
UC Davis
IDAV Publications

Title
Lpics: A Hardware-Accelerated Relighting Engine for Computer Cinematography

Permalink
https://escholarship.org/uc/item/2mg223r5

Authors
Pellacini, Fabio
Vidimce, Kiril
Lefohn, Aaron
et al.

Publication Date
2005
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2mg223r5
https://escholarship.org/uc/item/2mg223r5#author
https://escholarship.org
http://www.cdlib.org/


Lpics: a Hybrid Hardware-Accelerated Relighting Engine
for Computer Cinematography

Fabio Pellacini∗ Kiril Vidim če† Aaron Lefohn† Alex Mohr† Mark Leone† John Warren†

Pixar Animation Studios

Lpics render ≈ 0.1s Final render ≈ 2000s

Figure 1: Images rendered by Lpics relighting engine versus software renderer.
Times reported are the time a lighting artist must wait for feedback after moving one light.

Abstract

In computer cinematography, the process of lighting design in-
volves placing and configuring lights to define the visual appear-
ance of environments and to enhance story elements. This process
is labor intensive and time consuming, primarily because lighting
artists receive poor feedback from existing tools: interactive pre-
views have very poor quality, while final-quality images often take
hours to render.

This paper presents an interactive cinematic lighting system used in
the production of computer-animated feature films containing envi-
ronments of very high complexity, in which surface and light ap-
pearances are described using procedural RenderMan shaders. Our
system provides lighting artists with high-quality previews at inter-
active framerates with only small approximations compared to the
final rendered images. This is accomplished by combining numer-
ical estimation of surface response, image-space caching, deferred
shading, and the computational power of modern graphics hard-
ware.

Our system has been successfully used in the production of two
feature-length animated films, dramatically accelerating lighting
tasks. In our experience interactivity fundamentally changes an
artist’s workflow, improving both productivity and artistic expres-
siveness.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; I.3.3 [Computer Graphics]: Picture/Image
Generation; I.3.2 [Computer Graphics]: Graphics Systems.

Keywords: Interactive Rendering, Relighting, GPUs
∗e-mail: fabio@graphics.cornell.edu
†e-mail:{vkire,lefohn,amohr,mleone,jwarren}@pixar.com

1 Introduction

High-quality lighting in computer-animated films is labor intensive
and time consuming: for example, one recent computer-animated
feature, Pixar’sThe Incredibles, required a crew of 40 lighting
artists. These artists need fast and accurate feedback, but dramatic
increases in shot complexity have forced them to either endure long
render times or accept drastic reductions in image quality in pre-
view renders, which often employ lower sampling rates, stand-in
models, and simplified surface shaders. In this paper we describe a
system calledlpics that allows artists tointeractivelyconfigure and
refine lights in scenes of extremely high complexity with minimal
approximations to the final rendered appearance.

1.1 System summary

Our system is a relighting engine for scenes in which surface and
light shading is specified by RenderMan shaders [Pix 2000]. Its
basic operation is quite simple (similar systems are discussed in
Section 1.3):

• Surface shaders are instrumented with calls that generate
image-space cachescontaining the parameters of an illumi-
nation model, such as the displaced point and normal, calcu-
lated surface color, etc. Caching samples on a per-pixel basis
allows scenes of extremely high geometric complexity to be
represented compactly and re-rendered efficiently.

• A conventional software renderer executes the instrumented
surface shaders and generate caches, which need to be up-
dated when geometric data or surface shaders changes.

• Light shaders aresimplifiedand translatedinto a hardware
shading language (such as Cg [Mark et al. 2003]). Currently
this simplification is performed manually, incorporating sam-
pling approximations (using fewer samples) and interpolation
approximations (lower order) to speed up rendering.

• Caches are loaded at the start of a lighting session along with
simplified geometry for shadow queries.

• Light shaders are individually executed on a graphics proces-
sor (GPU) using the data contained in the image-space caches.



A light is re-executed only when its parameters change, per-
mitting scenes with hundreds of lights to be re-rendered at
interactive rates.

• Lighting controls are identical to those provided in our pri-
mary modeling and animation system, thus allowing the use
of complex user-interface paradigms, such as dragging high-
lights, reflections, and shadows to desired locations. Also,
real-time playback of lit shots is provided with low latency,
which facilitates iterative refinement.

1.2 Summary of contributions

The lpics system was first deployed in the summer of 2003 and has
been used in the production of two animated feature films. It has
dramatically improved productivity in master lighting and charac-
ter light rigging. On typical production shots, lpics reduces render
times byfour to six orders of magnitude, from over 2 hours to 10
frames per second at video resolution (720x301). Detailed results
are presented in Section 4. In some cases the quality of feedback is
high enough to permit final shot lighting without resorting to con-
ventional software rendering. A comparison of the images gener-
ated by lpics and a conventional RenderMan renderer is presented
in Figure 1, demonstrating only a minor loss of accuracy.

1.3 Related work

Most relighting engines are based on the assumption that changes
in camera movement and object transformations happen less fre-
quently than shading changes, allowing the renderer to cache visi-
bility evaluation in data structures often referred to asdeep frame-
buffers. One example of these approaches is the G-buffer [Saito
and Takahashi 1990], a collection of images containing the sam-
pled geometric data required for rendering; a similar approach is
used in Pixar’s lighting tool, Irma [Pixar 2004]. This basic idea was
extended considerably by Sequin and Smyrl in the context of ray-
traced scenes, where a full ray tree is cached for each pixel and sub-
sequently re-evaluated for surface or light shader changes [Sequin
and Smyrl 1989]. Briere and Poulin extended these ideas further
by introducing visibility acceleration structures that allow for small
changes in object position [Briere and Poulin 1996].

Recent improvements in the performance of graphics processors
(GPUs) and hardware shading [Peercy et al. 2000; Proudfoot et al.
2001; Mark et al. 2003] have revived interest in relighting engines.
GPU shading alone is generally insufficient for interactive light-
ing tasks in scenes with complex geometry and expensive surface
shaders. However, deep framebuffers provide a compact represen-
tation of partially shaded geometry that can be transferred quickly
to a GPU for final shading, essentially using the GPU as a general-
ized stream processor rather than a geometry processor. An exam-
ple of this approach for simple light shaders is reported in Gersh-
bein and Hanrahan [Gershbein and Hanrahan 2000] based on ideas
previously presented in [Lastra et al. 1995]. Our approach, and
the one independently-developed by Ragan-Kelley [Ragan-Kelley
2004], also follows the same principles but for more complex envi-
ronments: a cache-generating shader is executed by a conventional
software renderer, followed by a cache-reading shader executed on
the GPU. In our system light shaders are manually translated to
a hardware shading language, and the results computed by lights
are combined by a fixed general-purpose illumination model. At
the price of scalability, Ragan-Kelley’s system automatically slices
the original shader into pre-lighting and post-lighting stages, per-
mitting arbitrary illumination models, and automatically translates
(most) shading code to a hardware shading language. These and
other differences are discussed in more detail in Section 5.

A final class of relighting algorithms express lighting as a set of
basis functions and allow recomputation by performing integration
in the space of these basis functions [Sloan 2002; Ng et al. 2004].
While these techniques show promise, they remain limited in their
support for arbitrary appearances, and they require pre-computation
times that can be overwhelming for typical production scenes.

2 System requirements and design goals

Interactivity yields tremendous improvements in artistic productiv-
ity in all stages of the lighting design process. Most lighting tasks
begin withblocking, in which lights are initially placed and parame-
ters are coarsely adjusted to achieve the desired appearance. In this
exploratory phase, small approximations to the final image can be
tolerated in exchange for the convenience of interactivity. Blocking
is followed byrefinement, which is characterized by small changes
in the parameters of each light (often just the intensity and posi-
tion). Feedback during refinement must be highly accurate so that
decisions can be finalized.

The primary goal of the lpics system is to provide lighting design-
ers with an interactive tool of adequate fidelity for most blocking
and many refinement tasks. Interactivity is our highest priority, and
in this regard, our system is considerably different from other ap-
proaches based on the reevaluation of shaders [Pixar 2004; Ragan-
Kelley 2004], which can guarantee image accuracy but may not do
so at interactive rates for very complex scenes and shaders (see Sec-
tion 5).

We found that in order to achieve interactive framerates, carefully
chosen approximations must be made. These approximations are
acceptable for blocking tasks, such as the initial placement and con-
figuration of lights. In this domain, essential features are correct
light shaping and falloff, good approximation of surface response
to lights, and accurate positioning of shadows and reflections; on
the other hand, features such as accurate antialiasing, motion blur,
correctly blurred shadows and reflections are found to be useful but
not necessary.

Another requirement for the lighting engine is its integration with
the other parts of our production pipeline. Light shader parameters
must be identical to permit integration with existing tools, allow-
ing the interactive renderer to offer the same user controls as our
standard modeling and animation system. Furthermore the lighting
model must be as arbitrary as possible to permit customization by
production artists.

A secondary goal of our work was to improve artistic workflow by
providing a richer user interface for lighting designers. Fast framer-
ates enable novel interactions, such as the ability to drag highlights,
reflections and shadows as in [Pellacini et al. 2002; Gleicher and
Witkin 1992], and we expect further innovation in this area in the
future.

The major challenge in providing interactive feedback during light-
ing is the sheer complexity of scenes in our current productions,
which includes geometric, surface shader and light shader complex-
ity. The following sections discuss these issues in detail.

2.1 Geometric complexity

Geometric complexity has grown dramatically in recent years, and
this trend is expected to continue, while image resolution will grow
at a much slower pace. This indicates that algorithms that are bound
by image size are probably a better long-term choice than those that
depend on scene size. In typical production scenes, geometric com-
plexity arises from the number of objects visible in a given shot
as well as from the use of high quality surfaces to represent each



Figure 1 Scene Complex Scene
Higher-Order Primitives 2,152 136,478
Shaded points 5,320,714 13,732,520
Surface shaders 152 1,312
Maximum shader length 56,601 180,497
Average shader length 17,268 16,753
Average plugin calls in shader 374 316
Total size of textures used 0.243 GB 3.22 GB
Number of lights 54 169
RenderMan render time 1:30:37 4:09:28

Table 1: Measurements of scene complexity for the scene shown
in Figure 1 and a representative high-complexity scene from one
of our recent films. Resolution-dependent data is for a 720x301
render.

of these objects. Main characters contain thousands of surfaces,
and some include millions of curves representing hair or fur (see
Table 1). Indoor environments commonly have tens of thousands
of visible objects modeled using subdivision surfaces and NURBS
(often in excessive detail), and outdoor environments usually have
even higher complexity since they commonly feature millions of
leaves or blades of grass. Depth complexity is another aspect of ge-
ometric complexity that poses a considerable challenge to relight-
ing engines. Anywhere between 20 and 1000 depth samples are
common in final rendering; translucent hair increases depth com-
plexity considerably.

2.2 Surface shading complexity

Shader execution dominates render time in shots without raytrac-
ing. This high computational cost is due to several factors. First,
separate surface shaders are usually written for each object in a
scene, resulting in hundreds or even thousands of unique shaders.
These shaders can contain over 100,000 instructions and access sev-
eral gigabytes of textures in a single scene. Table 1 shows properties
of surface shaders in two representative frames from our studio.

Although there are many unique surface shaders, they all tend to
have the same structure, based on overlaying a series of basic lay-
ers of illumination, each of which is composed of a pattern gener-
ation part and an illumination computation. Examples of this use
of layered illumination are materials such as rust on paint, dirt on
wood, etc. Figure 2 shows pseudo-code illustrating the typical or-
ganization of shading code. Pattern generation is the most resource-
intensive part of surface shader execution, while the evaluation of
illumination is dominated by the cost of light shaders. The surface
response to lighting is encoded in a function queried by the light
shader at a given point based on parameters computed during pat-
tern generation. We will use the termillumination modelto describe
this function, which is similar in spirit to the BRDF. However, while
the BRDF is a four-dimensional function, our illumination model is
higher dimensional and can vary based on the number of parameters
passed between the light and surface shaders.

RenderMan surface and light shaders permit the expression of arbi-
trary illumination models. However, our productions typically use
only one or two very general ones, just as many different materials
can be described by a handful of analytic BRDF models. Our illu-
mination models require positions and normals as well as analogues
of diffuse, specular and reflection color, along with numerous addi-
tional parameters that modify the surface response. These parame-
ters are only roughly analogous to their physical BRDF equivalents;
for example, the component responsible for diffuse-like behavior is
view dependent in our model.

surface RendermanLayeredSurface(...) {
for all layers l {

illumParams[l] = GeneratePatterns(l,...);
Ci += ComputeIllumination(illumParams[l]);

}
}

surface LpicsApproximation(...) {
// Preprocess begins here
for all layers l {

illumParams[l] = GeneratePatterns(l,...);
}
combinedIllumParams =

CombineLayerParameters(illumParams);
// Preprocess ends here

// This is computed in hardware
Ci = ComputeIllumination(combinedIllumParams);

}

Figure 2: Pseudocode for a layered surface shader and its approxi-
mation in the lpics system.

To cope with surface shader complexity, it is essential that a re-
lighting tool caches the results of pattern generation, which are in-
dependent of lights. Furthermore, it must be able to quickly re-
evaluate the illumination as lighting parameters are interactively
refined. The adoption of a single illumination model greatly simpli-
fies the matter, as discussed in Section 3.2. The complexity of light
shaders is a major obstacle, however.

2.3 Light shading complexity

Lighting complexity results from the number of lights, which is rou-
tinely in the hundreds in our production shots, as well as the com-
plexity of the light shaders, which typically contain over 10,000
high level instructions. Our lighting model is an extended version
of the one presented in [Barzel 1997]; this lighting model is mostly
a direct illumination model with many controls including light in-
tensity, color and shadow. These controls are arranged in different
componentsthat can be enabled or disabled on each light; examples
of such components are shadows, shape and color specifications,
falloff, and a variety of other effects. Shadows are a major con-
tributor to light shading complexity, and can be implemented either
by shadow mapping, deep shadow mapping [Lokovic and Veach
2000], or raytraced soft shadowing.

While our lighting model is primarily based on direct illumina-
tion, certain non-local effects are supported using either environ-
ment mapping or raytracing, including reflections, ambient occlu-
sion, raytraced shadows and irradiance. An approximated global
illumination solution similar to [Tabellion and Lamorlette 2004] is
also available but used infrequently due to its high computational
complexity.

Rapid evaluation of light shaders is an essential requirement of a re-
lighting engine. The techniques we employ to address these issues
are discussed in Section 3.2.

3 System description

To summarize the previous sections, the main design goal of the
lpics system is to re-render at interactive framerates with minimal
image approximations in scenes with very high geometric and shad-
ing complexity. To cope with geometric complexity, a batch render



Position Normal Ambient Diffuse

Specular Roughness Character Occlusion Set Occlusion

Figure 3: Lpics caches corresponding to the scene in Figure 1

caches per-pixel positions and normals in deep framebuffers. Sur-
face shader complexity is addressed by adopting an illumination
model with parameters that are numerically estimated from data
cached by the original surface shaders in other deep framebuffers.
Finally lighting complexity is dealt with by applying carefully cho-
sen simplifications and translating light shaders to a hardware shad-
ing language for execution on a GPU. Light shaders are also spe-
cialized to eliminate unnecessary and redundant calculations. The
rest of this section describes these techniques in further detail.

3.1 Lpics caches

The first step of our approach is to instrument surface shaders to
cache data that will subsequently be read by light shaders. These
caches, which we call “lighting pictures” orlpics, are essentially
deep framebuffers that record all the parameters that contribute to
our illumination model. For example, the lpics caches for the scene
in Figure 1 are shown in Figure 3.

This step is relatively straightforward because our productions use
only a handful of illumination models that are implemented by code
in shared libraries. We rely on the fact that these illumination mod-
els employ a linear combination of their parameters (e.g. the dif-
fuse, specular, and reflection components) using sums and over op-
erators. This allows us to accurately estimate combined illumina-
tion after executing light shaders.

Our interactive render is mostly agnostic about the contents of
the lpics caches, requiring only position information for raytraced
shadow evaluation. This allows our system to serve multiple pro-
ductions simultaneously despite their use of different cached data.
More importantly, this allows production artists to change the illu-
mination model and lighting model arbitrarily. For example, ray-
traced reflections, new illumination models, more layers of illumi-
nation, and additional layers of transparency can all be handled by
simply adding lpics layers.

A drawback of deep framebuffer approaches is that they trade shad-
ing throughput for higher latency in camera movement, a tradeoff
often acceptable for lighting purposes, in which the camera position
is not adjusted interactively. Our system supports multiple camera
views by rendering different caches, a technique that is also used to
provide high-quality animation previews.

Support for transparency can be provided by multiple sets of lpics
caches that are generated using a technique similar to depth peel-
ing [Everitt 2001]. However, our currently deployed system does
not support arbitrary transparency because the increased shading
complexity would limit interactivity. Scenes of very high depth
complexity pose problems because a lack of samples leads to a poor
estimation of the response of numerous surfaces. For such scenes,

Simple Average Heavy Upper bound
Components 8 15 42 58
Instructions 1045 1558 3661 5220
Registers 12 16 18 20
Textures 3 5 13 22

Table 2: Properties of typical lpics GPU light shaders, after spe-
cialization. The corresponding non-specialized RenderMan shader
contains about 10,000 high-level instructions. Textures exclude in-
put lpics caches.

hair shells and other stand-ins are used when generating the lpics
caches, thus reducing the fidelity of the computed images.

3.2 Interactive lighting engine

The lpics relighting engine loads lpics caches and transfers them as
needed to the GPU as textures. The contribution of each light is then
calculated in turn by drawing a screen-aligned quad shaded using a
light shader whose parameters are the lpics caches, along with user-
specified light parameters. The result of each light is cached and
updated only if its parameters are interactively modified, allowing
scenes with hundreds of lights to be rendered interactively. Once
the caches for each light have been computed, the lighting engine
accumulates the results into a final picture using the GPU.1

We manually translated our production light shaders to Cg [Mark
et al. 2003] for execution on the GPU. The Cg light shaders have
the same structure as their RenderMan counterparts, except that
they also include the evaluation of the illumination model. The Cg
shaders also incorporate simplifications that were carefully chosen
to balance speed and image quality. Common areas of simplifica-
tion were simplified antialiasing, filtering, and interpolation prim-
itives. While this approach might seem time consuming, our pro-
ductions typically use only a handful of custom light shaders. We
briefly investigated techniques for automated translation of Render-
Man shaders to Cg but quickly realized its futility in the absence of
automated shader simplification.

In fact, even hand-translated shading code cannot run as-is at inter-
active rates on current GPUs due to the complexity of our lighting
model. As illustrated in Table 2, even fairly simple lights have a
large number of instructions, registers, and other resources.

Since our lighting code allows lights to have arbitrary numbers of
components that control shaping, falloff, shadows, etc., a simple

1This step relies on the fact that our illumination model employs a lin-
ear combination of lights, except for environment maps, which must be Z-
composited.



kind of program specialization [Jones et al. 1993] proved essential.
Each light shader is constructed with a macro preprocessor to con-
tain only the code necessary to compute the components present in
that light. This is an especially important optimization on graph-
ics hardware where true branching is not supported and function
calls are always inlined. For hardware that supports branching in-
structions, this optimization continues to be useful due to branching
overhead and limits on uniform input parameters. Additionally, we
have experimented with the program specialization capabilities in
the Cg compiler and realized 10-15% speed improvements, which
was too small to justify deployment.

In some cases these shaders cannot be executed in a single pass
due to resource limitations; in these cases, our system disables light
components that are deemed to have low priority. While resource
virtualization was impractical at the time the system was deployed,
advances in hardware architectures and new algorithms for resource
virtualization [Riffel et al. 2004] will soon address this issue.

3.3 Interactive shadows

When computing the lighting at each sample, shadow information
might be needed. Our system supports shadow queries using either
shadow mapping or raytracing. For shadow mapping the interac-
tive renderer simply uses the same shadow setup as a conventional
RenderMan renderer, but it rasterizes geometry using the GPU. In-
teractivity is achieved by using a coarse tessellation for the geom-
etry as well as implementing various culling optimizations. In our
experience, this solution works well for our productions. The only
effect that could not be achieved interactively was accurate percent-
age closer filtering [Reeves et al. 1987], which in our scenes often
requires high sampling rates (roughly 100 samples per query); the
solution was simply to use built-in hardware shadow mapping, thus
falling back on hard shadowing. Improved conditional execution in
GPUs will allow us to support this feature in the near future.

For raytraced shadows, our system integrates an interactive ray-
tracer that for each lpics layer generates an image of the result of the
shadow query. The results are then bound to the light shaders as an
input texture. Due to its cost, raytraced shadowing is implemented
as an asynchronous thread in a manner similar to [Tole et al. 2002].
From the user’s perspective, raytraced shadows briefly disappear
while the user repositions a light, and progressively reappear when
the new light position is established.

Our system allows shadows, reflections, and highlights to be di-
rectly manipulated, in a manner similar to [Pellacini et al. 2002;
Gleicher and Witkin 1992], rather than being indirectly manipu-
lated via lighting parameters. This has proved invaluable to lighting
designers, since art direction often imposes precise demands on the
placement of highlights and reflections.

Other raytrace-based effects, such as reflections, ambient occlusion
and irradiance, are not computed interactively; their results are pre-
generated and cached in screen space using the offline renderer and
then read in as textures in the hardware shaders. These effects are
so expensive to compute that this process mimics the workflow that
artists employ even when using the offline renderer. Raytraced re-
flections can also be supported in our system by caching the illumi-
nation model parameters of each ray query in a new lpics layer.

4 Results

Figure 1 and Figure 4 compare the images rendered interactively by
lpics with those generated by a conventional batch renderer, Ren-
derMan [Pix 2000]. These scenes are typical of our production
shots, with complex geometry, detailed surface shading and light-
ing. The images reveal slight differences that are typical of images

rendered by lpics; in particular sampling and filtering differences
are common, since RenderMan textures and shadows are filtered
with far more samples than lpics.

We typically run lpics at a resolution of 720x301 on a dual 3.4 GHz
Xeon with 4 GB of RAM and a Quadro FX 4400 graphics card.
Framerates for production scenes range from 3 to 60 frames per
second when interactively manipulating a single light. Performance
varies based on the complexity of the light shaders and shadow
queries. Final render times for these scenes at the same resolution
take from a few hours to more than ten hours when raytracing is
heavily used. Excluding shadow queries, our renderer spends most
of its time executing light shaders. This holds promise for even
higher performance as graphics hardware architectures mature. We
have benefited already from rapid advances in GPU performance
in the transition from the NV30 to NV40 class of NVIDIA hard-
ware; our original system was deployed to production on NV30
class hardware; when NV40 hardware became available, lpics per-
formance improved by a factor of ten, allowing us to render with
more complex lights with no change to our system architecture.

The interactive renders employ a single layer of lpics caches con-
taining 12 parameters including position, normal, diffuse, specular
and reflection coefficients, totaling 22 floating-point values. The
values are packed into eight tiles of a single texture to work around
a limit on texture inputs in current hardware shaders. Cache gener-
ation requires about the same amount of time as a few conventional
renders, making it cheap compared to some data-driven relighting
schemes [Ng et al. 2003].

In practice lpics is also used non-interactively to render preview
sequences. While a single frame often requires a tenth of a second
to re-render interactively when one light is being manipulated, a
full render of the contributions of all lights with newly loaded lpics
is often much slower. Nevertheless, a sequence of frames that takes
an entire day to complete on our render farm is typically rendered
by lpics in a few minutes, which can deliver tremendous savings in
time and machine resources.

5 Discussion

Slicing is an alternative approach to the manual instrumentation re-
quired for lpics cache generation. General program slicing is a
well established technique in the compiler community [Horwitz
et al. 1990], and its application to shaders has been explored by
[Guenter et al. 1995], where it is calleddata specialization. Slicing
would automatically cache the pattern generation portion of surface
shaders, which are the most resource intensive parts, and relight-
ing would require only running the residual portion of each shader,
consisting of an illumination loop that executes the lights and com-
bines their results. This technique is the essence of recent work by
Ragan-Kelley, whose system is in other respects very similar to our
own [Ragan-Kelley 2004]. Unfortunately, due to the high number
of shaders in our scenes, slicing each surface shader would result
in a large number of residual shaders, making it difficult to amor-
tize the cost of binding them to their arguments in the interactive
renderer. Furthermore, due to the high number of possible illumi-
nation layers, the memory requirements would be too high to be
feasible in our scenes. The automation of caching is appealing, al-
though in practice we find the overhead of manual instrumentation
to be small. Automated slicing also depends on program depen-
dency analysis, which can be overly conservative, and would fail to
handle shader plugins written in arbitrary C code, which are widely
used in our productions.

Another aspect of Ragan-Kelley’s work that is appealing is auto-
matic translation of light shaders (and residual portions of surface
shaders) into hardware shaders. We have explored this topic in



a) lpics render b) final render

Figure 4: Images rendered using our interactive lighting system (a) compared to the final renderers using RenderMan (b).

Position Normal Ambient Diffuse

Specular Roughness Character Occlusion Set Occlusion

Figure 5: Lpics caches corresponding to the scene in Figure 4

some depth. The first issue we encountered in trying to perform
this automatic translation was the inability to map all capabilities
of the software renderer onto the currently available graphics hard-
ware. Examples of these features are derivatives and shader plug-
ins. Derivatives are available on some graphics hardware, but they
are highly discontinuous and computed for each 2x2 block of pix-
els. RenderMan on the other hand computes continuous derivatives
across a surface at the granularity of micropolygon vertices [Cook
et al. 1987]. These and other features (such as asynchronous mes-
sage passing) made automatic translation impractical for our pro-
ductions. Ragan-Kelley takes the approach of translating only a
subset of the RenderMan shading language; while we believe that
automatic translation might be superior solution in the future, cur-
rent approaches are not ready for production use.

An alternative approach to dealing with surface shader complexity
in a relighting engine would be to try to represent surface shad-
ing response in a purely data-driven fashion by sampling the scene
multiple times for each degree of freedom of the light that can affect
the illumination similarly to [Ng et al. 2003]; this approach scales
well with shading complexity since it turns all surface responses in
a common form that can be manipulated independently of the orig-
inal shaders, thus becoming independent on the number of surface
shaders. The main drawback of this data-driven simplification is
that, in our lighting environment, lights can affect surface response
with between 3 to 75 degrees of freedoms. Nonetheless, we tested
this possibility for just incoming direction as in [Ng et al. 2003],
thus turning our surface shaders into BRDF-like responses, unfor-
tunately with very poor results. The major issues seemed related
to the fact that our surface appearances are very NPR in nature and
were not captured well using a BRDF-like representation; adding
even more degrees of freedom just made the sampling stage im-
practical.

Of these two approaches, shader slicing guarantees correctness by

re-evaluating the illumination models procedurally, but lacks guar-
antees in interactivity. On the other hand, data-driven simplification
scales well with complexity since it uses a common representation
that ignores the original surface shaders, but lacks guarantees in
quality (and did not perform well in our tests). In order to get the
best of the two worlds, we devised a scheme where we compute
only one general illumination model for each pixel whose parame-
ters are estimated numerically to combine all original illumination
layers. The illumination model we use is general enough to capture
almost every aspect of illumination used in our studio, and the ap-
proximations introduced by compressing multiple layers into one
are very minor.

6 Conclusions and future work

In this paper we presented a hardware accelerated relighting en-
gine that guarantees interactive feedback while lighting complex
environments for computer-animated feature films. The main de-
sign goal of our system is to guarantee framerate with minor loss
of image fidelity. This goal made our system capable of support-
ing blocking tasks and allowed the integration of new user inter-
face paradigms. While the original design was geared towards fast
blocking, the image fidelity of our system was high enough to sup-
port many tasks in final lighting; in fact certain lpics-rendered shots
have been approved as final with little verfication using a software
render.

Our system scales well with geometric, surface shading and light
shading complexity by using a deep framebuffer approach in which
samples are numerically estimated and shaded on the GPU. In or-
der to have strong framerate guarantees, our system incurs a small
decrease in image fidelity which is noticeable in particular in hair
geometry, soft shadowing and very rarely in surface shaders. Even
under these conditions, it is our belief that the framerate guarantees



of our system completely justify the small approximations incurred,
as proven by the adoption rate of the system in our studio, where
it has been used in the lighting of almost every shot since its intro-
duction.

The results demonstrated by our system are very promising, show-
ing that real-time lighting of complex computer generated imagery
is possible. We believe that the most fruitful area of improvement is
to reduce the fidelity gap between real-time and offline algorithms,
by introducing solutions for approximate indirect illumination, soft
shadowing, and hair-like geometry. We would also like to auto-
mate the treatment of shading simplifications, by developing more
robust automatic translation schemes as well as robust shader level-
of-details approaches.

Beyond cinematic relighting, we believe that our techniques are
broadly applicable to the rendering of high-complexity environ-
ments. In particular, we think that the need to approximate shaders
will become more important as shader authoring environments en-
courage artists to create larger shaders. Our work shows the need
for two different kinds of approximation. While in the case of
surface shading, our system extracts illumination parameters thus
converting the surface response to a simpler illumination model nu-
merically, our light shaders are approximated procedurally to main-
tain a higher quality. We expect other shading systems using high-
complexity shaders to follow our steps in introducing (possibly au-
tomatically) numerical and procedural approximations to achieve
an appropriate speed-vs-quality tradeoff. We also expect our work
to foster research into new user interfaces for lighting in highly
complex environments, an area that has not yet been explored for
lack of an appropriate rendering solution.

7 Acknowledgements

We would like to thank Adam Finkelstein, Dan McCoy, Mark
Meyer, Brian Smits, Eliot Smyrl, and Mark VandeWettering from
Pixar for their contributions to the shader, raytracer, and direct ma-
nipulation widget implementations. Craig Kolb and Nick Triantos
from NVIDIA provided valuable Cg and video driver support.

References

BARZEL, R. 1997. Lighting controls for computer cinematography.
Journal of Graphics Tools 2, 1, 1–20.

BRIERE, N., AND POULIN , P. 1996. Hierarchical view-dependent
structures for interactive scene manipulation,. InComputer
Graphics Annual Conference Series 1996, 89–90.

COOK, R. L., CARPENTER, L., AND CATMULL , E. 1987. The
Reyes image rendering architecture. InComputer Graphics
(Proceedings of SIGGRAPH 87), vol. 21, 95–102.

EVERITT, C., 2001. Interactive order-independent transparency.
NVIDIA White Paper.

GERSHBEIN, R., AND HANRAHAN , P. M. 2000. A fast relighting
engine for interactive cinematic lighting design. InProceedings
of ACM SIGGRAPH 2000, Computer Graphics Proceedings, An-
nual Conference Series, 353–358.

GLEICHER, M., AND WITKIN , A. 1992. Through-the-lens camera
control. InComputer Graphics (Proceedings of SIGGRAPH 92),
vol. 26, 331–340.

GUENTER, B., KNOBLOCK, T. B., AND RUF, E. 1995. Specializ-
ing shaders. InProceedings of ACM SIGGRAPH 95, Computer
Graphics Proceedings, Annual Conference Series, 343–349.

HORWITZ, S., REPS, T., AND BINKLEY, D. 1990. Interprocedu-
ral slicing using dependence graphs.ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS) 12, 1 (January),
26–60.

JONES, N. D., GOMARD, C. K., AND SESTOFT, P. 1993.Partial
Evaluation and Automatic Program Generation.

LASTRA, A., MOLNAR, S., OLANO , M., AND WANG, Y. 1995.
Real-time programmable shading. In1995 Symposium on Inter-
active 3D Graphics, 59–66.

LOKOVIC, T., AND VEACH, E. 2000. Deep shadow maps. In
Proceedings of ACM SIGGRAPH 2000, Computer Graphics Pro-
ceedings, Annual Conference Series, 385–392.

MARK , W. R., GLANVILLE , R. S., AKELEY, K., AND K ILGARD ,
M. J. 2003. Cg: A system for programming graphics hard-
ware in a C-like language.ACM Transactions on Graphics 22, 3
(July), 896–907.

NG, R., RAMAMOORTHI , R., AND HANRAHAN , P. 2003. All-
frequency shadows using non-linear wavelet lighting approxima-
tion. ACM Transactions on Graphics 22, 3 (July), 376–381.

NG, R., RAMAMOORTHI , R., AND HANRAHAN , P. 2004. Triple
product wavelet integrals for all-frequency relighting.ACM
Transactions on Graphics 23, 3 (Aug.), 477–487.

PEERCY, M. S., OLANO , M., A IREY, J.,AND UNGAR, P. J. 2000.
Interactive multi-pass programmable shading. InProceedings of
ACM SIGGRAPH 2000, Computer Graphics Proceedings, An-
nual Conference Series, 425–432.

PELLACINI , F., TOLE, P.,AND GREENBERG, D. P. 2002. A user
interface for interactive cinematic shadow design.ACM Trans-
actions on Graphics 21, 3 (July), 563–566.

PIXAR . 2000.The Renderman Interface.
PIXAR . 2004.Irma Documentation.
PROUDFOOT, K., MARK , W. R., TZVETKOV, S., AND HANRA-

HAN , P. 2001. A real-time procedural shading system for pro-
grammable graphics hardware. InProceedings of ACM SIG-
GRAPH 2001, Computer Graphics Proceedings, Annual Con-
ference Series, 159–170.

RAGAN-KELLEY, J. M., 2004. Practical interactive lighting design
for RenderMan scenes. Undergraduate thesis, Stanford Univer-
sity.

REEVES, W. T., SALESIN, D. H., AND COOK, R. L. 1987.
Rendering antialiased shadows with depth maps. InComputer
Graphics (Proceedings of SIGGRAPH 87), vol. 21, 283–291.

RIFFEL, A. T., LEFOHN, A. E., VIDIMCE , K., LEONE, M., AND
OWENS, J. D. 2004. Mio: Fast multipass partitioning via
priority-based instruction scheduling. InGraphics Hardware,
35–44.

SAITO , T., AND TAKAHASHI , T. 1990. Comprehensible rendering
of 3-D shapes. InACM SIGGRAPH Computer Graphics, 197–
206.

SEQUIN, C. H., AND SMYRL , E. K. 1989. Parameterized ray
tracing. InComputer Graphics Annual Conference Series 1989,
307–314.

SLOAN , P.-P. 2002. Precomputed radiance transfer for real-time
rendering in dynamic, low-frequency lighting, environments.
ACM Transactions on Graphics 21, 3 (July), 477–487.

TABELLION , E., AND LAMORLETTE, A. 2004. An approximate
global illumination system for computer generated films.ACM
Transactions on Graphics 23, 3 (Aug.), 469–476.

TOLE, P., PELLACINI , F., WALTER, B., AND GREENBERG, D. P.
2002. Interactive global illumination in dynamic scenes.ACM
Transactions on Graphics 21, 3 (July), 537–546.




