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Abstract—Radio Frequency Identification (RFID) technology
has been widely used in many application domains. How to apply
RFID technology to develop an Indoor Positioning System (IPS)
has become a hot research topic in recent years. LANDMARC
approach is one of the first IPSs by using active RFID tags and
readers to provide location based service in indoor environment.
However, major drawbacks of the LANDMARC approach are
that its localization accuracy largely depends on the density of
reference tags and the high cost of RFID readers. In order to
overcome these drawbacks, two localization algorithms, namely
weighted path loss (WPL) and extreme learning machine (ELM),
are proposed in this paper. These two approaches are tested on a
novel cost-efficient active RFID IPS. Based on our experimental
results, both WPL and ELM can provide higher localization
accuracy and robustness than existing ones.

I. INTRODUCTION

The demands on Indoor Positioning System (IPS) have
increased a lot in recent years. The GPS based outdoor location
service has been widely used, however GPS cannot provide
positioning service with sufficient localization accuracy in
indoor environments due to the lack of line of sight (LoS)
transmission channel between the satellite and the receiver.
In addition, a lot of other problems make positioning and
navigation in indoor environment much more complicated and
challenging than in outdoor environment, such as physical
layout changes of furniture, signal scattering due to large
density of obstacles, multipath effect of signal reflection from
walls and furniture and even momentary changes of human
movements or opening and closing of doors.

Various approaches based on different technologies such
as Infrared, Wireless Local Area Network (WLAN), Ultra-
Wideband (UWB) and Radio Frequency Identification (RFID)
have been proposed and developed in order to provide posi-
tioning and navigation in indoor environment [1] [2] [3]. RFID
technology has been widely used in many application domains
such as asset tracking, industrial automation and medical
care. How to apply RFID technology to develop IPS has

become a hot research topic in recent years. RFID has several
advantages, such as no requirement of LoS, RFID tags are
small and light and most importantly, it can uniquely identify
different equipment and persons. The basic components of
an RFID IPS include RFID readers, RFID tags and the
communication network between them. The RFID reader is
able to read the data emitted from RFID tags. Both RFID
readers and tags use a predefined RF frequency and protocol
to transmit and receive data. Passive RFID tags operate without
a battery and they are mainly used to replace the traditional
barcode technology. Active RFID tags are small transceivers
with button-cell batteries to power the transceivers. They
can actively transmit their ID and additional information to
RFID readers. They are quite suitable for identifying and
tracking high-unit-value products or persons in complex indoor
environments.

A well-known IPS using the RFID technology is LAND-
MARC [4]. It utilizes the concept of reference RFID tags.
The Received Signal Strength Indicator (RSSI) from these
reference tags that is received by the receiver is used as
the realtime training data. It is reported that the localization
accuracy of LANDMARC is around 1.5-2m with 50 percent
probability. An enhanced LANDMARC approach has been
proposed in [5]. This improved scheme aims to make the
calculated coordinate of the tracking tags closer to the real
time measurements without extra readers and reference tags.

However, one drawback in these RFID IPSs is the high
cost of RFID readers and the active tags. Another issue is that
when the number of tracking tags increases in the system, the
event of RSS data package loss occurs more frequently due
to the limitation of RF data transmission channel or signal
collision. It affects and reduces the localization accuracy of
the system severely. Based on our evaluation, the percentage of
perfect RSSI samples (sample without any RSS data package
loss) is around 48% of the total number of RSSI samples we
collected in our experiment. If the RSS vector in one RSSI



sample contains too many RSSs that are out of the reasonable
range due to signal collision or long distance between reader
and tag, both the LANDMARC approach and the enhanced
LANDMARC approach cannot provide an estimated location
close to the real physical location of the tracking tag.

In order to overcome the above drawbacks, in this paper,
we develop a cost-efficient RFID IPS by using cheaper active
RFID tags, sensors and readers. Unlike the LANDMARC
system, the signal strengths emitted from RFID tags are picked
up by RFID sensors instead of RFID readers in our system.
The manufacturing cost of each RFID sensor is much less than
the cost of a typical RFID reader. Two localization algorithms:
Weighted Path Loss (WPL) and Extreme Learning Machine
(ELM) which can provide higher localization accuracy and ro-
bustness than existing ones are also proposed in this paper. The
WPL approach can be classified as a centralized model-based
localization algorithm. The distance between the tracking tag
and each sensor is calculated based on a modified International
Telecommunication Union (ITU) indoor path loss model in
the first place. Then the estimated location of the tracking
tag is obtained as the summation of each sensor’s weighting
factor (reciprocal of the distance between the tracking tag and
each sensor) multiplied by its physical location, provided all
the physical locations of the sensors are known. The ELM
approach is a machine learning fingerprinting algorithm. It
consists of offline and online phases. During the offline phase,
some RFID tags are adopted as reference tags. We record the
historical RSSs of these reference tags which are received at
each sensor and also their physical locations. The RSS vector
and the corresponding location vector of these reference tags
are adopted as the inputs and the training targets of ELM
respectively. We can obtain an ELM model after the offline
training process. During the online phase, after feeding the
RSS vector of the tracking tag into the ELM model, the output
given by ELM is the estimated location of the tracking tag.

The rest of the paper is organized as follows. In Section II,
the background knowledge for this paper is provided. Section
III introduces the proposed localization algorithms. In Section
IV, we present the experimental results and evaluation of
the proposed algorithms. The conclusion and future work are
given in Section V.

II. BACKGROUND KNOWLEDGE

A. Indoor Path Loss Model

The most commonly used path loss model for indoor
environments is the ITU Indoor Propagation Model [6]. It
provides a relation between the total path loss PL (dBm) and
distance d (m) as:

PL = 20log(f) + 10αlog(d) + c(k, f)− 28 (1)

where f (MHz) is the radio frequency, c is an empirical floor
loss penetration factor, k is the number of floors between
transmitter and receiver and α is the pass loss exponent. The
signal propagation conditions are dynamic in different indoor
environments due to multipath fading and shadow fading.
Therefore, the pass loss exponent α should be determined

empirically and ranges from 2 to 4 dependent on the layout
of indoor environment.

The operating frequency of our RFID IPS is 2.4GHz and k
is 1 in our case since all the RFID readers and tags are put on
the same floor. After calculating the related terms 20log(f)
and c(k, f) in (1), we can sum all these terms together as
PL0. Therefore, the indoor path loss model can be further
expressed as:

PL(d) = PL0 + 10αlog(d) (2)

where PL0 is the reference pass loss coefficient and α is the
pass loss exponent.

B. Extreme Learning Machine (ELM)

ELM is a kind of machine learning algorithm based on
a Single-hidden Layer Feedforward neural Network (SLFN)
architecture. It has been proved to provide good generalization
performance at an extremely fast learning speed [7]. In [8],
WLAN IPS by using the ELM approach has been proved to
give a better performance in terms of both the efficiency and
the localization accuracy.

The outputs with L hidden nodes in SLFNs can be repre-
sented as:

yN (x) =

L∑
i=1

βigi(x) =

L∑
i=1

βiG(ai, bi,x) (3)

where ai,bi are the weights and bias connecting the input
nodes and the ith hidden node, βi are the output weights
connecting the ith hidden node and the output nodes, and
G(ai, bi, x) is the activation function which gives the output
of the ith hidden node with respect to the input vector x.

In order to enlarge the application range of ELM, [9] shows
that a SLFN with at most N hidden nodes and with almost
any nonlinear activation function can exactly learn N distinct
observations. Suppose there are N arbitrary distinct training
samples (xj , tj), j = 1, 2, . . . , N , we can represent the SLFN
for each sample as:

yN (xj) =

L∑
i=1

βiG(ai, bi,xj), j = 1, 2, . . . , N. (4)

Now the above N equations can be written as:

Hβ = T (5)

where

H =

 G(a1, b1,x1) . . . G(aL, bL,x1)
... . . .

...
G(a1, b1,xN ) . . . G(aL, bL,xN )


N×L

, (6)

β =

 βT1
...
βTL


L×m

and T =

 tT1
...
tTN


N×m

. (7)

H is the hidden layer output matrix of ELM; the ith column
of H is the ith hidden node’s output vector with respect to



inputs x1, x2, . . . , xN , and the jth row of H is the output
vector of the hidden layer respect to the input vector of xj .

Unlike the traditional training algorithms for neural net-
works, which need to adjust the input weights and hidden layer
biases, [7] has proved that these parameters of SLFN can be
randomly assigned if only the activation function is infinitely
differentiable. Therefore, the hidden layer output matrix H
remains to be unchanged once these parameters are randomly
initialized. To train a SLFN is simply equivalent to finding an
optimal solution βLS of (5) as:

||βLS − T || = min
β
||Hβ − T ||. (8)

The smallest least square solution of (5) becomes βLS =
H†T , where H† is the Moor-Penrose generalized inverse of
H .

III. PROPOSED APPROACHES

A. System Overview

Our RFID IPS consists of a number of RFID sensors and
tags, a wireless sensor network that enables the communication
between these devices, a RFID reader and a location server.
Unlike the LANDMARC system, the signal strength emitted
from tags are picked up by RFID sensors instead of RFID
readers in our system, due to the high price of RFID readers.
Both RFID sensors and active RFID tags in our system use
TICC2530 as the wireless module. The manufacturing cost of
each RFID sensor is only $15, which is much less than the cost
of a typical RFID reader. The system communication protocol
is based on ZigBee 2.4 GHz. Before system operation, each
active RFID tag is preprogrammed with a unique 4-character
ID for identification by sensors. In addition, we found that
the value of RSS obtained by the same sensor from different
tags at an identical location may be different. One of reasons
could be the variation of the chips and circuits. Therefore,
we conducted some adjustments to make sure that the emitted
powers of all tags in our system are in a similar level.

A brief operation procedure of our system is as follow.
First of all, RFID tags broadcast their unique ID signal every
second in the indoor environment. The battery life of each
tag is around one month. Then, RFID sensors pick up the
signal strength of each tag. With external power supply, these
sensors are able to send RSS information of all tracking tags
to the RFID reader continuously through the wireless sensor
network. The RSSI data from all RFID sensors are received
at the RFID reader which is connected to the location server.
Our experiment shows that one RFID reader is good enough
to cover a 100m2 indoor environment. After that, the location
server calculates the estimated location of each tracking tag
by using the proposed localization algorithms.

B. Methodology of WPL

Suppose we have A RFID sensors and B tracking tags. Each
sensor can pick up the signal strengths of all B tracking tags.
In order to calculate the estimated location of each tracking
tag, we define the signal strength of the jth tracking tag

received at the ith sensor as sij , where i ∈ [1, A], j ∈ [1, B].
The real position of the ith sensor is defined as (xi, yi).
Based on the Path Loss Model defined in Section II, the signal
strength sij can be expressed as:

sij = PL(dij) = PL0 + 10αlog(dij) (9)

Therefore, based on (9), the distance between the jth tracking
tag and the ith sensor can be calculated by:

dij = 10
sij−PL0

10α (10)

The distances between these A RFID sensors and the jth
tracking tag can be expressed as a d vector as ~dj =
(d1j , d2j , . . . , dAj)

T . The weighting factor of the ith sensor
with respect to the jth tracking tag is defined as:

wij =

1
dij∑A
i=1

1
dij

(11)

The unknown location coordinate (uj , vj) of the jth tracking
tag is obtained by:

(uj , vj) =

A∑
i=1

wij(xi, yi) (12)

C. Methodology of ELM

The ELM approach considers the localization problem as
a regression problem. It consists of an offline phase and an
online phase. During the offline phase, some RFID tags are
adopted as reference tags in order to build up an empirical
database. P reference tags will be used and Q historical RSSI
samples will be collected for each tag. Moreover, each RSSI
sample is denoted as ((Xpq, Ypq), RSSpq), p ∈ (1, P ), q ∈
(1, Q). The vector RSSpq are the inputs of the ELM and
the corresponding location vector (Xpq, Ypq) are the training
targets of ELM. The hard-limit transfer function is chosen
as the activation function. The training process of ELM is
introduced in Section II. It can be conducted in the following
three main steps:

Step 1: Randomly assign values to hidden node parameters.
Step 2: Calculate the hidden layer output matrix H.
Step 3: Calculate the output weight β by:

β = H†L (13)

where H† is the Moor-Penrose generalized inverse of H.
During the online phase, the only thing we need to do is to

feed the RSS vector which is contained in the RSSI sample
of the tracking tag into the ELM model. The output given by
ELM is the estimated location of the tracking tag.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

We conduct a series of experiments to evaluate performance
of the proposed localization algorithms. The testbed is the
Postgraduate Room in Sensor Network Lab of School of
Electrical and Electronic Engineering, Nanyang Technolog-
ical University. The size of the test-bed is approximately



Fig. 1. Placement of RIFD reference tags, tracking tags, sensors and reader

6.4m × 17.1m. As shown in Figure 1, there are 19 RFID
sensors distributed in the room. The distance between adjacent
sensors is around 3m. 19 reference tags are put directly under
each sensor in order to collect RSSI samples for ELM offline
training. The positions of 7 tracking tags are also shown in
Figure 1. One RFID reader is put in the conference room to
collect data from all RFID sensors.

In order to evaluate the performance of the proposed local-
ization algorithms, the distance error is used to measure the
localization accuracy of the system. We define the location
estimation error e to be the distance between the real location
coordinates (x0, y0) and the system estimated location coor-
dinates (x, y), as:

e =
√

(x− x0)2 + (y − y0)2 (14)

Based on our experimental results, we define the reasonable
range of RSS the RFID sensor can pick up from RFID tags to
be from -40 to -100dBm for our system. If all signal strengths
contained in a RSSI sample are within in this range, it is
defined as a perfect RSSI sample. Otherwise, if a RSSI sample
contains more than one signal strength that is beyond the
reasonable range, it is defined as a defect RSSI sample. The
robustness of a localization algorithm can be measured by the
difference between the real physical location of the tracking
tag and the estimated location when the localization algorithm
uses defect RSSI samples.

During experiment I, we keep collecting data of the signal
strength of the 19 reference tags from the 19 RFID sensors for
12 days. The main purpose of experiment I is to build up the
historical RSSI sample database for ELM offline training. We

Fig. 2. Relationship between RSSI and distance

obtain 763600 RSSI samples for each tag in this experiment.
In these RSSI samples, 45.11% of them are perfect RSSI
samples. During experiment II, we keep collecting data of the
signal strength of both 7 tracking tags and 19 reference tags
from the 19 RFID sensors for 7 days. The main purpose of
experiment II is to evaluate the localization accuracy of both
the WPL approach and the ELM approach. We obtain 458640
RSSI samples for each tag in this experiment. In these RSSI
samples, 47.73% of them are perfect RSSI samples. The detail
experimental results are presented in Part B and C.

A. Selection of the path loss exponent α in WPL

The WPL approach largely depends on the path loss ex-
ponent α. Therefore, we conduct an experiment to measure
the RSSI values of different distances from a RFID sensor in
order to find out the relationship between RSSI and distance.
As shown in Figure 1, 7 reference tags put at the left side
and the RFID sensor at the left upper corner of the test-bed
are selected in this experiment, since there are relative clearer
line of sight between the sensor and these tags. We measure
the signal strength at 1.50m, 3.45m, 5.06m, 7.64m, 10.64m,
13.54m and 17.09m. At each location, 3000 RSSI samples are
collected in 1 day. Figure 2 shows the average signal strength
of collected RSSI data at various locations.

Based on the data we collected, we use a curve fitting
method to construct the relationship between RSSI and dis-
tance, as:

PL(di) = −52.40− 10× 3.58× log(di) (15)

i.e., the pass loss exponent α is taken as 3.58 and the reference
pass loss coefficient PL0 as -52.40dBm. We assume that α
and PL0 remain unchanged in the entire test period.

B. Localization Accuracy

1) Comparison between WPL and ELM: 5000 RSSI sam-
ples of each reference tag are randomly chosen as training
samples from experiment I and experiment II database for
ELM offline training process. Another 5000 perfect RSSI
samples of each tracking tags are chosen separately as testing



Fig. 3. Cumulative percentile of error distance of WPL and ELM with
different number of hidden nodes

samples from experiment II database to evaluate the perfor-
mance of both the ELM approach and the WPL approach.

The reason we choose 5000 RSSI samples of each reference
tag for ELM offline training process is that there is an upper
bound for the number of input variables in ELM. If the number
of input variables is too large, it will introduce unnecessary
hidden nodes parameters which will cause ELM to be unstable
and overfitted easily. We found that 5000 input variables (RSSI
samples in our case) is appropriate for ELM training in our
system.

Besides the number of input variables, another parameter
that could affect the localization accuracy of ELM is the
number of hidden nodes in ELM hidden layer. Figure 3
demonstrates the performance comparison result between W-
PL and ELM with different number of hidden nodes. It can be
seen from the Figure 3 that as the number of hidden nodes in
ELM hidden layer increases, the localization accuracy of ELM
improves. Based on our test, when the number of hidden nodes
increases to 1000, the localization accuracy of ELM is 1.476m
which becomes better than the performance of WPL (1.651m).
However, we also notice that the ELM approach requires more
time to test a new RSSI sample when the number of hidden
nodes increases. The WPL approach usually uses less than 0.2s
to test a new RSSI sample. In contrast, the ELM approach with
2500 hidden nodes requires 1.937s, although it enhances the
precision of localization accuracy by 33% over WPL. Thus,
there is a tradeoff between the localization accuracy and the
testing time if we want to use the ELM approach.

In summary, ELM with proper number of hidden nodes
provides higher localization accuracy than WPL.

2) Comparison between WPL, ELM and other methods:
The localization accuracy of WPL and ELM are compared
against LANDMARC [4] and enhanced LANDMARC [5].
5000 perfect RSSI samples of each tracking tag are ran-
domly chosen from experiment II for this evaluation. The
performance of the ELM approach with 2000 hidden nodes is
chosen in this comparison. Since LANDMARC and enhanced
LANDMARC use weighted k-nearest neighbour algorithm to
estimate the location of the tracking tags, we choose k to be

Fig. 4. Cumulative percentile of error distance for different methods

the maximum number of reference tags in order to optimize
the localization accuracy of these methods.

The performance comparison result between the four ap-
proaches is presented in Figure 4. Figure 5 demonstrates the
distance error distribution of the four different approaches.
The average localization accuracy of all 7 tracking tags
by using LANDMARC, enhanced LANDMARC, WPL and
ELM is respectively 2.642m, 1.990m, 1.651m and 1.198m.
The reduction in estimation error for WPL is 38% over
LANDMARC and 17% over enhanced LANDMARC. ELM
enhances the precision of localization accuracy by 55% over
LANDMARC, 40% over enhanced LANDMARC and 27%
over WPL respectively. The distance error distribution of WPL
as shown in Figure 5(c) ranges mainly within 2.5m and ELM
as shown in Figure 5(d) ranges mainly within 2m. In contrast,
the distance error distribution of LANDMARC and enhanced
LANDMARC are much more scattered.

In summary, WPL and ELM can provide higher localization
accuracy than LANDMARC and enhanced LANDMARC.

C. Robustness Comparison between WPL, ELM and Other
Methods

The event of RSS data package loss occurs frequently in
IPS due to the limitation of the RF data transmission channel
and signal collision. Sometimes, it is possible that all the RSSI
samples we receive are samples that contain one or more signal
strengths that are out of the reasonable RSS range.

In order to evaluate the robustness of WPL and ELM,
5000 defect RSSI samples of each tracking tag are randomly
chosen from experiment II database. The performance of
ELM approach with 2500 hidden nodes is chosen in this
comparison. The robustness comparison between WPL, ELM,
LANDMARC and enhanced LANDMARC is presented in
Figure 6. The average localization accuracy of all 7 tracking
tags by using LANDMARC, enhanced LANDMARC, WPL
and ELM is 3.503m, 3.407m, 1.671m and 1.137m. It can
be seen in Figure 6, even by using the RSSI samples that
contain some signal strengths that are beyond the reasonable
RSS range, both WPL and ELM can still provide relative



(a) LANDMARC (b) Enhanced LANDMARC (c) WPL (d) ELM

Fig. 5. Comparison of Distance Error Distribution for different methods

Fig. 6. Cumulative percentile of error distance for different methods

higher localization accuracy than LANDMARC and enhanced
LANDMARC. In this case, ELM enhances the precision of
localization accuracy by 68% over LANDMARC, 67% over
enhanced LANDMARC and 32% over WPL respectively. We
can conclude that ELM is more robust than WPL and other
methods.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed a cost-efficient RFID IPS by
using cheaper active RFID tags, sensors and reader. Two
localization algorithms: WPL and ELM were also proposed
in this paper. Our experimental results show that the WPL
approach enhances the precision of indoor localization by 38%
and 17% over the LANDMARC approach and the enhanced
LANDMARC approach respectively. The ELM approach en-
hances the precision of indoor localization by 55% over the
LANDMARC approach and 40% over the enhanced LAND-
MARC approach. In addition, ELM can provide relative higher
localization accuracy than WPL when RSSI samples contain
some signal strengths that are beyond the reasonable range
due to signal collision, demonstrating that ELM is more robust
than WPL when there are more tracking targets in the system.
The advantage of WPL is that it can provide an estimated
location of the tracking tag faster than ELM. The reason is
that ELM needs to increase the number of hidden nodes to

achieve higher localization accuracy, and the system requires
more time to provide an estimated location.

Considering the advantages of WPL and ELM, the future
work can be focused on how to integrate these two approaches
in order to provide a more accurate estimated location of the
tracking tag.
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