invariant discrete-time model is characterized by solving the initial

value problem posed by (2.70):

δ(t) = Θ(t, t0)δ(t0) +

∫ t

t0

Θ(t, τ)Bδδu(τ)dτ, t ≥ t0, (2.71)

where Θ(t, t0) is the state transition matrix over the time interval [t0, t]. While the starting

time, t0, specifies the phase of the periodic solution, it has been shown in [AM18] that its

impact on the system is negligible from a frequency-domain perspective, therefore t0 = 0 is

assumed for the following analysis. A key feature of the discretization procedure is selecting

the carrier period, T0 = 2π/ω0 = 1/25000 s, to be an integer divisor of the DSP sampling

period, ts = 1/5000 s. The periodicity in (2.70) guarantees that

Θ(2πℓ/ω0, 2πn/ω0) = Θℓ−n(2π/ω0, 0) ∀ ℓ, n ∈ Z. (2.72)

By selecting the carrier frequency in the manner specified,

Θ((ℓ+ 1)ts, ℓts) = Θ5(2π/ω0, 0) ∀ ℓ ∈ Z. (2.73)
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When viewing the solution to the initial value problem over successive samples of the DSP,

δ((ℓ+ 1)ts) = Θ((ℓ+ 1)ts, ℓts)δ(ℓts) +

∫ (ℓ+1)ts

ℓts

Θ((ℓ+ 1)ts, τ)Bδδu(τ)dτ, (2.74)

the input signal, δu, can be extracted from the integral since it is constant over the inte-

gration bounds due to the zero-order hold instituted by the DSP. Once δu is removed from

the integrand, the integral is constant from one sample to the next because the remaining

integrand is periodic with period T0, thus, the solution to (2.70) is approximated by

δ((ℓ+ 1)ts) = Φδ(ℓts) + Γδu(ℓts)

δg = Cδδ(ℓts),
(2.75)

where Φ = Θ(ts, 0) and Γ =
∫ ts
0
Θ(ts, τ)Bδdτ are numerically computed.

2.2.6 Analysis of the Linearized Model

The four-input/six-output discrete-time system in (2.75) is evaluated for act1 = 17.7mA,

act2 = 1.2mA, and each element of ū equal to 1.7V. The model order is 78: 10 states

are associated with disk motion, 36 states characterize the six electrode transformers (the

transformers supplying the center taps are not modeled), 8 states describe the four input

signal smoothing filter dynamics, and 24 states are associated with the six anti-alias filters.

The model in (2.75), however, contains the actuator-to-pick-off feedthrough that must be

removed for controller design. A feedforward filter, denoted F and shown in Figure 2.10,

is designed to cancel this feedthrough and is modeled by constraining the states associated

with the disk degrees of freedom in (2.75) to be zero. Complete feedthrough cancellation is

assumed, although this is unrealistic in practice. The predicted feedforward filter is nonzero

only along the diagonal, where each diagonal element is identical, and contributes another

68 states to the analytical plant model, P . The discrete-time poles of P are plotted in

Figure 2.11. Three unstable modes are present in the model, given in discrete time as

λ1 = 1.0011 and λ2 = λ3 = 1.0026. These instabilities correspond to continuous-time

approximations of 5.60 and 13.0 rad/s, respectively, confirming that the disk dynamics evolve

on a much slower time scale than the carrier signal. The geometric multiplicity of λ2 and λ3

36



Transformer-Disk

vc Cc Hsm DAC u

F

vs Cs Haa ADC
g

+
− ζ

G

Figure 2.10: Block diagram of the plant, P = G− F , that includes the subsystem G, whose
input is the DSP-generated signal u and output is the sampled signal g, as well as the digital
feedforward filter, F .

is two. Two pairs of lightly damped, stable resonant modes lie just inside of the unit circle

with natural frequencies equal to 0.98 rad/s.

The pole directions are useful for understanding the instabilities in terms of the disk’s de-

grees of freedom –see [SP05], for example, for definitions of input and output pole directions.

The input pole directions for {λ1, λ2, λ3} are approximately

v1i =
[
1
2

1
2

1
2

1
2

]T

v2i =
[
0 1√

2
0 − 1√

2

]T

v3i =
[
− 1√

2
0 1√

2
0
]T
,

(2.76)

Figure 2.11: Discrete-time poles of the analytical plant model. Left: all poles; right: zoomed-
in plot of the unstable poles.
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respectively, however, because of the geometric multiplicity of λ2 and λ3, any two linearly

independent vectors in the space spanned by v2i and v3i are input pole directions. Infinites-

imal deviations from the reported directions exist due to the imbalances present in the

non-idealized transformer model. The input directions reveal how the electrostatic actuators

couple to the unstable modes. An input of the form u = v1i corresponds to applying a net

vertical force on the disk, meanwhile inputs represented by u = v2i and u = v3i correspond

to moments about the N1- and N2-axes, respectively. Similarly, the output pole directions

associated with {λ1, λ2, λ3}, respectively, are given by

v1o =
[
1
2

1
2

1
2

1
2

0 0
]T

v2o =
[
0 1√

2
0 − 1√

2
0 −ϵ

]T

v3o =
[
− 1√

2
0 1√

2
0 ϵ 0

]T
,

(2.77)

where ϵ≪ 1. The output pole directions provide a useful interpretation of the instabilities in

terms of the measurements. Recall that the measurements ζk, k = 1, 2, 3, 4, are related to the

disk’s vertical position local to each primary electrode pair, thus, they provide insight into the

disk’s vertical and angular positions; meanwhile, ζ5 and ζ6, are purely in-plane measurements.

With this knowledge, the unstable pole λ1 represents a pure vertical translational instability,

λ2 corresponds to the disk rotating about the N1-axis coupled with translational motion in
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Figure 2.12: Analytical frequency responses of the feedthrough-compensated plant outputs
to input channel u1. The uncompensated output, g1, and feedthrough itself are also shown.
Feedthrough is only predicted in the diagonal channels.
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Figure 2.13: Singular values, σj, j = 1, 2, 3, 4, of the analytical plant model (feedthrough
removed). Only three traces appear because σ1 = σ2.

the N2-direction, and λ3 is associated with an angular rotation about the N2-axis coupled

with translational motion in the N1-direction. Recall that the angular and lateral degrees

of freedom were inherently coupled in the disk’s equations of motion. The correspondence

between {λ1, λ2, λ3} and these degrees of freedom is confirmed by analyzing the eigenvectors

associated with each unstable mode. The λ1 and {λ2, λ3} instabilities are appropriately

named the “vertical” and “tilt” instabilities, respectively.

The discrete-time frequency response from u to the feedthrough-compensated signal,

ζ, is computed and is plotted in Figure 2.12 for input u1, where it should be noted that

ζ6/u1 = 0. The remaining input/output channels are easily identified from the system’s

symmetry, i.e., ζ1/u1 = ζ2/u2, ζ1/u2 = ζ2/u1, ζ5/u1 = ζ6/u2, etc. The feedthrough is also

included in Figure 2.12 and indicates that the magnitude of the feedthrough exceeds the

motional gain of the plant. The singular values of the plant are provided in Figure 2.13,

where only three traces are shown because σ1 = σ2. The plot reveals a “low gain” (σ4) with
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right and left singular vectors that are independent of frequency and given by

v4r =
[
1
2

−1
2

1
2

−1
2

]T

v4l =
[
1
2

−1
2

1
2

−1
2

0 0
]T
,

(2.78)

respectively. The remaining right singular vectors correspond to two independent moments

and a vertical force acting on the disk. The remaining left singular vectors include v1o and

four vectors that coincide with two orthogonal rotations of the disk coupled to two indepen-

dent lateral translations. The magnitudes of the rotations relative to the lateral translations

vary with frequency because the measurements are dominated by in-plane motion at low

frequencies, however, this motion is negligible beyond 1Hz (see ζ5/u1 in Figure 2.12).
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CHAPTER 3

Previous Results

Stabilization of the system described in Chapter 2 has been reported in [AM21]. In that

work, classical loop-shaping techniques are used to design single-input/single-output feed-

back controllers around each nonzero channel of a decoupled plant. The plant decomposition,

P̃ = DT
o PDi, (3.1)

utilizes transformations based on the input and output directions associated with the plant’s

unstable poles, vli and vlo , l = 1, 2, 3, respectively, where

Di =
[
v1i v2i v3i

]
, Do =

[
v1o v2o v3o vx vy

]
(3.2)

are the input and output decoupling matrices, respectively. The input and output directions

associated with the unstable poles correspond to the vertical and rotational modes of the

system and the remaining output decoupling vectors,

vx =
[
0 0 0 0 1 0

]T

vy =
[
0 0 0 0 0 1

]T
,

(3.3)

provide measurements of the lateral degrees of freedom in the inertial coordinate frame. The

low gain input direction of the plant, v4r , essentially exerts no net forces nor moments on

the disk and is omitted from the transformation –see Section 2.2.6. Similarly, rigid body

motion of the disk cannot produce measurements in the low gain output direction, v4l : if

included in the decoupling transformation, the measurement corresponding to this channel

is virtually zero. Hence, this vector is also omitted from the transformation to yield a
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three-input/five-output model of the form

P̃ =




⋆ 0 0

0 ⋆ 0

0 0 ⋆

0 0 ⋆

0 ⋆ 0




, (3.4)

where the elements labeled by a ⋆ are nonzero. The transformation DT
o PDi correlates the

inputs and outputs of P̃ with the disk’s controllable and observable degrees of freedom,

respectively.

In [AM21], the vertical and tilt degrees of freedom are stabilized by an inner control loop,

meanwhile, an outer loop regulates the lateral modes. In these coordinates, however, the

inner loop plant is not strongly stabilizable, necessitating unstable feedback controllers in

these channels for disk suspension [YBL74]. The system is incapable of maintaining nonzero

angular rotations of the disk since the DC loop gain corresponding to the pitch and roll

feedback loops is zero. The feedforward filter implemented in practice fit an FIR filter to the

electrical response to broadband random inputs with the disk resting at its bottom position.

Inputs were independently applied at each input channel in separate experiments where the

amplitude of the input signals was not large enough to actuate the disk, so any electrical

response was the direct result of feedthrough from u to g. With the disk suspended, empirical

measurements of the system were captured that align quite well with the model in (2.75),

nevertheless, the work in [AM21] presented a number of challenges to consistently suspending

the disk that must be addressed prior to miniaturization to the scale of microresonators.

The first challenge made apparent in that work is the implementation of unstable con-

trollers due to rapid windup of the state variable and subsequent saturation of the control

command upon startup. Stabilization is inconsistent and unreliable: the disk must be lifted

to just the right position for the controller to “catch it”. Saturation limits are imposed

upon the state variable, however, the bounds must be fine-tuned such that nonzero error

signals can provide enough energy to relieve the state from saturation while simultaneously
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providing large enough controller gain for stabilization. A more systematic and consistent

approach to suspend the disk is desired, motivating the next challenge of improving closed-

loop robustness margins. Cross-channel coupling not predicted by the model is indicated

in [AM21] due to inherent differences in the transduction gains between channels that ruin

the symmetry of the system such that the coordinate transformation mixes the variables.

Additional controller synthesis techniques that provide robust stability against such uncer-

tainties present in the plant model should be investigated, as these uncertainties play a role

in the unreliability of the previously designed controller. On the other hand, improved ro-

bustness margins are ineffective without an accurate model of the plant. Accurate empirical

models of the plant based on spectral analysis of long data records (the lightly damped

resonances occur below 0.2Hz) are possible, however, more advanced multivariable control

techniques rely on parametric models of the system. Thus, obtaining an accurate paramet-

ric model of the plant from closed-loop data presents another challenge. Additionally, the

feedforward filter is only capable of rejecting about 90% of the feedthrough coupling within

the system. Above 10Hz, residual feedthrough dominates the plant response and introduces

significant phase lag, effectively constraining the loop bandwidth.

In addition to the modeling paradigm developed in Chapter 2, this dissertation addresses

the final three challenges laid out in the previous paragraph. Furthermore, the modeling

framework is expanded to additional electrode-disk configurations. A two-pronged approach

is investigated: first, parametric identification and robust stability to coprime factor pertur-

bations of the system are examined for a smaller disk that reduces the number of actively

controlled degrees of freedom to three; second, the challenges addressed with the simpler sys-

tem are applied to a system redesign that eliminates feedthrough by separating the control

and sense electronics. Chapter 4 discusses the design of a robustly stabilizing multivariable

controller and iteration of the control design to improve robust performance using a novel

parametric identification technique. Furthermore, the unstable pole input and output direc-

tions of the parametric fit are used to identify differences in transduction gains. The simpler

system is strongly stabilizable, even when decoupled, so the implementation of unstable con-

trollers is not addressed. Part II investigates the modeling, fabrication, and control design
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of the updated system that incorporates segregated control and sense electrodes. Both disks

–the one discussed in Chapter 2 and the smaller one used in Chapter 4 –are studied, again

using a controller synthesis procedure designed to maximize robustness margins to perturba-

tions of the plant’s normalized coprime factors. The control algorithm produces an unstable

controller for the larger disk, however, an additional, albeit less robust, stable controller

is designed for the four-input/six-output, non-decoupled plant since this system is strongly

stabilizable.
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CHAPTER 4

The Three-Degree-of-Freedom Disk

A smaller, 37mm radius disk is etched from a 400µm thick double side polished silicon

wafer and coated with conductive films of 5 nm titanium and 1µm aluminum to create an

equipotential body. The radius of this disk matches the outer radii of the primary electrodes

so that fringe field forces passively stabilize the disk’s lateral position. The electrodes and

electronics are identical to those discussed previously, however, all electronics corresponding

to the outer ring of electrodes, i.e., i = 2, have been disconnected and powered down. Con-

tinued use of the electrodes for both actuation and sensing sustains the feedthrough dilemma.

The center tap amplitude to the primary electrodes, carrier frequency, and modulation and

demodulation phases remain unchanged and the schematic shown in Figure 2.5 of a single

input/output channel of the analog subsystem of the plant for the larger disk is valid for the

smaller disk as well. The same DSP interfaces between the transformer electronics and digital

filters at a 5 kHz sample rate. Digital feedthrough compensation is still considered internal

to the plant. With the lateral electrodes disconnected, the plant is a four-input/four-output

system.

New silicon spacers are etched from the same wafer as the smaller disk so that the nominal

air gaps of 114µm are maintained by the aluminum shims used prior. The rigid body motion

of the disk is described by three degrees of freedom –vertical position, pitch, and roll. As

before, the electrode arrangement is incapable of measuring yaw rotation and provides no

means of spinning the disk about the vertical axis. Lateral motion, however, is essentially

unobservable with the updated electrode-disk configuration. The system remains under

development for testing of MEMS gyroscopic resonators and it should be noted that when

the suspension system is scaled down, the outer radius of the electrodes will be designed to
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match the resonator stem radius so that fringe field forces constrain lateral motion of the

device’s center of mass.

4.1 Analytical Model

Generating an analytical model of the system with the smaller disk follows the same pro-

cedure laid out in Chapter 2. The disk mass, m, and transverse- and spin-axis moments

of inertia, Jt and Js, respectively, are evaluated from the disk radius and thickness. A free

body diagram of this disk is pictured in Figure 4.1. Gravitational and viscous damping

effects remain present and the electrostatic forces continue to be modeled as point forces

normal to the disk. With the lateral electrodes disconnected, however, only four top and

four bottom electrostatic point forces act on the disk. Although the lateral degrees of free-

dom are immeasurable, they are included in the model out of consideration of in-plane forces

due to electrical field fringing. These terms are assumed to be proportional to translations in

the N1- and N2-directions so that the forces act as virtual springs. The “spring” stiffnesses,

{kx, ky}, are selected so that the lateral modes have a 2Hz resonance. Lateral fringing forces

were ignored with the larger disk since these terms were negligible for mild deviations from

the nominal setpoint: for small perturbations from the inertial origin, the net lateral forces

acting on the disk from the electrical fringe fields effectively “cancel out” since the in-plane

component of the fringing forces from the electrodes pull outwards on the disk sidewall in all

directions. Significant lateral deviations of the larger disk results in fringing forces dominated

by a lateral electrode on one side of the disk and primary electrode on the opposing side,

creating an imbalance in the in-plane forces acting on the disk since the primary electrodes

operate at larger voltage amplitudes and have larger area. Thus, fringing forces provided a

barrier several millimeters larger in diameter than the disk that kept the disk from shooting

out horizontally but inside of the barrier the disk was free to move laterally. In contrast,

the distributed fringe field forces oppose any in-plane motion of the smaller disk since any

lateral displacement results in stronger pulling forces on the disk sidewall that lies within

the outer radii of the electrodes. While the lateral restoring forces are exerted on the disk
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sidewall, the disk is constrained to very small angular rotations and is assumed thin so that

the spring forces are modeled at the disk’s center of mass.

Collecting the forces and following the procedure laid out in Chapter 2, the motion of

the smaller disk is governed by

mẍ = −cxẋ− kxx+ φ
∑

i,j

Fnij

mÿ = −cyẏ − kyy − θ
∑

i,j

Fnij

mz̈ = −cz ż −mag +
∑

i,j

Fnij

Jtθ̈ = −cθθ̇ + 2 (Jt − Js)φθ̇φ̇+
∑

i,j

(ȳij − y)Fnij

Jtφ̈ = −cφφ̇+ (Js − Jt)φθ̇
2 +

∑

i,j

(x− x̄ij)Fnij .

i = 1

j = 1, 2, 3, 4
(4.1)

The most glaring difference between the analytical models for the two differently sized disks

is the presence of the kxx and kyy fringing terms in the lateral degree of freedom equations

for the smaller disk. The system of equations in (4.1) is concisely written as

d

dt


q
q̇


 =


 q̇

f(q, q̇, wtf)


 . (4.2)

The remaining dynamics of the model remain nearly identical to those of the larger disk and

are briefly reviewed. The only electronic changes stem from the fact that fewer transformers,

analog demodulators, and anti-alias filters are necessary since the measurements associated

with the lateral electrodes have been removed. The states and pick-offs corresponding to the

disconnected electronics are eliminated from (2.55) so that

wtf =




wtf11

...

wtf14


 , vc =




vc1
...

vc4


 , vs =




vs1
...

vs4



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Figure 4.1: Free body diagram of the smaller disk (not to scale). The disk diameter is equal
to the electrode diameter. The fringe field creates in-plane restoring forces with equivalent
spring constants {kx, ky}.

and the state-space matrices are

Mtf(q) = diag (Mtf11 ,Mtf12 ,Mtf13 ,Mtf14) ∈ R76×76

Atf = diag (Atf1 , Atf1 , Atf1 , Atf1) ∈ R76×76

Ctf = diag (Ctf1 , Ctf1 , Ctf1 , Ctf1) ∈ R4×76

Bct =




Bct1

−Bct1

Bct1

−Bct1



∈ R76×1, Bc =




Bv 0 0 0

0 Bv 0 0

0 0 Bv 0

0 0 0 Bv



∈ R76×4.

Similarly, the state vector waa and block diagonal matrices represented by (Aaa, Baa, Caa)

and Cs are truncated from those in (2.57) to only contain the electronics corresponding to
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the primary electrodes. The model order of the truncated anti-alias filtering electronics is

16. The smoothing filter dynamics remain unchanged from (2.56) and the analog subsystem

is collectively governed by

ẇsm = Asmwsm +Bsmu

M(q)ẇtf = BcCcCsmwsm + Atfwtf +Bctict

d

dt


q
q̇


 =


 q̇

f(q, q̇, wtf)




ẇaa = BaaCsCtfwtf + Aaawaa

g = Caawaa,

(4.3)

where g = [g1 g2 g3 g4]
T . Following the procedure outlined in Section 2.2.5, small signal

linearization about the nominal operating point, q̄ = 0, ˙̄q = 0, is used to approximate a

linear time-periodic realization,

δ̇ = Aδ(t)δ +Bδδu

δg = Cδδ,
(4.4)

where δ contains the perturbation states of the linear variational equations and δu and δg

are the perturbed input and electronic pick-off, respectively. Using the fact that the carrier

period is an integer divisor of the DSP sampling period, the solution to an initial value

problem posed by (4.4) can be effectively discretized to yield the time-invariant discrete-

time model

δ((ℓ+ 1)ts) = Φδ(ℓts) + Γδu(ℓts)

δg = Cδδ(ℓts)
(4.5)

for sample index integer ℓ.

The four-input/four-output frequency response of the discrete-time system (4.5) is com-

puted with act = 17.7mA and each element of ū equal to 1.41V. The DC input signal

required to suspend the disk by counteracting the gravitational force is lower than that

required for the larger disk due to the reduced disk mass. The model order is 58: there
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are 24 states associated with the four transformers used for transduction (transformers sup-

plying the center tap currents are not modeled), 10 states associated with the disk, and

24 states associated with the smoothing and anti-alias filters. The model (4.5) contains the

actuator-to-pick-off feedthrough that must be removed for controller design and the feed-

forward filter, denoted F in Figure 2.10, is implemented to “cancel” this feedthrough. The

signal used for feedback is denoted ζ = [ζ1 ζ2 ζ3 ζ4]
T . The response of ζ to u1 is shown

in Figure 4.2. The remaining input/output channels can be determined from the system’s

symmetry, i.e., the plant frequency response is symmetric and all diagonal channels are iden-

tical. In the model, the feedthrough is only present in the diagonal entries and is determined

by constraining the states associated with the disk degrees of freedom in (4.5) to be zero.

The graphs assume complete feedthrough cancellation, although in practice this is not the

case (see Section 4.3). The feedthrough is also shown in Figure 4.2 and indicates that the

magnitude of the feedthrough exceeds the motional gain of the plant. The lateral modes are

barely evident in a neighborhood of 2Hz. These modes are stable and weakly coupled to the

pick-offs since the capacitive transducers are insensitive to small perturbations to the disk’s

lateral position. Removing the in-plane degrees of freedom yields a nearly identical model:

the disappearance of the 2Hz lateral modes is the only difference.

Figure 4.2: Analytical frequency responses of the four compensated plant outputs to input
channel u1. The uncompensated signal g1 and the feedthrough are shown by the dashed
traces.
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Figure 4.3: Left: Discrete-time poles of the analytical plant model. Right: Zoomed-in view
of the three instabilities present in the model.

Despite the high model order, the plant frequency response has a simple low-pass charac-

teristic. There are, however, three unstable eigenvalues given in discrete-time as λ1 = 1.0017,

λ2 = λ3 = 1.0047 (corresponding to 8.38 and 23.6 rad/s, respectively, in continuous-time).

The plant poles are plotted in Figure 4.3. The geometric multiplicity of λ2 and λ3 is two.

Both the input and output directions associated with {λ1, λ2, λ3}, respectively, are given by

v1 =
[
1
2

1
2

1
2

1
2

]T

v2 =
[
0 1√

2
0 − 1√

2

]T

v3 =
[
− 1√

2
0 1√

2
0
]T
.

(4.6)

Due to the geometric multiplicity of λ2 and λ3, though, any two linearly independent vectors

in the space spanned by v2 and v3 are also input and output directions. The output direc-

tions are informative for understanding the instabilities in terms of the measurements: λ1

corresponds to a translational instability in which the disk is moving in the N3-direction with

no rotation (see Figure 4.1) –this is confirmed by analysis of the eigenvector associated with

λ1; similarly, λ2 corresponds to the disk rotating about N1 and λ3 corresponds to the disk

rotating about N2. Accordingly, λ1 is designated the “vertical instability” whereas λ2 and

λ3 are the “tilt instabilities.” The input directions also indicate how the four electrostatic

actuators couple to each unstable mode: v1 corresponds to applying a vertical force to the

disk with no moments, whereas v2 and v3 correspond to pure moments with no net vertical
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Figure 4.4: Singular values of the analytical plant. Only three traces appear since σ1 = σ2.

force.

The plant singular values in Figure 4.4 reveal a “low gain” with both input and output

singular vectors independent of frequency and equal to

v4 =
[
1
2

−1
2

1
2

−1
2

]T
. (4.7)

This is not surprising because the disk’s pose is specified by its vertical position, pitch, and

roll. Thus, a vertical force and two moments in the disk plane are necessary to hold a given

pose. Four independent electrostatic forces applied by the electrodes exceed this minimal

requirement (recall that the choice of four electrode pairs was motivated by a hardware-based

solution to maintain the disk at ground potential). The low gain input singular vector gives

the combination of electrostatic forces that yield essentially zero net vertical force and zero

net moments. The output singular vector yields capacitive gap measurement voltages that

cannot be produced by a rigid body pose of the disk.

The orthogonal transformation [v1 v2 v3 v4]
T can be applied to the four capacitive gap

measurement potentials to produce four new potentials proportional to the states {δz, δθ, δφ}.
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The last element in the new potentials is essentially zero and insensitive to changes in the disk

pose. Proportionality constants, or scale factors, are determined by applying independent

perturbations to δz, δθ, and δφ and noting the corresponding change in the new potentials.

The estimated scale factors are 14.1µm/V and 0.887mrad/V to convert the new potentials

into vertical and rotational positions with units of µm and mrad, respectively.

4.2 Robust Stabilization of the Linearization

Deviations between the model and physical system can be attributed to many sources: mis-

alignment of paired electrodes, non-parallel plates, differences in transformer parameters,

inexact cancellation of the actuator-to-pick-off feedthrough, damping errors, and so forth.

These will not only change the transduction gains but also shift the unstable eigenvalues. In

view of this, a conservative control design approach is adopted in which robust stabilization

is the initial objective. Once the disk is stabilized, identification of the plant dynamics from

closed-loop measurements will yield an accurate empirical model of the plant and provide

an opportunity for a second control design iteration.

A controller, denotedKs in Figure 4.5, is synthesized to maximize the closed-loop stability

margin with respect to perturbations of a normalized left coprime factorization of the shaped

plant, Ps =M−1N –see [Vid85, Fra87, ZDG96, SP05]. The shaped plant is a filtered version

N

∆N

+
+

+−

M−1

∆M

−Ks

u ζ

b

Figure 4.5: Controller, Ks, in feedback with a left coprime factorization of the shaped plant.
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of the model in (4.5) and is discussed below. The coprime rational functions M and N

are both stable, implying that N contains all right half-plane zeros of Ps and the unstable

poles of Ps appear as zeros of M . Coprimeness indicates that there are no common right

half-plane zeros in M and N that would result in unstable pole-zero cancellations of M−1N .

Mathematically, this implies that there exist stable matrices U and V such that M and N

satisfy the Bezout identity

NU +MV = I. (4.8)

Coprime factorizations are not unique, however, a normalized left coprime factorization is

co-inner, i.e., it satisfies the frequency response identity

N(ȷω)N∗(ȷω) +M(ȷω)M∗(ȷω) = I, (4.9)

and is unique to within a left multiplication by a unitary matrix. A minimal state-space

realization for a normalized left coprime factorization of the shaped plant is given by

[
N M

]
=


 A+HC B +HD H

R−1/2C R−1/2D R−1/2


 , (4.10)

where (A,B,C,D) is the state-space realization of the shaped plant, R = I +DDT ,

H = −
(
BDT + ZCT

)
R−1,

Z is the unique positive definite solution to the algebraic Riccati equation

(
A−BS−1DTC

)
Z + Z

(
A−BS−1DTC

)T − ZCTR−1CZ +BS−1BT = 0, (4.11)

and S = I + DTD. The reader is referred to [Vid88] for the realization for a normalized

right coprime factorization.

The perturbed plant is given by (M + ∆M)−1(N + ∆N) for the complex perturba-

tions {∆M , ∆N} –see Figure 4.5. This highly generalized unstructured uncertainty de-

scription characterizes low frequency parameter errors, neglected high frequency dynamics,

and uncertain (quantities of) right half-plane poles and zeros and is especially useful when
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a priori information regarding sources of uncertainty in a system is unknown. The con-

troller that internally stabilizes the closed-loop system over the largest set of perturbations

(∥[∆N ∆M ]∥∞ < 1/γ) is found by solving

γ = inf
Ks

∣∣∣∣∣∣

∣∣∣∣∣∣


Ks

I


 (I + PsKs)

−1M−1

∣∣∣∣∣∣

∣∣∣∣∣∣
∞

(4.12)

over the set of stabilizing controllers. The solution to this problem was solved in [GM89]

and is quickly reviewed (see [MG90, ZDG96, SP05, ZDG96] also). The maximum achievable

stability margin of the closed-loop system shown in Figure 4.5 is given by

γmin =
√
1 + ρ(XZ) (4.13)

where ρ(·) is the spectral radius of the matrix argument and X is the unique positive definite

solution to the algebraic Riccati equation

(
A−BS−1DTC

)T
X +X

(
A−BS−1DTC

)
−XBS−1BTX + CTR−1C = 0. (4.14)

The controller that guarantees (4.12) for the suboptimal problem, γ > γmin, is given as

Ks =


 A+BF + γ2L−TZCT (C +DF ) −γ2L−TZCT

BTC DT


 , (4.15)

where

F = −S−1
(
DTC +BTX

)

L =
(
1− γ2

)
I +XZ.

While the control synthesis technique outlined above optimizes robust stability, per-

formance requirements of the system cannot be specified. Improved performance can be

achieved, however, by pre- and post-compensating the plant to shape the open-loop singular

values prior to implementing the controller algorithm. The shaped plant, Ps, that is used

for control design is given by

Ps = W2PW1, (4.16)
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where W1 and W2 are the pre- and post-compensation weights shown in Figure 4.6. For the

disk suspension problem, the shaping is simply a scaling of the open-loop plant, Ps = 4P ,

i.e., W1 = 4 and W2 = I, so that the three largest singular values of the frequency response

cross over between 1 and 10Hz –see Figure 4.8. For the shaped plant, γmin ≈ 1.9.

Using the algorithm proposed in [MG90] requires a continuous-time representation of

the plant, so the bilinear transform is used to map the discrete-time model in (4.5) to the

continuous-time domain. The synthesized controller is stable for the suboptimal problem

γ = 1.1 × γmin, however, the controller is of equal dimension to the system model, which

contains 106 states (feedthrough cancellation contributes an additional 48 states to the plant

model). Implementing such a controller is not feasible with the DSP, so a model reduction

by balanced truncation is performed. Inspection of the controller’s Hankel singular values

suggests that the controller dimension can be reasonably approximated by a 3-state system,

denoted Kr. The error in the reduced-order controller is subject to the bound

∥Ks −Kr∥∞ ≤ 2(σr+1 + σr+2 + ...+ σN), (4.17)

where {σr+1, ..., σN} represent the truncated Hankel singular values, though this bound can

be loose when the Hankel singular values are close to one another [Enn84, Glo84]. The

maximum singular values of Ks, Kr, and Ks − Kr are plotted in Figure 4.7. The graph

indicates that Kr approximates Ks with little frequency response error. Furthermore, the

− Ks W1
+

+

d

u
G

F

−
+

P

g
ζ

W2

Figure 4.6: Feedback diagram with the plant pre- and post-shaping weights, W1 and W2,
respectively. The controller, Ks, is synthesized from a normalized coprime factorization of
the shaped plant. The reduced-order approximation of Ks is implemented in practice and
the plant shaping weights are lumped into the controller realization.
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Figure 4.7: Maximum singular values of the 106-state robustly stabilizing controller, reduced
3-state controller generated from a balanced truncation, and difference between the two
controller realizations.

plot reveals that the upper bound of 0.81 provided by (4.17) is quite conservative. With

the reduced-order controller, the closed-loop system is robustly stable to coprime factor

perturbations of norm 0.46.

The plant shaping weight is absorbed into the filter implemented, K0, according to

K0 = W1KrW2. (4.18)

For the disk suspension shaping weights, this corresponds to K0 = 4Kr. The H∞ norm of

both the sensitivity and complementary sensitivity functions withK0 are shown in Figure 4.8

to be approximately 1.2 and 1.5, respectively. Thus, the closed-loop system is robust to

large unstructured multiplicative uncertainty at the plant output. Furthermore, the low

gain input-output direction of the system is essentially open-loop, so the norm of So is close

to 1 at low frequencies. Analysis of the input sensitivity and input complementary sensitivity

functions yields very similar results.
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Figure 4.8: Left: Singular values, σj, j = 1, 2, 3, 4, of the shaped plant, Ps, and output loop
gain, PsKr, using the reduced-order controller. Only three traces appear for each function
because σ1 = σ2. Right: Maximum singular values of the predicted output sensitivity
function, So, and output complementary sensitivity function, To.

4.3 Identification of the Stabilized Plant

4.3.1 Plant empirical frequency response

Prior to closing the loop, the actuator-to-pick-off feedthrough must be estimated. This is

accomplished by supplying the transformer center taps with their nominal currents and then

applying broadband test signals at the inputs, uj. The amplitude of test inputs is too small

to move the disk, which is at rest on the photoresist coating the bottom electrodes, thus, the

measurements are due solely to the feedthrough. Unlike the analytical model in which the

feedthrough is present only in the diagonal elements of the four-input/four-output system,

all sixteen elements of the feedthrough matrix must be quantified in the physical system to

determine the feedforward filter, F . The empirical frequency response of the feedthrough

is shown in Figure 4.9. The largest off-diagonal elements, with DC magnitudes of about

0.06V/V, correspond to the subdiagonal and superdiagonal channels that share a common

supply transformer, i.e., {F12, F21} and {F34, F43}. Each channel is fit with a 15-tap FIR

filter to create the feedforward filter, F , that is implemented by the DSP in parallel with

the subsystem, G, as shown in Figure 4.6.
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Figure 4.9: Measurements of actuator-to-pick-off feedthrough with the disk resting at its
bottom position. The diagonal channels dominate, however, an FIR model is fit to all
elements and implemented as the four-input/four-output feedforward filter, F .

With the feedforward filter in place, the 3-state controller,K0, is discretized using Tustin’s

method and closing the loop successfully suspends the disk. Broadband test inputs are in-

jected at d in Figure 4.6 to generate empirical frequency responses of the closed-loop transfer

matrices PSi and Si, where Si is the input sensitivity function. The plant identification pro-

cess is time consuming due to the relatively low frequency dynamics, however, there are

no constraints on the duration of the system identification tests so low variance closed-loop

frequency responses are obtained by time-averaging the periodograms computed from non-

overlapping segments of Tukey-windowed data. Since the condition number of Si does not

exceed 3.5, the empirical frequency response of the open-loop plant, denoted Pemp, is reli-

ably computed by evaluating (PSi)(Si)
−1 on a frequency-by-frequency basis. The results are

shown in Figure 4.10 from the perspective of input u1. The responses of the individual chan-

nels display good agreement with the first principles analytical model, which is represented

by the dashed traces in the figure. The frequency responses of the remaining channels are

provided in Figure 4.13, though the dashed lines in these plots represent the parametric fit
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Figure 4.10: Comparison of the measured (solid) and analytical (dashed) frequency responses
for input u1. Empirical frequency responses for the remaining input/output channels are
pictured in Figure 4.13.

of the following subsection. The DC gains are larger, and the unstable tilt eigenvalues are

“faster” in the physical system compared to those of the analytical model. This is most likely

due to errors in the estimate of the actual center tap currents applied to the transformers

–larger than modeled currents will produce both of these observed effects. The unstable

vertical eigenvalue, however, is slower in the physical system than in the analytical model.

The instabilities are dependent on the system damping, thus, error in the estimated verti-

cal damping coefficient is likely the culprit. Nevertheless, the controller synthesized for the

analytical model is robust enough to suspend the physical disk. The largest discrepancy

between the system and its analytical model is due to inexact cancellation of actuator-to-

pick-off feedthrough. Although the degree of cancellation varies by channel, a 20× reduction

in feedthrough can be routinely achieved. Residual feedthrough, though, causes the plant

singular values to level off above 50Hz. This has the deleterious effect of creating right half-

plane zeros in the elements with larger residual feedthrough. This is clear from the empirical

frequency response in Figure 4.10, where the high frequency phase exhibits more lag than

the analytical model. This behavior can also be confirmed using only partial feedthrough

cancellation in the analytical model. Although difficult to see in Figure 4.10, the lateral

modes are damped oscillators with a frequency of about 2.6Hz.
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4.3.2 Parametric plant model

A parametric model can be derived from the empirical frequency response using the eigensys-

tem realization algorithm [HK66]. Since FFT-based techniques were used to obtain Pemp, the

system’s impulse response, h, is estimated by applying the inverse discrete Fourier transform

to Pemp. The signals produced from the inverse FFT are shown in Figure 4.11, where it is

clear that the plant instabilities manifest in the noncausal response for sample indices ℓ ≤ 0,

where t = ℓts. It is necessary to have sufficient frequency resolution so that the time-domain

transients are fully captured. In the present work, the resolution of the empirical frequency

response is 0.04Hz, which corresponds to estimating h over a 25 second interval centered

about t = 0 –this duration is much longer than required to capture the transients in h. The

samples for ℓ > 0 and for ℓ ≤ 0 can be used in two separate identification problems based on

the Ho-Kalman method as discussed in [AB17]. This segregates the system into two isolated

subsystems: one purely stable and the other purely unstable. Let discrete-time realizations

for the stable and unstable components be





xs(ℓts) = Asxs(ℓts) +Bsu(ℓts)

ys(ℓts) = Csxs(ℓts)
(4.19)





xu(ℓts) = Auxu(ℓts) +Buu(ℓts)

yu(ℓts) = Cuxu(ℓts),
(4.20)

respectively. The state-space feedthrough, or “D”, matrices can be assumed to be zero

because of the anti-alias and smoothing filters and the zero-order hold implemented in the

DACs. The impulse response of the stable system given in terms of its Markov parameters

is

hs(ℓts) =





0 ℓ = . . . ,−2,−1, 0

CsA
k−1
s Bs ℓ = 1, 2, 3, . . .

(4.21)

and the eigensystem realization algorithm establishes a 19-state model from the causal seg-

ment of the impulse response data. Identifying the Markov parameters for the ℓ ≤ 0 com-

ponent of the impulse response is achieved by manipulating the frequency response function
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Figure 4.11: Pulse response of ζ from u, estimated by applying the inverse discrete Fourier
transform to the empirical frequency response. The markers indicate the individual samples.
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of (4.20):

Hu(ω) = Cu

(
eȷωtsI − Au

)−1
Bu

= Cu

(
eȷωts

(
A−1

u − e−ȷωtsI
)
Au

)−1
Bu

= −CuA
−1
u

(
e−ȷωtsI − A−1

u

)−1
Bue

−ȷωts . (4.22)

Defining Ãu = A−1
u , B̃u = Bu, and C̃u = −CuA

−1
u , the frequency response in (4.22) can be

expressed as

Hu(ω) = C̃u

(
e−ȷωtsI − Ãu

)−1

B̃ue
−ȷωts . (4.23)

The time-domain samples can be recovered using the inverse discrete-time Fourier transform,

hu(ℓts) =
1

2π

∫ ωN

−ωN

Hu(ω)e
ȷωℓtsdω

=
1

2π

∫ ωN

−ωN

C̃u

(
e−ȷωtsI − Ãu

)−1

B̃ue
ȷω(ℓ−1)tsdω, (4.24)

where ωN is the Nyquist frequency. Applying the change of variable ν = −ω and defining a

new sample index, ℓ̃ = −(ℓ− 1), the recovered pulse response samples are given by

hu((−ℓ̃+ 1)ts) =
1

2π

∫ ωN

−ωN

C̃u

(
eȷνtsI − Ãu

)−1

B̃ue
ȷνℓ̃tsdν. (4.25)

The C̃u

(
eȷνtsI − Ãu

)−1

B̃u portion of the integrand resembles the frequency response of an

asymptotically stable, causal system, so

1

2π

∫ ωN

−ωN

C̃u

(
eȷνtsI − Ãu

)−1

B̃ue
ȷνℓ̃tsdν =





0 ℓ̃ ≤ 0

C̃uÃ
ℓ̃−1
u B̃u ℓ̃ > 0.

(4.26)

Converting back to the original sample index and state-space realization, (Au, Bu, Cu), the

impulse response of the unstable system is given by

hu(ℓts) =





−CuA
ℓ−1
u Bu ℓ ≤ 0

0 ℓ > 0.
(4.27)

Two Hankel matrices of the backward-time transient –starting from ℓ = 0 and ℓ = −1,

respectively, and propagating backward in time –are used to identify the (Ãu, B̃u, C̃u) real-

ization in balanced coordinates following the Ho-Kalman method, from which {Au, Bu, Cu}
can be recovered.
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Figure 4.12: Fifty largest singular values of the Hankel matrices composed of the causal (left)
and noncausal (right) segments of the impulse response. Three singular values dominate
the noncausal segment of the response, implying that the system is characterized by three
instabilities.

The singular values of the Hankel matrices developed for the stable and unstable com-

ponents of h are graphed in Figure 4.12. The singular values suggest that the noncausal

segment of h can be modeled by a 3-state system, thus confirming the number of instabili-

ties predicted by the analytical model. Meanwhile, the singular values of the Hankel matrix

constructed by the causal segment of h do not provide much information as to the state

dimension of a low-order model that matches the impulse response data well. An iterative

process to reasonably fit the causal data with the minimum number of states identifies a sta-

ble model of order 19. The parametric discrete-time realization of Pemp is the aggregate of

the model fits to the stable and unstable components, yielding a 22-state model characterized

by the state-space realization

A =


As 0

0 Au


 , B =


Bs

Bu


 , C =

[
Cs Cu

]
. (4.28)

The frequency response of the identified (parametric) plant model shows excellent agreement

with the empirical frequency response –the dotted traces in Figure 4.13 are the identified

model frequency response and Figure 4.14 compares the singular values of the measured

frequency response data and to those of the identified model.
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Figure 4.13: Empirical (solid) and 22-state parametric fit (dashed) frequency response from
u to ζ.
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Figure 4.14: Left: Singular values of the empirical model, Pemp, and parametric fit, P . Right:
Norm of the error between the empirical model and the parametric model.

4.4 Updated Controller

The norm of the sensitivity and complementary sensitivity functions computed with the

initial controller, K0, and identified plant model from Section 4.3, denoted P , are shown

later in Figure 4.16. The stability margins are adequate (∥So∥∞ ≈ 2.0 and ∥To∥∞ ≈ 1.6),

however, the lack of integrators in the loop means low frequency disturbance rejection and

command tracking will suffer. A second controller design, which includes integral action, is

based on the identified plant. Weighting each of the four control efforts with integrators,

however, destabilizes the closed-loop system. This is unsurprising considering the disk’s

{z, θ, φ} configuration is defined by three points, so an inconsistent specification can be

produced by defining four gaps. Since it is desired to regulate the disk’s vertical position

and two angles, the four measurements are consolidated into three new signals proportional

to these variables. This is accomplished by determining the directions associated with the

unstable eigenvalues. Following the notation used in Section 2.2.6, the normalized output

directions are

v1o =
[
0.5308 0.5024 0.4770 0.4882

]T

v2o =
[
0.0053 0.7107 0.0175 −0.7033

]T

v3o =
[
−0.7293 −0.0476 0.6801 0.0577

]T
,

(4.29)
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corresponding to eigenvalues λ1 = 1.0014, λ2 = 1.0050, and λ3 = 1.0052. These represent the

vertical and two tilt instabilities, respectively. The output directions are nearly orthonormal

so Do ∈ R4×3 is defined as

Do = arg min
D

DTD=I

∥∥∥D −
[
v1o v2o v3o

]∥∥∥
F
, (4.30)

where the Frobenius norm is used. The solution to the optimization problem in (4.30) is

based on the left and right singular vectors of [v1o v2o v3o ] and yields a matrix whose columns

are orthonormal and are closest to the output directions of the unstable eigenvalues [Hig89].

Similarly, the unstable input directions are

v1i =
[
0.5338 0.4806 0.4681 0.5148

]T

v2i =
[
−0.0570 0.6898 0.0521 −0.7199

]T

v3i =
[
−0.7406 −0.0041 0.6720 0.0018

]T
,

(4.31)

and a matrix, denoted Di ∈ R4×3, whose rows are orthonormal and is the closest approxi-

mation to the matrix of input directions is computed from the optimization problem

Di = arg min
D

DTD=I

∥∥∥D −
[
v1i v2i v3i

]∥∥∥
F
. (4.32)

Pre- and post-multiplying the identified plant produces the three-input/three-output diag-

onally dominant system, denoted P̃ = DT
o PDi, in Figure 4.15. The three scalar output

signals of P̃ are voltages approximately proportional to the {z, θ, φ} kinematic variables of

the disk with the proportionality constants approximated as the scale factors reported at

the end of Section 4.1. Meanwhile, each of the three input signals to P̃ controls a single

degree of freedom of the disk. The inputs and outputs of P̃ are denoted ũ = [uz uθ uφ]
T and

ζ̃ = [ζz ζθ ζφ]
T , respectively. The nonzero DC gain in the diagonal channels corresponding

to the tilt degrees of freedom is indicative of this system’s ability to specify out-of-plane ro-

tational motion of the disk. This is in contrast to the larger disk discussed in the preceding

chapters and investigated in [AM21], which was incapable of maintaining nonzero angular

rotations.
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Figure 4.15: Frequency response of the three-input/three-output transformed plant, P̃ .

A new controller is designed to achieve precise control over the disk’s vertical displacement

and angles. The synthesis procedure is based on a coprime factorization of the identified

plant, with the input and output transformations noted above. Accordingly, asymptotic

regulation to desired values of {z, θ, φ} is achieved with proportional-integral pre-weighting

of P̃ to produce the shaped plant

P̃s =
(
4 + 30

s

)
P̃. (4.33)

A continuous-time representation of the weight is shown for readability. The singular values

of P̃ and P̃s are shown in Figure 4.16. For the shaped plant, γmin = 2.6. A filter is synthesized
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Figure 4.16: Left: Singular values of P̃ , the shaped plant, P̃s, and the output loop gain,
Lo. Right: Maximum singular values of the output sensitivity and output complementary
sensitivity functions computed with the identified plant model and two differing controllers:
the updated controller, K, (solid traces) and initial controller, K0, (dashed traces).

according to (4.15) using a normalized left coprime factorization of P̃s and γ = 1.1 × γmin.

After absorbing the plant weight into the filter, the controller can be reduced to a 9-state

system, denoted K, with no loss in fidelity. The controller is implemented according to the

block diagram in Figure 4.17 and produces a stable closed-loop system.

The output voltages of P̃ are converted into estimates of {z, θ, φ} using the scale factors

from the analytical model (see Section 4.1). Step references are applied at r in Figure 4.17

and the responses are shown in Figure 4.18 with reference step heights of 2.8µm for z

and 0.18mrad (0.01 degree) for {θ, φ}. Note that these step sizes correspond to 0.2V. The

step references are applied in separate experiments to each channel of r: the first channel

r −+ K
ũ

Di P DT
o

P̃

+
+

n

ζ̃

Figure 4.17: Closed-loop block diagram with the input and output transformation matrices
that convert the plant into a diagonally dominant three-input/three-output system with
output voltages proportional to the disk’s kinematic variables {z, θ, φ}. Measurement noise
is represented by n.
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Figure 4.18: Step responses of {z, θ, φ} with references shown by the dotted lines. Top:
rz ̸= 0, rθ = 0, rφ = 0; middle: rz = 0, rθ ̸= 0, rφ = 0; bottom: rz = 0, rθ = 0, rφ ̸= 0.

corresponds to the vertical displacement and is denoted rz; likewise, rθ and rφ represent the

references for the angle measurements. The closed-loop time constants are consistent with

the singular value crossover frequencies associated with P̃s.

The noise spectral density, Snn, reflected to the output of P̃ is of interest since this will

determine the ultimate measurement resolution of the disk’s position and angles. With r = 0,

the auto-spectral densities, Sũũ and Sζ̃ζ̃ , and cross-spectral density, Sζ̃ũ, of the closed-loop
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Figure 4.19: Power spectral density of signal noise at the plant output with the disk sus-
pended at its nominal position.

signals in Figure 4.17 are estimated and Snn is recovered from


Sζ̃ζ̃ Sζ̃ũ

S∗
ζ̃ũ

Sũũ


 =


 So

−KSo


Snn

[
S∗
o −(KSo)

∗
]
. (4.34)

The diagonal elements of Snn, which describe the noise spectra of {z, θ, φ}, are shown in

Figure 4.19 (double-sided spectral densities are shown for positive frequencies). Shorter

data records are used in the spectral estimation so the frequency resolution is coarser than

the empirical frequency responses. The noise identification experiments exhibit a greater

number of periodogram averaging, however, so the time durations of the experiments are

similar, representing the trade-off between variance and frequency resolution.

The noise spectra reveal that the disk position and angles are measured with high pre-

cision: the full bandwidth (DC-2.5 kHz) resolution of the vertical disk position is approxi-

mately 6.3 nm; similarly, the angle measurement resolution is approximately 0.41µrad, or

about 23µdeg. This sensitivity to motion is due to the large capacitances formed between

the disk and electrodes. If narrowband measurements are desired, these noise figures are
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reduced even further, i.e., the measurement uncertainty in z is 2.1 nm from DC-100Hz. The

RMS errors estimated from the noise spectra are corroborated by measuring the RMS errors

of the settled step response signals in Figure 4.18.
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Part II

Segregated Control and Sense

Electrodes
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CHAPTER 5

Levitation Platform II

A new electrode configuration is designed to mitigate feedthrough by establishing sepa-

rate control and sense electrodes. The new electrode arrangement, shown from above in

Figure 5.1, mimics the design of the previous electrodes, however, each of the primary elec-

trodes from Part I has been sliced into two sectors of roughly equal area by an arc of constant

radius. This creates an additional “ring” of electrodes on each glass plate and the top and

bottom electrodes are denoted Etij and Ebij , respectively, for i = 1, 2, 3, j = 1, 2, 3, 4. The

new top and bottom sets of electrodes are mirror images of one another. The inner ring

of electrodes, corresponding to i = 1, are coined the “control electrodes” and will be used

strictly for regulating the disk’s vertical position, pitch, and roll. The middle annulus of elec-

trodes, that is, i = 2, are deemed the “primary sense electrodes” and are used to measure

vertical translations and two in-plane angular rotations of the disk. Finally, the outermost,

or “lateral”, electrodes, i.e., i = 3, measure in-plane translations of the disk. The updated

electrodes provide no means of measuring rotations about the vertical axis nor can yaw

moments be applied.

The electrodes are patterned on soda-lime glass plates and a 14.4µm layer of photoresist

is baked over the electrodes to guarantee a nonzero gap between the disk and electrodes

and avoid electrical breakdown. Precision shims specify the net air gap between the disk

and the two electrode sets so that the nominal air gaps of 114µm remain unchanged. The

inner radius of the control electrodes and outer radius of the primary sense electrodes are

1.5mm and 37mm, respectively, matching the inner and outer radii of the primary electrodes

in Part I, and the lateral electrode geometry here is identical to before. When the disk is

horizontally suspended with its center of mass located at the origin of the inertial frame, the
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electrode

control
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lateral sense
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Figure 5.1: Top view of the updated electrode configuration. The bottom set of electrodes
is a duplicate of the top set.

capacitances between the disk and each of the control electrodes are 37.9 pF. The electrode-

disk capacitances of the primary sense electrodes and lateral electrodes are approximately

36.3 and 12.4 pF, respectively, with the disk in this position. For additional details on the

electrode geometry, refer to Appendix A.

The primary leads of center-tapped transformers are used to couple the electrodes in the

manner described in Chapter 2, though each of the transformer circuits now serves a sole

purpose: either actuation or measurement. The control and primary sense electrodes are

configured in pairs of facing electrodes so that {Etij , Ebij}, i = 1, 2, form a pair and the lateral

electrodes are grouped antipodally where the top and bottom electrodes are shorted (see

Figures 2.3 and 2.4). A total of fifteen transformers are required for the new electrodes –ten

to pair the electrodes and five to supply the center tap currents. All transformers are designed

to be matched. No measurements are taken from the control electrodes, i.e., the load across

the transformer secondary is not picked-off. The “sense voltage” signals, vsij , are conditioned
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and measured only for the primary sense and lateral electrodes. The electrode redesign calls

for separate circuits for the control and pick-off signals in order to eliminate feedthrough,

thus additional signal conditioning electronics are required even though the number of control

inputs (four) and measurements (six) remains unchanged. The prior electronics are assigned

to the control and lateral electrodes, and new boards are printed for the primary sense

electrodes that match the signal transduction gains reported in Section 2.2.4. Photographs of

the assembled electronics are provided in Figure 5.2, however, at the time of the photographs,

the updated electrodes had not been fully fabricated, so the previous electrode plates are

shown in place.

In an effort to mitigate residual coupling between the control inputs and measurements

through sources such as common power supplies, the disk, etc., the control and sensing

electrodes operate at separate carrier frequencies. The control carrier frequency, ωc, and sense

carrier frequency, ωs, are 25 kHz and 30 kHz, respectively. The measurement demodulation

phases, ψsk , must be adjusted accordingly.

The reduced area of the control electrodes compared to the primary electrodes from Part I

diminishes the control authority of the system. The area has effectively been cut in half so

the voltages required to lift the disk using only the control electrodes must increase by a

factor of
√
2. In order to avoid electrical arcing, however, the primary sense electrodes are

used to provide additional lift so that similar electrode voltages to Part I are maintained

for the disk at its nominal setpoint. This is accomplished using a constant amplitude,

30 kHz signal, vb, added in series to the transformer secondary load to bias the primary

sense electrodes. The bias signal, vb, is supplied to all four primary sense electrode pairs

and the signal phase is selected to maximize the voltage differential on the top and bottom

electrodes. This provides a new avenue for actuator-to-pick-off feedthrough, however, the

bias signal amplitude is generated by the DSP and analog modulated to 30 kHz so that

the analog demodulated sampled signal contains only a DC feedthrough term that is easily

identified and negated by a constant gain feedforward filter in the DSP.

At the time of writing, system testing with the new electrode plates has not commenced,
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so empirical results for the updated system are provided. Nevertheless, the following chapters

develop models and synthesize controllers for the suspension of both the 37mm and 41mm

radius disks.
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waveform
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supply
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transformer
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(previous configuration)

Figure 5.2: Photographs of the assembled electronics for the updated electrode configuration.
Top: overview of all electronics; middle: signal conditioning boards; bottom: transformers.
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CHAPTER 6

Three-Degree-of-Freedom Disk

Modeling and control design for the 37mm radius disk is investigated in this chapter. Since

the disk radius matches the outer radius of the primary sense electrodes, the electrostatic

fringing field passively centers the disk laterally so that only the vertical position, roll,

and pitch must be actively controlled. All electronics used for the lateral electrodes are

disconnected.

6.1 Analytical Model

An analytical model of the disk with the new electrodes is developed following the modeling

procedure outlined in Chapter 2. A free body diagram of the disk is provided in Figure 6.1

and shows the same forces and moments acting on the disk as in Figure 4.1, however,

additional electrostatic forces are present and the magnitudes of the electrostatic forces are

reduced from those of the prior electrode configuration. The lateral degrees of freedom are

included in the model, though they have little impact. The yaw degree of freedom is ignored.

The translational disk dynamics are governed by

mẍ = −cxẋ− kxx+ φ
∑

i,j

Fnij

mÿ = −cyẏ − kyy − θ
∑

i,j

Fnij

mz̈ = −cz ż −mag +
∑

i,j

Fnij

i = 1, 2

j = 1, 2, 3, 4
(6.1)
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and the equations for the observable angular degrees of freedom are

Jtθ̈ = −cθθ̇ + 2 (Jt − Js)φθ̇φ̇+
∑

i,j

(ȳij − y)Fnij

Jtφ̈ = −cφφ̇+ (Js − Jt)φθ̇
2 +

∑

i,j

(x− x̄ij)Fnij ,

i = 1, 2

j = 1, 2, 3, 4
(6.2)

where the coefficients of viscous damping are computed in Appendix C and the virtual

springs that represent the fringing field forces are selected so that the lateral modes have a

2Hz resonance.

The transformer dynamics for each control electrode are modeled from the schematic in

N3

N2

Et12

Eb12

Et14

Eb14

Et22

Eb22

Et24

Eb24

ȳ12ȳ14 ȳ22ȳ24

View down N1-axis

Ft12

Fb12

Ft14

Fb14

Ft22

Fb22

Ft24

Fb24 mag

czż

Fsy

cθθ̇

N3

N1

Et13

Eb13

Et11

Eb11

Et23

Eb23

Et21

Eb21

x̄13x̄11 x̄23x̄21

View down N2-axis

Ft13

Fb13

Ft11

Fb11

Ft23

Fb23

Ft21

Fb21 mag

czż

Fsx

cφϕ̇

Figure 6.1: Free body diagram of the smaller disk with the new electrodes. All forces present
in the previous electrode arrangement remain and additional electrostatic forces due to the
increased number of electrodes are accounted for.
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Figure 2.8 and given by

Mtf1j(q)ẇtf1j = Atf1wtf1j + (−1)j−1Bct1ict1 +Bvvcj , j = 1, 2, 3, 4 (6.3)

where the center tap current, ict1 = act1 cos(ωct), has an amplitude of 12.8mA. The current

amplitude has been reduced from Part I in order to maintain similar voltages on the elec-

trodes when the disk is suspended in its nominal position. Note that no output equation is

included in (6.3) since the “sense voltages” for the control electrodes are not picked-off. The

transformers for the primary sense electrodes are modeled on the same non-idealized trans-

formers as the control electrodes, however, the bias voltage, vb, replaces each of the control

inputs, vcj . The bias voltage is equivalent in amplitude for each transformer, however the

phases differ based on the phase of the center tap current. Thus, the bias voltage corre-

sponding to electrode pair {Et21 , Eb21} is in anti-phase with the bias voltage on electrode pair

{Et22 , Eb22}. The same is true for the j = 2, 4 electrodes. To simplify the model, rather than

consider four bias input signals to the system, only a single bias voltage input is modeled

and the sign of the corresponding “B” matrix alternates on a channel-by-channel basis. The

dynamics for the primary sense electrode transformers are governed by

Mtf2j(q)ẇtf2j = Atf2wtf2j + (−1)j−1Bct2ict2 + (−1)j−1Bv2vb

vs2j = Ctf2wtf2j ,
j = 1, 2, 3, 4 (6.4)

where Mtf2j = Mtf1j , Atf2 = Atf1 , Bct2 = Bct1 , Bv2 = Bv, and Ctf2 = Ctf1 since the control

and primary sense transformers are identical and analogous states are used to describe the

dynamics of each transformer. The center tap current, ict2 = act2 cos(ωst), has an amplitude

of 15.7mA. The dynamics of all eight transformers (the supply transformers that produce

the center tap currents are not modeled) are collectively governed by the seven-input/four-

output system

Mtf(q)ẇtf = Atfwtf +Bctict +Bcvc +Bbvb

vs = Ctfwtf ,
(6.5)
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whose inputs, ict, vc, and vb, and output, vs, are

ict =


ict1
ict2


 , vc =




vc1
...

vc4


 , vb = kc cos(ωst+ ψb)ub, vs =




vs1
...

vs4


 ,

where ub is the DSP-generated signal that sets the bias amplitude and ψb is the bias modu-

lation phase. Each of sense voltages, vsij , has been relabeled so that the “i” in the subscript

“ij” is dropped, i.e., [vs1 vs2 vs3 vs4 ]
T = [vs21 vs22 vs23 vs24 ]

T . The state vector in (6.5) is given

by wtf = [wtf11 . . . wtf14 wtf21 . . . wtf24 ]
T and the aggregate state-space matrices are

Mtf(q) = diag (Mtf11 ,Mtf12 ,Mtf13 ,Mtf14 ,Mtf21 ,Mtf22 ,Mtf23 ,Mtf24) ∈ R152×152

Atf = diag (Atf1 , Atf1 , Atf1 , Atf1 , Atf2 , Atf2 , Atf2 , Atf2) ∈ R152×152

Ctf = diag (Ctf2 , Ctf2 , Ctf2 , Ctf2) ∈ R4×152

Bct =




Bct1 0

−Bct1 0

Bct1 0

−Bct1 0

0 Bct2

0 −Bct2

0 Bct2

0 −Bct2




∈ R152×2, Bc =




Bv 0 0 0

0 Bv 0 0

0 0 Bv 0

0 0 0 Bv

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




∈ R152×4,

Bb =
[
0 0 0 0 Bv2 −Bv2 Bv2 −Bv2

]T
∈ R152×1.

The remaining analog filtering dynamics are not reviewed as the only updates are the result

of the change in the sense carrier frequency and demodulation phases.

The linearization and discretization framework described in Section 2.2.5 is applied and

a four-input/four-output linear time-invariant discrete-time model, G, is generated. The

control input required for suspension about the disk’s nominal setpoint, ū, is equal to 1.26V

in each element and the DC bias signal generated by the DSP, ub, is also 1.26V. The model
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Figure 6.2: Frequency response of the analytical model from the perspective of u1. The
model developed in Section 4.1 for the previous electrode configuration is shown by the
dashed traces for comparison.

consists of 82 states: 8 for the smoothing filters, 48 associated with the transformers, 10 for

the disk dynamics, and 16 associated with the anti-alias filters. This model contains the DC

feedthrough that must be removed prior to controller design. A constant gain feedforward

filter, F , that operates in parallel to G is identified to cancel the feedthrough. This filter is

considered internal to the plant, P , so that P = G−F . The feedthrough-compensated signal

is denoted ζ = [ζ1 ζ2 ζ3 ζ4]
T and a frequency response of u1 to ζ is plotted in Figure 6.2.

The remaining input/output channels are easily identified from the system’s symmetry. For

comparison, the frequency response of u1 to ζ using the previous electrode arrangement is

shown by the dashed lines in the figure. Similar trends are observed, however, the gain is

approximately 4× lower with the updated electrodes. This is expected since the sensing and

actuation electrode areas have both decreased by a factor of nearly two, reducing both the

control authority and measurement amplitude. Furthermore, the unstable eigenvalues of the

plant, λ1 = 1.0021 and λ2 = λ3 = 1.066 (corresponding to 10.7 and 33.0 rad/s continuous

time), have shifted up in frequency.
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6.2 Robustly Stabilizing Controller

A controller is synthesized to maximize the closed-loop stability margin to coprime factor

perturbations of the shaped plant, Ps. Details of the controller synthesis technique are

described in Section 4.2. The shaping filter is a scaling of the open loop plant, Ps = 15P ,

so that the three nonzero singular values of the shaped plant, shown in Figure 6.3, cross

over between 3 and 10Hz. Only two traces are shown in the figure since σ2(Ps) = σ3(Ps)

below 1.2Hz and σ1(Ps) = σ2(Ps) above 1.2Hz. With the selected weight, γmin ≈ 1.9 and

a controller is synthesized for the suboptimal problem γ = 1.1 × γmin according to (4.15).

The controller order is 82, though a balanced truncation of dimension 3 approximates the

controller with little error. The plant shaping weight is absorbed into the feedback controller

and negative feedback convention is employed. The output loop gain singular values with the

reduced-order controller are included in Figure 6.3, along with the maximum singular values

of the output sensitivity and complementary sensitivity functions. With the reduced-order

controller, the closed-loop system is robust to coprime factor perturbations bounded by 0.45.

Furthermore, the norm of both the input and output complementary sensitivity functions is

1.6, demonstrating that the closed-loop system is robust to large unstructured multiplicative

uncertainty at both the plant input and output.

Figure 6.3: Left: Singular values of the plant, P , shaped plant, Ps, and output loop gain,
Lo. Right: Maximum singular values of the predicted output sensitivity and output comple-
mentary sensitivity functions.
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CHAPTER 7

Five-Degree-of-Freedom Disk

This chapter presents an analytical model for the 41mm radius disk using the new electrode

configuration and develops two unique stabilizing controllers. The electrode-disk geometry

for this configuration results in weak fringe field forces, thus lateral motion of the disk must

be regulated. The lateral electrodes (i = 3 electrodes in Figure 5.1) are reconnected to

provide measurements of in-plane motion of the disk.

7.1 Analytical Model

Developing a model for the larger disk with the updated electrodes follows the framework

used for the three previous electrode-disk configurations so the details of the disk and trans-

former dynamics are only quickly reviewed. A free body diagram of the disk is pictured

in Figure 7.1. The same forces and moments are present as previous configurations: the

omittance of the fringe field spring force is consistent with the weak electrical fringing effect

on the larger disk. The yaw degree of freedom is neglected from the model and the disk’s

translational degrees of freedom are governed by

mẍ = −cxẋ+ φ
∑

i,j

Fnij

mÿ = −cyẏ − θ
∑

i,j

Fnij

mz̈ = −cz ż −mag +
∑

i,j

Fnij .

i = 1, 2, 3

j = 1, 2, 3, 4
(7.1)
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Figure 7.1: Free body diagram of the larger disk with the updated electrodes. Electrical
fringe field forces are negligible for small deviations of the disk from its nominal position,
thus, equivalent spring forces representative of fringing are omitted.

Meanwhile, the equations of motion for the pitch and roll degrees of freedom are

Jtθ̈ = −cθθ̇ + 2 (Jt − Js)φθ̇φ̇+
∑

i,j

(ȳij − y)Fnij

Jtφ̈ = −cφφ̇+ (Js − Jt)φθ̇
2 +

∑

i,j

(x− x̄ij)Fnij .

i = 1, 2, 3

j = 1, 2, 3, 4
(7.2)

The transformer dynamics for the control and primary sense electrodes are identical to

those in Chapter 6. The lateral electrodes, however, were absent there, and the transformers

for these electrodes are modeled on the non-idealized transformer of Figure 2.9. All currents

and voltages present, except for the center tap current input, are collected in the 18-state
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vector wtf3j and the lateral electrode transformers are governed by

Mtf3j(q)ẇtf3j = Atf3wtf3j + (−1)j−1Bct3ict3

vs3j = Ctf3wtf3j .
j = 1, 2 (7.3)

The center tap current, ict3 = act3 cos(ωst), has an amplitude of 2.5mA. The dynamics of all

ten electrode transformers are collectively governed by the eight-input/six-output system

Mtf(q)ẇtf = Atfwtf +Bctict +Bcvc +Bbvb

vs = Ctfwtf ,
(7.4)

whose inputs, ict, vc, and vb, and output, vs, are

ict =




ict1

ict2

ict3


 , vc =




vc1
...

vc4


 , vb = kc cos(ωst+ ψb)ub, vs =




vs1
...

vs6


 ,

where the sense voltages, vsij , have been relabeled according to

[vs1 vs2 vs3 vs4 vs5 vs6 ]
T = [vs21 vs22 vs23 vs24 vs31 vs32 ]

T .

The state vector in (7.4) is given by

wtf = [wtf11 . . . wtf14 wtf21 . . . wtf24 wtf31 wtf32 ]
T

and the aggregate state-space matrices are

Mtf(q) = diag (Mtf11 ,Mtf12 ,Mtf13 ,Mtf14 ,Mtf21 ,Mtf22 ,Mtf23 ,Mtf24 ,Mtf31 ,Mtf32)

Atf = diag (Atf1 , Atf1 , Atf1 , Atf1 , Atf2 , Atf2 , Atf2 , Atf2 , Atf3 , Atf3)

Ctf = diag (Ctf2 , Ctf2 , Ctf2 , Ctf2 , Ctf3 , Ctf3)

Bb =
[
0 0 0 0 Bv2 −Bv2 Bv2 −Bv2 0 0

]T
,
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Bct =




Bct1 0 0

−Bct1 0 0

Bct1 0 0

−Bct1 0 0

0 Bct2 0

0 −Bct2 0

0 Bct2 0

0 −Bct2 0

0 0 Bct3

0 0 −Bct3




, Bc =




Bv 0 0 0

0 Bv 0 0

0 0 Bv 0

0 0 0 Bv

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




.

The analog filtering dynamics follow those of Chapter 6. The additional lateral mea-

surements, vs5 and vs6 , are demodulated with the phase-shifted sense carrier (whose phase

is selected to maximize the measurement signals relative to lateral motion of the disk) and

the signal conditioning gain of 6.3 matches the gain reported in Section 2.2.4.

A linear four-input/six-output time-invariant discrete-time model is approximated from

the time-periodic nonlinear equations of motion using the procedure reported in Section 2.2.5.

The DSP-generated control inputs and bias voltage necessary to suspend the disk at its nomi-

nal setpoint are each 1.53V and the model order is 102. The four-input/six-output frequency

response of the model, whose input is u = [u1 u2 u3 u4]
T and output is g = [g1 g2 g3 g4 g5 g6]

T ,

is computed and shown by the solid lines in Figure 7.2 from the perspective of input u1.

The sampled signal, g, contains DC actuator-to-pick-off feedthrough, thus it does not ap-

pear on the logarithmic frequency response plots, i.e., the feedthrough-compensated signal,

ζ = [ζ1 ζ2 ζ3 ζ4 ζ5 ζ6]
T , is equivalent to g for ω ̸= 0. The DC feedthrough is compensated by a

constant gain feedforward filter that operates in parallel to the system. This feedforward fil-

ter is considered internal to the plant, P , whose input and output are u and ζ, respectively.

The symmetry of the system makes identifying the frequency responses of the remaining

input/output channels trivial. The frequency response of plant using the electrode config-

uration from Part I is included in Figure 7.2 for comparison. Similar trends are observed,
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Figure 7.2: Frequency response of the analytical model from the perspective of u1. The
feedthrough-compensated model presented in Section 2.2.6 for the larger disk with the pre-
vious electrode configuration is shown by the dashed traces for comparison.

however, the gain is markedly lower with the updated electrodes. This is expected due to the

reduced control authority and signal amplitude that results from decreased electrode areas,

as well as the increased carrier frequency of the sense signals. The unstable eigenvalues of the

plant, given in discrete-time as λ1 = 1.0015 and λ2 = λ3 = 1.037 (corresponding to 7.27 and

18.7 rad/s continuous time), have increased in frequency from those of the initial electrode

configuration. The three nonzero singular values of the plant are graphed in Figure 7.3.

Only two traces are evident because σ1(P ) = σ2(P ).

7.2 Initial Controller Design

The first controller synthesis technique investigated follows that of the previous electrode-

disk configurations, where the controller is designed to maximize the closed-loop stability

margin to coprime factor perturbations of the shaped plant (see Section 4.2 for details). The
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post-compensation filter,

W2 =




15 0 0 0 0 0

0 15 0 0 0 0

0 0 15 0 0 0

0 0 0 15 0 0

0 0 0 0 1 0

0 0 0 0 0 1




, (7.5)

is designed so that the three nonzero singular values of the shaped plant, Ps = W2P , shown

in Figure 7.3, cross over between 2 and 10Hz. Only two traces are visible in the figure

because σ2(Ps) = σ3(Ps) at low frequencies and σ1(Ps) = σ2(Ps) near and above the reso-

nance. For the shaped plant, γmin ≈ 2.0 and a controller is synthesized for the suboptimal

problem γ = 1.1× γmin according to (4.15). The controller order is 102, though a balanced

truncation reduces the controller dimension to 7 with little frequency response error. The

reduced-order controller contains two unstable poles at 1.45 rad/s making implementation

difficult in practice. Nevertheless, the closed-loop system is robust to coprime factor pertur-

bations bounded by 0.45. The maximum singular values of the input and output sensitivity

and complementary sensitivity functions using the 7-state controller are included in Fig-

ure 7.3. The norms of the input and output complementary sensitivity functions are 1.6 and

Figure 7.3: Left: Singular values of the plant, P , shaped plant, Ps, and output loop gain,
Lo. Right: Maximum singular values of the predicted input and output sensitivity and
complementary sensitivity functions.
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− Ko M3 −+ Ki

u
P

ζ
M2

[
ζ5
ζ6

]

M1



ζ1
...
ζ4




Figure 7.4: Cascade control schematic for suspension of the larger disk.

1.7, respectively, demonstrating that the closed-loop system is robust to large unstructured

multiplicative uncertainty at both the plant input and output.

7.3 Stable Controller Design

A stable feedback controller is designed to stabilize the closed-loop system as an alternative

to the unstable controller presented in Section 7.2. Stability margins to coprime factor

perturbations and multiplicative uncertainty at the plant output are vastly reduced from

the prior section, however, controller implementation, especially upon start-up, becomes

significantly easier. A cascade feedback architecture is employed, as shown in Figure 7.4.

The inner loop is designed to regulate the vertical position, roll, and pitch degrees of freedom

using the primary sense electrode measurements, meanwhile the outer loop uses the lateral

electrode measurements to specify the tilt references. The M1, M2, and M3 matrices are

given by

M1 =
[
I4 0

]
∈ R4×6, M2 =

[
0 I2

]
∈ R2×6, M3 =


 I2

−I2


 ∈ R4×2, (7.6)

where I2 and I4 are the 2×2 and 4×4 identity matrices, respectively, and the “0” blocks are

appropriately dimensioned so that M1 picks off the first four elements of ζ and M2 picks off

ζ5 and ζ6. The M3 matrix converts the lateral measurements into angular references using

the fact that the tilt and lateral degrees of freedom are coupled.

The inner loop controller is a constant gain: Ki = 50. Closing the inner loop stabilizes

the vertical degree of freedom, however, two (tilt) instabilities remain at 0.22 rad/s. The
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outer loop controller, Ko, is a diagonal phase lead filter,

Ko = −25
s+ 1.41

s+ 28.1
I2.

Closing the loop around Ko stabilizes the closed-loop system –all eigenvalues of the closed-

loop system have real part strictly less than −1.75. The inner and outer controllers, as well

as the M1, M2, and M3 matrices can be absorbed into a single controller, K, according to

K = Ki (M3KoM2 +M1) . (7.7)

The simplified feedback architecture of the closed-loop system using K, shown in Figure 7.5,

is used to evaluate closed-loop stability margins. The norms of the input and output comple-

mentary sensitivity functions are shown in Figure 7.6, and demonstrate that the closed-loop

system is not robust to unstructured uncertainty at the plant output. Furthermore, poor

robustness to coprime factor perturbations are exhibited with the stable controller.

Considering the sources of uncertainty present in the system –electrode misalignment,

plate warpage, transduction gains, viscous damping, photoresist thickness, center tap current

estimation, etc. –unstructured uncertainty is overly conservative for the disk system. Sources

of error that produce perturbations to the electrode-disk gaps primarily manifest in the four

measurements {ζ1, ζ2, ζ3, ζ4}. Similarly, sources of uncertainty in the lateral measurements,

ζ5 and ζ6, are not expected to couple to {ζ1, ζ2, ζ3, ζ4}. Thus, the structured singular value

is used to analyze the robustness of the closed-loop system to structured multiplicative

uncertainty at the plant output of the form

∆ =


∆4 0

0 ∆2


 . (7.8)

− K
u

P ζ

Figure 7.5: Simplified feedback schematic of the cascade controller. The controller, K, is
given in (7.7) and is a function of the inner and outer loop controllers.
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Figure 7.6: Left: Maximum singular values of the input and output complementary sensi-
tivity functions. Right: Structured singular value of the output complementary sensitivity
function.

The structured singular value, µ∆(To), is defined as the reciprocal of the norm of smallest

∆ that causes the matrix I − To∆ to become singular (see [SP05], for example). For the

disk system using the stable controller, the norm of the smallest destabilizing multiplicative

output perturbation, or µ∆(To)
−1, for the structured uncertainty in (7.8) is shown to be 0.48

in Figure 7.6, indicating that the closed-loop system is robustly stable to such uncertainty.

Thus, the poor robustness margins to unstructured uncertainty at the plant output can

be attributed to off-diagonal coupling that is improbable given knowledge of the modeling

assumptions made and physical sources of error present in the system. Furthermore, it can

be argued that perturbations to the measurements primarily couple in the adjacent channels

that share a common center tap supply transformer so the structured uncertainty in (7.8)

may still be conservative.
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CHAPTER 8

Concluding Remarks

Two systems to electrostatically suspend conductive disks are presented. The dual variants

employ similar levitation schemes, however, they differ in electrode arrangement –the first

system uses common electrodes for both actuation and sensing, while the second system seg-

regates the control and measurement electronics. A modeling framework is developed and

applied to both systems and can easily be expanded to additional electrode-disk geometries.

The notation (“ij” subscript) used for the electrode-disk gaps, capacitances, and electrostatic

forces is designed with numerical computing in mind so that i× j-dimensioned matrices can

be initialized and element-by-element calculations performed. A family of robust multivari-

able controllers, largely based on normalized coprime factorizations of the analytical models

generated, are synthesized using loop-shaping techniques. Stability margins to input and

output multiplicative uncertainty and perturbations of the plant’s normalized coprime fac-

tors are evaluated. Two disk sizes are investigated and an empirical model of the suspended

smaller disk, which requires active stabilization of the vertical, pitch, and roll degrees of

freedom, is captured for the first electrode configuration from closed-loop measurements.

The analytical model compares favorably to the experimental results and a novel paramet-

ric identification technique fits a 22-state model with little frequency response error to the

open-loop unstable plant. The identified model characterizes three unstable modes, whose

input/output directions are used to transform the measurements into new signals propor-

tional to the disk’s vertical, pitch, and roll degrees of freedom. These directions provide

insights into transduction asymmetries. A representation of the transformed plant is used to

synthesize an updated controller with improved disturbance rejection and regulation. Sensor

noise is quantified to confirm that the disk’s vertical position and tilt angles are measured
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with high accuracy, making the system a suitable prototype for manipulating micro-scale

devices in a non-contact manner. Redundant use of the electrodes for actuation and sensing

presents significant feedthrough coupling from the control inputs to the electronic pick-offs.

This coupling is mitigated by a digital feedforward filter, nonetheless, residual feedthrough

is evident in the experimental data. The second electrode arrangement is designed to elim-

inate this feedthrough, however, this comes at the cost of diminishing the motional gain of

the plant: splitting the electrodes decreases sensitivity to disk motion and reduces control

authority. The updated electrode configuration has been fabricated and assembled, though

testing has not commenced. Thus, only analytical models and preliminary controller designs

are presented for the two disks with this system. Stabilization of the two disks with the new

electrodes is the immediate focus of the next phase of research.

In addition to testing the new system, the work herein presents several research opportu-

nities that should be examined prior to miniaturization to the MEMS-scale for the suspension

of micro-resonators. An improved estimate of the fringe field electrostatic forces in the an-

alytical model is one topic of future inquiry. The lateral degrees of freedom are passively

stabilized by these forces. Although well-damped at atmospheric pressure, these modes will

feature much more prominently in the plant frequency response when the system in operated

in vacuo, thus, accurate estimates of their modal frequencies are necessary for designing the

initial controller. Effective lateral spring rates can be obtained from numerical techniques

that include the disk and electrode geometries. Another direction of future research is to

identify the measurement noise sources in the suspension electronics. A more fundamental

understanding of the noise sources will be useful in predicting measurement uncertainty in

new electrostatic suspension designs. Furthermore, while the differential capacitance trans-

duction yields low-noise measurements, calibration of the electrode pairs must still be carried

out to map the disk position to the pick-off voltages. Calibration will also yield updated scale

factors since the noise spectra reported herein use scale factors estimated from the analytical

model. Finally, electrode redesigns should auto-align the upper and lower electrode plates

to reduce misalignment uncertainty.
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APPENDIX A

Electrode-Disk Overlap Geometry

A simplified diagram of the electrode-disk overlap areas for a given annular electrode index,

i, is shown in Figure A.1, where the gold shaded regions represent the overlap areas. It is

assumed that the areas are dependent only on the electrode-disk geometry and the lateral

position of the disk. Any angular rotations of the disk are assumed to have negligible effects

on the overlap areas due to the angular constraints imposed by the shim spacers, therefore,

this appendix views the system from a planar perspective.

A new coordinate-frame, the C-frame, is defined by a −45◦ rotation about the N3-axis.

This coordinate transformation is performed to simplify the computations by placing each

electrode entirely within a single quadrant. The rotation matrix from the N-frame to the

C-frame is given by

RCN =


 cos(−45◦) sin(−45◦)

− sin(−45◦) cos(−45◦)


 , (A.1)

where the colinear N3- and C3-directions are omitted due to the planar nature of the problem.

Inner (Primary) Electrodes

For the case of the inner (non-lateral) electrodes, the overlap areas are dependent only on

the electrode geometry because the disk completely overlaps these electrodes. Since each of

the electrode areas are equal for a given annular index, i, the electrode in quadrant 1 of the

C-frame is selected for the computations. The electrode area is calculated by first computing

the area of the sector described by the entire shaded region in quadrant 1 (the combined

gold and gray regions). The area of the gray sector is then computed and subtracted off.

96



AEi1AEi2

AEi3 AEi4

C1

C2

N1N2

45◦

ri,o

ri,i

C1

C2

li

li

S

ra

(xa, ya)

Figure A.1: Left: Schematic of the disk-electrode overlap surfaces, shown in gold. Right:
Diagram of a sector used in the area computations.

Note that the shapes of these two surfaces (gray and gold plus gray) are identical –they are

quarter circles with thin rectangular gaps removed along the sides. A general surface of this

shape is defined as surface S. In the C-frame, the points along the arc of surface S are given

by

x2a + y2a = r2a, (A.2)

where ra is the arc radius. The area of S is computed according to

AS(ra, li) =

∫ √
r2a−l2i

li

∫ √
r2a−x2a

li

dya dxa

=

∫ √
r2a−l2i

li

(√
r2a − x2a − li

)
dxa

=

∫ √
r2a−l2i

li

√
r2a − x2a dxa −

∫ √
r2a−l2i

li

li dxa. (A.3)

Integration by substitution is used to solve the integral on the left. Let xa = ra sin(u) such

that dxa = ra cos(u) du and note that u is the dummy variable used for u-substitution –it is

separate from the control input vector used throughout the body of this dissertation. The

use of u in this manner is constrained to this appendix. The integration bounds in the
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u-domain are left general because a conversion back to xa is performed.

∫ √
r2a−l2i

li

√
r2a − x2a dxa =

∫ u2

u1

ra cos(u)
√
r2a − r2a sin

2(u) du

=
r2a
2

∫ u2

u1

(1 + cos(2u)) du

=
r2a
2

(
u+

1

2
sin(2u)

)∣∣∣∣
u2

u1

=
r2a
2
(u+ sin(u) cos(u))

∣∣∣∣
u2

u1

=
r2a
2

(
sin−1

(
xa
ra

)
+
xa
ra

√
1− x2a

r2a

)∣∣∣∣∣

√
r2a−l2i

li

(A.4)

Returning back to the integral in (A.3),

AS(ra, li) =
r2a
2

(
sin−1

(
xa
ra

)
+
xa
ra

√
1− x2a

r2a

)
− lixa

∣∣∣∣∣

xa=
√
r2a−l2i

xa=li

. (A.5)

The electrode area is computed by subtracting the area of the gray sector from the entire

shaded sector,

AEi1 = AS(ri,o, li)− AS(ri,i, li), (A.6)

and the symmetry of the system guarantees that

AEi1 = AEi2 = AEi3 = AEi4 . (A.7)

The computed values for the electrode-disk areas can be found in Table A.2 for the initial

electrode configuration and Table A.3 for the updated electrode arrangement.

The electrode centroids are evaluated by computing the first moments of area and dividing

by the electrode area. Only computations in quadrant 1 of the C-frame are performed since

the remaining centroids can be easily determined from the symmetry of the system. The
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first moment of area in the C1-direction of sector S in quadrant 1 is given by

Qx(ra, li) =

∫ √
r2a−l2i

li

∫ √
r2a−x2a

li

ya dyadxa

=
1

2

∫ √
r2a−l2i

li

(
r2a − x2a − l2i

)
dxa

=
1

2

(
r2a − l2i

)
xa −

1

6
x3a

∣∣∣∣
xa=

√
r2a−l2i

xa=li

. (A.8)

Similarly, the first moment of area in the C2-direction of S in quadrant 1 is computed

according to

Qy(ra, li) =

∫ √
r2a−l2i

li

∫ √
r2a−x2a

li

xa dyadxa

=

∫ √
r2a−l2i

li

(√
r2a − x2a − li

)
xa dxa

=

∫ √
r2a−l2i

li

xa
√
r2a − x2a dxa −

∫ √
r2a−l2i

li

lixa dxa. (A.9)

Integration by substitution is used to solve the integral on the left. Let u = r2a − x2a such

that du = −2xa dxa. Again, the integration bounds in the u-domain are left general since

the integral is converted back to the xa-domain.

∫ √
r2a−l2i

li

xa
√
r2a − x2a dxa =

∫ u2

u1

−1

2
u1/2 du

= −1

3
u3/2

∣∣∣∣
u2

u1

= −1

3

(
r2a − x2a

)3/2
∣∣∣∣

√
r2a−l2i

li

(A.10)

Substituting the expression in (A.10) into (A.9),

Qy(ra, li) = −1

3

(
r2a − x2a

)3/2 − 1

2
lix

2
a

∣∣∣∣
xa=

√
r2a−l2i

xa=li

. (A.11)

The first moment of area in each direction for an electrode is given by the difference between

the first moments of area in that direction of the two sectors in Figure A.1 (gold plus gray
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and gray), and the centroid in the C-frame, (x̄i1,c, ȳi1,c), is calculated according to

x̄i1,c =
Qy(ri,o, li)−Qy(ri,i, li)

AEi1

ȳi1,c =
Qx(ri,o, li)−Qx(ri,i, li)

AEi1
.

(A.12)

The rotation matrix RNC = RT
CN is used to convert the centroids in the C-frame to the

N-frame, i.e., 
x̄i1
ȳi1


 = RNC


x̄i1,c
ȳi1,c


 =


r̄i
0


 , (A.13)

and the symmetry of the system results in the electrode centroids

(x̄ij, ȳij) =





(r̄i, 0) j = 1

(0, r̄i) j = 2

(−r̄i, 0) j = 3

(0,−r̄i) j = 4.

(A.14)

Calculated values for the centroids are also provided in Tables A.2 and A.3 for the first and

second generation electrode configurations, respectively.

Outer (Lateral) Electrodes

The computations for the electrode-disk overlap areas for the outer (lateral) electrodes are

similar to those of the inner electrodes, with the exception that the areas are now also a

function of the disk geometry and its lateral position. It is assumed that the disk position

is constrained to relatively small translations laterally such that the outer electrode-disk

overlap areas always take on a shape whose perimeter consists of two arcs and two straight

lines, like that shown in Figure A.1. Large translations that result in the overlap area shape

breaking down, i.e., a perimeter defined by two arcs and a single straight line, are not allowed.

A new surface, S̃j, is defined that is similar in shape to S in Figure A.1, however, the arc

center is not fixed at the origin. The surface S̃j is inscribed within the disk whereby the

circumference of the disk constitutes the arc of S̃j. Because the disk can move laterally, the
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Table A.1: Disk Sector Integration bounds

j xd1 xd2
1 li xc +

√
r2d − (li − yc)2

2 xc −
√
r2d − (li − yc)2 −li

3 xc −
√
r2d − (−li − yc)2 −li

4 li xc +
√
r2d − (−li − yc)2

surface area of S̃j is dependent on the quadrant of interest in the C-frame and is annotated

with the “j” subscript accordingly.

The position of the points along the circumference of the disk, (xd, yd), are given by

(xd − x)2 + (yd − y)2 = r2d, (A.15)

where (x, y) represents the disk center of mass in the N-frame and rd is the disk radius. The

disk center can be converted to the C-frame,

xc
yc


 = RCN


x
y


 , (A.16)

and the position of the points along the circumference can be written as

yd = yc ±
√
r2d − (xd − xc)2. (A.17)

The area of S̃j is computed beginning with the sectors in quadrants 1 and 2 (j = 1, 2), where

yd takes on positive values in the C-frame. The upper and lower integration bounds on xd

are dependent on j and are provided in Table A.1. These bounds are left general in the

calculations that follow so that the equations developed are valid for both j = 1 and j = 2.

To compute the overlap area for the j = 1 lateral electrode, for example, use the lower and

upper bounds xd1 = li and xd2 = xc +
√
r2d − (li − yc)2, respectively, from the table.

AS̃j
(rd, li, xc, yc) =

∫ xd2

xd1

∫ yc+
√
r2d−(xd−xc)2

li

dyd dxd

=

∫ xd2

xd1

[
yc +

√
r2d − (xd − xc)2 − li

]
dxd

=

∫ xd2

xd1

(yc − li) dxd +

∫ xd2

xd1

√
r2d − (xd − xc)2 dxd (A.18)
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Focusing strictly on the second integral, let u = xd − xc such that du = dxd:

∫ xd2

xd1

√
r2d − (xd − xc)2 dxd =

∫ u2

u1

√
r2d − u2 du. (A.19)

Now let u = rd sin(v) so that du = rd cos(v) dv. Note that v is also a dummy variable used

to integrate by substitution and is strictly contained to this appendix. It has no correlation

to the velocities, voltages, or input/output vectors mentioned throughout this dissertation.

The integration bounds on v are left general since a conversion back to the u-domain, and

later, xd-domain, is performed.

∫ u2

u1

√
r2d − u2 du =

∫ v2

v1

rd cos(v)
√
r2d − r2d sin

2(v) dv

=
r2d
2

∫ v2

v1

(1 + cos(2v)) dv

=
r2d
2

(
v +

1

2
sin(2v)

)∣∣∣∣
v2

v1

=
r2d
2
(v + sin(v) cos(v))

∣∣∣∣
v2

v1

=
r2d
2

(
sin−1

(
u

rd

)
+
u

rd

√
1− u2

r2d

)∣∣∣∣∣

u2

u1

(A.20)

Substituting u = xd − xc back into the equation, the area of the sector created by the disk

is written as

AS̃j
= (yc − li)xd +

r2d
2

(
sin−1

(
xd − xc
rd

)
+
xd − xc
rd

√
1− (xd − xc)2

r2d

)∣∣∣∣∣

xd2

xd1

, (A.21)

where the arguments of the area function have been dropped for concision. Moving on to

j = 3, 4, of which yd takes on negative values in the C-coordinate frame, the area of the

sector established by the disk arc is given by

AS̃j
=

∫ xd2

xd1

∫ −li

yc−
√
r2d−(xd−xc)2

dyd dxd

=

∫ xd2

xd1

[
−(yc + li) +

√
r2d − (xd − xc)2

]
dxd

= −(yc + li)xd +
r2d
2

(
sin−1

(
xd − xc
rd

)
+
xd − xc
rd

√
1− (xd − xc)2

r2d

)∣∣∣∣∣

xd2

xd1

. (A.22)
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In summary,

AS̃j
=





(yc − li)xd +
r2d
2

(
sin−1

(
xd−xc
rd

)
+ xd−xc

rd

√
1− (xd−xc)2

r2d

)∣∣∣
xd2

xd1

j = 1, 2

−(yc + li)xd +
r2d
2

(
sin−1

(
xd−xc
rd

)
+ xd−xc

rd

√
1− (xd−xc)2

r2d

)∣∣∣
xd2

xd1

j = 3, 4.
(A.23)

The inner sector that is to be subtracted from AS̃j
when solving for the electrode-disk

overlap area is defined by the lateral electrode geometry, which is fixed with an arc center at

the origin and area given by (A.5). The area of this sector is thus independent of electrode

number so the lateral electrode-disk overlap areas are given by

AEij = AS̃j
(rd, li, xc, yc)− AS(ri,i, li). (A.24)

Note that when the disk is centered at the origin, AS̃j
(rd, li, 0, 0) = AS(rd, li).

The lateral electrode-disk overlap centroids are now calculated. The first moment of area

of S̃j in the C1-direction, Q̃xj(rd, li, xc, yc), is computed, beginning with quadrants 1 and 2

of the C-frame:

Q̃xj =

∫ xd2

xd1

∫ yc+
√
r2d−(xd−xc)2

li

yd dyd dxd

=
1

2

∫ xd2

xd1

[
y2c + 2yc

√
r2d − (xd − xc)2 + r2d − (xd − xc)

2 − l2i

]
dxd

= −x
3
d

6
+
xcx

2
d

2
+

(y2c + r2d − x2c − l2i )xd
2

∣∣∣∣
xd2

xd1

+ yc

∫ xd2

xd1

√
r2d − (xd − xc)2 dxd, (A.25)

where the four arguments of Q̃xj have been dropped for brevity. The remaining integral

on the right-hand side of (A.25) is solved using integration by substitution. Substituting

u = xd − xc so that du = dxd,

∫ xd2

xd1

√
r2d − (xd − xc)2 dxd =

∫ u2

u1

√
r2d − u2 du. (A.26)
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Now let u = rd sin(v) so that du = rd cos(v) dv:

∫ u2

u1

√
r2d − u2 du =

∫ v2

v1

rd cos(v)
√
r2d − r2d sin

2(v) dv

=
r2d
2

∫ v2

v1

(1 + cos(2v)) dv

=
r2d
2

(
v +

1

2
sin(2v)

)∣∣∣∣
v2

v1

=
r2d
2
(v + sin(v) cos(v))

∣∣∣∣
v2

v1

. (A.27)

Substituting v = sin−1
(
xd−xc
rd

)
into the equation and returning to (A.25), the first moment

of area of S̃j, j = 1, 2, in the C1-direction is

Q̃xj =− x3d
6

+
xcx

2
d

2
+

(y2c + r2d − x2c − li)xd
2

∣∣∣∣
xd2

xd1

+
ycr

2
d

2

(
sin−1

(
xd − xc
rd

)
+
xd − xc
rd

√
1− (xd − xc)2

r2d

)∣∣∣∣∣

xd2

xd1

.

(A.28)

Continuing on to the first moment of area in the C2-direction for j = 1, 2,

Q̃yj =

∫ xd2

xd1

∫ yc+
√
r2d−(xd−xc)2

li

xd dyd dxd

=

∫ xd2

xd1

[
(yc − li)xd + xd

√
r2d − (xd − xc)2

]
dxd

=
(yc − li)x

2
d

2

∣∣∣∣
xd2

xd1

+

∫ xd2

xd1

xd

√
r2d − (xd − xc)2 dxd. (A.29)

To solve the remaining integral, let u = xd − xc so that du = dxd.

∫ xd2

xd1

xd

√
r2d − (xd − xc)2 dxd =

∫ u2

u1

(u+ xc)
√
r2d − u2 du

=

∫ u2

u1

u
√
r2d − u2 du+ xc

∫ u2

u1

√
r2d − u2 du (A.30)

Focusing on the first integral on the right-hand-side of (A.30), let v = r2d − u2 so that
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dv = −2u du.

∫ u2

u1

u
√
r2d − u2 du =

∫ v2

v1

−1

2
v1/2 dv

= −1

3
v3/2

∣∣∣∣
v2

v1

= −1

3

(
r2d − u2

)3/2
∣∣∣∣
u2

u1

(A.31)

Turning to the second integral on the right-hand-side of (A.30), let u = rd sin(v) so that

du = rd cos(v) dv.

∫ u2

u1

√
r2d − u2 du =

∫ v2

v1

rd cos(v)
√
r2d − d2 sin2(v) dv

=
r2d
2

∫ v2

v1

(1 + cos(2v)) dv

=
r2d
2

(
v +

sin(2v)

2

)∣∣∣∣
v2

v1

=
r2d
2
(v + sin(v) cos(v))

∣∣∣∣
v2

v1

=
r2d
2

(
sin−1

(
u

rd

)
+
u

d

√
1− u2

r2d

)∣∣∣∣∣

u2

u1

(A.32)

Multiplying the solutions in (A.31) and (A.32) by the appropriate coefficients from (A.30)

and summing the result,

∫ xd2

xd1

xd

√
r2d − (xd − xc)2 dxd =− (r2d − u2)

3/2

3

∣∣∣∣∣

u2

u1

+
xcr

2
d

2

(
sin−1

(
u

rd

)
+
u

rd

√
1− u2

r2d

)∣∣∣∣∣

u2

u1

.

(A.33)

Substituting u = xd − xc into the solution and returning to (A.29), the first moment of area

of S̃j, j = 1, 2, in the C2-direction is given as

Q̃yj =
(yc − li)x

2
d

2
− (r2d − (xd − xc)

2)
3/2

3

∣∣∣∣∣

xd2

xd1

+
xcr

2
d

2

(
sin−1

(
xd − xc
rd

)
+
xd − xc
rd

√
1− (xd − xc)2

r2d

)∣∣∣∣∣

xd2

xd1

.

(A.34)
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For the third and fourth quadrants of the C-frame, the first moment of area of S̃j in the

C1-direction is given by

Q̃xj =

∫ xd2

xd1

∫ −li

yc−
√
r2d−(xd−xc)2

yd dyd dxd

= −1

2

∫ xd2

xd1

[
−l2i + y2c − 2yc

√
r2d − (xd − xc)2 + r2d − (xd − xc)

2

]
dxd

=
x3d
6

− xcx
2
d

2
− (y2c + r2d − x2c − l2i )xd

2

∣∣∣∣
xd2

xd1

+ yc

∫ xd2

xd1

√
r2d − (xd − xc)2 dxd. (A.35)

The remaining integral was solved above, so for j = 3, 4:

Q̃xj =
x3d
6

− xcx
2
d

2
− (y2c + r2d − x2c − l2i )xd

2

∣∣∣∣
xd2

xd1

+
ycr

2
d

2

(
sin−1

(
xd − xc
rd

)
+
xd − xc
rd

√
1− (xd − xc)2

r2d

)∣∣∣∣∣

xd2

xd1

.

(A.36)

The first moment of area of S̃j, j = 3, 4, in the C2-direction is

Q̃yj =

∫ xd2

xd1

∫ −li

yc−
√
r2d−(xd−xc)2

xd dyd dxd

=

∫ xd2

xd1

[
−(yc + li)xd + xd

√
r2d − (xd − xc)2

]
dxd

= − (yc + li)x
2
d

2

∣∣∣∣
xd2

xd1

+

∫ xd2

xd1

xd

√
r2d − (xd − xc)2 dxd (A.37)

Only the coefficient in the first term changes between the j = 1, 2 case and the j = 3, 4 case,

so

Qyj =− (yc + li)x
2
d

2
− (r2d − (xd − xc)

2)
3/2

3

∣∣∣∣∣

xd2

xd1

+
xcr

2
d

2

(
sin−1

(
xd − xc
rd

)
+
xd − xc
rd

√
1− (xd − xc)2

r2d

)∣∣∣∣∣

xd2

xd1

.

(A.38)
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In summary,

Q̃xj(rd, li, xc, yc) =





−x3d
6
+

xcx2d
2

+
(y2c+r

2
d−x

2
c−l2i )xd

2
+

ycr2d
2
a(xd)

∣∣∣
xd2

xd1

j = 1, 2

x3d
6
− xcx2d

2
− (y2c+r

2
d−x

2
c−l2i )xd

2
+

ycr2d
2
a(xd)

∣∣∣
xd2

xd1

j = 3, 4
(A.39)

Q̃yj(rd, li, xc, yc) =





(yc−li)x2d
2

− (r2d−(xd−xc)2)
3/2

3
+

xcr2d
2
a(xd)

∣∣∣∣
xd2

xd1

j = 1, 2

− (yc+li)x
2
d

2
− (r2d−(xd−xc)2)

3/2

3
+

xcr2d
2
a(xd)

∣∣∣∣
xd2

xd1

j = 3, 4,

(A.40)

where

a(xd) = sin−1

(
xd − xc
rd

)
+
xd − xc
rd

√
1− (xd − xc)2

r2d
. (A.41)

The centroids of the electrode-disk overlap areas in the C-frame are computed according to

x̄ij,c =





Q̃y1 (rd,li,xc,yc)−Qy(ri,i,li)

AEi1
j = 1

Q̃y2 (rd,li,xc,yc)+Qy(ri,i,li)

AEi2
j = 2

Q̃y3 (rd,li,xc,yc)+Qy(ri,i,li)

AEi3
j = 3

Q̃y4 (rd,li,xc,yc)−Qy(ri,i,li)

AEi4
j = 4

(A.42)

ȳij,c =





Q̃x1 (rd,li,xc,yc)−Qx(ri,i,li)

AEi1
j = 1

Q̃x2 (rd,li,xc,yc)−Qx(ri,i,li)

AEi1
j = 2

Q̃x3 (rd,li,xc,yc)+Qx(ri,i,li)

AEi1
j = 3

Q̃x4 (rd,li,xc,yc)+Qx(ri,i,li)

AEi1
j = 4.

(A.43)

Conversion to the N-frame is accomplished using the RNC transformation matrix,

x̄ij
ȳij


 = RNC


x̄ij,c
x̄ij,c


 . (A.44)

When the nominal position of the disk is selected such that the disk’s center of mass lies at

the origin of the N-frame, these centroids can be written in the form

(x̄ij, ȳij) =





(r̄i, 0) j = 1

(0, r̄i) j = 2

(−r̄i, 0) j = 3

(0,−r̄i) j = 4.

(A.45)

107



Table A.2: Geometric Parameters for Electrode Configuration I

Symbol Description Value
r1,i inner radius of primary electrodes 1.5mm
r1,o outer radius of primary electrodes 37mm
r2,i inner radius of lateral electrodes 38mm
r2,o outer radius of lateral electrodes 44mm
l1 half gap between primary electrodes 0.5mm
l2 half gap between lateral electrodes 3.5mm
AE1j primary electrode area 10.3 cm2

AE2j lateral electrode-disk overlap area 1.65 cm2

r̄1 radial distance to primary electrode centroids 22.5mm
r̄2 radial distance to lateral electrode-disk overlap centroids 36.4mm

Table A.3: Geometric Parameters for Electrode Configuration II

Symbol Description Value
r1,i inner radius of control electrodes 1.5mm
r1,o outer radius of control electrodes 26mm
r2,i inner radius of primary sense electrodes 27mm
r2,o outer radius of primary sense electrodes 37mm
r3,i inner radius of lateral electrodes 38mm
r3,o outer radius of lateral electrodes 44mm
l1 half gap between control electrodes 0.5mm
l2 half gap between primary sense electrodes 1.0mm
l3 half gap between lateral electrodes 3.5mm
AE1j control electrode area 5.05 cm2

AE2j primary sense electrode area 4.83 cm2

AE3j lateral electrode-disk overlap area 1.65 cm2

r̄1 radial distance to control electrode centroids 15.9mm
r̄2 radial distance to primary sense electrode centroids 29.3mm
r̄3 radial distance to lateral electrode-disk overlap centroids 36.4mm

Computed values of the lateral electrode areas and centroids for the initial and updated

electrode configurations are provided in Tables A.2 and A.3, respectively.
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APPENDIX B

Fringing Field Capacitance

The parallel-plate capacitance estimates in (2.43) neglect the effect of electrical field fringing

near the edges of the disk and electrodes, thus underestimating the true electrode-disk ca-

pacitances. The effect of the fringing capacitance is difficult to quantify due to the irregular

shape of the electrodes. An expression for estimating the fringing capacitance for circular

plates was proposed in [SBS86], however, due to the relatively large perimeter-to-surface-

area ratio of the electrodes, especially as annular index increases, a rectangular plate model

is assumed for analyzing the fringe field effects. The total capacitance, including fringing, of

parallel rectangular plates given by

C =
ϵwl

d

(
1 +

d

πw

(
1 + ln

(
2πw

d

)))(
1 +

d

πl

(
1 + ln

(
2πl

d

)))
, (B.1)

where w and l are the plate width and length, respectively, and d is the plate separation, has

been shown to match simulations using finite element methods with high fidelity for a wide

range of plate gaps [Pal37, HZP07]. Applying the expression in (B.1) to the electrode-disk

subsystem, the fringing capacitances between the disk and the top electrodes can be written

as

Cf,tij ≈
ϵwijlij
z0 − zij

(
1 +

z0 − zij
πwij

(
1 + ln

(
2πwij
z0 − zij

)))

×
(
1 +

z0 − zij
πlij

(
1 + ln

(
2πlij
z0 − zij

)))
− Ctij .

(B.2)

Similarly, the fringing capacitances between the bottom electrodes and the disk are

Cf,bij ≈
ϵwijlij
z0 + zij

(
1 +

z0 + zij
πwij

(
1 + ln

(
2πwij
z0 + zij

)))

×
(
1 +

z0 + zij
πlij

(
1 + ln

(
2πlij
z0 + zij

)))
− Cbij .

(B.3)
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Table B.1: Nominal Fringing Capacitances

Electrode Configuration I Electrode Configuration II
Capacitance, Fringing Capacitance, Fringing

Electrode Fringing Ignored Capacitance Electrode Fringing Ignored Capacitance
E1j 77.1 pF 1.54 pF E1j 37.6 pF 1.03 pF
E2j 12.3 pF 1.02 pF E2j 36.0 pF 1.25 pF

E3j 12.3 pF 1.02 pF

Since the electrode-disk capacitors are not rectangular, however, geometric approximations

are used for the lengths and widths. For the innermost electrode set, i.e., i = 1, the electrodes

are approximated as squares. For the lateral electrodes, the widths will be taken as the

difference between the disk radius and the inner radius of the lateral electrodes, with a

correction factor that takes into account the lateral position of the disk. In the case of the

second electrode configuration, the width of the middle annulus of electrodes is taken as the

difference between the outer electrode radius and the inner electrode radius. These widths

are summarized as

wij =





√
AEij i = 1

rd − r2,i + cj i = 2
(B.4)

for the initial electrode configuration and

wij =





√
AEij i = 1

r2,o − r2,i i = 2

rd − r3,i + cj i = 3

(B.5)

for the segregated electrode configuration where the correction factor, cj, is

cj =





(−1)
j−1
2 x j = 1, 3

(−1)
j
2
−1y j = 2, 4.

(B.6)

The corresponding lengths are then given by

lij =
AEij

wij
. (B.7)

The results with the disk suspended at its nominal position are summarized in Table B.1

and compared to the capacitances computed in (2.43). Note that the top and bottom
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Table B.2: Fringing Neglection Error

Electrode Configuration I Electrode Configuration II
Electrode Capacitance Underestimate Electrode Capacitance Underestimate

E1j 2.00% E1j 2.74%
E2j 8.32% E2j 3.46%

E3j 8.32%

electrode-disk (fringing) capacitances are identical (hence the “t” and “b” subscripts on the

electrodes have been omitted in the table) and the specific electrode, j, for a given annular

ring is inconsequential with the disk in this position. The percent error of each electrode-

disk capacitance due to neglected fringing effects are computed relative to the approximated

values from (2.43) and are provided in Table B.2. The relative error increases with the

ratio between perimeter and area, however, even for the lateral electrodes where this ratio

is largest, fringe field effects do not appreciably change the total electrode-disk capacitances

and can be ignored.
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APPENDIX C

Viscous Damping

The fluid (air) permeating the micro-scale gaps between the disk and electrodes provides

noticeable damping to disk motion in the translational, roll, and pitch degrees of freedom.

Advanced modeling techniques for such damping terms are beyond the scope of this disser-

tation, however, simple mathematical approximations have been previously developed that

are applied to the disk system. The squeeze film damping of a fluid is governed by viscous

and inertial effects, however, for the small gaps associated with MEMS devices, inertial ef-

fects are negligible and the squeeze film behavior is approximated by the Reynolds equation.

In [BY07], the Reynolds equation is applied to parallel plates moving vertically relative to

one another, i.e., the gap between the plates expands or retracts, and a linearization is per-

formed about the nominal plate gap. Isothermal conditions and slow squeeze action, i.e., the

gas is considered incompressible, are assumed and the Reynolds equation for squeeze film

damping is given in polar coordinates by

1

r

∂

∂r

(
r
∂

∂r
p(r)

)
=

12µ

h3
ḣ, (C.1)

where p is the damping pressure, µ is the dynamic viscosity of the fluid, h is the height of

the nominal plate gap, and ḣ is the velocity of the movable plate. The damping force can be

computed by integrating the damping pressure over the plate area, and the vertical damping

coefficient, cv, is given by

cv =
3πµr4

2h3
, (C.2)

where r is the plate radius. With the disk suspended, two air gaps are established that both

provide damping and must be accounted for. The vertical damping coefficients for the top
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and bottom air gaps, czt and czt , respectively, are given by

czt =
3πµr4d

2
(
zsh
2
− z
)3

czb =
3πµr4d

2
(
zsh
2
+ z
)3

(C.3)

and the net vertical damping coefficient is the sum of the top and bottom vertical damping

coefficients,

cz = czt + czb . (C.4)

The torsional damping coefficients are estimated from approximated damping moments

of rectangular torsion mirrors. A linearization of the Reynolds equation was performed

in [PKP98] by assuming small angular displacements and a harmonic response of the mirror.

The damping moment associated with angular rotation α is approximated as

Mα = − 48

π6
((

w
l

)2
+ 4
) µlw

5

h3
α̇, (C.5)

where w and l are the plate width and length, respectively. This solution is extended to

circular plates using area as follows. The disk can be thought of as an ellipse, with major

and minor axes that are equivalent in length. Applying (C.5) to a plate where the length

and width are identical,

Mα = − 48µl6

5π6h3
α̇. (C.6)

Since the area of such a plate (a square) is given by l2, the area cubed appears in the

numerator. Thus, l6 is approximated by the area of the disk raised to the power of three,

Mα ≈ −48µr6d
5π3h3

α̇. (C.7)

Applying this approximation to the disk-electrode subsystem and taking into account the

squeeze films above and below the disk, the top and bottom torsional damping coefficients

are given as

cθt =
48µr6d

5π3
(
zsh
2
− z
)3

cθb =
48µr6d

5π3
(
zsh
2
+ z
)3 .

(C.8)
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The net torsional damping coefficient is the sum of the top and bottom torsional damping

coefficients:

cθ = cθt + cθb . (C.9)

Due to the symmetry of the system, the torsional damping coefficients about both the N1-

and N2-axes are identical, i.e.,

cφ = cθ. (C.10)

Because of the small-scale air gap between the disk and each plate relative to the disk

diameter, viscous damping in the lateral directions is approximated by Couette flow, which

describes planar shear-driven fluid motion between two infinite plates, one of which moves

at constant velocity while the other remains stationary [Wil07]. Ignoring pressure gradients

(out-of-plane motion of the disk is neglected) and modeling fluid flow as fully developed, the

Navier-Stokes equations applied to the Couette flow problem simplify to

d2v

dη2
= 0, (C.11)

where η is the vertical spatial coordinate normal to the plates and v(η) represents the velocity

field of the fluid. Assuming for now that the bottom plate is stationary and represents the

bottom glass plate and the top plate represents the moving disk, the boundary conditions

are given by v(0) = 0 and v(h) = V , where h is the gap between the plates and V is the

velocity of the disk. Integrating (C.11) twice and applying the boundary conditions yields

the velocity field

v(η) =
V

h
η. (C.12)

According to Newton’s law of viscosity, the shear force acting on the moving plate is given

by

Fshear = µA
dv

dη
=
µA

h
V, (C.13)

where A is the plate area. The damping coefficient is the term preceeding the plate velocity,

cshear =
µA

h
. (C.14)

114



For the disk system, shear forces resist in-plane motion due to the fluid both above and below

the disk, so the top and bottom damping coefficients for disk motion in the N1-direction are

given by

cxt =
µπr2d
zsh
2
− z

cxb =
µπr2d
zsh
2
+ z

,

(C.15)

respectively. The net damping in this direction is the sum of the two damping terms and a

single damping coefficient,

cx = cxt + cxb , (C.16)

is quantified. Performing the computations in the N2-direction yield an identical viscous

damping coefficient:

cy = cx. (C.17)
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APPENDIX D

Gradients of the Generalized Forces and Torques

The gradients used in developing the time-invariant discrete-time model from linear varia-

tional equations are computed in this appendix. The calculations are presented in the order

they are implemented in the script that generates the model and any long-form final results

are omitted since the gradients of the generalized forces and torques with respect to q, q̇,

and wtf can be written in terms of the computations from prior steps. Partial derivatives

are simply presented and intermediate computations are left to the reader.

Beginning with the system geometry, the electrode-disk overlap areas and centroids for

the inner (non-lateral) electrodes are independent of the disk position and velocity, thus

these gradients are all equal to zero. The lateral electrode-disk overlap areas and centroids,

however, are dependent on the lateral position of the disk. The expressions for these values

are fairly complex and computing the gradient with respect to q is tedious, nevertheless, the

midpoint method is used to numerically approximate the partial derivatives of the overlap

areas and centroids with respect to x and y according to

∂AEij(x, y)

∂x
≈ lim

δx→0+

AEij(x+ δx, y)− AEij(x− δx, y)

2δx
∂AEij(x, y)

∂y
≈ lim

δy→0+

AEij(x, y + δy)− AEij(x, y − δy)

2δy

(D.1)

∂x̄ij
∂x

≈ lim
δx→0+

x̄ij(x+ δx, y)− x̄ij(x− δx, y)

2δx
∂x̄ij
∂y

≈ lim
δy→0+

x̄ij(x, y + δy)− x̄ij(x, y − δy)

2δy

(D.2)
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∂ȳij
∂x

≈ lim
δx→0+

ȳij(x+ δx, y)− ȳij(x− δx, y)

2δx
∂ȳij
∂y

≈ lim
δy→0+

ȳij(x, y + δy)− ȳij(x, y − δy)

2δy
,

(D.3)

where δx = δy = 1nm is implemented. Since the areas and centroids are assumed to be

independent of angular rotations and vertical translations,

∂AEij

∂z
=
∂AEij

∂θ
=
∂AEij

∂φ
= 0

∂x̄ij
∂z

=
∂x̄ij
∂θ

=
∂x̄ij
∂φ

= 0

∂ȳij
∂z

=
∂ȳij
∂θ

=
∂ȳij
∂φ

= 0.

(D.4)

The vertical deflections of the disk that define the capacitive gaps, zij, are dependent

only on q and the corresponding partial derivatives are given by

∂zij
∂x

= φ

(
1− ∂x̄ij

∂x

)
+ θ

∂ȳij
∂x

∂zij
∂y

= −φ∂x̄ij
∂y

+ θ

(
∂ȳij
∂y

− 1

)

∂zij
∂z

= 1

∂zij
∂θ

= ȳij − y

∂zij
∂φ

= x− x̄ij.

(D.5)

The capacitances are a function of the electrode areas and capacitive gaps, so the partial

derivatives of the capacitances with respect to q can be expressed succinctly as a function of

the partial derivatives computed above,

∂Ctij

∂qk
=

ε

z0 − zij

∂AEij

∂qk
+

εAEij

(z0 − zij)
2

∂zij
∂qk

∂Cbij

∂qk
=

ε

z0 + zij

∂AEij

∂qk
− εAEij

(z0 + zij)
2

∂zij
∂qk

.

(D.6)

Note that the notation qk, k = 1, 2, 3, 4, 5, where q = [q1 q2 q3 q4 q5]
T = [x y z θ φ]T , is used

to formulate general expressions rather than write out the partial derivatives with respect

to x, y, etc., independently.
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The viscous damping coefficients are modeled with dependency only on the disk’s vertical

position such that

∂cx
∂x

=
∂cx
∂y

=
∂cx
∂θ

=
∂cx
∂φ

= 0

∂cz
∂x

=
∂cz
∂y

=
∂cz
∂θ

=
∂cz
∂φ

= 0

∂cθ
∂x

=
∂cθ
∂y

=
∂cθ
∂θ

=
∂cθ
∂φ

= 0

(D.7)

and

∂cx
∂z

= µπr2d

(
1

(
zsh
2
− z
)2 − 1

(
zsh
2
+ z
)2

)

∂cz
∂z

=
9πµr4d

2

(
1

(
zsh
2
− z
)4 − 1

(
zsh
2
+ z
)4

)

∂cθ
∂z

=
144µr6d
5π3

(
1

(
zsh
2
− z
)4 − 1

(
zsh
2
+ z
)4

)
.

(D.8)

Due to the symmetry of the system,

∂cy
∂qk

=
∂cx
∂qk

∂cφ
∂qk

=
∂cθ
∂qk

.

(D.9)

The electrostatic forces are functions of the disk position as well as the electrode voltages.

The partial derivatives of the top and bottom electrostatic forces with respect to qk are given

by

∂Ftij

∂qk
=

(
ε

2 (z0 − zij)
2

∂AEij

∂qk
+

εAEij

(z0 − zij)
3

∂zij
∂qk

)
v2tij

∂Fbij

∂qk
=

(
ε

2 (z0 + zij)
2

∂AEij

∂qk
− εAEij

(z0 + zij)
3

∂zij
∂qk

)
v2bij ,

(D.10)

respectively. Since the electrostatic forces from the top and bottom electrodes are exerted

at a coincident point for any given {Etij , Ebij} pair, defining

∂Fnij

∂qk
=
∂Ftij

∂qk
− ∂Fbij

∂qk
(D.11)
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simplifies the expressions in the computations that follow. The partial derivatives of the

electrostatic forces with respect to the top and bottom electrode voltages, respectively, are

∂Ftij

∂vtij
=

ϵAEij

(z0 − zij)
2vtij

∂Fbij

∂vbij
=

ϵAEij

(z0 + zij)
2vtij .

(D.12)

To write the gradient of each electrostatic force with respect to wtf , define the vectors etij

and ebij to pick off the states in wtf corresponding to the top and bottom electrode voltages,

i.e.,

vtij = eTtijwtf

vbij = eTbijwtf ,
(D.13)

so that
∂Fnij

∂wtf

=
∂Ftij

∂vtij
eTtij −

∂Fbij

∂vbij
eTbij . (D.14)

The partial derivatives of the generalized forces and torques, normalized by the disk mass

and transverse-axis moment of inertia, respectively, with respect to q are

∂ẍ

∂x
= −kx

m
+
φ

m

∑

i,j

∂Fnij

∂x

∂ẍ

∂y
=
φ

m

∑

i,j

∂Fnij

∂y

∂ẍ

∂z
= − ẋ

m

∂cx
∂z

+
φ

m

∑

i,j

∂Fnij

∂z

∂ẍ

∂θ
=
φ

m

∑

i,j

∂Fnij

∂θ

∂ẍ

∂φ
=

1

m

∑

i,j

(
Fnij + φ

∂Fnij

∂φ

)

(D.15)
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∂ÿ

∂x
= − θ

m

∑

i,j

∂Fnij

∂x

∂ÿ

∂y
= −ky

m
− θ

m

∑

i,j

∂Fnij

∂y

∂ÿ

∂z
= − ẏ

m

∂cy
∂z

− θ

m

∑

i,j

∂Fnij

∂z

∂ÿ

∂θ
= − 1

m

∑

i,j

(
Fnij + θ

∂Fnij

∂θ

)

∂ÿ

∂φ
= − θ

m

∑

i,j

∂Fnij

∂φ

(D.16)

∂z̈

∂x
=

1

m

∑

i,j

∂Fnij

∂x

∂z̈

∂y
=

1

m

∑

i,j

∂Fnij

∂y

∂z̈

∂z
= − ż

m

∂cz
∂z

+
1

m

∑

i,j

∂Fnij

∂z

∂z̈

∂θ
=

1

m

∑

i,j

∂Fnij

∂θ

∂z̈

∂φ
=

1

m

∑

i,j

∂Fnij

∂φ

(D.17)

∂θ̈

∂x
=

1

Jt

∑

i,j

(
(ȳij − y)

∂Fnij

∂x
+ Fnij

∂ȳij
∂x

)

∂θ̈

∂y
=

1

Jt

∑

i,j

(
(ȳij − y)

∂Fnij

∂y
+ Fnij

(
∂ȳij
∂y

− 1

))

∂θ̈

∂z
= − θ̇

Jt

∂cθ
∂z

+
1

Jt

∑

i,j

(
(ȳij − y)

∂Fnij

∂z

)

∂θ̈

∂θ
=

1

Jt

∑

i,j

(
(ȳij − y)

∂Fnij

∂θ

)

∂θ̈

∂φ
=

2

Jt
(Jt − Js) θ̇φ̇+

1

Jt

∑

i,j

(
(ȳij − y)

∂Fnij

∂φ

)

(D.18)
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∂φ̈

∂x
=

1

Jt

∑

i,j

(
(x− x̄ij)

∂Fnij

∂x
+ Fnij

(
1− ∂x̄ij

∂x

))

∂φ̈

∂y
=

1

Jt

∑

i,j

(
(x− x̄ij)

∂Fnij

∂y
− Fnij

∂x̄ij
∂y

)

∂φ̈

∂z
= − φ̇

Jt

∂cφ
∂z

+
1

Jt

∑

i,j

(
(x− x̄ij)

∂Fnij

∂z

)

∂φ̈

∂θ
=

1

Jt

∑

i,j

(
(x− x̄ij)

∂Fnij

∂θ

)

∂φ̈

∂φ
=

1

Jt
(Js − Jt) θ̇

2 +
1

Jt

∑

i,j

(
(x− x̄ij)

∂Fnij

∂φ

)
.

(D.19)

Note that kx = ky = 0 for the larger, 41mm radius disk. The gradient of the normalized

forces and torques with respect to q is thus

∇qf =




∂ẍ
∂x

∂ẍ
∂y

∂ẍ
∂z

∂ẍ
∂θ

∂ẍ
∂φ

∂ÿ
∂x

∂ÿ
∂y

∂ÿ
∂z

∂ÿ
∂θ

∂ÿ
∂φ

∂z̈
∂x

∂z̈
∂y

∂z̈
∂z

∂z̈
∂θ

∂z̈
∂φ

∂θ̈
∂x

∂θ̈
∂y

∂θ̈
∂z

∂θ̈
∂θ

∂θ̈
∂φ

∂φ̈
∂x

∂φ̈
∂y

∂φ̈
∂z

∂φ̈
∂θ

∂φ̈
∂φ




. (D.20)

Similarly, the partial derivatives of the normalized generalized forces and torques with respect

to wtf are

∂ẍ

∂wtf

=
φ

m

∑

i,j

∂Fnij

∂wtf

∂ÿ

∂wtf

= − θ

m

∑

i,j

∂Fnij

∂wtf

∂z̈

∂wtf

=
1

m

∑

i,j

∂Fnij

∂wtf

∂θ̈

∂wtf

=
1

Jt

∑

i,j

(
(ȳij − y)

∂Fnij

∂wtf

)

∂φ̈

∂wtf

=
1

Jt

∑

i,j

(
(x− x̄ij)

∂Fnij

∂wtf

)
,

(D.21)
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and the corresponding gradient of f is

∇wtf
f =




∂ẍ
∂wtf

∂ÿ
∂wtf

∂z̈
∂wtf

∂θ̈
∂wtf

∂φ̈
∂wtf




. (D.22)

The gradient of the normalized forces and torques with respect to q̇ is given by

∇q̇f = −




cx
m

0 0 0 0

0 cy
m

0 0 0

0 0 cz
m

0 0

0 0 0 2φ(Js−Jt)φ̇+cθ
Jt

2φ(Js−Jt)θ̇
Jt

0 0 0 2φ(Jt−Js)θ̇
Jt

cφ
Jt




. (D.23)
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