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THERMODYNk~lCS AND KINETICS OF PHASE SEPARATION 

D. de Fontaine 

Lawrence Berkeley Laboratory 
Department of Materials Science and Mineral Engineering 

University of California 
Berkeley, California 94720 tiSA 

1. 1~7RODUCTION 

The art of the Physical Metallurgist is the control 
of properties through microstructure. Microstructure, 
in turn, is controlled by bringing about certain phase 
changes, usually carried out far from thermodynamic equi­
librium. Of central practical importance, then, are tem­
perature-time-transformation (TTT) diagrams, of the type 
shown in Figure 1. Such diagrams determin~d expErim~n­
tally, indicate to the alloy designer, after ho~ long 
(t • time) an isothermal heat treatment (T • temperature) 
will yield a given new phase B (or mixture of phases) 
from a parent o phase, stable above the thermodynamic 
u * B equilibrium temperature To. Two T-vs.-log t curves 
are usually plotted: one (full line) which indicates the 
"star.t" of the transformation when,' say 1% of Cl has 
transformed, and an "end" curve (dashed line) when, say 
994 of o has transformed. Considerable use is made of 
TTT diagrams in the heat treating of steels, for example 
(1). 
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Figure 1. TTT diagram (C-curve) for a plain carbon 
eutectoid steel. 

A typical diagram for an alloy steel is shown in 
Figure 2. lt is seen that the C-shaped curve of Figure 
has become an S-shaped curve. This feature is thought to 
be due to the-appearance; at lower transformation tempera­
tures, of a variant of the B phase, say 8', for which a 

separate C-curve might exist, and which could be deter­
mined experimentally were it not for the interference of 
the stable product 8. The S-curve can then be thought 
of as resulting from the combination of two or more C­
curves. Not only can a C-curve transform to an S-curve 
on alloying, but the whole "start" curve often shifts 
laterally to much longer aging times. Slower transforma­
tion rates may be beneficial for transformations in 
steels in order to produce a-Martensic product which ~p­
pears from y (Austenite) almost instantaneously bela~ a 
certain temperature, "indicated by the horizontal line 

.labeled Ms in Figure 2. Therefore,in order to produce 
Martensite upon continuous cooling from a temperature in 
the stable y range, it is necessary to prevent formation 
of the normal transformation products (pearlite, bainite), 
hence to avoid the "nose" of the C-curves. Clearly a 
shift of the transformation curves to longer times will 
promote the formation of martensite under far less severe 
quenching conditions. · 

Y (Unstable l 

10 
Time- seconds 

Figure 2. TTT diagram (S-curve) for a 0.33% C, 0.45% 
Mn, 1.97% Cr steel. 

It is quite impossible to predict theoretically the 
TTT diagram for .a given alloy of given composition. At 
best, one can attempt to understand the mechanisms under­
lying such basic features as: the transition temperature 
To, the shapes of the individual C-curves, the transfor­
mat'ion rates. The most basic concept required is that of 
nucleation of a ne~ phase or phases (8) from the parent 
(o). Hence, the major portion of this article will be 
devoted to nucleation theory, with emphasis placed on 
the fundamental difficulties encountered in trying to 
develop a tractable model valid for transformations near 
and far from equilibrium states. Indeed, even for the 
simplest of physical situations, homogeneous nucleation 

This manuscript was printed from originals provided by the author. 
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in single~component fluids, the nucleation problem turns 
out to be one of the most difficult ones encountered iri 
the physical sciences. 

There exists a number of excellent reviews or text­
books which cover substantially the same material as 
presented here in greater or lesser detail; in particu­
lar, there is a very thorough treatise of J. W. Christian 
entitled "The Theory of Transformations in Metals and 
Alloys" (2). The basics of phase transformations in 
solids has also been reviewed more succintly by a number 
of authors, one of the best expositions being that of 
D. Turnbull (3). Nucleation Theory has been covered, 
from the metallurgist's viewpoint, in two reviews by 

,K. C. Russell (4, 5). The latter very recent article 
constitutes an excellent introduction to the extensive 
work on nucleation in solids by the Aaronson-Lee-Russell 
school. In that context, the didactic article of H. l. 
Aaronson (6) should prove to be very valuable to students 
in this field. Some fundamental aspects of nucleation 
were covered in a short article by J. W. Cahn (7); spi­
nodal dec'omposition was covered by the same author (8) 
and also by J. H. Hilliard (9) and the present author 
(10). Both topics are treated together in a most lucid 
and complete manner by Martin (11). This latter article 
~s the text of a course given at the summer school of 
Aussois (France) ·in 1978. The courses· taught there 
covered v'irtually every important aspect of phase trans­
formations in Materials Science, and were recently pub­
lished (in English) in book form. The reader interested 
in the more theoretical aspects are referred to the ar­
ticles by Reiss (12, 13), Langer {14, 15), Binder (16, 
17) and their co-workers. Nucleation thermodynamics, to 
be covered presently, follows the classic texts of Gibbs 
(18) and of Landau and Lifshitz (19). 

2. NUCLEATION THERMODYNAMICS 

Because of ·problems related to anisotropic elastic 
strain energy and interfacial energy in solids, only 
fluid phases will be considered here, more specifically, 
condensed fluids, 1. e., multicomponent liquids. At equi­
librium, fluctuations in density and/or concentration 
constantly occur. Occasionally, in a small region, a 
fluctuation so large may arise that it becomes more sta­
ble than the outlying region and actually grows, or ma­
tures, at the expense of the latter. In that case, it 
is said that a supercritical fluctuation has been 
created, or that a nucleation .event has taken place. 

Supercritical fluctuations are usually highly im­
probable and are characterized by large local departures 
from average concentrations or densities. A schematic 
representation of a concentration fluctuation in a two­
component solution is given in Figure 3a, each vertical 
bar being located at an atomic position (along one di­
mension) and representing the concentration distance. 
from pure A or pure B to the average B concentration c 0 

For convenience, an averaging procedure, called coarse­
graining, is then introduced: the discrete picture of 
Figure 3a is made continuous by counting up and down 
bars in a small region of space (coarse grain) so as to 
define a local average concentration c, plotted as a 
deviation from the overall average in Figure 3b. The 
size for these coarse.grains over which the average is 
taken gives rise to some difficulties, as discussed, 
for example, by Langer (15, 20) ;· 

Let us now determine the probability of formation· 
of such a fluctuation in an otherwise uniform system, 
in the sense of the coarse-graining just introduced. To 
that effect, let us consider a closed system of finite 
volume V embedded in a very large reservoir, the latter 
having constant pressure P and temperature T. The res­
ervoir and system together comprise a very large "uni­
verse" assumed to be bounded by perfectly rigid adia­
batic walls. Any change occurring in the system gives 
rise to changes in the extensive variables U, V, S (in­
ternal energy, volume, entropy) of the system and of 
the reservoir (U, V, S). We have 

CIU = CIU + CIU D 0 tot 

CIV tot 
c CIV + CIV = 0 

65 tot = CIS + CIS ; 0 

8 

(o) 

I I I 
co 
A II 

(b) 
____ _...l!!!.y;-: __ \:--+' ~--:: 

I 
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(c) 

----------------~--------~-------co 
Distance 

Figure 3. Schematic representations of a (one-dimension­
al) concentration fluctuation in a binary 
alloy A-B. (a) atomic distribution about the 
mean c 0 , (b) diffuse interface profile, (c) 
sharp interface profile. 

For the reservoir, 

so that 

-TCIStot = CIU - TCIS + PCIV = w , 

where W is seen to be the reversible work of formation 
of the fluctuation. 

The probability of formation of an unlikely fluctua­
tion is approximately given by 

where wt is the number of ways of realizing that type of 
fluctuation, and w0 that of realizing the uniform phase. 
By the microcanomical formula 

S k ln w , 

where k is Boltzmann's constant, we have 

so that 

,., 
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(1) 

Since we further assume that, at all times, the tempera­
ture T and overall pressure·P of the system are equal 
to those of the reservoir, we shall henceforth drop 
the bars over T and P. Hence, the work of formation 
becomes 

W a t:.F + Pt:.V , 

F being the Helmholtz free energy U - TS. 

2.1. Sharp Interface Model 

(2) 

It is now necessary to express W in terms of varia­
bles internal to the system;_ local concentrations (mole 
fractions), volumes, etc. What is then usually done is 
to further approximate the fluctuation profile, such as 
that of Figure 3b, by a simpler one, such as that of 
Figure 3c, consisting of the o~ter region ( 0 ) of volume 
v0 of uniform concentrations c:i, and partial molar vol­
amesvi, and an inner region (t) of volume. vt tf uniform 
concentrations cl and partial molar volumes vi (i = 1, 
2, ... n). Such is .the so-called capillarity approxima­
tion. The location of the sharp interface separating 
the fluctuation (t) from the homogeneous region ( 0 ) must 
be decided by an appropriate convention; Gibbs (18) 
chooses that which makes the interfacial energy o equal 
to a surface tension defined in the usual mechanical 
way. With this choice, and for a spherical volume vt, 
Gibbs further shows that o is independent of the sphere 
radius r. 

The outer region ( 0 ) may be considered as a bulk 
phase and classical (bulk) thermodynamics may be applied 
to it. The (t) region, however, requires special con­
sideration: although actually of inhomogeneous nature, 
the fluctuation can find itself in (unstable) equili­
brium with the bulk ( 0 ), in which case the chemical 
potentials u! are re§arded as numerically equal to the · 
corresponding ones Ui in the bulk ( 0

). The u! are then 
defined operationally as· the change in Gibbs free energy 
(G = F + PV) when a small amount of substance i is add­
ed to the vt region at constant P and T. For a bulk 
phase, the concentrations ci do not change in such an 
operation; but in the present case, since the fluctua­
tion is so small in extent, the c!'s cannot be main­
tained constant. Hence, in general, the u! so defined 
are not those which would be found in a bulk phase of 
identical average concentrations and pressure. 

With these words of caution, we may now proceed. 
The particularly· clear treatment given by Landau and 
Lifshitz (19) will be followed. In Equation (2), the 
t:.'s have meaning of "final state" (system containing 
fluctuation t) minus "initial state" (system completely 
homogeneous). Since V0 is assumed to be so much larger 
than v·;·, the transfer of Nt moles (or atoms) of con­
stituents from bulk to fluctuation causes no appreciable 
change in state ( 0), so that the bulk phase may be sub­
tracted out of Equation (2). Denoting initial and final 
states by subscripts 1 and 2 we have 

since the final state (with fluctuation) contains an 
interface of area A, say, and of (isotropic:) surface 
tension o. Indeed, because of surface tension, the 
fluctuation will be under .pressure pt » P0 = P. Then, 
after adding and subtracting the term ptvzt, we have 

(3) 

where 

(4) 

and where Pt:.V 0 , a term small compared toW at ordinary 
pressures, has been discarded. In Equation (3), G1 
stands for the free energy required to extract N1 moles 
(molecules, atoms) of i (i = 1, ... n) from the bulk at 
T and P: 

Since this expression is linear in c:1, with coefficients 
u~, it represents, by the intercept rule, a point of 
coordinates c:! on the plane tangent at ci to the Gibbs 
free energy surface of the homogeneous phase a [see 
Figure 4 for a binary example). Since 

t . 1 where Ui are the true chemical potentials in the f uc-
tuation region, under pressure pt, we have, under (un­
stable) equilibrium conditions [~i = uiJ 

and hence, from Equation (3) 

(S) 

an important formula, first given by Gibbs. 

The work of formation W can be· expressed in a more 
convenient way by integrating the Gibbs free energy of 
(t) from pressure P0 to pressure pt, 

(6) 

the latter equality being obtained by considering the 
(t) material as incompressible. Thus, by Equations (4) 
and (S) 

w Vt'G A 
L.l v + 0 ' (7) 

where 

is .the vertical distance from the tangent plane to G0 (P) 
at c:i to the free energy surface Gt at the ambiant pres­
sure P0 at composition c!, the Gibbs functions being 
normali;ed to unit volume of (t). This "tangent con­
struction" is illustrated in Figure 4. A tacit assump­
tion is usually made: that t:.Gy refers entirely to Gibbs 
free energy surfaces of bulk phases. Actually the deri­
vation of Equation (6) was performed on free energies 
of non-uniform flu.ctuation regions so that G0 may be 
regarded as corresponding to a point on the Ga free 
energy surface of bulk a phase (parent phase), which 
is correct, and Gt may then be regarded as corresponding 
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to a point on the cS free energy surface of bulk nu­
cleating phase, at pt and T, which is not strictly 
correct. This may lead to some confusion, or to 
alternate definitions of chemical potentials, as 
will presently be shown. In both Equations (5) and 
(7) the first term in the work of nucleation is nega­
tive and represents the driving force for nucleation. 
The second term represents the positive work of forming 
the interface. 

0 
A c-

I 
I 
I I 

I 
I• 

c; cf I 
B 

Figure 4. Gibbs free energy curves for a binary 
fluid. Concentration c~ is that obtained by 
maximizi~g the quantity 6g (tangent construc­
tion), c2 might be the concentration of the 
critical nucleus if the concentration depen­
dence of the interface were taken into account. 

The internal variables characterizing the fluctua­
tion in equilibrium must now be dftermined. For this 
purpose, the fluctuation volume V will be assumed 
spherical of radius r. We may then take r and n- 1 in­
dependent concentration variables as the internal vari­
ables of Wand express the condition of equilibrium thus: 

(i=l,2, .•. n-1). 

The first condition yields 

(8) 

since the free energies at constant T, P, c1 ••• c are 
invariant, and since cr is independent of radius ofncurva­
ture. Equation (8) yields the critical radius r*: 

r* 2cr 
a t;p;f 

2cr 
- 6Gv* 

Spherically symmetric fluctuations with r < r* should 
decay, those with r > r* should spontaneously grow. 

(9) 

The denominators 6P* or 6Gv* are determined by the 

second condition. If the interfacial energy cr is 
independent of concentration, this condition requires 
the vertical distance between the G0 tangent hyperplane 
and the cS surface to be a maximum. The critical compo­
sition c~ (i = 1, ••• n) is thus obtained by constructing 
another tangent plane to the lowest portion of the cB 
surface ·parallel to that at c~ to ca. This is shown for 
a binary example in Figure 4. This approximation is 
fairly reliable if the degree of supersaturation (or of 
undercooling) is small, i.e., if 6Gv is small in magni­
tude. 

If supersaturations are large, and particularly if 
the coarse-grained free energy of a condensed-phase solu­
tion is given by a continuous smooth curve such as that 
of Figure 5, then cr can no longer be considered as com­
position-independent. In that case, the search for equi­
librium is best carried out, following Reiss and Shugard 
(R-S, 13), by taking derivatives of W with respect to an 
alternate set of independent variables, the fractional 
number of moles N1, N2 ••• Nn: 

4 

IL 2 
~ 
~ .. 
c ..., .. 
~ 0 

-2~--------~-~~----~~ • .-----~o~----~ ••• --~.~~----------~ 
Concent rot ion 

Figure 5. Continuous (coarse-grained) free energy 
curve for use in coherent nucleation. Curve 
is plot of Equation (49). 

One then readily obtains the equilibrium condition (13) 

(10) 

the subscripfs on V and cr indicating derivatives with 
respect to Ni' In this equation u~ is the chemical 
potential of i in bulk 8 at pressure P0 • The first two 
terms together yield u~(p8), the chemical potential of i 
in bulk 8 at the pressure of the ~ritical fluctuation, 
or critical nucleus. Surprisingly, the condition of 
equality of chemical potentials no. longer holds here 
because of the presence of the correction term Acr1 . 
Thus, as announced, this derivation has led to an al­
ternate definition of chemical potentials (U~; ut>. 
which is, however, a useful one, as it allows the con­
centration of the critical nucleus to be determined in 
cases of large supersaturations. Indeed, R-S (13) show 
that, as c~ tends to the so-called spinodal concentra­
tions ci, at which the second derivatives of G with 
respect to concentration vanish, c! correspondingly 
moves inward towards the same spinodal composition. The 
same conclusion can be reached by. adopting quite a dif-

• 

\ j 

• 
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ferent model for the critical nucleus, as proposed by Cahn 
and Hilliard (C-H, 21, 22). This model will be examined 
later (Section 2.2). 

The work of formation of the critical nucleus can 
be obtained by substituting for r*, from Equation (9) 
into Equations (5) or (7): 

w* (11) 

It is seen that, as the concentration of the a super­
saturated phase re~ches the equilibrium one given by 
the common tangent construction, the critical radius r* 
and the critical work W* both tend to infinity as ~P* 
~c; both go to zero. 

At this point, it is already possible to gain some 
qualitative insight into some of the features of the 
TTT diagram of Figure 1. Firstly, the temperature To 
there indicated is obviously the thermodynamic equilib­
rium tempgrature at which ~Gv vanishes, i.e., for which 
we have ~i(P 0 ) = ~~(P 0 ). Above To, the a phase must be 
stable toward any S-type fluctuations, of arbitrary mag­
rtitude. Below·To, a should decompose at least partially 
to 8, according to equilibrium thermodynamics. The 
kinetics of the appearance of transformation products 
may be very slow, however. In particular, for low 
undercoolings, w* is extremely large so that, by 
Equation (1), the probability of finding a critical 
fluctuation, which will initiate the transformation, 
will become vanishingly small. Thus, just below To, we 
expect very long transformation times, as obs-erved (Fig­
ure 1). At the other extreme,. as T tends to zero ab­
solute, w*/kT will tend to infinity, again lengthening 

·the transformation times immeasurably. At some inter­
mediate temperature, a shortest transformation time is 
expected. A more quantitative description of the C-curve 
must be deferred, however, until a kinetic treatment is 
given (Section 3). 

2.2. Diffuse Interface Model 

One may decide not to make the Gibbs construction 
of "squaring the profile" in Figure 3; then, since a 
sharp interface term AD may no longer be included in 
the work W, it is necessary to take the fluctuation in­
homogeneity into account in another way. This is done 
formally by allowing each volume element dv to possess 
a local free energy f(c) dv, where f is a Helmholtz free 
energy per unit volume evaluated in bulk material having 
composition c equal to the average composition c(x) in 
volume dv about point x [In this section, we shall con­
sider binary solutions-only, for simplicity, so that 
there will be but one independent concentration varia­
ble, c, defined to be that of the minority component in 
the solution]. Such is not, however, the only contribu~ 
tion to the volume element's free energy; no matter how 
small dv be taken (in the continuum approximation) its 
composition can never, in general, be regarded as homo­
geneous. To take this non-uniformity into account, one 
must assume that the local free energy contains terms 
depending on the composition gradient (21, 22, 19). 
Cahn and Hilliard show that _the first correction to the 
local free energy is proportional to the gradient of 
concentration squared (gc) 2 • This is because, by sym­
metry, the gradient correction can only depend on the 
square of the nabla operator g, the other g 2 , the La­
placian, being then incorporated into the square gra­
dient. In this model, then, the free energy of an ar­
bitrary volume V of a binary solution is expressed as a 
sum of elementary contributions, thus (21) 

F = fv [f(c) + K(gc) 2 ] dv (12) 

where K is the so-called gradient energy coefficient, 

assumed to be approximately composition-independent. 

To apply Equation (12) conveniently to the nuclea­
tion problem, one must assume that the free energy f(c) 
varies smoothly with c, as shown in Figure 5. Then the 
"bulk" free energy f(c) is we_ll-defined everywhere at 
given temperature T and pressure P. The critical nucleus 
is now that spherically.symmetric fluctuation which makes 
the functional F stationary for all small changes 6c(x) 
of the composition profile which leave to average· con:: 
centration c 0 invariant: 

This auxiliary condition introduces a Lagrange multiplier 
A, so that the Euler equation for this variational prob­
lem is 

<lL V•..l!:,_ = 0 
<lc - age (13) 

where the Lagrangian is 

L(c,gc;1!') = f(c) + K('ic) 2 
- !.(c- c 0

) (14) 

There 'esults the differential equation 

(15) 

where the accent denotes differentiation with respect to 
c. 

Let us place the origin of a spherical polar coordi­
nate system at the center of the nucleus. Far away from 
the nucleus, the concentration must be very nearly c 0

, 

and all gradients must vanish: Then, by-Equation (15), 
the multiplier A must be equal to f~, the slope of the 
tangent to f(c) at c = c 0

• The differential equation 
(15) then becomes, explicitly, 

~de= f'(c)- f' 
r dr 0 (16) 

This second-order ordinary differential equation is non­
linear in the profile function c(r) because of the pres­
ence of the derivative f'(c). Since the free energy 
curve, in order to have the features apparent in Figure 
5, must be Taylor-expanded at least to fourth order in 
c, f'(c) must be at least a polynomial of de~ree three 
in c. Hence, the critical nucleus profile c (r) must 
be obtained by numerical· integration of Equation (16). 

The critical work of nucleation w* is obtained by 
inserting the (unstable) equilibrium profile c* into 
Equation (12) and integrating, after subtracting off 
the free energy of the uniform solution c 0

: 

w*- ~F = 4n r (M(c*) + K[~~r] r 2 dr (17) 
0 

where 

It is seen thatthe latter expression. in different nota­
tion, is just the vertical distance from the tangent 
(at c 0 ) to the free energy curve at c*, as in the 
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classical treatment of the previous section. 

Cahn and Hilliard (22) obtained numerical solutions 
for average concentrations c 0 just inside the phase 
boundary ca (common tangent rule), just above the spi­
nodal [cs, solution of f" (c)· = 0], and at two concen­
trations intermediate between these two, These authors 
concluded that the concentration at the center of the 
nucleus was such as to make the driving force ~f(c) 
negative, as expected on "classical" grounds. Also, 
for c 0 just below but close to ca, the nucleus resembled 
the classi~al one with composition at the nucleus center 
close to c~, and the nucleus radius becoming very. large, 
along with the work of nucleation w*. Also, the inter­
face portion of the profile (high gradient) tended to be 
relatively narrow, with interfacial energy close to that 
given theoretically for a flat interface. When c 0 was 
made to move away from ca, the critical radius at first 
decreased along with the work of nucleation, as in the 
classical case. However, unlike the classical model, 
the concentration at the center of the nucleus tended to 
decrease towards the average c 0 and the interface became 
increasingly diffuse. Finally, for c 0 close to the 
spinodal cs, the critical radius r* a~ain became un­
bounded whilst the work of nucleation continued to drop, 
becoming zero for c 0 at cs. In a sense, then, the 
c~itical nucleus at the spinodal is the whole uniform 
solution itself, which therefore now finds itself in­
herently unstable. 

These results are of central importance for the 
theory of homogeneous nucleation, i.e., in cases where 
the nucleating phase (S) may be regarded as having the 
same coarse-grained .free energy function as the parent 
phase (a). In turn, this implies that a and Shave 
basically the same crystal structure, or both·be fluids 
of similar nature. Or, to put it yet differently, the 
difference between the bulk ( 0 ) and the nucleus (t) must 
be such as to be described entirely by the change in 
value of a small number of continuously varying "order 
parameters" ~i' in the present case of a binar~ solution, 
the unique concentration difference ~ = ct - c . 

Unfortunately, the difficulty encountered in solving 
the differential equation (16) has thus far inhibited 
the application of the Cahn and Hilliard theory to prac­
tical cases. There exists, however, a simplified treat­
ment which is, in some sense, intermediate between the 
full diffuse interface treatment and the classical one. 
The idea is based upon the Rayleigh-Ritz method of 
minimizing a functional by parametrizing the unknown 
function. The integration is then performed on the 
trial function containing a few judiciously chosen para­
meters, and the resulting integral is minimized with 
respect to those parameters. Such a procedure was 
adopted by this author (23) who chose a standard sharp 
interface spherical profile, convoluted by a Gaussian 
curve in order to produce a diffuse interface for which 
gradients could be evaluated according to the C-H recipe. 
Two parameters were used: the order parameter ~ (de­
fined above, also called concentration amplitude in the 
previous work) and an average radius r. The two para­
meters scaled the profile in any way desired. With this 
simplified treatment, the main conclusions of the ori­
ginal C-H treatment could be recovered with no great 
computational effort. It was also concluded, by examin­
ing the complete W(~,r) surface for various values of 
c 0 (at constant T), that the singularity of r* at the 
spinodal could have but very mild consequences and that 
there could be no real discontinuity of mechanism at the 
spinodal, as far as decomposition kinetics were concerned. 
These conclusions have been well substantiated by more 
recent work of Langer (20, 24), Binder (16), Lebowitz 
(25) and coworkers. We shall return to this question in 
Section 3.4. 

One.may also consider classical nucleation as a 
highly simplified Rayleigh-Ritz treatment of C-H formu­
lation. This is done by performing the integration (17) 
in three portions 

r* Jr* + 6r [ 
w* = 

4
TI { J 0 + r* +. r* + 6r} . 

The first and third integrals are performed over regions 
of roughly uniform compositions, so that the gradients 
are taken to be zero. The first .integral then yields, 
by the mean value theorem, 

whilst the third integral vanishes along with ~f(c 0 ). 
The second integral is over a spherical shell of thick­
ness 6r and is naturally identified with the interfacial 
free energy Acr, in the present case, 4nr* 2a. If a is 
assumed to be concentration-dependent (as calculated, 
say, by the C-H formula), one recovers the treatment of 
R-S (13). If a is considered to be concentration-in­
dependent, one recovers the standard classical treatment 
but then, conclusions regarding the behaviour of r* and 
W* near the spinodal are irrevocably lost. 

3. NUCLEATION KINETICS 

Although we now know from Equation (1) that the 
probability of finding an embryo located on any one of 
the N lattice sites of a crystal will be 

~ = Ne-W/kT , (19) 

still, we have as yet little information about the actual 
rate of formation of nuclei, i.e., about nucleation 
kinetics per se. Such information can be obtained in 
an approximate manner by treating the problem in a way 
first suggested by Farkas (26), Volmer and Weber (27), 
Becker and Doring (28). The original idea was extended 
by Reiss to the problem of binary solutions (12). We 
shall treat here directly the multicomponent case, in 
a simplified version of the more complete (and more 
correct) treatment of Langer (14, 15) and of B-S (16). 

3.1. Cluster Diffusion Equation 

We begin by considering that the growth of a clus­
ter of atoms, or embryo, or protonucleus, takes place 
by chance collisions with smaller ones. Likewise, decay 
is caused by a cluster's splitting up into smaller sub­
units. Clusters are considered to be essentially un­
localized and non-interacting. Although B-S (16), for 
example, allow the addition or removal of arbitrary sub­
units to a given cluster, and even the coagulation of 
a pair of clusters to· form a larger entity, we shall 
follow the usual practice of allowing growth or decay 
by the addition or removal of single atoms (or molecules, 
or monomers) only to the ·embryos. Graphically, a clus­
ter can be thought of as moving by discrete nearest­
neighbor jumps in an n-component lattice (n = number of 
molecul~r species), as indicated schematically (for n = 
3) in Figure 6. 

At given· time t, ·let the concentration of cluster 
characterized by coordinates N1, N2 •.• Nn be C(NJ, N2 
. .. ~;t). or C(~) for short, where, as above, Ni denote 
number of atoms (or molecules) of type i. Of course, 
it is assumed that the embryos all have some standard 
simple shape, such as the spherical one. Additional 
variables could be included to take care of changes 
of shape, but this will not be done here. 

The time rate of change of embryo concentration may 
be written formally as 
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(20) 

where the summation is over all positive and negative 
directions in multicomponent space (j = 0 excluded). 
Hence, this summation represents the discrete-space 
divergence of the flux vector in direction j: 

In this 'equation, BN is the intrinsic rate of attachment 
j 

of atoms of type j to a cluster containing N1 ... ~ 
atoms, wl;lilst CtN; + 1 is the intrinsic rate of loss of 
atoms of type j !rom a cluster containing {N; + 1} : 
N1, N2, •.. , Ni+l• .•. No atoms. Bothetana Bare 
positive quantities. Thus, Equations (20).and (21) 
merely indicate that the rate of change of concentration 
of clusters at ~ is made up of single nearest-neighbor 
steps to ~ from neighboring sites on the n-dimensional 
lattice of embryos (Figure 6), or away from N to nearest 
neighbor sites. -

Figure 6. "Lattice" .of embryos for a three-component 
system. Jumps are from center (N) to (or 
from) nearest neighbor sites. -

Let us now consider the equilibrium distribution 
of clusters for which all fluxes Jj vanish identically 
everywhere. Then, if we restrict consideration to those 
clusters small enough so that their work of formation W 
is positive, we shall have at equilibrium, by Equation 
(19), the Boltzmann-like distribution 

(22) 

Then, 

and therefore 

(23) 

We now make the ~aring assumption (detailed balancing) 
that the relation (23) for the evaporation rate Ct is 
valid even for non-equilibrium situations. By eliminat­
ing Ct from Equations (20) and (21) by means of (23) we 
then find: 

oC(N) n --at = - L [BN 
j=l j 

Co(N)[C(~) C({Nj + 1}) ) 
- C 0 (~) - C0 ({Nj + 1}) 

For Ni sufficiently large, differences may be replace~ 
by derivatives to yield the continuity equation 

(24) 

with flux given by 

(25) 

where the explicit N-dependenae has been left out for 
simplicity. Equation (25) indicates that the embryo flux 
is proportional to the gradient of a concentration ratio 
times a positive mobility Bj· This is clearly seen when 
Equation (25) for the components of the flux vector J 
are written in matrix notation: -

BX (26) 

here ~ is a generalized force vector and B is an nxn 
mobility matrix. In Equation (26), B is diagonal, but it 
need not be. Indeed, in Binder's (16) or Langer's (14) 
analyses, where growth or decay of clusters can be ac­
complished by more general mechanisms than the monomer 
addition (or deletion) considered here, the mobility 
matrix is non-diagonal. The same is true for Russell's 
(29) "linked-flux" mechanism. In general, then, the B 
matrix need b~ merely symmetric (by the Onsager reci-­
procity relations) and positive definite (by the Second 
Law): 

3;2. Solution of Kinetic Equation 

Equations (24) and (25) may be combined to yield a 
diffusion equation for the cluster concentration C(~,t): 

ac ~ a [B co a(c/c 0
) 

at = £ aNi ij aNj 
i=l 

(27) 

In Equation (27), off-diagonal mobility elements have 
been included for generality. This linear equation is 
first-order in timet and second-order in "space" N1, .•. 
Nn, the space itself being anisotropic because of "skewing" 
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due to the mobility matrix. Also, space is inhomogeneous 
since the coefficients of the o/oNj differentials depend 
on position through C0 , i.e., through the work W(~). 
Thus, for n > 1, even for steady-state, the diffusion 
equation can only be solved numerically. Note that 
Equation (27) can also be written in the form of a 
Fokker-Planck equation 

where the N-dependence of B has been neglected for the 
purpose of the qualitative discussion which follows. 

The physical situation represented by the differ~n­
tial equation (27) or (28) may be visualized with the 
help of Figure 7 which depicts schematically a two-dimen­
sional case: an ample supply of monomers, (components 
1, 2) is injected at the origin of the N1,N2 coordinate 
system. Since the concentration of monomers at the 
origin is high, clusters will move away, their growth 
(i.e., movement towards larger Ni-va~ues) being driven 
b~ the cluster concentration gradient represented by 
the first term in Equation (28). The second term, 
whose effect is due to a force proportional to the 
gradient of the W-surface, opposes this motion. Never­
theless, after some incubation time, the first embryos 
will appear at the top of the saddle point or pass in 
the energy surface W whose contours are plotted schemat­
ically in Figure 7. From the critical nucleus position 
(*) onwards, it's downhill all the way, and ever-growing 
nuclei will tumble down into the W ~ 0 level pool below 
(indicated by cross-hatching). Ripe clusters are .then 
skimmed off at large-Ni points opposite the origin, along 
the edge of the shallow pool (dark lines). The boundary 
conditions are thus: constant unit concentration of 
monomers close to the origin,' and, at the other extreme, 
zero concentration of large clusters at the pool edge, 
a completely absorbing boundary. All other boundaries 
are reflecting ·(shaded, Figure 7). 

Figure 7. Schematic of steady-state nucleation for a 
binary system. Contour lines are those of 
surface W(N 1,N2), lines with arrow are flow 
paths of embryos. Shredder-sorter at· bottom 
breaks up mature nuclei into individual mono­
mers and pumps these back up to the holding 
silos at the origin. 

After having been drained off, the large clusters 
are broken up into constit~ent monomers in the shredder­
sorter indicated below the pool, and pumped .back up to 
the holding silos at the origin. After some time, a 
steady-state condition will result, with 

0 (29) 

for all points in N-space, the total flux being fixed by 
the boundary conditions, by the height W* of the saddle 
point, and, to a lesser extent, by the shape of the W­
surface itself, in particular, by the magnitude of the 
principal curvatures of W at the saddle point. The 
integrated steady-state nucleus flux J* at the pass is 
the important quantity to calculate. The work of operat­
ing the pump must be equivalent to the work of nucleation 
W*, the energy surface with its saddle point providing 
the impedence to total matter flow Jt. If the outside 
flow is interrupted by closing off all inlets and outlets, 
an equilibrium condition will eventually result, charac­
terized by 

(all j , all N) 

everywhere. The concentration C(~,t) for all N and all 
times will thus be C 0 (~), given by Equation (2Z). 

The start curve in TTT diagrams should be determined 
theoretically as the locus in temperature-time space at 
which an appreciable nucleation flux over the pass is 
first observed. Thus, the full time-dependent differen­
tial equation should be solved. In practice, the simpler 
procedure is adopted of locating the start curve by the 
inverse of the nucleation rate, i.e., of the steady state 
flux J* (see Section 4.1). 

Even the calculation of J* is no simple matter. 
Langer (14) and Binder (16) give rather elaborate treat­
ments of saddle-point flux determination in n-component 
systems. To simplify matters, we shall here adopt the 
more transparent, though not quite correct procedure used 
by Reiss (12) for binary systems. The trouble with the 
latter treatment is that it assumes that the vector J* 
at Ni* is along the direction of maximum negative curva­
ture at the saddle point. Unfortunately, this is not 
justified, as the influence of the mobility matrix ~ 
is such that, in general, cluster flux will be biased 
in the direction of the fastest moving monomer. Actually, 
then, one should first render the space isotropic by a 
suitable coordinate transformation, as done, for instance, 
by Russell (29) in a special case; then J* can be taken 
as parallel to the line of steepest descent of W* in the 
new coordinate system. Unfortunately, ~y so doing, one 
buries the elements of the mobility matrix inside the 
coordinate transformation, so that such important para­
meters as intrinsic diffusivities disappear inside cer­
tain eigenvalues with which the final answer is expressed. 
For this reason, we shall be content here to generalize 
the Reiss treatment to n-component systems, keeping in 
mind that this approximation will tend to work best in 
such situations where the skewing affect of unequal 
mobilities is not too great, and nuclei grow from mono­
mers at constant concentration. 

At the saddle point, the W-surface may be expanded 
to second order 

w* = w(~*l = w0 * + t E (ata~) oNioN. 
i,j=l i j ~· J 

(30) 

where 

(i • 1, ... n) • 

... 
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The linear term in the expansion vanishes because W has 
a horizontal tangent plane at N*. Since the second­
derivative matrix .(W", say) is- symmetric, it is diago­
nalized by a uniquely-defined real orthogonal matrix R 
whose column vectors are the eigenvectors of W, pointing 
along the principal curvature directions. The eigen­
values Ai (i = 1, ... n) of~" measure the curvatures 
themselves. The nature of the problem at hand dictates 
that there shall be one negative eigenvalue, say \1, 
all others being positive. By Equation (30), the ·w­
surface at the saddle point may now be approximated by 

W* (31) 

where the over-line denotes, here and below, variables 
having been transformed by the change in coordinate sys­
tem brought about by the rotation operator R. 

Define transformed fluxes and forces, according to 
the matrix notation of Equation ·(26), by 

J E R.J 

X= RX 

The transformed flux equation reads 

(32) 

where 

(33) 

the dagger denoting the operation of transposition. The 
force components Xi (i = 1, ... n) can be recovered from 
Equation (32) by inversion 

(34) 

We now make the simplifying assumption, discussed above, 
that the flux vector in the rotated coordinate system 
~ is along the line of largest negative curvature of W*, 
i.e., that all the flux at the saddle point is over and 
down the steepest slope of W*. Therefore, by assumption 
we have, 

(J~. 0, ...• 0). 

Consequently, we have, by Equation (34), the very simple 
result 

(35) 

where a11 is the first element of the inverse of the A 
matrix. Expressions for a11 will be given in Section-
3.3. 

The problem of finding the steady-state flux has 
thus been reduced to an essentially one-dimensional 
one, to which ·the standard method of solution of 
Frenckel (30) applies. Equation (35) becomes, explic­
itly 

(36) 

wherP. M*, an effective mobility, denotes the value of 
a 11 - 1 at the saddle point. The integration of Equation 
136) will be carried out in the vicinity of ~*. along 
N1 only, at constant M*. We have, according to the 
boundary conditions specified earlier, 

By using expression (22) for the equilibrium concentra­
tion C0 , and by making use of the quadratic expansion (31) 
for W* we have 

so that 

r ~ co 
1 

J~ = NM* 

The total flux J* over the pass may now be obtained 
~y integrating J~ over the remaining variables (N2, .•• , 
No) in the immediate vicinity of the saddle point to 
obtain: 

-w*0 /kT 
J* = K e 

where the kinetic prefactor K. is given by 

K = NM*ZY , 

Z being the Zeldovich factor 

z = (M)t 
2nkT 

andY being given by an inverse product of the· other 
(positive) eigenvalues: 

(37) 

(38) 

(39) 

(40) 

It is remarkable that the kinetic treatment yields 
a nucleation rate J* proportional to exp(-W*/kT), just 
as was predicted by the thermodYnamic theory. Of course, 
now some new information has been gained: an explicit 
albeit approximate, expression for the kinetic prefactor 
K. As. noted by Reiss (12), for given M* (given mobil­
ities B*ij)• K is larger for larger value of the nega­
tive curvature l>-1l (steep rise to, and descent from 
the pass) and smaller for larger positive curvatures 
(A2, •.• ,An; narrow pass, constricted flux). 
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3.3. Mobility 

For applications to TTT diagrams, 'we are particu­
larly interested in the temperature dependence of the 
integrated steady-state flux J*. Equation (37) exhibits 
a strong T-dependence in the exponential factor, and a 
much weaker dependence in the Z and Y factors, which 
we shall disregard. There are, however, other strong 
exponential temperature dependencies hidden in the 
effective mobility M*. The simplified diagonalization 
procedure used in the previous section, coupled with 
the ass.umption of a diagonal mobility matrix !! enables 
us to write down immediately an explicit expression for 
M* which, as explained above, is given by the reciprocal 
of the first element of the matrix 

where R is an orthogonal matrix (of elements rij) and 
s- 1 is-a diagonal matrix of elements 1/S~. Hence, under 
these assumptions, the effective mobility for an n-com­
ponent system is given very simply by 

M* = ry rh)-l 
6=1 s~ 

J 

sts~ , .. s~ 

where Sj denotes a product of all n S's divided by the 
jth one. 

There remains the difficult problem of finding 
suitable expressions for the mobilities s~ in a multi­
component solid. It is usually assumed (31) that the 
mobility of i is proportional to the rate at which i­
type monomers (atoms, molecules) strike.unit area of the 
nucleus interface. Random walk theory then allows one 
to write s~ as proportional to the cluster surface area 
S, to the concentration (availability) of i monomers in 
the vicinity of ·the cluster, and to an atomic J.ump rate, 
itself proportional to a suitable diffusivity Dt, di­
vided by a mean jump distance. Retaining only those 
terms which will matter in temperature-dependence con­
siderations, we then have: 

(42) 

It is not clear, however, .what_concentration the ci must 
represent, nor precisely what Di means. physically. 
Clearly, at least two important mechanisms must play a 
role: the diffusion of species in the matrix in order 
to feed the growing nucleus, and the rate at which atoms 
can successfully cross the matrix-nucleus interface. 
The problem of matrix diffusion is completely untraceable 
in the present context: as the nucleus grows and mi­
grates, the matrix concentration changes locally; strict­
ly speaking, then, the W energy function itself must 
constantly change in a very complicated way. Generally, 
all these subtelties are ignored; but then how is one 
to take into account the fact that a solute which does 
not partition (i.e., such that its concentration in both 
matrix (ci) and nucleus (c!) is the same) should hardly 
coptr~bute to the overall mobility? An interesting at­
tempt was made by Russell (29) to take such effects into 
account: the two basic mechanisms referred to above 
were considered in an approximate manner by postulating 
the existence of a "shell" of material intermediate be­
tween the matrix proper and the nucleus surface. Then 
two separate rates were defined: that for transfer of 
atoms from matrix to shell (S 0 ) and that for transfer of 
atoms from shell to nucleus (St). The nucleus was as­
sumed to grow at constant composition, this situation 
defining the classical limit, as will be explained in 
the next section. The resulting flux equations turned 
out to be non-diagonal even in the binary solution case 

considered by Russell. After performing an appropriate 
canonical (diagonalizing) transformation, Russell ob­
tained the saddle point flux as 

where the correction term 

-w*/kT 
e 

took into account the fact that a non-partitioning (6 
0) solute does not contribute to matrix diffusion. 

(43) 

We shall adopt here Russell's result for an effec­
tive mobility St by simply lifting Equation (43) out of 
context and writing, by analogy, for multicomponent sys­
tems, 

'(44) 

where .Y~ is a partitioning correction factor, much like 
Russell s 62 , for instance 

(45) 

Here and below, the (t) superscript will be deleted from 
concentrations referring to the nucleus. Let us see 
what Equations (44) and (45) accomplish qualitatively. 
If, say st << Sf, with arbitrary Yi• then 

Hence the slowest mechanism, that of transfer of i 
across the interface, determines the overall rate. 
Likewise, for sf « st. and for .let - cil not too small, 

so that the overall rate will be determined by matrix 
diffusion. Finally, for no· partitioning, Yi ~ 0, 

and only the rate of transfer across the interface in­
fluences the effective mobility of i. 

Note that nucleation in which matrix and nuclei 
have same composition can be handled on an ad-hoc basis 
by this model: in such cases as recrystallization or 
massive transformations, for which the interface is 
necessarily incoherent, all Yi are zero+ and the govern­
ing rates are those determined by the S1 , the interface 
jump mobilities. Coherent nucleation is handled by es­
sentially setting equal to unity the probability that an 
atom successfully cross the interface. 

The overall effective mobility M* will thus be the 
one given by Equation (41), with the S!'s replaced by 
their value from Equation (44). In particular, in the 
binary case (A-B), we have 

(46) 
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where 8 is the angle by which the coordinate system must 
be rotated so that its axes coincide with the principal 
directions of W. Equation (46) was originally derived 
by Reiss (12). In the classical limit of constant­
composition embryo growth, we. may' set (12) 

so that,' to a very rough approximation, we have 

In this equation, we have expressed the effective 
mobilities, following Equation (42), in terms of ef­
fective diffusivities Di, which must themselves be 
evaluated with reference _to Equation (44). The hidden 
temperature dependence of M* is thus to be found in the 
dif fusi vi ties 

(48) 

in which Qi is an appropriate activation energy, the 
preexponential Di,O being only weakly temperature-depen­
dent. 

Consider some typical cases: 

(1) Dilute solution: the concentration of B in the 
matrix phase is very low. Then, in this limit, 

Furthermore, if '8~ « a~ (the usual case), M* will be 
proportional to the intrinsic diffusivity of the minority 
component B in the matrix phase, as expected. 

(2) Concentrated nucleus: the concentration of B 
in the nucleus is almost unity, whilst that in the ma­
trix is arbitrary. Here again, 

This conclusion is valid even if the concentration dif­
ference y is small .and/or if the intrinsic diffusivities 
for matrix diffusion are small; in such cases, the over­
all rate will be governed by the interface jumping rate 
of B atoms alone, simply because the nucleus growth 
process is here purely one of B accretion. 

(3) One effective diffusivity much smaller than the 
other, say DA << DB• then Equation (47) yields 

i._e. , the overall rate will be governed by the slowest 
moving species, as expected. This latter conclusion 
is very general and can be derived directly from Equa­
tion (41) for an arbitrary n-component system. 

(4) Carbon in Iron. Formally, we may regard this 
case as a binary, the two diffusing species being inter­
stitial C and vacant interstitial sites {V), the Fe 
toms formin~ a passive network. Then, as exPected, the 
overall rate will be determined by the effective dif­
fusivity of carbon in the Fe framework. If some slow 
moving substitutional impurity is added, say Mo, then 
the quarternary system Fe-Mo-C-V must be considered. 

The overall rate will be determined by substitutional 
diffusion in the matrix, and, since Mo is the minorit.y 
(substitutional) solute in ·this example, we expect,. by 
Equations (41), (42), (44) and (45), 

provided that YMo is not too small, i.e., that Mo par­
titioning does occur. In the case of no partitioning, 
the rate would be governed by interstitial Carbon dif­
fusion. 

Finally, let us remind the reader that the deriva­
tion of Equation (41) rested on taking the flux vector 
at the saddle point. (J~) to be parallel to the direct ion 
of steepest descent from the pass, thereby neglecting 
the skewing effect of unequal monomer mobilities. This 
is not quite correct: Actually, the flux vector will 
rotate away from the W gradient, thus taking the path 
of traverse to somewhat higher altitudes over the pass, 
still passing over the point ~·· *It can be shown from 
the positive definite nature of B , however, that no 
matter how different is the mobility matrix from the 
identity matrix, the flux direction will never rotate 
outside that portion of the W surface which is located 
below its tangent plane at tl*• a portion defined by the 
so-called asymptotic directions (32). Certain proposed 
prescriptions (16) for estimating the flux direction 
apparently do not ·conform to this requirement. Thus, 
the growing nuclei cannot be denied entrance into the 
lush valley beyond the pass, but they may be forced by 
unequal mobilities to take a less than energetically 
optimal path, with smaller curvature !All· Hence, the 
Zeldovich factor will have to decrease, thereby slowing 
down the nucleation kinetics. This, however, is a 
rather small effect compared to the uncertainties in 
knowledge of the magnitude of W* and of activation ener­
gies for diffusion, which uncertainties enter into the 
problem exponentially. Therefore, getting an incorrect 
Zeldovich factor appears to be a small price to pay for 
obtaining an explicit expression for the effective 
mobility M* in Equation (41). 

Various ad-hoc correction terms were inserted into 
the at's, of course, and a cautious reader may begin to 
wonder what may be the value of this whole exercise. 
Well, a more thorough analysis of the assumptions of 
nucleation kinetics show that the range of applicability 
(classical limit) of the entire theory itself is very 
narrow indeed, a far more serious criticism. A quali­
tative discussion of this topic will now be presented. 

3.4. Nucleation Far From Equilibrium 

It is not our purpose to discuss the validity of 
the assumptions on which rests classical nucleation 
theory. Clearly, one does not expect neat little spher­
ical embryos in multicomponent fluids to grow in size 
in an untransformed, perfectly uniform matrix, their 
motion over the W surface being fully governed by the 
Fokker-Planck equation (28). In the classical view, 
embryos in no way interact with one another, their 
location in space remaining unspecified. Yet, cluster 
correlations should certainly be taken.into account and 
some progress has recently been made in this direction: 
for instance, Binder and Stauffer (16) have included 
a non-linear "coagulation" term in their kinetic equa­
tion, thus allowing for the coalescence of neighboring 
clusters. As one might expect, however, the mathematics 
then becomes quite untraceable. Also, McGraw and Reiss 
(33) have shown how the introduction of excluded volume 
considerations could explain discrepancies observed by 
Heady and Cahn (34) between measured and observed nuclea­
tion rates in a well-characterized binary fluid. 

Our aim here is simply to inquire about the general 
applicability of the classical limit treatment, whereby 
the nucleation rate can be calculated approximately by 
saddle point integration, i.e., by assuming the flux J* 
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to be confined to a very narrow, flat channel whose axis 
lies in the constant-composition direction in N-space. 
If these conditions are met, the kinetic method pre­
sented above (perhaps with a better diagonalization 
procedure) may give reliable results. It will appear, 
however, thatthe classical limit is valid in a very 
narrow range; beyond that range, an appropriate theory 
must merge gradually and continuously into a spinodal­
type theory. The latter theory, which at first glance 
appears to be so different in spirit from nucleation 
theory, will be briefly described in the next section. 

The question posed here is not merely of academic 
interest, as transformations in industrial alloys usu~ 
ally occur far from equilibrium. Sinc·e coherent nuclea­
tion or precipitation is often associated with trans­
formations at large undercoolings, or high supersatura­
tions (deep quenches), we shall use from the start a 
coarse-grained free energy function such as the one 
shown in Figure 5, appropriate for "coherent" transforma­
tions. Only binary (fluid) solutions will be considered 
in this and the next section. 

The important features of the required energy curve 
(Figure 5) can be well represented by the symmetric func­
tion 

(49) 

where f represents an energy per unit volume, x repre­
sents a concentration measured away from the central 
one, and ao(P,T), the only parameter used, fixes the 
points of common tangency (at± ao). A plot of f(x) for 
ao = 1 is shown in Figure 5. Also shown is the tangent 
at some point -1 < x 0 ~ 0. It will be convenient to 
measure the vertical distance from the tangent at f(x) 
to the point of tangency, thus 

llf(<) ..!..."' <• _1_.,•• <' + h"<2 
<, = t.;• 0 <, + J:• 0 .. 2J. 0<. ' (50) 

where t; is the ~oncentration deviation 

( = X - XO , 

and where the fo symbols refer to successive derivatives 
of f(x) evaluated at the point of tangency. By Equations 
(49) and (50), llf can be written 

with 

Thus, ll(t;) 
in Section 
inflection 

(51) 

~(t;) = <; 2 + 4xot; + 2(3x~ -a~). (52) 

is none other than the function 1'1G defined 
2 .1. By Equation (52), it is seen v that the 
points of llf(t;) [or of f(x)) occur at 

xo/ao a ± 1/13 . 

Such ·is the origin of" the "root-three rule" (35) for 
constructing the spinodal curve associated with a given 
free energy function. 

Let us use this function in conjunction with a 
Rayleigh-Ritz treatment of .the Cahn and Hilliard formula­
tion. For that, let us define a standard spherical em­
bryo.by the parametrised composition profile (23) 

c(r) i; u(n,a) 

where i;, which appears as an order parameter, is the 
amplitude of the fluctuation of standard shape u(n,a) in 
which a represents a set of auxiliary parameters defining 
the shape of the standard profile. Letting n = r/o al­
lows one to define an effective fluctuation radius o, r 
being the radial distance. For present purposes, it suf­
fices to adopt the capillarity assumption, which consists 
in regarding the embryo as having constant composition 
xo + t;, separated from the matrix of uniform composition 
xo by a sharp interface at r = p. Hence, the standard 
profile may be defined by 

={lifOsn<l 
u(n) o if n > 1 . 

In a sense, then, we have replaced the profile of Figure 
3b by that of 3c. 

For use in the C-H free energy functional (17), we 
shall need th~ integrals 

(53) 

and 

(54) 

the latter result having been obtained by noting that the 
derivative of a function at a discontinuity is the Dirac 
delta function times the height of the discontinuity. 
Integral (54) multiplied by t&e positive gradient energy 
coefficient K represents the interfacial energy contribu­
tion oA of the classical theory. A similar expression 
for o was obtained by Reiss and Shugard (13) who used 
more elaborate bond counting within the framework of 
the regular solution model. Through the use of Equation 
(10), these authors were able to take into account the 
concentration-dependence of the interface. 

In.the present formulation, equivalent to that of 
R-S (13), the work of formation of a standard embryo of 
amplitude t; and of radius p can be written 

(55) 

with~ given by Equation (52). As an aid in visualizing 
this surface, computer-generated contour plots are re­
produced in Figures Sa, b, c, d, and e, corresponding 
respectively to supersaturations xo = -.99, -.95, -.90, 
-.70, -.10; values ao = K = 1 were chosen, and the con­
tours were measured in units of 3/4n. The presence of 
the <; 2 factor in Equation (55) produces a zero-level 
valley (or ridge) all along the o axis, whilst the 
presence of the o factor produces zero altitude along 
the t; axis, from.which the surface gently rises linearly 
towards larger radii O• In all cases, a deep valley is 
found at large o in the vicinity of the t; value marked 
z( 2 ) in Figure 5. The valley contours are asymptotic 
to vertical lines at points marked zo(l) and zo( 2 ) in 
Figure 5. Any constant o section exhibits a curve made 
up of llf(t;) multiplied by o3

, representing the bulk free 
energy, plus a parabola Kt; 2 multiplied by p, representing 
the surface free energy. At small o, the latter domi­
nates, at large radius, the bulk dominates, as expected. 

For all values of xo outside the spinodal 

( I • 
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Computer-generated constant-energy contours 
of surface W(~,p) plotted against amplitude 
~(labeled Z) anci radius p (labeled Y). Sad­
dle points are indicated by intersection of 
arrow (directioQ of steepest descent) and 
dashed lines, numbers indicating eigenvalues. 
Supersaturations are (a) -0.99, (b) -0.95, 
(c) -0. 90, (d) -0. 70, (e) -0.10. See also 
Table. 
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the W-surface has a saddle point or pass which the grow­
ing nuclei must negotiate before they can tumble down 
into the valley below. The saddle point is indicated 
in Figures Sa, b, c, and d by the .intersection of two 
line segments, one full which indicates (arrow) the 
steepest descent from the pass, the other (dashed) 
which indicates the steepest rise. Numbers alongside 
these directions are the values of the positive and 
negative curvatures, respectively. 

From Figure Sa, it is apparent that supersaturation 
x 0 = -.99 is within the classical limit: the path over 
the pass is roughly parallel to the p axis (thus at 
constant composition~), the pass very narrow (very 
large positive eigenvalue), the path level (rather low 
negative eigenvalue), the altitude very high. Since 
the flux is concentrated in a narrow, level stream, we 
may expect that the nucleation flux. will be given rather 
accurately by J* obtained by saddle point integration. 
The actual trajectories of embryos will be rather com­
plex, however: they start from the region of the origin 
(p ~ 0, ~ ~ 0) as small clusters of small amplitude, and 
then fan out in all directions of the positive ~.P quad­
~nt. This initial spreading is due to the first term 
in the Fokker-Planck (F-P) equation (2S), which is the 
Laplacian of C(~), a dissipative term which tends to 
oppose high local cluster concentrations. As· embryos 
move away from the origin, however, the W-surface re-
lief increases, and soon the influence of the second 
term of Equation (2S) is felt, tending to push the em­
pryos back down the W-surface gradient. During this 
part of the embryo's journey, the dissipative and drift 
terms of the F-P equation act in opposition. Eventually, 
the embryo trajectories will bend upwards and form a 
dense narrow bundle of flow lines over the pass. Thus, 
the nature of the pass at low supersaturations is such 
as to give an integrated flux ~· whose orientation will 
neither depend greatly on the history of the trajectories 
before the pass, nor on the skewing effect of the mobility 
matrix B. 

At slightly larger ~upersaturations, the situation 
is no longer as straightforward. Already, for xo = -.95 
(Figure Sb), i.e., only 2.5% away from the equilibrium 
concentration (xa = -1.0), measured with respect to' the 
common tangent interval (xS- xa = 2.0), the eigenvectors 
at the saddle point have rotated away from the coordinate 
axes directions. The pass is now also much wider, the 
path not as level. Even with B close to the identity 
matrix, the flux direction at the saddle point cannot be 
determined from a local analysis only: the whole steady­
state differential equation should be solved. 

Non-classical behaviour is accentuated as the super­
saturation increases: for xo = -.90 (Figure Sc), only 
5% away from equilibrium xa, the eigenvectors at the 
saddle point have rotated by almost 45.0 and the negative 
curvature is now greater than the positive one. What­
ever one may say about J* without actually solving the 
equation, it is clear that nuclei will not cross the 
pass at constant composition. The pass being low and 
broad, the flux will be correspondingly diffuse and 
spread out. 

For xo = -.70 (Figure Bd), still a bit of a way 
from the spinodal (xs = -.577), all resemblance to clas­
sical nucleation has long vanished: those nuclei which 
cross the pass will do so at almost constant radius, 
but increasing amplitude, the direction of J* over this 
very wide flat, low plateau depending significantly on 
the individual mobilities. 

Beyond the spinodal, the W-surface no longer has 
a saddle point, so that no activation barrier for nuclea­
tion exists. For example, at xo = -.10 (Figure Be), 
almost at the symmetric composition, embryos are ex­
pected to flow up the radius axis in a very wide stream, 
spreading out towards both positive and negative ampli-

tudes ~. Only those embryos whose trajectories remain 
centered on the P axis will encounter no rise in altitude, 
and therefore no activation energy barrier. However, the 
dissipative term in the F-P equation will drive a great 
many embryos away from the p axis, forcing them to climb 
over a low ridge before entering the promised land, the 
valley beyond. Since both left· and right valleys will 
eventually become populated, the transformation product 
is expected to consist of large positive and negative­
amplitude clusters sharing the available space. A pic­
ture of a quasi-periodic modulated structure thus comes 
to mind, i.e., a typical spinodal structure. Such a 
conclusion can be arrived at by a completely different 
argument, as will presently be shown.· 

Table 

~ ·Fi~re 8 L _£__ w* 2.C_ ~ 
-0.999 not shown 9.15 1.99 24.25 0.9 6053.7 

-0.99 a 2.95 1. 94 7.41 - 2.8 182.0 

-0.95 b 1.44 1.71 2.82 - 6.6 14.4 

-0.90 c 1.14 1.45 1.59 - 7.4 5.4 

-0.70 d 1.21 0.51 0.21 - 4.4 0.5 

-0.60 not shown 2.57· 0.09 0.01 -10.0 0.007 

-0.577 not shown .. 00 0 0 

To summarize, the above table lists, in order, the 
critical radius p*, critical amplitude ~·. and critical 
work w* for increasing values of the supersaturation xo 
at constant temperature. Although the simplest possible 
Rayleigh-Ritz procedure has been used to minimize the 
functional 6F of Equation (17), the essential results 
of the C-H diffuse interface theory are correctly re­
produced, indicating that it is not so much the diffuse 
nature of the interface which is important, but its com­
position dependence. It is seenclearly .from the table 
that the critical radius p* starts out to be very large, 
then decreases as supersaturation increases, only to 
increase again without limit as the spinodal Xs is ap­
proached. Simultaneously, both critical amplitude ~· 
and critical work w* decrease steadily to zero. However, 
as explained above, the relief features in the vicinity 
of the pass become so diffuse at high supersaturations 
(or low undercoolings) as to make the exact position of 
the saddle point position and altitude largely irrelevant. 
Indeed, details of the W-surface relief are ignored by 
the system when mean altitudes drop below a few kT. 
Thus, there can be really no "singularity" at the spino­
dal, and no abrupt change in mechanisms. The spinodal 
region can in fact be considered as an extension of the 
nucleation region, albeit non-classical, and conversely. 
This general conclusion was already drawn from an early 
study of spinodal decomposition (36, 37), and was re­
iterated in many other publications (11, 16, 24, 25). 
The cluster dynamics theory of Binder and co-workers 
(16) in principle can cover the whole range of super­
saturations, but the complexity of the mathematics ren­
ders the theory all but inextricable, and comparison 
with experiment practically impossible. 

3.5. Spinodal Decomposition 

Spinodal decomposition, discovered theoretically 
by J. W. Cahn in 1960 (38, 39) has been reviewed a 
number of times (8, 9, 10). We shall here follow the 
latter·reference, restricting our attention to binary 
solutions (A-B), with c(~,t) being the only independent 
composition variable, with x a position vector in the 
liquid or solid solution, t-the time. 

Since neither A or B atoms may be destroyed in unit 
volume (vacancies not considered), we may write a con­
tinuity equatiop for the concentration c : cB: 

I( 

•.) 

i I .. 
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where N_. is the number of atoms per unit volume. Note 
that we are dealing here with actual atomic concentra­
tions, defined by an appropriate coarse-graining, not a 
cluster concentration as in Equation (27). The net 
flux ~ of B atoms is given by 

where H is a suitable positive mobility. The potential 
¢ will be derived from the C-H free energy functional 
(12). In the absence of concentration gradient contribu­
tions, Equation (15) yields, for the Lagrange multiplier 

A= f'(c) a ~B- ~A. 

Since A appears as a difference of chemical potentials, 
it may be identified with the potential for atomic dif­
fusion in the usual Fick's law formulation. By analogy, 
in the present case, let us identify ¢ with A obtained 
by inserting the Lagrangian (14) into the Euler equation 
(13). There results 

The resulting diffusion equation is then 

(56) 

This differential equation is non-linear in the unknown 
concentration c(x,t). A solution in closed form is thus 
out of the question, although certain basic properties 
of the solution have been examined by Cahn (38) by a 
perturbation method. Computer-generated numerical solu­
tions of Equation (56) have provided some insight into 
the clustering kinetics in binary solutions (36), and 
these results will be briefly summarized. 

When information about the approximate free energy 
curve is incorporated via ¢(c) into Equation (56) the 
solution to the diffusion equation correctly obeys the 
phase. diagram without requiring additional constraints. 
Examples of such well-disciplined solutions are given 
in Figures 9a-d, which represent numerical calculations 
of the evolution of one-dimensional concentration pro­
files in Al-Zn solid solutions during isothermal aging 
at 100°C (36). The initial concentration variation 
c(x,O) was a small-amplitude fluctuation which is not 
sh~wn in these figures. The thermodynamic parameters 
used were those calculated by Rundman and Hilliard (40) 
for the Al-Zn system. The numerical solution c(x,t) of 
Equation (56) was obtained by a Fourier space forward 
difference iteration scheme. 

Each figure shows concentration profiles as a func­
tion of. distance for successive aging times·. The hori­
zontal full lines indicate the average composition c 0 , 

the dashed lines indicate the (coherent) equilibrium 
compositions c0 and cB. The results for a 37.5 at.%Zn 
alloy (i.e., for c0 close to the center of the miscibil­
ity gap) are shown in Figure 9a: The profiles are 
quasisinusoidal with bounded amplitude. Further growth 
of the composition modulation requires a lengthening of 
the pseudoperiod, which does not take place readily due 
to the extreme resistance to coarsening of such regular 
one-dimensional structures. 

Figures 9b and c are relative to a 22.5 at.%Zn 
solution, which is closer to the spinodal composition 
at 100°C. A striking feature of the profiles is the 
appearance at an early stage of "Guinier zones" (41) 
consisting of Zn-rich peaks surrounded by denuded Al­
rich regions. This result, which confirms the quali­
tative arguments put forward by Bonfiglioli and Guinier 

(42) is a dire.ct consequence of the asymmetric location 
of c 0 with respect to the miscibility gap boundaries. 
At this composition, the Guiner zone structure is even­
tually followed by a well-defined periodic profile which 
correctly obeys the phase diagram. After prolonged aging 
the .solution displays coarsening effects (Figure 9c), 
which are apparently less sluggish than those of the sym­
metric composition (center of the miscibility gap). To 
quote Hilliard (9), "It is rather remarkable that a single 
equation can depict the complete life cycle, from birth 
to death, of a particle." 

For compositions still closer to the spinodal (Fig­
ure 9d; 20 at.%Zn), an early-stage coarsening reaction 
sets in and the secondary maxima of the Guinier zones 
dissolve before they have a chance to develop into full­
fledged precipitates as they did in the previous case. 
Thus a periodic structure fails to develop for this 
asymmetric composition although the average composition 
is still within the spinodal. Actually, the final con­
centration profile peaks at the spots where the first 
maxima make their appearance; in other words, the loca­
tion of the precipitates is dictated almost entirely by 
the vagaries of the initial fluctuation, a characteristic 
more reminiscent of nucleation than of "typical" spinodal 
decomposition. 

Subsequently, the elegant theory of Langer et al. 
(24, 43) confirmed and expanded these results which were 
initially confined to one-dimensional concentration 
profiles. Here also, we see that the spinodal in no way 
separates clustering kinetics into two competing irrecon­
cilable mechanisms. Rather, at one extreme, the clas­
sical nucleation limit, nucleation theory gives a satis­
factory account of the transformation, where cluster 
formation kinetics is of paramount importance and clus­
ter correlations less so. At the other extreme, deep 
inside the spinodal, at close to maximum supersaturation 
(or deep quench), cluster kinetics are less important 
than spatial correlations, and classical spinodal theory 
works best. Unfortunately, as mentioned previously, no 
single tractable theory exists for the whole range of 
supersaturations. This point• is also made quite clearly 
in Martin's excellent review article on the subject (11). 

For the practical physical metallurgist, neither 
Fokker-Planck equations nor non-linear spinodal equations 
are of much use, however. In practice, then, there is 
little else to be done but .to trust the limiting-case 
theories: saddle point integration at one extreme and 
linear spinodal theory at the other, with nothing but 
a prayer in between. With these words of caution, let 
us now briefly describe the linear spinodal theory as 
Cahn originally developed it (38). 

For average compositions and aging temperatures 
well inside the spinodal and, in particular, for c 0 in 
the vicinity of the center of the miscibility gap, the 
absolute value of the ratio of the third to the second 
derivative of f(c) is small compared to unity, and the 
second-degree term in c can be initially neglected in 
the potential ¢(c). The third-degree term in the poten­
tial can also be neglected initially, since its magni­
tude is proportional to the third power of the composi­
tion variation, a small quantity. It follows that under 
the above conditions, the potential function ¢(c) can 
be linearized, and this leads to the following diffusion 
equation .(38) 

ac 2 • at = M(f~ ~ c - 2K~ c) , (57) 

where M and K are assumed to be concentration and time 
independent, and where f~ represents the second deriva­
tive of the "incoherent" free energy evaluated at c = 
c 0 • Equation (57) can be Fourier-transformed to an 
ordinary differential equation whose solution is found 
to be 
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Figure 9. Concentration profiles calculated (36) according to one-dimensional non-linear diffusion equation (56) 
for an Al-Zn alloy aged at 100°C for the indicated durations and for concentrations: (a) 37.5 at.%Zn, 
(b) 22.5 at.%Zn, (c) same as (b), longer times, (d) 20.0 at.%Zn. 

X(~,t) = X(~,O) ea(~)t (58) 

with amplification rate 

(59) 

In these equations k2 is the square of the wave vector 
k and X is the Fourier transform of the concentration 
deviation <;;, X(\s,O) being the Fourier transform of the 
initial concentration fluctuation. 

Equation (59) shows that theFourier amplitudes of 
concentration waves initially grow (a > 0) or decay 
(a < 0) in time according to an exponential law. Two 
important quantities were introduced by Cahn (38): the 
critical wave number kc, solution of 

a(k) = 0 , 

and the optimum wave number km, solution of 

da = 0 
dk 

for a particular direction ~· 

The physical meaning of these concepts is best 
discussed in terms of wavelengths A, inversely related 
to wave number by 

A a 271/k • 

Within the framework of the linear theory, all harmonic 
composition waves of wavelength A larger than the criti­
cal wavelength 

(60) 

will grow in amplitude as isothermal aging progresses, 
while those with A < Ac will decay. Maximum growth in 
a given direction ~ will occur for the optimum wavelength 

' '.,! .. 
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A =AI'i 
m c 

(61) 

These considerations are valid only for the initial 
stages of spinodal decomposition, well inside the coher­
ent spinodal. Outside the spinodal, the linear approxi­
mation breaks down completely since, by Equation (59), 
Ac and therefore also Am are imaginary quantities. This 
is because, since K is positive for a clustering system, 
the quantity under the radical in Equation (60) can only 
be positive for f~ < 0, which defines the region inside 
the spinodal. 

In a further development of the theory, Cahn (39) 
introduced an important correction term to f~ to take 
into account anisotropic elastic coherency strains which 
must develop during growth of concentration waves in 
crystalline solids. This topic will not be covered 
here, however. 

Spinodal theory has received ample experimental 
justification, as periodic, or pseudo-periodic micro­
structures have been reported in binary liquids, in 
binary and ternary alloys, and in minerals [see, for 
example, the articles by Hilliard (9), Martin (11), 
Grilhe (44) for pertinent bibliography]. In more recent 
experimental work (45, 46, 47) the trend is to analyze 
the data, particularly the structure factor obtained by 
small angle X-ray or neutron diffraction, in terms of 
scaling laws (48). 

3.6. Homogeneous/Heterogeneous Nucleation 

Elaborate models of unmixing (clustering, phase 
separation) may be of considerable theoretical interest, 
but are of little use to the physical metallurgist in­
terested in understanding microstructure resulting from 
various heat treatments of alloys. Ideally, one would 
like to put theoretical models to good use by predicting, 
say, annealing times and temperatures required to pro­
duce specified microstructures. In that context, push­
ing a simple theoretical model beyond its domain of 
applicability may result in a numerical error of a fac­
tor of two or three perhaps, whereas the use of slightly 
incorrect values of some of the parameters may lead to 
results which are off by several orders of magnitude. 

It is apparent that, if we adopt J* given by Equa­
tion (37) as a measure of the nucleation rate, a small 
change in the value of W*, especially at temperatures 
not too high, will have drastic consequences. In par­
ticular, by Equation (11) for W*, we see that a slight 
change in the value of the interfacial energy a, or of 
the driving force ~G~ will have profound repercussions 
on J*, these changes occurring as they do in the para­
meters raised respectively to the third and second power 
of the arguments of an exponential function! Small won­
der that very little quantitative agreement is usually 
encountered between experiment and nucleation theory. 
This is particularly true for nucleation in solids, as 
effects of strain energy, anisotropic interfacial energy, 
preferential nucleation sites and other factors play a 
decisive role in the kinetics. 

It would take us too· far afield to cover these 
topics; the interested reader is referred to K. C. Rus­
sell's excellent recent review of nucleation in solids 
(5), which it would be pointless to attempt to duplicate. 
A very thorough and complete but older treatment .is also 
to be found in J. W. Christian's classic treatise (2). 
Here, let us merely point out the essential features 
which must be considered when discussing nucleation in 
solids. 

First of all, a distinction must be made between 
homogeneous and heterogeneous nucleation, that is to 
say, between nucleation initiating at arbitrary sites 
in the bulk, essentially perfect crystalline phase, and 
that initiating at preferential nucleation sites such 
as grain or phase boundaries or other imperfections. A 
further distinction must also be made between nuclei 

growing coherently and those growing incoherently in the 
matrix. By the word coherent we mean that, strictly, the 
matrix and the nucleus have same crystalline lattice, with 
perhaps a small change in lattice parameters; in other 
words, there is perfect coherence if the lattice planes 
suffer no discontinuities at the matrix-nucleus interface. 
On the contrary, by the word incoherent is meant that 
there is no matching of crystalline directions or lattice 
spacings on either side of the interface. Intermediate 
cases are of course often encountered; the word semi­
coherent is then used rather indiscriminately either to 
denote cases in which the mismatch between matrix and 
nucleus can be accommodated by, sa~ periodic arrays of 
interfacial dislocations, or cases where some portions 
of the matrix-nucleus are coherently related whilst other 
portions are not. 

These morphological distinctions are important as 
they lead to different values of the effective inter­
facial energy a and the driving force ~Gv· Generally 
speaking, phase e and phase a will have different molar 
volumes. In solids, homogeneous coherent nucleation of 
S from a will thus give rise to strain fields which can 
be very large and which must add a positive contribution 
to the negative ~Gv. Hence, such strain energy contribu­
tions, which are evaluated in practice according to 
linear isotropic elasticity theory, will substantial}y 
increase the work of nucleation W* br decreasing the 
value of the denominator (~Gv + ~GE) , ~GE being the 
elastic energy contribution. It follows that coherent 
homogeneous nucleation w.ill require larger undercoolings 
in order to proceed at appreciable rate. 

Coherency strains in homogeneous nucleation can be 
at least partially relieved by introducing interfacial 
dislocations whose role is to take up most of the lattice 
mismatch between a and a. In a sense then, the decrease 
in magnitude of the driving force due to bulk elastic 
energy has been replaced by an increase in the inter­
facial energy o. Such a substitution can be energetically 
favorable for nuclei of large radius which have rela­
tively small surface-to-volume ratio. Hence all· other 
things being equal, one may e~pect coherent nucleation 
at large supersaturations or undercoolings and incoherent 
nucleation at lower ones, with, possibly, semi-coherent 
nucleation in between. 

These concepts may be understood with the help of 
Figure 10 which shows, in the upper portion, schematic 
plots of free energy curves vs. composition for a binary 
solid solution. Curves for semi-coherent and coherent 
B-rich a are shown to lie above that for incoherent 8 
because of the positive elastic contribution ~GE to the 
(negative) total driving force. The curve for coherent 
S has actually been drawn as the continuation of the a 
free energy curve since coherent a must be structurally 
no different from a. By invoking the tangent construc­
tion described in Section 2.1, it is expected that, at 
the temperature (T') considered, incoherent (I) Scan 
nucleate for matrix compositions c 0 located to the right 
of the common tangency point c~ semi-coherent (S) 8 
can nucleate for compositions c! to the right of c~, and 
coherent (C) S can nucleate for c 0 to the right of cg. 
At given undercooling·or supersaturation, which mode of 
transformation will dominate depends upon the relative 
magnitudes of interfacial and bulk energies. For ex­
ample coherent nucleation will win if its TTT start 
curve lies at lower transformation times in the tempera­
ture range considered than either the semi-coherent or 
incoherent C-curves. 

In Figure 10, separate free energy curves were 
sketched for the various transformation products en­
visaged. Hence, by the common tangent rule, three dif­
ferent temperature-concentration phase diagrams could 
be constructed, as shown at the lower portion of Figure 
10. A continuous miscibility gap (C) has been construct­
ed as locus of common tangency points for the continu­
ous (C) free energy curve, whilst only portions of co­
existence curves have been constructed for the other two 
cases, since it cannot be decided without further in­
formation what possible three-phase reactions may occur 
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at higher temperatures: eutectic, peritectic, eutectoid 
The coherent spinodal, locus of inflection points 

of the continuous free energy curve, has also been in­
dicated on the phase diagram. Sometimes the following 
designation is used: phase diagram curve C is called the 
coherent solvus, curve S the semi-coherent solvus, and 
curve ·I the equilibrium phase boundary (if it is indeed 
the topmost one). Sometimes also, these curves may be 
labeled according to the conventional symbol attached to 
the nucleating phase: GP .zone, 6", e I • • • in the case . 
of Al-Cu alloys, for example. To illustrate the use of 
the phase diagram in the present context, consider a 
homogeneous solid solution of average composition c 0 

c~, say. Then, coherent nucleation can only take place 
at temperatures below Ic (Figure 10), semi-coherent 
below T' (:Is), and incoherent below TI· 

T 

0 
A 

c­
Concentrat ion 

I 
a 

I 
a 

Figure 10. Free energy curves (top) for binary alloy 
and associated phase diagram (bottom) for 
incoherent (I), semi~coherent (S) and 
coherent (C) phases. 

Without interfacial energy, there would be no 
activation barrier for nucleation. Although the posi­
tive contribution of a cannot be eliminated, it can be 
reduced in so-called heterogeneous nucleation, as opposed 
to homogeneous nucleation considered up to now. It is 
well documented that imperfections are able to catalyze 
the nucleation process: in essence, the nucleus, by 

attpching itself to a preexisting high-energy surface 
(grain boundary, interphase boundary, free surface, etc.), 
replaces a portion of existing matrix-defect boundary by 
an identical portion of nucleus-defect boundary plus a 
matrix-nucleus portion. In many cases (depending on the 
relative magnitudes of the interfacial energies involved) 
this can be energetically far more favorable than the 

-creation from scratch of a complete matrix-nucleus boun­
dary of approximately same total area. In typical cases, 
one can calculate effective reduced interfacial energies 
(Oeff) to be inserted in the critical work formula (11) 
for W*. As a comes with third power into the exponential 
for the nucleation rate, even a small reduction in ef­
fective interfacial energy can enhance nucleation rates 
by many orders of magnitude. At low undercoolings, then, 
we expect heterogeneous nucleation to be kinetically 
favored whilst at large undercoolings homogeneous nuclea­
tion may prevail. The reason is that the larger a which 
accompanies homogeneous nucleation may be offset partially 
by the larger driving force I6Gvl available and that, 
importantly, coherent nucleation will have much larger 
prefactor K in the rate expression (37) for J*, simply 
because so many more sites for homogeneous nucleation 
are available over those available for various types of 
heterogeneous nucleation. In this context, Cahn (49) 
has given an interesting discussion of site availability 
and saturation. 

4. ITT DIAGRAMS 

We may now return to the topic with which we openea 
this paper: that of TIT diagrams. Let us first see 
whether nucleation theory and its ramifications help to 
understand the simple C-curve diagram, such as that of 
Figure 1, for a plain carbon eutectoid steel. 

4 .1. C-Curves 

Let us make the simplest possible assumptions: 
although the position of the start curve should be 
obtained by calculating the incubation time for copious 
nucleation, we shall, for sim~licity, regard the start 
time t 5 as the reciprocal of the steady-state nucleation 
rate as calculated by saddle-point integration. Further­
more, we shall assume that a single temperature-indepen­
dent activation energy for diffusion Q dominates the 
effective mobility M* [see discussion accompanying 
Equations (41) and (44), especially case (4)]. Then 
we have 

Rate J* = Ko e-(W*+Q)/kT 

where Ko contains all factors not included in the 
exponentials. The start time t 5 may thus be given by 

log t 5 = - log Ko + f(T) 

with 

f(T) = m(W* + Q)/kT 

and 

m =loge= 0.4343 •.. 

(62) 

(63) 

Although, in the present case, pearlite (a iron+ car­
bide) most certainly does not nucleate in bulk Y Austen­
ite as small spherical homogeneous embryos, we shall 
nevertheles·s use Equation (11) for estimating the tempera­
ture dependence of W* .. In this equation, the volume 
energy (driving force) may be written 

'i 
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where 1\Hv denotes the enthalpy difference and IISv the 
entropy difference per unit volume between the nucleating 
phase and the tangent to the parent phase at same com­
position, temperature and pressure. At the equilibrium 
temperature To (common tangent rule) we must have 

If the. enthalpy and entropy differences are assumed to 
vary but little with temperature, we find 

and hence 

The strongly temperature-dependent part of log ts may 
thus be written, by Equation (63); as 

16rra 3 
[b + 1 l 

f(-r)=m3kTol\~ 'T T(l--r) 2 . (64) 

where 

T ~ T/To 

is a reduced temperature and 

(65) 

is a dimensionless parameter which, in this approxima­
tion, completely determines the shape of the start curve. 
We shall assume for simplicity that the coefficient of 
the bracketed term in Equation (64) is roughly temp~ra­
ture-independent. Then, knowledge of the "nose" tem­
perature TN fixes the value of this parameter 

(66) 

Since the nose of the experimental curve of Figure 
1 is located at about TN= 0.825 To, we shall take b ~ 
275, according. to Equation (66). The resulting start 
curve is shown in Figure 11. The simplifications used 
in its derivation were so drastic that quantitative 
agreement is hardly to be expected. Nevertheless, the 
calculated curve of Figure 11 does reproduce the es­
sential features of a typical C-curve (Figure 1), the 
most obvious discrepancy being the calculated curve's 
reluctance to reach its asymptote To at reasonable 
times t. When realistic physical parameters are in­
serted into Equation (65), it is found that a value of 
a ~ 60 ergs/cm2 must be chosen in order to obtain the 
selected value for b. Such a low value does not seem 
out of line for an effective interfacial energy for 
heterogeneous nucleation, however. 

4.2. S-Curves 

It is reasonable to interpret an S-curve (Figure 
2) as the combination of two c-curves. This idea is 

illustrated schematically in Figure 12. The two distinct 
transformations which each yield their separate C-curves 
require separate nucleation events, one associated with 
the equilibrium transition temperature To, taken in 
Figure 12 to be that for incoherent equilibrium TI, and 
one associated with some lower metastable transition 
temperature Tc, taken here to be that for coherent (meta­
stable) equilibrium. In the present case, TI and Tc are 
thus the temperatures denoted by the same symbols in 
Figure 10, for example. Of course, the lower C-curve 
is not necessarily due to coherent nucleation, but at 
least we know from our lengthy analysis of nucleation 
far from equilibrium that it cannot be due to spinodal 
decomposition. 
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Figure 11. C-curve calculated according to equation (64) 
with b = 275. Compare with Figure 1. 
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and Tc are temperatures for incoherent and 
coherent transformations, respectively. 
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The situation in alloy steels is more complicated 
(see example in Figure 2), as the lower portion of the 
S-curve is surely not due to coherent precipitation but 
to the appearance of complex carbides which are, at best, 
semi-coherent with the parent phase. It may at first 
appear surprising that such minute amounts of a third 
and fourth constituent (0.45% Mn, 1.97% Cr) should 
alter so drastically the TTT diagram of steel. It 
must be recalled from the discussion on mobility 
(Section 3.3) however, that the temperature dependence 
of the prefactor K in Equation (37) is governed by the 
effective mobility M* whose magnitude, in turn, is 
determined by slowest-moving partitioning solute, even 
though [case (1)) its concentration in the matrix may 
be very low. In the present case, both Mn and Cr 
enter Austenite substitutionally, so that their dif­
fusion rates are much smaller than that of interstitial 
Carbon. Thus, in accordance with the discussion of 
case (4), a lateral shift of start times from seconds, 
in the case of plain Carbon steels, to minutes, in the 
case of alloy steels, is expected. 

But then, what is one to make of propensity of 
alloy steels to exhibit serpentine TTT diagrams? One 
may conjecture that in ternary and quaternary systems, 
the tangent plane at the matrix composition cf will, at 
l~rge undercooling, intersect a variety of other free 
energy surfaces, or portions of free energy surfaces, 
not normally accessible close to equilibrium. The 
chosen transformation may then be the one that nucleates 
metastable products (complex carbides) which require a 
lesser degree of solute partitioning and which can there­
fore form more rapidly given an adequate undercooling. 
The postulated metastable carbides will require for 
their formation separate nucleation events, and hence 
separate C-curves. Perhaps the reader will now forgive 
the author for having treated nucleation theory·in its 
multicomponent form, right from the start: TTT diagrams 
of complex alloys cannot be understood, even qualitative­
ly, without some grasp of multicomponent theory. 

4.3. End Curves 

There is one last feature of TTT diagrams which 
will now be discussed briefly: the "end" curves. These 
curves are similar to the corresponding start curves but, 
of course, displaced towards longer times. To obtain 
some measure of the time required for completion of the 
transformation, one must inquire into the evolution of 
embryos after they have overcome the activation energy 
barrier and grow to full maturity. Clearly, interfer­
ence between growing nuclei must now be taken into ac­
count, as the available volume for nucleation and growth 
steadily decreases as the transformation progresses. 

To handle this "impingement" problem, Johnson and 
Mehl (50) and Avrami (51) proposed a clever model: 
these authors introduced the concept of "extended 
volume" which is the total volume that the growing 
phase would have occupied (at time t) had it been al­
lowed to grow unimpeded by other transforming regions, 
and assuming that nucleation would take place anywhere 
within the sample, including the previously transformed 
regions. Let Vx denote the entended volume fraction. 
It is related to the true volume fraction V by the 
equation 

dV • (1 - V) dV x , 

where (1- V) is the probability of overlap of a newly 
transformed region onto a previously transformed one. 
The integrated form of this equation is 

-v V•l-e x. (67) 

The reason for the introduction of this fictitious 
volume fraction Vx is that its· growth law can be deter-

mined in a straightforward manner·, whereas that of V 
cannot. If G(t) is the growth rate of any linear dimen­
sion of the new phase, then for isotropic (spherical) 
growth one obtains the following equation for the extend­
ed volume at time t: 

4 It v (t) D- I(t)G 3 (t')(t-t') 3 dt' 
X 3 Q ' 

(68) 

where I(t) now designates the nucleation rate, which 
could be that given by Equation (37), but will, in 
general, be time dependent. Equation (68), when intro­
duced into Equation (67), yields ·the required growth 
law. Under very general assumptions the resulting growth 
law will be of the form 

(69) 

where A is an appropriate constant, and where 3 S n S 4 
for three-dimensional nucleation and growth. A table of 
values of n for a wide variety of situations is given 
in Christian's treatise (2). Equation (69) plots as a 
sigmoid curve exhibiting incubation, growth, and satura­
tion stages. In clustering reactions, saturation sets 
in with the exhaustion of the supply of available solute 
atoms and occurs when the volume fraction V has reached 
its maximum value dictated by the lever rule. The sig­
moid curve representing Equation (69) can be roughly 
approximated by its tangent at the inflection point, 
and its intercepts at horizontal lines representing, 
say, 1% and 99% volume fraction transformed, can be 
taken as measures of the start (ts) and end times (tE) 
respectively. The difference (tE- tsl then fixes the 
position of the end curve, in principle, once that of 
the start curve is known. 

5. EPI\.OGUE 

We have come full circle: what started out, and 
ended, as a benign description of TTT diagrams, evolved 
into rather complex theoretical discussions. It should 
be obvious that enormous gaps separate theory from prac­
tical applications. Theorists claim that the theories 
are either too crude or too difficult to handle, experi­
mentalists claim that the parameters required cannot 
be obtained with sufficient accuracy, and practical 
Physical Metallurgists claim (correctly) that no exist­
ing model can really do justice to the tremendous com- · 
plexity of real systems. It is sometimes stated that 
the gaps are narrowing, but this author is not brimming 
with optimism: all that he can hope for is that this 
articie will not contribute to the widening of the gaps. 
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