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Intersection of Inflammation and
Senescence in the Aging Lung Stem
Cell Niche
Nancy C. Allen1, Nabora S. Reyes1, Jin Young Lee1 and Tien Peng1,2*

1Department of Medicine and Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San
Francisco, San Francisco, CA, United States, 2Bakar Aging Research Institute, University of California, San Francisco, San
Francisco, CA, United States

Aging is the final stage of development with stereotyped changes in tissue morphology.
These age-related changes are risk factors for a multitude of chronic lung diseases,
transcending the diverse pathogenic mechanisms that have been studied in disease-
specific contexts. Two of the hallmarks of aging include inflammation and cellular
senescence, which have been attributed as drivers of age-related organ decline. While
these two age-related processes are often studied independently in the same tissue, there
appears to be a reciprocal relationship between inflammation and senescence, which
remodels the aging tissue architecture to increase susceptibility to chronic diseases. This
review will attempt to address the “chicken or the egg” question as to whether senescence
drives inflammation in the aging lung, or vice versa, and whether the causality of this
relationship has therapeutic implications for age-related lung diseases.

Keywords: senescence, stem cell niche, SASP, inflammation, aging

INTRODUCTION

While initial large increases in life expectancy during the first half of the 20th century are attributable
to improved sanitation and the introduction of antibiotics, a slower rise has occurred over the last
50 years due to a gradual decline in deaths from noncommunicable diseases of aging, such as cancer
and cardiovascular disease (Crimmins and Zhang, 2019). As the population ages, diseases of the
lungs are becoming a particularly important contributor to morbidity and mortality. In 2019 the
World Health Organization (WHO) reported that chronic obstructive pulmonary disease (COPD),
lower respiratory tract infections, and cancers of the respiratory tract accounted for three of the top
ten causes of death in the world, with deaths from COPD only outnumbered by stroke and ischemic
heart disease (www.who.int). In 2020, COVID-19, which has disproportionately impacted the
elderly, became the third leading cause of death in the United States (https://www.cdc.gov). With
these statistics in mind, it has become clear that improved understanding of physiologic aging and
how aging increases susceptibility to lung disease are critical for optimizing population health.

Aging is a complex physiologic process that can be conceptualized as an age-dependent
impairment in the maintenance of tissue homeostasis, ultimately leading to loss of optimal
tissue function (López-Otín et al., 2013). In addition to impaired maintenance of homeostasis,
an additional feature of aging is deterioration of the cellular and physiologic response to stress,
resulting in worse outcomes for the same injury in an aged versus young organism (Lipsitz and
Goldberger, 1992). Cellular senescence, a coordinated cellular response to stress characterized by
permanent cell cycle exit and the development of an elaborate secretory profile, is intricately linked
with aging. It is well-appreciated that the number of senescent cells increases with age, and the
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removal of senescent cells through various mechanisms has been
shown to improve both healthspan and median lifespan in mice
(Baker et al., 2011; Baker et al., 2016; Tabula Muris, 2020). The
senescent cell secretory profile, commonly referred to as the
senescence-associated secretory phenotype (SASP), is
considered one of the major mechanisms by which senescent
cells impact their resident tissues. The SASP—which frequently
encompasses cytokines, chemokines, and growth factors—is
thought to mediate its effects through multiple mechanisms,
including direct action on tissue-resident stem cells and
immune cell recruitment (Janzen et al., 2006; Krishnamurthy
et al., 2006; Kang et al., 2011; Kulkarni et al., 2019; Sturmlechner
et al., 2021).

The human lung has a surface area of approximately 70 m2,
with an elaborate epithelial structure to accomplish its numerous
functions, which include mucus production and clearance,
antimicrobial defense, surfactant production, and the
facilitation of gas exchange (Fröhlich et al., 2016; Leiva-Juárez
et al., 2018). Maintenance and repair of the epithelium requires
proper functioning of airway epithelial stem cells (Basil et al.,
2020). In the conducting airways, the major stem cells are basal
and secretory club cells, while in the alveoli which are involved in
gas exchange the predominant progenitor is the alveolar type 2
(AT2) cell (Barkauskas et al., 2013; Davis and Wypych, 2021).
These stem cells are both supported by and responsive to signals
from their niche cells, which usually include, but are not limited
to fibroblasts, endothelial, and resident immune cells (Donne
et al., 2015; Peng et al., 2015; Lechner et al., 2017; Zepp et al.,
2017). Emerging data have demonstrated that cells of the lung
stem cell niche can express cytokines and growth factors that
overlap with SASP factors, and that these secreted factors can
alter stem cell behavior, thus offering a potential mechanism
through which the aging niche impacts stem cell function.

Here we explore the mechanisms by which senescent cells
develop in the aging lung, and how these cells contribute to both
physiologic aging and aging-associated lung diseases. We give
particular attention to mechanisms by which senescent cells
interact with the lung stem cell niche, and how senescent cell
interaction with the immune system can modulate not only tissue
immune cell composition but also immune cell function. Finally,
we explore the potential contribution of senescence to the
pathogenesis of some of the most common age-related
diseases in the lung, highlighting the therapeutic implications
of unraveling the intersection between senescence and
inflammation in the aging lung.

CELLULAR SENESCENCE AND ITS
FUNCTIONS

Cellular senescence is a multifaceted cell state that is classically
characterized by permanent cell cycle exit (Salama et al., 2014).
The first described example of senescence was replicative
senescence, referring to the finite number of cell divisions
allowed for a normal cell. However, it is now well-appreciated
that senescence can develop in response to a number of cellular
stresses, including oncogene activation, DNA damage, or reactive

oxygen species (ROS) (Hayflick and Moorhead, 1961; Hayflick,
1965; Campisi and d’Adda di Fagagna, 2007). The two main
pathways that activate senescence in response to cellular stress are
the p53-p21 axis and p16INK4a (aka p16). Both p21 and p16INK4a

are inhibitors of cyclin-dependent kinases (CDKs), and
ultimately function to prevent the inactivation of RB and
subsequent cell cycle entry (van Deursen, 2014). In addition to
p53 and p16INK4a expression, other common features of senescent
cells include an enlarged, flat morphology, senescence-associated
beta-galactosidase (SA-B-gal) activity, senescence-associated
heterochromatic foci (SAHF), and a SASP (Salama et al.,
2014). The SASP, as discussed in more detail later, plays a
central role in maintenance of the senescent phenotype and
the effector functions of senescent cells. While there is no
single unique marker of senescence, p16INK4a expression,
encoded by Cdkn2a, is considered to be one of the most
specific features, and is frequently used in studies to identify
and manipulate senescent populations (Rodier et al., 2009; Grosse
et al., 2020; Omori et al., 2020). Nonetheless, given the lack of a
single specific marker, an integrated approach that incorporates
phenotypic, molecular, and functional data is likely needed for
the most accurate identification of cellular senescence.

While senescence has been found to play a role in multiple
contexts, including developmental patterning and wound healing,
it has most widely been appreciated as a mechanism by which
damaged cells exit the cell cycle to avoid cancer formation
(Campisi, 2001; Muñoz-Espín et al., 2013; Storer et al., 2013).
Despite the supposed anti-tumor benefits of senescence, there has
been considerable effort within the scientific community to find
methods to remove senescent cells. These efforts are motivated by
recent studies demonstrating that the genetic deletion of p16INK4a

expressing cells extends median lifespan and slows many aging-
associated disorders in mice, including but not limited to renal
dysfunction, cardiac arrhythmogenesis, cataract formation,
decreased adipose reserve, and declines in spontaneous activity
(Baker et al., 2011; Baker et al., 2016; Baar et al., 2017). Indeed, the
number of senescent cells increases with age, and their
contribution to aging has been linked to impaired stem cell
renewal, diminished cellular regeneration, and the
development of a pro-inflammatory environment that further
impairs tissue function (Janzen et al., 2006; Krishnamurthy et al.,
2006; Tilstra et al., 2012; Tabula Muris, 2020).

There are several theories to explain these seemingly
contradictory roles for senescent cells. The most commonly
cited theory is that of antagonistic pleiotropy. This theory
argues that while senescence is beneficial in youth, its
detrimental functions in aging persist due to a lack of
selection pressure late in life (Campisi, 2016). Support for this
theory comes from recent genome-wide association studies
identifying single nucleotide polymorphisms (SNPs) that are
protective against youth-associated diseases but increase risk
for diseases that tend to arise later in life. Interestingly, one
SNP identified in this study was in the CDKN2A locus, which is
protective against glioma but increases the risk of later-onset
diseases such as glaucoma, type 2 diabetes, and coronary artery
disease (Rodríguez et al., 2017). An alternative theory is one of
evolutionary cost and benefit, which argues that while senescence
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has a beneficial function throughout life, the cost of senescence
outweighs the benefits with advancing age (Di Micco et al., 2021).
Certainly, these theories are not mutually exclusive, and it seems
likely that within the complex senescence phenotype certain
characteristics align with different selection paradigms.

INFLAMMATION AND SASP AS A MAJOR
COMPONENT OF SENESCENCE

Far from being quiescent, senescent cells are metabolically active
and constantly interacting with their environment through the
secretion of a complex secretory profile known as the SASP. One
problematic feature of defining the SASP is that it encompasses
diverse cytokines, chemokines, growth factors, and extracellular
matrix modifiers that are often dependent on both cell type and
method of senescence induction (Di Micco et al., 2021). Despite
there being considerable heterogeneity among SASPs, one
common feature is the ability of the SASP to induce local
inflammation through mediators such as IL-6, IL-8, and PAI-1
(Kortlever et al., 2006; Salama et al., 2014).

An inflammatory response, which is frequently mediated by
the SASP, turns out to be critical for both the initiation and
maintenance of senescence, as well as important senescent cell
effector functions such as the induction of immunosurveillance
(Acosta et al., 2008; Kuilman et al., 2008; Sturmlechner et al.,
2021). Interestingly, a persistent DNA damage response (DDR)
has been shown to be important for induction of the core SASP
factors IL-6 and IL-8 in senescence, whereas a transient DDR or
p16-overexpression without coincident DDR failed to induce
these genes, reinforcing the role of senescence in preventing
tumorigenesis (Rodier et al., 2009). Indeed, the induction of
senescence has been particularly well-studied in the setting of
oncogene-induced senescence (OIS). In this context, oncogene-
induced stress increases the transcription of CEBPB, which leads
to the upregulation of IL-6, IL-8, and other SASP proteins.
Autocrine IL-6 signaling, in particular, was identified as an
important regulator of both OIS induction and maintenance
(Kuilman et al., 2008). IL-8 has also been shown to play a role
in the induction and maintenance of both replicative and OIS via
autocrine signaling through CXCR2. In this study, using
MEK1 activation to induce OIS, both C/EBPb and NF-kB
were shown to play important roles in the induction of IL-8
and other SASP genes (Acosta et al., 2008).

It is becoming increasingly evident that NF-kB, a master
regulator of inflammatory responses, plays a central role in
regulating the SASP. In vitro, p65, the main activating subunit
of NF-kB, has been found to accumulate on chromatin during the
development of senescence, and knock-down of p65 severely
impairs the SASP without reversing cell-cycle arrest (Chien
et al., 2011). Similar evidence in vivo has shown that NF-kB
activation increases with age, and genetic deletion of p65 or
p65 inhibition reduces senescence, SASP production, and
ultimately the onset of age-associated diseases in progeroid
mice (Tilstra et al., 2012). There are several mechanisms by
which NF-kB can be activated during senescence induction, of
which DNA damage-induced post-translational modifications of

NEMO, and stress-induced p38MAPK activation of NF-kB have
been well-described. Other proposed mechanisms of NF-kB
activation in the setting of senescence include RIG-I-induced
inflammasome activation, TGFb-TAK1 signaling,
HMGB1 release by stressed or injured cells, and even
ceramide accumulation (Miyamoto, 2011; Salminen et al.,
2012). Regardless of the mechanism by which NF-kB is
initially activated, its activation can initiate a positive feedback
loop through the release of NF-kB activating cytokines to help
maintain NF-kB activation and the SASP.

In addition to the role inflammatory pathways play in the
induction and maintenance of senescence, there is also evidence
that senescent cells can utilize inflammation to propagate
senescence to nearby cells, a phenomenon called “paracrine
senescence”. Evidence for paracrine senescence was
demonstrated in a model of OIS in which oncogene-induced
senescent cells were able to bring about senescence of nearby
normal cells through the secretion of IL-1α, IL-1β, and TGFβ
(Acosta et al., 2013). Similarly, in a model of NOTCH1-driven
senescence (NIS), senescent cells were able to induce growth
arrest and other senescent features in normal neighboring cells. In
this case, NIS cell upregulation of TGFb and the NOTCH ligand
JAG1 was responsible for the propagation of senescence (Hoare
et al., 2016).

An important function attributed to the SASP is the induction
of immunosurveillance, referring to the ability of senescent cells
to induce an inflammatory response with the presumed objective
of early immune cell recognition and removal of cancerous and
precancerous cells. The significance of immunosurveillance was
demonstrated with a mouse model of OIS, in which the SASP
from pre-malignant senescent hepatocytes induced immune cell
recruitment and removal of the pre-malignant cells (Kang et al.,
2011). The importance of the immune response in this setting was
highlighted using SCID mice which lack an adaptive immune
system. In this case, the SCID mice were unable to clear the pre-
malignant cells and the development of hepatocellular carcinoma
was observed (Kang et al., 2011). A recent study dissected the
development of senescence and associated immunosurveillance,
identifying a mechanism by which p21 induced early in the
development of senescence leads to the upregulation of
Cxcl14 and the recruitment of monocytes and macrophages
(Sturmlechner et al., 2021). However, a big caveat for these
studies is the proper identification of senescent cells that occur
physiologically in vivo, as not all cells that express p21 are
senescent. Furthermore, the same paper that described the
effect of p21 induction on immunosurveillance also showed
that p16 induction did not have the same effect. This is
consistent with our recent study that demonstrates the
presence of a stable, resident p16+ fibroblast population in the
lung over the lifespan (Reyes deMochel et al., 2020). Regardless of
the diversity of immune response to the presence of cells with
senescent characteristics, part of the senescence response appears
to alert the immune system of their presence.

In the lung, like many tissues, senescent cells accumulate with
age (Hashimoto et al., 2016; Lee et al., 2021). There is also some
evidence to suggest that senescent cells may develop in younger
animals in response to recurrent injury such as intranasal
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lipopolysaccharide (LPS) or cigarette smoke (Rashid et al., 2018;
Sagiv et al., 2018). Therefore, in these contexts, senescent cells can
alter their microenvironments through the SASP. It is likely that
within the lung NF-kB is an important mediator of the SASP, as it
is in most contexts. Potential NF-kB activating stimuli include
cell-intrinsic activation in response to DNA damage or other
cellular stress, or from cell-extrinsic sources (Salminen et al.,
2012). Supporting a role for cell-extrinsic sources of NF-kB
activation, analysis of gene expression patterns from aged
lungs identifies TNF and IL-1B, both strong NF-kB activating
stimuli, as predicted upstream regulators of gene expression
(Angelidis et al., 2019). NOTCH signaling is also a potentially
interesting regulator of the SASP in the lung, as it has been shown
to regulate the SASP profile in OIS, and has also been
demonstrated to be an important regulator of lung epithelial
stem cell differentiation (Hoare et al., 2016; Choi et al., 2021).
Additionally, it is known that the common SASP factor IL-6 is
increased in the bronchoalveolar lavage (BAL) of healthy aged
individuals (Meyer et al., 1996). It remains to be determined
whether the source of IL-6 in this context is from the senescent
lung parenchyma or age-related changes in immune system
composition or function. Nonetheless, this increase in IL-6 has
the potential to both reinforce cellular senescence and impact the
local stem cell niche. Below we discuss how common SASP
factors have been shown to impact lung stem cell function.

IMPACT OF COMMON SASP FACTORS ON
LUNG STEM CELL FUNCTION
Overview of Lung Structure and Epithelial
Stem Cell Niche
The respiratory system can very broadly be delineated into two
functional categories: air conduction and gas exchange. The
conducting airways include the trachea, bronchi, and
conducting bronchioles, of which the epithelium is
predominantly composed of secretory and ciliated cells. The
primary secretory cell is the club cell, which has multiple
functions including the release of the anti-inflammatory
protein CCSP, xenobiotic metabolism, and functioning as an
airway epithelial progenitor. Ciliary cells, on the other hand, are
critical for effective mucus clearance (Davis and Wypych, 2021).
In the proximal conducting airways basal cells function as the
primary progenitor, while in the more distal conducting airways
this function is taken over by club cells. The most distal
component of the airways consists of the alveolar sacs, which
is where gas exchange occurs. More than 95% of the alveolar
surface is covered by very thin, flat alveolar type 1 (AT1) cells that
allow for gas exchange. The remaining surface of the alveoli is
composed of cuboidal alveolar type II (AT2) cells that play many
important roles including surfactant production and serving as
progenitors for AT1 cells (Barkauskas et al., 2013). It is important
to note that there are some differences between the airways of
humans and mice. One difference is that in humans, conducting
bronchioles transition to respiratory bronchioles, which have
alveolar outpouchings, before finally terminating in alveolar
sacs, whereas in mice conducting bronchioles transition

directly to alveoli at the bronchoalveolar duct junction
(BADJ). Another major difference is that in uninjured mice
basal cells do not extend past the most proximal bronchi,
while in humans they can be seen to the level of the
respiratory bronchiole (Basil et al., 2020). Therefore, it is
worth taking these differences into consideration when
comparing mouse and human studies.

The stem cell niche has been shown to be important for the
maintenance of fundamental stem cell properties such as self-
renewal and differentiation (Schofield, 1978; Jones and Wagers,
2008). Given that stem cells within a niche are responsive to
signals sent from neighboring cells, the SASP is a potential
modifier of stem cell function. Inflammatory cytokines (IL-1a,
IL-1b, IL-6, MCP1), chemokines (CCL8), matrix
metalloproteinases (MMPs), and growth factors (VEGF, EGF,
EREG) are part of the SASP known to contribute to the
maintenance of stem cells and their resident niches (Coppé
et al., 2010; Kang et al., 2011; Reyes de Mochel et al., 2020).
Notably, the SASP is both variable and dynamic, having been
shown to exhibit significant changes during injury and
regeneration. This responsiveness to the environment allows
senescent cells to serve multiple functions depending on
context (Krizhanovsky et al., 2008; Demaria et al., 2014). With
respect to the lung, decades of research have highlighted the
importance of the microenvironment in regulating lung stem and
progenitor cell function. Furthermore, the identification of
senescent cells in the lung stem cell niche could provide
important insights in terms of how SASP derived from
senescent niche cells could alter the regenerative response.
Here are some examples of prominent SASP components that
can influence stem cell behavior in the lung:

Effects of IL-6 on Lung Stem Cells
In addition to its well-known role in regulating cells of the
immune system, it is now appreciated that interleukin 6 (IL-6)
can also modify lung stem cell behavior. Depending on the
stimulus, IL-6 can be produced by a wide variety of cells
including epithelial cells, macrophages, and fibroblasts
(Crestani et al., 1994; Rincon and Irvin, 2012). After acute
injury, airway basal cells are tasked with differentiating into
secretory or ciliated cells to restore essential airway
architecture (Rock et al., 2009). Tadokoro et al. demonstrated
that after inhaled sulfur dioxide intratracheal injury, basal cells
are stimulated with IL-6, which causes preferential differentiation
of basal cells into ciliated cells. Interestingly, in this study
fibroblasts were identified as the predominant source of IL-6,
highlighting the role of stromal cells in supporting airway
epithelial stem cell function after injury (Tadokoro et al., 2014).

The role of IL-6 in alveolar homeostasis and repair is less clear.
In homeostasis, activation of the IL-6/STAT3 pathway in
AT2 cells has been shown to be critical for proper lamellar
body formation and surfactant production (Matsuzaki et al.,
2008). After injury, IL-6 has been found to play either
beneficial or detrimental roles dependent on both timing and
injury. Using the bleomycin fibrotic lung injury model, it was
shown that neutralizing IL-6 during the early inflammatory phase
worsened fibrosis, while IL-6 neutralization during the
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subsequent fibrotic phase decreased fibrosis. In the setting of
influenza, IL-6 has been shown to mediate phagocytic activity in
macrophages, increase fibroblast apoptosis, and improve
epithelial survival, thus promoting viral clearance while
maintaining the epithelium and minimizing fibrosis.
Accordingly, IL-6−/− mice experience worse disease severity
after influenza compared to wild-type mice (Yang et al., 2017).
This is also consistent with data showing that IL-6 secreted by
alveolar mesenchymal niche cells can promote AT2 growth (Zepp
et al., 2017). Taken together, it is clear that IL-6 can play many
roles within the lung during homeostasis and injury. Future
studies to better clarify the cellular targets and context-specific
functions of IL-6 will be important for improved targeting of this
important inflammatory pathway.

Effects of IL1β/TNF on Lung Stem Cells
During lung homeostasis, AT2s serve as the resident stem cell in
the main gas exchange compartment of the lung, maintaining
alveolar epithelial populations through self-renewal and
differentiation into AT1s (Barkauskas et al., 2013). In severe
fibrotic injury, the lung develops alternate mechanisms to quickly
regenerate AT2 and AT1 cells. AT2s can be regenerated from pre-
existing AT2s or airway progenitors that migrate into the alveoli
(Basil et al., 2020). Relevant to the mechanism of how airway
progenitors differentiate into AT2s, a recent study showed that
IL-1b secreted by infiltrating monocyte/macrophages regulates
the airway progenitor niche to promote secretory cell
transdifferentiation into AT2 cells (Choi et al., 2021). It has
also been described that there is a subpopulation of AT2 cells
that express the IL-1 receptor, Il1r1. In the setting of injury, IL-1b
supports the development of a damage-associated transient
progenitor (DATP) from these Il1r1+ AT2 cells, an important
intermediary step in the AT2 to AT1 transition. Interestingly, the
downregulation of IL-1b signaling in DATPs is important for the
completion of their transition to AT1 cells. In the setting of
chronic inflammation, cells are stalled in the DATP state,
impairing effective alveolar regeneration (Choi et al., 2020).

Another important characteristic of IL-1b signaling in the
stem cell niche is that IL-1b can also directly activate the stromal
niche that supports lung stem cells. AT2 organoids co-cultured
with fibroblasts deficient for Il1r1 displayed reduced organoid
capacity when stimulated with IL-1b (Katsura et al., 2019). This is
consistent with the study of DATPs that demonstrated the cell-
autonomous requirement of Il1r1 in AT2s to transition into
AT1s, but not cell proliferation (Choi et al., 2020). These data
suggest that IL-1b exerts antagonistic effects in the stem cell niche
through direct activation of AT2s to promote differentiation,
while indirectly promoting AT2 self-renewal by upregulating
stem cell mitogens in AT2-supporting niche cells. Consistent
with these data, we have recently demonstrated that IL-1b
preferentially upregulates IL-6 and EREG in senescent
fibroblasts to increase club cell proliferation (Reyes de Mochel
et al., 2020).

Similar to IL-1b, TNF is another inflammatory cytokine that
can activate NF-kB to promote SASP. Furthermore, TNF can
induce a positive feedback loop by activating NF-kB to produce
more TNF (Falvo et al., 2010). In the influenza lung injury model,

7 days after infection there is a surge of IL-1 and TNF in the
damaged areas containing very few AT2 (SPC+) cells and within
the injury perimeter. Like IL-1b, TNF was also shown to drive
AT2 proliferation in the organoid assay in vitro. Additionally,
mice deficient in myd88, an effector in the Toll-like receptor
(TLR) pathway that can drive TNF production, demonstrates
impaired AT2 repair after severe alveolar injury (Katsura et al.,
2019). The source of TNF in these cases is yet to be determined,
but likely candidates include recruited immune or resident
mesenchymal cells. Although it is unclear if the origin of these
cytokines is from senescent cells in the microenvironment, it is
evident that common SASP factors produced in the niche can
significantly impact resident stem cells.

Effects of EREG on Lung Stem Cells
In our recent study, we found that EREG/Epiregulin is
preferentially upregulated in p16+ fibroblasts after epithelial
injury. EREG was previously identified as a keratinocyte
mitogen that acts through EGFR and ErbB4 (Draper et al.,
2003). Genetic knockout of Ereg did not alter airway epithelial
composition in healthy mice, but these animals failed to
regenerate club cells after airway stem cell depletion.
Interestingly, Ereg expression was rapidly induced in senescent
fibroblasts in response to inflammatory stimuli such as LPS, IL-
1b, or monocyte co-culture (Reyes de Mochel et al., 2020). This
was fascinating because inflammatory signals accompany any
tissue injury where the epithelial compartment is compromised.
Our data demonstrate that senescent cells in the niche serve as a
sentinel that senses inflammatory signals associated with injury to
augment support for resident stem cell recovery.

The SASP appears to be modulating stem cell differentiation
and renewal in a context-dependent manner. While senescent
cells release the SASP to support growth, regeneration, or
inflammation, there is reciprocal interaction with the
microenvironment that feeds back to alter SASP components
in senescent cells. The SASP appears to be dichotomous in that it
increases epithelial plasticity/regeneration while increasing
immune cell activation and recruitment. Unraveling what
drives this contextual specificity may provide insight into how
fluctuating SASP secretion predisposes the lung to age-related
changes.

STEM CELL SENESCENCE IN THE LUNG

Stem cells undergo age-related changes that alter function, but
not necessarily with characteristics that are consistent with
senescence. Muscle stem cells actually increase proliferation
with age, but they lose but they lose differentiation capacity
and differentiation capacity that can be attributed to
alterations in the aging muscle stem cell niche (Chakkalakal
et al., 2012). Much less is known about how lung stem cell
function changes with age, or whether senescence is a feature
of lung stem cell aging. What is apparent is that recent literature
has highlighted transitional cell states in lung stem cells that
approximate certain features of senescence. Single-cell analyses of
injured AT2s in vivo and in vitro have recently shown transient
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intermediates that appear during the differentiation of AT2s to
AT1s. These transitional cells are known as pre-alveolar type I
transitional cell state (PAT), alveolar differentiating intermediate
(ADI), or damage-associated transition progenitors (DATPs)
(Choi et al., 2020; Jiang et al., 2020; Kobayashi et al., 2020;
Strunz et al., 2020). Despite the varying nomenclature, all the
pre-AT1 intermediates described have similar low AT2 and high
AT1 transcriptional profiles with high Keratin 8+ expression
(Choi et al., 2020; Kobayashi et al., 2020; Strunz et al., 2020).
Interestingly, the AT2 to AT1 intermediates morphologically
change from a cuboidal to a flattened extended morphology, a
characteristic of senescent cells. Furthermore, transcriptome
analysis indicates an upregulation of genes associated with
senescence such as p21, p16INK4a, and p53 in the transitional
cell types. While it remains unclear if these cells are truly
“senescent,” these transitional cells display features of
senescence, including activation of NF-kB, TP53, and DNA
damage response pathways as they undergo differentiation
into AT1s. It will be important in future studies to further
clarify the role the senescent program plays in the formation
of these transitional states, although existing data suggest that IL-
1b and TGFb are likely important contributors (Choi et al., 2020;
Kathiriya et al., 2022). Furthermore, there is evidence that these
transitional cell states are more prevalent in age-related lung
diseases (reviewed below), however, it is not clear whether they
are associated with normal aging in the human lung.

CHANGES IN LUNG CELLULAR
COMPOSITION AND FUNCTION WITH AGE

Parenchymal Changes in the Lung
Alterations in both airway cellular composition and function have
been observed with age, and growing evidence points to cellular
senescence as a contributor to these changes. In the conducting
airways, several studies have identified a decrease in airway
epithelial density with age, as well as a decrease in the ratio of
epithelial progenitor cells relative to their ciliated counterparts
(Wansleeben et al., 2014; Ortega-Martínez et al., 2016; Angelidis
et al., 2019). Given the known effect IL-6 plays in skewing basal
cells toward a ciliated identity, it is tempting to speculate that
aging-associated increases in local IL-6, either from senescent
stromal cells or resident immune cells, may underlie these
compositional changes (Tadokoro et al., 2014; Wansleeben
et al., 2014). To date, the functional significance of these
epithelial alterations remains unclear, as there appears to be
no age-related impairment of tracheal epithelial repair after
inhalation of sulfur dioxide (Wansleeben et al., 2014).
However, one possibility is that this age-associated increase in
the proportion of ciliated cells is a compensatory mechanism for
impaired ciliary cell function (Bailey et al., 2014). Indeed, in aged
ciliated cells, oxidative stress, which has been linked to both aging
and senescence, has been shown to be responsible for decreased
ciliary beat frequency, thus providing a direct mechanism by
which aging impairs mucociliary clearance (Takahashi et al.,
2006; Bailey et al., 2018). It is likely that this age-associated
impairment in mucociliary clearance contributes to the increased

risk of severe pneumonia observed among the elderly (Schneider
et al., 2021).

In the alveolar compartment, airspace enlargement is one of
the hallmark changes of lung aging. Alveolar enlargement,
accompanied by an increase in lung compliance and decrease
in lung elasticity, is commonly referred to as “senile emphysema”
(Janssens et al., 1999; Cho and Stout-Delgado, 2020). One
proposed mechanism for this finding is impaired AT2 to
AT1 differentiation with age, leading to a decreased total
number of AT1 cells (Schneider et al., 2021). This finding is
supported by the observation that while there are consistent levels
of EdU incorporation within AT2 cells of young and agedmice, in
aged mice there is a decrease in the number of EdU positive
AT1 cells, the terminally differentiated product of AT2 cells
(Watson et al., 2020). This mechanism would be consistent
with many other studies that have demonstrated age-related
alterations in stem cell differentiation capacity (Schultz and
Sinclair, 2016). Impaired AT2 function is likely attributable to
both cell-intrinsic and cell-extrinsic changes that occur with age.
For example, it has been shown that AT2 cells from aged mice
have increased features of senescence and an impaired ability to
form alveolar organoids in vitro, demonstrating cell-intrinsic
changes with age (Lehmann et al., 2020). Additionally, an
increase in oxidative stress within the alveolar epithelium
preceding emphysema formation has been observed, offering a
potential underlying mechanism for this AT2 dysfunction (Calvi
et al., 2011). However, it has also been shown that lung stromal
cells from aged mice exhibit several senescent cell characteristics
in addition to increased Nox4 expression, thus enhancing ROS
production. Nox4 deletion within aged stromal cells was able to
partially restore alveolar organoid formation in vitro,
demonstrating a role for senescent stromal cells in modulating
AT2 cell function, and potentially even contributing to
AT2 aging-induced senescence through ROS production
(Chanda et al., 2021). Indeed, antioxidants have been shown
to both increase the survival and modify the proliferative and
differentiation capacity of stem cells, raising the possibility of
antioxidants as therapy for aging-associated lung dysfunction
(Abdel-Daim et al., 2017).

Interestingly, in addition to ROS, an increase in the number of
lung macrophages and B cells has been shown to coincide with
the timing of aging-associated airway enlargement (Calvi et al.,
2011). As discussed above, chronic IL-1b treatment of AT2 cells
leads to the persistence of DATPs and impaired
AT1 differentiation (Choi et al., 2020). Given the previously
identified role for macrophage IL-1b in the formation of
DATPs, it is possible that IL-1b or other inflammatory
cytokines released by the increased number of macrophages
within the lungs of aging mice contribute to the observed
impairment of AT2 to AT1 differentiation, although to our
knowledge this hypothesis has not yet been formally tested.

A direct role for senescent cells in mediating age-related
parenchymal changes was identified using an ARF-diphtheria
toxin receptor (DTR)-luciferase transgenic mouse to both track
and inducibly delete p19 expressing cells. Using this system, it was
observed that there is significant upregulation of p19, as well as
other senescence-associated genes such as p16INK4a and p21 in the
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lungs of healthy aged mice, with the majority of p19 expression
attributable to lung fibroblasts. Interestingly, removal of p19 cells
with the use of diphtheria toxin decreased age-associated
increases in lung compliance and improved tissue elastance
(Hashimoto et al., 2016). Given the well-appreciated role of
senescent cells in MMP production, one can postulate that in
addition to altering the epithelial compartment, senescent lung
fibroblasts may contribute to the ECM remodeling and changes in
collagen seen with age (Muñoz-Espín and Serrano, 2014; Tabula
Muris, 2020).

Lastly, while not historically considered a prominent feature of
lung aging, there is mounting evidence that fibrosis may play a
role in this process. With the increased use of chest computed
tomography (CT) for screening and diagnostic purposes, it is
becoming apparent that many clinically healthy older individuals
have radiographically appreciable interstitial abnormalities
(Hatabu et al., 2020). Supporting this observation, a recent
study analyzed lung tissue from 86 deceased donors between
the ages of 16 and 76 without known lung pathology and found
that with age there was an increase in the expression of collagen
processing genes and histological evidence of subpleural fibrosis
in those of advanced age. They also note that the observed age-
associated changes in pro-fibrotic gene expression positively
correlate with signs of cellular senescence, including CDKN2A
expression, shortened telomeres, and gamma-H2AX foci (Lee
et al., 2021). As discussed later, senescence has been linked to the
pathophysiology of the age-associated disease idiopathic
pulmonary fibrosis (IPF). It will be interesting to determine
whether the same senescent pathways are involved in fibrosis
that develops during normal aging, and if so, to what extent IPF
represents an accelerated aging phenotype.

Changes in the Lung Immune System
Aging is accompanied by significant alteration in both the innate
and adaptive immune system that leads to a state of immune
system dysfunction and impaired response to pathogens and
vaccines. Together, these changes are commonly referred to as
immunosenescence (Oxman et al., 2005; Nikolich-Žugich, 2018).
As an example, dendritic cells, which are critical for activating
and instructing the adaptive immune system, have impaired
maturation, migration, and ability to cross-present antigens
with age (Panda et al., 2010; Zhao et al., 2011; Zacca et al.,
2015). Additionally, cell-intrinsic changes in aged hematopoietic
stem cells (HSCs) skew their differentiation potential to a myeloid
rather than lymphoid fate (Rossi et al., 2005). This altered
differentiation potential contributes to a decrease in naive
T cell production with age, and in conjunction with impaired
naive T cell maintenance, leads to an overall decline in naive T cell
numbers and diversity with age (Rudd et al., 2011). B cells are also
affected by aging, demonstrating impaired immunoglobulin class
switch recombination and somatic hypermutation, leading to less
effective antibody responses in the elderly (Frasca et al., 2004).
While immune cell senescence has been well-documented, it
remains to be determined to what extent most age-related
changes in the immune system are attributable to cellular
senescence versus other age-associated alterations in function
(Brenchley et al., 2003; Wherry, 2011; Crespo et al., 2013).

Another concept that has become prominent in the aging
literature is that of “inflammaging”, referring to the development
of a state of chronic low-grade inflammation with age (Franceschi
et al., 2018). There is some data to support this notion. For
example, dendritic cells isolated from the circulation of aged
individuals have been shown to have increased basal levels of
proinflammatory cytokine production, despite having impaired
cytokine response to TLR ligands (Panda et al., 2010).
Additionally, several studies have demonstrated an increase in
circulating pro-inflammatory factors, such as IL-6, IL-18, and
C-reactive protein (CRP) with age, although these correlations
become much weaker when underlying cardiovascular disease is
taken into account, raising the question of how much these
findings are intrinsic to the normal aging process (Ferrucci
et al., 2005; Puzianowska-Kuźnicka et al., 2016). In humans,
the pulmonary immune system is most easily evaluated with
bronchoalveolar lavage (BAL), a technique that samples cells
residing within the most distal airways. In healthy individuals, the
vast majority of BAL cells are alveolar macrophages, although this
has been shown to change with age. In a study of clinically
healthy, never-smokers over a spectrum of ages, individuals in the
oldest group had increased neutrophils, elevated levels of BAL IL-
6, and increased BAL superoxide anion production in response to
PMA, all consistent with a basal inflammatory state (Meyer et al.,
1996). While there are marked changes in the immune system
with age, much more needs to be done to determine the extent to
which healthy aging is accompanied by an increase in basal
inflammation, as well as elucidating the sources and functional
consequences of these secreted inflammatory mediators.

It is likely that alterations in the immune system play a role in
lung aging, and that age-associated changes in the immune system
are both cell intrinsic and in response to an agingmicroenvironment.
The contribution of immune cell senescence to driving solid organ
aging was recently tested using a genetic model to specifically
suppress DNA damage repair within the hematopoietic system.
Using thismodel, the authors were able to demonstrate that immune
cell senescence not only phenocopied many aging-associated
physiologic changes but also induced features of senescence in
parenchymal tissues, including the airway epithelium
(Yousefzadeh et al., 2021).

Conversely, there are multiple examples by which aged
parenchymal cells alter the immune system. For example, in
the setting of influenza, aged mice accumulate more neutrophils
in their BAL compared with young mice. Depletion of
neutrophils after infection dramatically improved survival in
aged mice, while there was not a significant improvement in
survival among young mice, demonstrating the role of excessive
neutrophilic inflammation in influenza mortality. Importantly, it
was found that increased neutrophil chemotaxis to the lungs in
aged mice was attributable to elevated secretion of the neutrophil
chemoattractants CXCL1 and CXCL2 from airway epithelial cells
that exhibited increased expression of the senescent marker SA-
beta-galactosidase (Kulkarni et al., 2019). As discussed
previously, the ability of senescent cells to recruit immune
cells for the purpose of immunosurveillance is a core function
of the SASP. This study demonstrates how the accumulation of
cells with senescent features may prime tissues for an exaggerated
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inflammatory response and inadvertent immunopathology in the
setting of injury.

There is also growing evidence that in addition to increasing
immune cell recruitment, senescent cells or other alterations in
the aged microenvironment can modify immune cell phenotype.
A recent study evaluated changes in alveolar macrophages (AMs)
with age, and identified that AMs are decreased in number in
aged mice, have impaired proliferation in response to GM-CSF,
and exhibit a pro-inflammatory gene expression profile. Notably,
this phenotype was largely determined by the aged lung
microenvironment, as heterochronic transfer of aged AMs to
young mice restored AM gene expression to that of young AMs.
The authors went on to show that hyaluronan inhibits
macrophage proliferation, and argue that increased hyaluronan
production by aged AT2 cells may be partially responsible for the
effect of the aged lung microenvironment on AMs (McQuattie-
Pimentel et al., 2021). Results from another recent study comparing
scRNA sequencing of immune cells from young and aged mice
describe the development of a unique granzyme K (GZMK) positive
CD8+ T cell population with age, which they call T aging-associated
(Taa). Notably, the formation of this CD8+ Taa population was
dependent on the aged microenvironment, although the specific
factors driving CD8+ Taa development remain unknown. They also
show that GZMK is able to enhance SASP secretion from senescent
cells, raising the possibility of an inflammatory positive feedback
loop between senescent cells and the immune system (Mogilenko
et al., 2021).

Together, emerging data support a scenario in which the aging
lung parenchyma and immune system are in close interaction.
Senescent parenchymal cells can modify both the composition
and phenotype of the resident immune cell compartment.

Similarly, recruited aged and senescent immune cells
reciprocate by driving the propagation of senescence within
the parenchyma. The sum of these interactions is the
development of an inflammatory positive feedback loop,
creating chronic low-grade inflammation with age that not
only alters tissue function in homeostasis but sets the stage for
a dysregulated response to future insults (Figure 1).

EVIDENCE OF SENESCENCE IN
AGING-ASSOCIATED LUNG DISEASE

Age is one of the strongest risk factors for some of the most
prevalent chronic lung diseases, including emphysema, lung
fibrosis, and lung cancer (Rojas et al., 2015). There is growing
evidence that physiologic aging in the lung can underpin the
susceptibility to these chronic lung diseases. The following section
discusses the evidence that senescence plays a role in these age-
related lung diseases.

Emphysema
Emphysema is a condition characterized by alveolar wall
destruction with associated airspace enlargement. It is part of
a larger group of lung impairments called chronic obstructive
pulmonary disease (COPD), a chronic inflammatory lung disease
that leads to airflow obstruction and difficulty breathing (Celli
andWedzicha, 2019). It has been noted that multiple cell lineages,
including epithelial, endothelial, and fibroblasts from patients
with COPD have increased features of senescence, including
DNA damage, p16INK4a expression, and the development of a
SASP (Tsuji et al., 2006; Woldhuis et al., 2021). Cigarette smoke,
one of the strongest risk factors for emphysema, has been shown
to induce senescence in lung fibroblasts (Nyunoya et al., 2006).
Additionally, the genetic elimination of p19ARF-expressing cells
was able to reduce both emphysema formation and immune cell
infiltration in a murine model of emphysema (Mikawa et al.,
2018).

Short telomere length is thought to be one of the major drivers of
cellular senescence in COPD, as individuals with COPD have been
found to have decreased telomere length compared to healthy
controls (Mui et al., 2009). Additionally, mice with short
telomeres have accelerated development of emphysema in the
setting of chronic cigarette smoke exposure (Alder et al., 2011).
Activation of the mTOR pathway is another mechanism by which
cellular senescence may develop in emphysema. The mTOR
pathway, a known inducer of senescence, displays increased
activation in patients with COPD relative to controls, and
in vitro inhibition of the pathway with rapamycin decreased
cellular senescence in pulmonary endothelial and smooth muscle
cells from patients with COPD (Houssaini et al., 2018). Furthermore,
activation of the mTOR pathway through TSC1 deletion in either
endothelial or AT2 cells was sufficient to drive the development of
emphysema in mice (Houssaini et al., 2018). Similarly, inhibition of
themTORpathwaywith theAMP-activated protein kinase (AMPK)
activator metformin was shown to decrease the development of
senescence, SASP secretion, and emphysema in the elastase-induced
murine model of emphysema (Cheng et al., 2017). Taken together,

FIGURE 1 | Positive inflammatory feedback loop between senescent
cells and the immune system in the aging lung stem cell niche. With age,
senescent cells accumulate within the lung parenchyma and secrete SASP
factors that both recruit immune cells and alter immune cell function.
Subsequently, recruited immune cells secrete cytokines that reinforce and
potentially even propagate cellular senescence. The pro-inflammatory
environment created by this positive feedback loop contributes to age-related
alterations in lung epithelial stem cell function.
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current evidence suggests that cellular senescence contributes to the
pathogenesis of emphysema, and raises the potential for senolytics in
the treatment of this disease.

Idiopathic Pulmonary Fibrosis
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive form
of pulmonary fibrosis of unknown cause. It is a disease of aging,
most commonly diagnosed in the sixth or seventh decade of life,
and rarely appreciated before the age of 50 years (Lederer and
Martinez, 2018). A causal link to the age-related cellular process
was established when it was discovered that mutations in the
telomerase genes hTERT and hTR are a significant contributor to
familial pulmonary fibrosis (Armanios et al., 2007). Further
supporting this connection is that many individuals with
sporadic IPF have also been found to have short telomeres
(Alder et al., 2008). Mechanistic studies in mice demonstrated
that deletion of the telomere shelterin gene, Trf1, induced features
of senescence in AT2s and increased lung fibrosis with age
(Naikawadi et al., 2016). Additionally, a mouse model in
which p53 was specifically activated in AT2 cells was sufficient
to induce senescent features in AT2s and drive progressive lung
fibrosis (Yao et al., 2021). In IPF lungs, numerous cell types that
bear resemblance to transition cell types in mice have also been
identified, with similar upregulation of senescent gene programs
(Adams et al., 2020; Habermann et al., 2020; Kobayashi et al.,
2020). This raises the possibility that the senescent gene program
might play a role in the stem cell metaplasia commonly seen in
fibrotic lung remodeling, where ectopic airway basal cells appear
in the alveoli in abnormal cystic structures (Lederer and
Martinez, 2018). Our group has recently shown that human
AT2s can differentiate into metaplastic basal cells in culture
through transitional states that resemble those found in IPF,
and these transitional states also upregulate similar senescence-
associated genes (Kathiriya et al., 2022).

Fibroblast senescence has also been shown to play a role in
lung fibrosis. Aged mice, in contrast to their young counterparts,
develop persistence of lung fibrosis after bleomycin injury. This
phenotype was shown to be attributable to the persistence of
senescent fibroblasts and ROS production in aged mice through
an imbalance between the ROS-producing enzyme Nox4 and the
antioxidant protein Nrf2. Interestingly, they show that fibroblasts
from IPF lungs also have increased levels of Nox4 protein,
suggesting that a similar impairment in the regulation of ROS
may be at play in IPF pathogenesis (Hecker et al., 2014). A
subsequent study showed that depletion of p16INK4a+ cells
improved lung mechanics after bleomycin injury (Schafer
et al., 2017). A recent single-cell atlas of IPF also
demonstrated upregulation of CDKN2A (gene encoding p16)
in a subset of fibroblasts that arise de novo in IPF
(Habermann et al., 2020). Together, these studies support a
causative role of cellular senescence in IPF pathogenesis,
which has prompted clinical investigation into senolytics as a
therapeutic for fibrotic lung disease (Justice et al., 2019).

Lung Cancer
At first glance, it would appear that senescence has a clear role in
suppressing lung tumor formation and progression. This is

supported by data showing that a large percentage of non-
small cell lung cancers (NSCLC) demonstrate methylation-
induced silencing at the p16/CDKN2A locus (Sterlacci et al.,
2011). However, this has not been supported in studies where
p16 is correlated with outcome, with some studies showing that
p16 + cells on histology or p16 transcripts directly correlate with
worse survival from lung cancer (Győrffy et al., 2013; Pezzuto
et al., 2020).

Supporting a pro-tumorigenic role for cellular senescence, it
has been reported that senescent cells provide a milieu to support
cancer cell proliferation in vitro that is predominantly mediated
by the SASP (Krtolica et al., 2001). In vivo, it has been shown that
p16 expression increases in both the neoplastic and surrounding
stromal cells early in tumor development, including in a model of
lung adenocarcinoma (Burd et al., 2013). Using in vivo tumor
models, SASP factors have been found to promote various aspects
of tumorigenesis including metastasis and angiogenesis in
addition to proliferation. For example, the IL-6-activated
STAT3 pathway can lead to an increase in lung cancer cell
growth (Song et al., 2011). Additionally, several studies have
shown that senescent cells can support the proliferation of tumor
cells when co-injected into immunocompromised mice (Coppé
et al., 2006; Liu and Hornsby, 2007). Drawing a parallel to our
prior study showing that senescent niche cells can support airway
stem cell growth (Reyes de Mochel et al., 2020), these data suggest
that senescent niche cells in the tumor stroma can also provide
positive signals to tumor stem cell subsets that might be
responsive to SASP.

Notably, the induction of cellular senescence in stromal cells as
an unintended consequence of cancer therapy is starting to
receive increased attention due to the increased number of
cancer survivors (Zhu et al., 2020). A study showed that
p16INK4A is upregulated in stromal cells after chemotherapy
treatment, and the presence of these cells increased tumor
progression and metastasis in a genetic model of breast cancer
metastases (Demaria et al., 2017). Considering that many cancer
therapeutics promote senescence and SASP, targeting senescent
cells in combination with conventional therapeutic approaches is
a potential way to improve therapeutic effectiveness and decrease
recurrence rates. For example, the FDA-approved histone
deacetylase inhibitor, panobinostat, was able to promote
senolysis of chemotherapy-induced persistent senescent cells in
non-small cell lung cancer (NSCLC). Administration of
panobinostat after Taxol treatment in a non-small cell lung
cancer cell line decreased Bcl-xL expressing persistent
senescent cells (Samaraweera et al., 2017). These studies
suggest that monitoring for the emergence and persistence of
senescent cells after cancer treatments may be helpful in
predicting the risk of tumor relapse in lung cancer patients.

CONCLUSION

As the population ages, it is becoming increasingly important to
understand aging-associated diseases and how physiologic aging
increases susceptibility to these conditions. The lung is of
particular significance in this context given the large extent to
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which aging-associated lung disease contributes to morbidity and
mortality within our societies. There are many lines of evidence
supporting a role for senescent cells in both physiologic lung
aging and aging-associated lung diseases, making the prospect of
senolytics for therapeutic purposes very appealing. However, the
fundamental function of cellular senescence as a tumor-
suppressive mechanism cannot be ignored, and the growing
evidence for a positive role of senescence in the context of
acute injury demonstrates the importance of increasing our
understanding of these complex cells before indiscriminately
eliminating them. Similarly, it is becoming clear that the
development of senescence is a dynamic and ongoing process,
making improved understanding of senescent cell heterogeneity
critical for more targeted therapies.

It is now clear that senescence and inflammation are
intertwined. Inflammatory signals from senescent cells are
important not only for induction of immunosurveillance, but
also for maintenance of their own senescent identity. What is less
understood is how inflammation mediated by the SASP affects
tissue and stem cell function, and to what extent these effects are
context dependent. Many studies suggest senescent cells impair
tissue homeostasis and stem cell function. Conversely, it has been
shown that inflammatory cytokines, including the common SASP
factors IL-1b and IL-6, play an important function in promoting
airway epithelial repair. How then can one reconcile these

seemingly opposing roles? One potential explanation may be
differences in the duration of inflammatory signals, in which
short-term inflammation in the setting of acute injury is
important for regeneration, whereas prolonged inflammatory
signaling from senescent cells leads to stem cell exhaustion or
other dysfunction. Further studies to better understand how
SASP factors alter stem cell function both in homeostasis and
after injury will be important for improving tissue regeneration in
the elderly. Finally, there is growing evidence that in addition to
simply recruiting immune cells, senescent cells and the aged
microenvironment can alter immune cell function. This is an
exciting area of research and raises the possibility that changing
the microenvironment may be able to slow or even reverse the
decline in immune function that occurs with age.
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