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Abstract
Spatiotemporal patterns of plant water uptake, loss, and storage exert a first-
order control on photosynthesis and evapotranspiration. Many studies of plant 
responses to water stress have focused on differences between species because 
of their different stomatal closure, xylem conductance, and root traits. However, 
several other ecohydrological factors are also relevant, including soil hydraulics, 
topographically driven redistribution of water, plant adaptation to local climatic 
variations, and changes in vegetation density. Here, we seek to understand the 
relative importance of the dominant species for regional-scale variations in woody 
plant responses to water stress. We map plant water sensitivity (PWS) based on 
the response of remotely sensed live fuel moisture content to variations in hydro-
meteorology using an auto-regressive model. Live fuel moisture content dynamics 
are informative of PWS because they directly reflect vegetation water content and 
therefore patterns of plant water uptake and evapotranspiration. The PWS is stud-
ied using 21,455 wooded locations containing U.S. Forest Service Forest Inventory 
and Analysis plots across the western United States, where species cover is known 
and where a single species is locally dominant. Using a species-specific mean PWS 
value explains 23% of observed PWS variability. By contrast, a random forest 
driven by mean vegetation density, mean climate, soil properties, and topographic 
descriptors explains 43% of observed PWS variability. Thus, the dominant spe-
cies explains only 53% (23% compared to 43%) of explainable variations in PWS. 
Mean climate and mean NDVI also exert significant influence on PWS. Our results 
suggest that studies of differences between species should explicitly consider the 
environments (climate, soil, topography) in which observations for each species are 
made, and whether those environments are representative of the entire species 
range.
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K E Y W O R D S
inter-specific variability, intra-specific variability, live fuel moisture 
content, plant hydraulic traits, plant-water interactions, water 
stress

1  |  INTRODUC TION

The response of plants to water stress has myriad effects on local 
ecosystems and water cycling. It is a first-order control on evapo-
transpiration (ET, Pappas et  al., 2016) and thus a key determinant 
of water availability for human consumption (Mastrotheodoros 
et al., 2020; Seager et al., 2013; Ukkola, Prentice, et al., 2016), land-
atmosphere interactions, and drought and heatwave evolution 
(Miralles et  al.,  2019). Additionally, plant water stress responses 
also affect rates of photosynthesis (Pappas et al., 2016), vegetation 
growth, mortality, and wildfire risk (Brodribb et al., 2020). As a re-
sult, they are also a significant control on vegetation's potential to 
sequester carbon (Anderegg et al., 2020; Coffield et al., 2021; Wu 
et al., 2023).

Despite significant concerted research effort (Brodribb 
et al., 2020; Grossiord et al., 2020), the response of vegetation to 
water stress remains poorly understood. Development of a reliable 
model of stomatal closure has been argued to be one of the holy 
grails of plant physiology (Buckley, 2017), but continues to be un-
certain and error-prone (Sabot et al., 2022; Wang et al., 2021). Land 
surface models overestimate the impact of droughts (Ukkola, De 
Kauwe, et al., 2016) and often cannot even predict the sign of ET's 
response to drought (Zhao et al., 2022). Compensation and cross-
correlation between drought's dual effects of increasing vapor pres-
sure deficit (VPD) and reduced root-zone soil moisture add further 
complexity (Liu et al., 2020; Novick et al., 2016; Vargas Zeppetello 
et al., 2023). Efforts to reduce these uncertainties are hindered by 
the large range of processes across the soil–plant-atmosphere con-
tinuum that influence the effect of hydrometeorology on plants. 
For example, precipitation anomalies may translate non-linearly to 
anomalies in root-zone water availability due to soil-dependent vari-
ations in infiltration rates, water storage, and topography-induced 
lateral redistribution of water (e.g., Hahm et  al.,  2019; Miguez-
Macho & Fan, 2021; Paschalis et al., 2022). The resulting anomalies 
in the three-dimensional distribution of root-zone soil water content 
are then mediated by a large range of plant traits—including those 
affecting plant rooting depth and distribution, root conductance 
and root water uptake, rates of water movement through the plant 
xylem, and stomatal closure (Fatichi et al., 2016). Here, we collec-
tively refer to these traits as ‘plant hydraulic traits’.

Because plant hydraulic traits vary significantly by species 
(Bartlett et  al., 2016; Skelton et  al., 2015), many studies of plant 
drought and water stress response analyze vegetation behavior as 
a function of species (e.g., Brzostek et al., 2014; Cabon et al., 2023; 
Serra-Maluquer et  al.,  2022). However, the focus on species-by-
species differences in studies of plant water stress neglects the fact 
that plant hydraulic traits may exhibit significant intra-specific vari-
ability (González de Andrés et al., 2021; Kannenberg et al., 2022; Lu 

et al., 2022), including through adaptation to local climate (Depardieu 
et al., 2020; Pritzkow et al., 2020). It also ignores the potential role 
of soil and topography variations and their interactions with species-
specific physiologies.

To make progress on understanding the response of plants to 
water stress, it is therefore necessary to understand the relative 
contributions of species, soil, topography, and climate to the overall 
response of vegetation to water stress. To this end, several stud-
ies have analyzed the sources of spatial variability for various water 
stress response indices (e.g., Felton et  al.,  2021; Fu et  al.,  2022; 
Ukkola et al., 2021; Yang et al., 2022). However, these studies have 
focused on analyzing metrics that are not solely related to water 
stress. For example, Green et al.  (2022) analyzed the ratio of land 
surface temperature to air temperature (an indirect proxy for sen-
sible heat), which is also influenced by variations in other meteoro-
logical drivers (i.e., radiation, surface roughness, wind speed) even 
in the absence of changes in water stress. Other studies have fo-
cused on spatial variability of the response of net primary produc-
tivity (NPP) to precipitation (Felton et al., 2021; Ukkola et al., 2021). 
However, NPP combines plant responses to water stress along mul-
tiple axes, including photosynthesis, respiration, and water uptake. 
Furthermore, in order to study a large spatial extent, and because 
species information is rarely available over large areas (and thus, 
rarely considered in large-scale studies), few studies have consid-
ered the role of species (though see D'Orangeville et al. (2018) and 
Gazol et al. (2017) for exceptions).

In this study, we quantify “plant water sensitivity” (PWS) by com-
paring the dynamics of live fuel moisture content (LFMC) (which 
quantifies the relative water content of plant canopies) with dead 
fuel moisture content (a proxy for how LFMC would be expected 
to evolve in response to hydrometeorology in the absence of soil, 
plant water uptake, and transpiration processes). We take advantage 
of a recently derived high-resolution map of plant water sensitivity 
across the western United States (Rao et  al., 2022), a region that 
covers a variety of climatic and biogeographic conditions. We then 
analyze the degree to which species, plant traits, climate, soil type, 
and topography control the spatial variability in LFMC sensitivity to 
climate at a large number of locations where a single species is dom-
inant and identified.

2  |  METHODS

2.1  |  Plant water sensitivity mapping

We create and analyze maps of PWS, which quantify the integrated 
sensitivity of vegetation water to hydroclimate. To estimate PWS, 
we follow an approach previously used in Rao et al. (2022). The ap-
proach is based on the recognition that moisture content in both soil 
and plants has memory (McColl et al., 2017), and that plant water 
sensitivity must therefore take into account both current and past 
meteorology. The first step in the calculation of the PWS is to per-
form a multiple linear regression between the LFMC (defined as the 
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weight of water stored in vegetation divided by the dry vegetation 
weight) and dead fuel moisture content (DFMC, a metric of climate). 
Specifically, this regression is calculated as:

Above, the index t represents the time steps of the data, and 
i is an index describing the number of lagged 15-day timesteps. A 
15-day timestep is used because it is the timestep of the remotely 
sensed LFMC dataset, which is described below. The N corresponds 
to the number of lagged timesteps used in the regression. We then 
calculate a static map of PWS as the sum of the slopes βi of the mul-
tiple linear regression:

In the above equations, the i denotes 15-day timesteps across 
which average LFMC and DFMC are used and γ is the intercept of 
the regression. The optimal timescale likely varies from location to 
location and from season to season (e.g., it may be wetter during 
seasons with more frequent rain than during a dry, Mediterranean-
type summer) (Knighton & Berghuijs, 2023; Liu et al., 2018). Here, 
we use N = 8, representing a memory timescale of about 4 months, 
since it represents a reasonable average of previously calculated 
water memory timescales in vegetation across the western United 
States (Liu et al., 2018).

We use 100-h DFMC as the independent metric of hydrocli-
mate in Equation (1) because it represents the integrated influence 
of atmospheric conditions (i.e., precipitation and atmospheric water 
demand) on vegetation in the absence of modifications due to soil 
infiltration or vegetation (Matthews, 2014). Specifically, the DFMC 
is calculated considering both the effect of precipitation in the pre-
vious 24 h and the drying power of the atmosphere (dependent on 
temperature and relative humidity) to determine the equilibrium 
moisture content of the dead fuels (Cohen & Deeming, 1985). The 
calculation is adjusted based on the duration of daylight at a given 
latitude (Cohen & Deeming, 1985). The DFMC can be calculated for 
different fuel classes. Here, the 100-h DFMC is chosen because it 
represents the wetness of twigs and branches of a few centime-
ters in diameter (Burgan, 1988), which is similar to the vegetation 
elements contributing the most to the remotely sensed LFMC (Rao 
et al., 2022).

The DFMC has the same units (amount of water per amount of 
dry biomass) as LFMC, facilitating interpretation of the slope magni-
tudes βi, which are unitless. To keep the influence of DFMCt on LFMC 
physically plausible, the regression in Equation (1) is constrained to 
only use non-negative values of βi. Overall, low values of βi suggest 
that LFMC does not decrease as quickly when DFMC decreases, be-
cause of soil or plant mechanisms that limit the effect of the climate-
induced DFMC reductions. Thus, ecosystems with lower PWS are 
less sensitive to water stress.

We use a time series of LFMC derived from Sentinel-1 SAR ob-
servations (which are sensitive to canopy water content across much 
of the canopy depth) and Landsat canopy reflectances. It is based on 
a machine learning approach trained on in situ observations of LFMC 
from the National Fuel Moisture Database (Rao et al., 2020). The re-
cord spans the western United States; the eastern boundary of this 
region consists of and includes the states of Montana, Wyoming, 
Colorado, and Texas. It has a 250 m spatial resolution and a 15-day 
temporal resolution. More details of the LFMC dataset can be found 
in Rao et al. (2020). The 100-h DFMC record is based on GRIDMET 
(Abatzoglou, 2013). PWS is calculated across the period from 2016 
to 2021, coinciding with Sentinel-1A and Sentinel-1B availability. 
Note that unlike the PWS maps used in Rao et al. (2022), which were 
calculated only based on the summer fire season, here we calculate 
PWS across the entire year. As part of the calculation, LFMC is re-
sampled to match the 4 km resolution of DFMC, and DFMC data are 
linearly averaged to match the 15-day temporal resolution of LFMC, 
generating a static spatial map of PWS at 4 km.

2.2  |  Calculating species influence on PWS

Our analysis is focused on locations with field plots in the US Forest 
Service Forest Inventory and Analysis (FIA) program (Bechtold et al., 
2005; Gray et al., 2012), the United States' program of intensively 
sampled long-term inventory plots. As such, we focus only on for-
ested locations. Focusing on only these plot locations provides 
information about species composition in each location, since con-
tinuous maps of species composition are not available across the en-
tire western United States. Furthermore, we focus only on FIA plots 
where at least 75% of the basal area is from a single species. We in-
terpret these locations as ones where a single species dominates the 
biomass and thus, the PWS. Limiting our focus to such pixels allows 
for analysis of the impact of species on PWS, which would be impos-
sible at mixed-species sites because there is not enough information 
to deduce how much of the PWS at a given site is influenced by each 
of the different species present there.

Limiting our focus to ‘single-species’ locations reduces the num-
ber of 4 km pixels containing one or more FIA plots from 48,305 to 
28,940, or about 60% of the original number. Of these, a small subset 
is missing one of the soil, plant, and topographic factors used for com-
parison (see below) and is removed from the analysis. Additionally, 
we also remove pixels where the dominant land cover is grassland, 
pasture, or mixed forest (as estimated from the 2016 National Land 
Cover Database (Fry et al., 2011)), since in these pixels, the FIA plots' 
dominant species cannot be representative of the entire PWS pixel. 
After these filters, 21,445 pixels remain in our analysis (Figure 1a). 
Focusing on plots where only a single species dominates the basal 
area is likely to bias the distribution of species studied to some de-
gree relative to the full distribution of species composition across the 
western United States. Therefore, we further analyze the distribution 
of species remaining in the final plots to ensure that the most com-
mon tree species are well represented in the final dataset.

(1)LFMCt =

N=8
∑

i=0

� i × DFMCt−i + �

(2)PWS =

N=8
∑

i=1

� i
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Having identified the 21,445 pixels where a single species can 
be assumed dominant, we calculate the influence of the dominant 
species on PWS as the coefficient of determination (R2) between 
observed PWS and a model that predicts PWS based on species-
specific means alone. Note that we use the phrase ‘observed PWS’ 
here for simplicity, but that it is estimated from a regression of ob-
served LFMC, rather than being directly observed. For each pixel, 
this model predicts PWS as the mean observed PWS of all pixels in 
which the dominant species is the same as at the pixel under consid-
eration. This is the mathematically optimal PWS prediction model 
based on species information alone—no other formulation would 
achieve higher R2 unless other information was used.

There is some spatial mismatch in our approach. The PWS is cal-
culated at 4 km and thus each pixel contains an area of 16 km2. FIA 
plots are more than a thousand times smaller, with only a subset of 
a ~ 4000 m2 area sampled at each site. Furthermore, the identified 
location of each FIA plot is fuzzed within a 1.6 km radius to protect 
landowner privacy and protect the integrity of the plot. Additionally, 
plot locations on private lands are swapped in up to 20% of cases, 
although such swaps are contained to the same county and to plots 
with the same ecotype (Burrill et al., 2021; Gray et al., 2012). Here, we 
assume that if a single species is dominant in an FIA plot, this domi-
nance is also in effect across the entire 4 km PWS pixel. Upon making 
this assumption, it follows that in most cases a 1.6 km random offset 
away from a marked FIA location would not change the PWS pixel in 
which it falls, and nor would a swap with another same-ecotype plot 
in the same county. Thus, this location uncertainty does not change 
the implied match between the PWS pixel and which species is dom-
inant there. Overall, our analysis rests on the assumption that the 
advantage of being able to study plant water sensitivity across tens 
of thousands of sites outweighs the errors induced by the presence 
of some differences in spatial representativeness differences. The 
impact of the resolution differences on the interpretation of the re-
sults is examined in the Discussion (Section 4) below.

2.3  |  Comparison to other predictive factors

The R2 between observed PWS and PWS predicted by species-
specific means is difficult to interpret in isolation. It is unclear how 

much of the R2 is attributable to the magnitude of the noise in our 
species dominance and PWS calculations (particularly in light of the 
resolution difference mentioned above), and how much is due to the 
true limitations in using the dominant species as the sole predictor of 
PWS. To provide further context, we compare the R2 of the species-
cover-based predictions to the R2 of a random forest model that pro-
vides an estimate of how much of the spatial variability in PWS can 
be explained by other factors, including soil, plant, and topographic 
factors. This random forest model does not include species informa-
tion. The random forest model contains 120 “trees”, and tests up to 
10 features per split. These hyperparameters were chosen by test-
ing a range of possible values and selecting those that led to the 
best model performance. In addition, the random forest model has 
a maximum tree depth of 8, which balances sufficient depth to im-
prove performance and avoiding over-fitting. The model is tested 
with 10-fold cross-validation. The importance of different input fea-
tures to the final random forest model is calculated based on the 
permutation feature importance—the decrease in model score when 
a feature is randomly shuffled. We used Python's scikit-learn pack-
age version 0.24.2 to fit the random forest model and analyze the 
feature importance.

We considered a variety of possible features for inclusion in the 
random forest model, representing local climate characteristics, 
stand density proxies, soil, and topographic factors. The features 
considered, whether they were selected for the final model, and 
their data sources are summarized in Table S1. As possible climate 
characteristics, we test the mean monthly value and the monthly 
coefficient of variation of VPD, temperature, and precipitation, as 
well as the aridity index. The coefficient of variation is used as a 
measure of how variable the climatic driver is across the year, and 
is calculated as the standard deviation of the long-term mean of 
each month, divided by the overall mean monthly value. We use 
the coefficient of variation rather than the standard deviation, as 
the latter is highly correlated with the mean for several drivers. 
These climate data are derived from PRISM (Daly et  al.,  2008, 
2015). The aridity index is calculated as the ratio of mean poten-
tial evapotranspiration (PET) to mean precipitation, calculated over 
the period 1981–2010, with the GridMET-calculated PET based on 
the Penman-Monteith method (Abatzoglou, 2013). As vegetation 
density proxies, we use mean NDVI (calculated as the long-term 

F I G U R E  1 FIA plots considered for 
this study. Panel (a) shows the map of the 
FIA plots used in this study, overlaid on a 
National Land Cover Database 2021 map 
of forests and shrublands. Panel (b) shows 
the number of sites for the top five most 
common species in the dataset.

(a) (b)
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average across the 2001–2020 record of the MODIS MOD13Q1 
V6.1 NDVI product (Didan et al, 2021)), lidar-derived canopy height 
(from IceSat GLAS (Simard et al., 2011)), and aboveground biomass. 
The aboveground biomass dataset is based on a machine learning 
algorithm that combines inventory data, airborne laser scanning, 
and spaceborne lidar and radar data to estimate aboveground bio-
mass (Xu et al., 2021). The specific soil proxies used are based on 
the data available from the gridded National Soil Survey Geographic 
Database (gNATSGO) dataset. We use gNATSGO instead of other 
soil property datasets since it is based solely on data from detailed 
field surveys and avoids errors associated with digital soil mapping 
(Rossiter et  al.,  2022). In particular, we use four gNATSGO vari-
ables: (i) soil bulk density, given that it is inversely related to soil 
porosity, which would be expected to influence how much water 
soils can store after saturating rain events; (ii) total available water 
storage; (iii) saturated hydraulic conductivity, given that it controls 
the rate of runoff generation and leakage out of the root zone; and 
(iv) the soil moisture at 1/3rd bar as a measure of soil retention. 
The gNATSGO data is available across several depth layers, but the 
optimal depth is likely variable from location to location (e.g., de-
pending on local soil layers and bedrock depth). Considering depths 
that are too small may induce some error because changes in soil 
properties that are below the considered depth but still within the 
rooting zone would not be accounted for. Alternatively, depths that 
are too large may include information about soil profiles that are not 
relevant to the rooting zone. Here, we use the 0 to 50 cm average as 
a reasonable value for most gNATSGO-derived soil properties, but 
use the 0 to 150 cm values for the available water storage (although 
note that if bedrock is shallower than 150 cm, gNATSGO automat-
ically calculates available water storage only to the soil depth). 
Beyond the above properties, we also test an estimate of the total 
root-zone water storage capacity (abbreviated as RZ storage in the 
figure legends) derived from McCormick et al. (2021). This dataset is 
not tied to a particular depth and accounts for water storage in both 
soil and bedrock, given that bedrock water use is considerably more 
widespread in the western United States than generally appreci-
ated (McCormick et al., 2021). The root-zone water storage capacity 
is calculated based on a mass balance approach by determining the 

maximum accumulation of evapotranspiration in excess of precip-
itation over a multi-year period. Finally, as topographic features, 
we consider the local slope and aspect (obtained from the National 
Elevation Dataset), as well as two indices intended to capture the 
effect of topography on hydrology. Specifically, we consider the 
height-above-nearest drainage (that is, the elevation difference be-
tween the local point and the nearest point of drainage, based on 
calculating drainage directions from a digital elevation model), and 
the topographic wetness index (i.e., the ratio of the log of the total 
catchment area per unit flow width and the tangent of the slope, 
(Beven & Kirkby, 1979)). Both of these datasets are derived from 
MERIT HYDRO (Yamazaki et  al.,  2019). All random forest inputs 
used are originally calculated at the native resolution of the associ-
ated dataset, and then interpolated to 4 km to match the resolution 
of the PWS dataset.

To enable interpretation of the final feature influence, we elimi-
nate features with a cross-correlation r > .70. For example, because 
the height-above-nearest-drainage and the slope have a cross-
correlation of r = .85, only slope is included in the final model. In cases 
of cross-correlation between two features, the feature with the low-
est univariate correlation with PWS is removed, and the other feature 
retained. Other features removed because of high cross-correlations 
included the mean precipitation, mean temperature, coefficient of 
variation of VPD, and coefficient of variation of temperature. All 
vegetation density and size proxies were cross-correlated (e.g., 
rNDVI,canopy height = .72 & rNDVI,AGB = .75, rcanopy height,AGB = .72), so this 
axis is summarized using the single feature of mean NDVI, although 
we note that the greenness of a given level of biomass or density also 
affects NDVI to a lesser degree. The cross-correlations of the final 
features are shown in Figure S1.

Beyond removing correlated features, we further aim to improve 
interpretability by retaining only a subset of the remaining features 
that best predict PWS. Specifically, we retained only three features 
each from the climate, soil, and topography categories, so that the 
importances of the different categories can be more easily com-
pared without the complicating role of there being different num-
bers of features in different categories. The final features chosen 
and their data sources are also detailed in Table 1.

TA B L E  1 Input features for the random forest model.

Category Name Source Data reference

Soil Bulk density, 0–50 cm gNATSGO Soil Survey Staff (2023)

Saturated hydraulic conductivity, 0–50 cm (Ks,max) gNATSGO Soil Survey Staff (2023)

Root-zone water storage (RZ storage) See ref. McCormick et al. (2021)

Topography Slope NED Gesch et al. (2002)

Aspect NED Gesch et al. (2002)

Topographic wetness index (TWI) MERIT HYDRO Yamazaki et al. (2019)

Vegetation Mean NDVI MODIS MOD13Q1 Didan (2021)

Climate Mean VPD PRISM Daly et al. (2015)

Coefficient of variation of precipitation PRISM Daly et al. (2008)

Aridity index gridMET Abatzoglou (2013)
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6 of 14  |     KONINGS et al.

3  |  RESULTS

As shown in Figure 1a, the selected FIA sites span the forests (and in 
some cases, shrublands) of the western United States. Although the 
criteria for establishing dominance of a single species exclude more 
sites in some locations than others, most regions with forest cover 
measured by FIA have at least some sites included in our dataset. 
The regions where focusing on dominant-species sites excludes the 
most forest land include northern California, central Oregon, west-
ern Idaho, and eastern Nevada. Considering only locations where a 
single species dominates the basal area inevitably biases the species 
distribution somewhat, as some species may be more likely to grow 
in areas with little species diversity (e.g., plantations). Still, the five 
most common species by basal area in the western United states are 
represented in the analyzed sites, including Douglas-fir (Pseudotsuga 
menziesii, 3553 sites), ponderosa pine (Pinus ponderosa, 2373 sites), 
Utah juniper (Juniperus osteosperma, 2063 sites), and lodgepole pine 
(Pinus contorta, 1121 sites). One exception is the western hemlock 
(Tsuga heterophylla), for which only 145 sites are included in our final 
dataset. Several genera are likely under-represented in our dataset 
relative to western forests as a whole, but nevertheless include a 
reasonably large sample size. These include several oak (e.g., Gambel 
oak, Quercus gambelii, 473 sites and blue oak, Quercus douglasii, 174 
sites), fir (e.g., white fir, Abies concolor, 273 sites, and subalpine fir, 
Abies lasiocarpa, 286 sites), and spruce (e.g., Engelmann spruce, Picae 
englemannii, 381 sites) species. Other common species in our data-
set include honey mesquite (Prosopsis glandulosa, 2692 sites) and 
oneseed juniper (Juniperus monosperma, 1142 sites). The number of 
sites for the top five most common sites is compared graphically in 
Figure 1b.

The PWS varies considerably within species. Although the exact 
shape of the distribution of PWS (Figure 2, showing the top 5 most 
common species in the region) varies from species to species, all 
distributions are relatively wide and overlap considerably. Indeed, 

when considering all species that have at least 50 dominant pixels 
(to ensure sufficient sample size), and calculating the species mean 
of each, the standard deviation of the species-mean PWS values is 
0.27. By contrast, the average standard deviation of PWS across 
sites with the same dominant species is 0.91. That is, the mean val-
ues of PWS for each species are much less variable than the PWS is 
across different sites with the same dominant species. This suggests 
that species knowledge can provide information about PWS, but 
not fully constrain it. Indeed, using the species-specific mean PWS 
value to predict PWS variation explains only 23% of observed vari-
ability in PWS (Figure 3a). By contrast, using a random forest driven 
by geographic factors allows for 43% of observed variability to be 
explained—almost double (Figure  3b). This number was relatively 
consistent across the 10 cross-validation folds of the random forest 
model, varying between 40% and 46%.

The errors in the random forest predictions are largest for low 
values of PWS, and values of PWS below 0.6 are never predicted, de-
spite making up 25% of observations. Similarly, the species-average 
model predicts a value of PWS < 0.6 in only 3% of conditions. If low 
PWS values cannot be explained by either species models or the ran-
dom forest model, this may point to the influence of LFMC retrieval 
errors in these pixels, since these would tend to reduce the calcu-
lated PWS values. High PWS values (e.g., greater than 3) are rarely 
predicted by the species-based model, but are a common random 
forest prediction that matches observations in areas such as Eastern 
Arizona and Southern Texas (Figure S2).

The random forest predictions are particularly sensitive to mean 
VPD and mean NDVI, which are almost or more than twice as import-
ant as the other features (Figure 4a). Mean NDVI is cross-correlated 
with mean precipitation (r = .74) across the study sites. Mean VPD 
is also partially cross-correlated (e.g. absolute cross-correlations be-
tween 0.4 and 0.6) with several other features (aridity index, bulk 
density, slope, TWI; Figure S1), likely because of its strong depen-
dence on temperature, and thus elevation. Based on accumulated 
local effects plots of the four most important features (Figure  5), 
mean NDVI and mean VPD are particularly important at low NDVI 
and high VPD values, respectively. Thus, the combined effect of cli-
mate aridity and vegetation density is most important in the drier 
regions of the western United States, that is, outside of higher el-
evation, densely forested areas. When all other features are held 
constant, the PWS first decreases with mean NDVI until it reaches 
a value of approximately 0.35, and then increases slowly with NDVI. 
The initial decline in sensitivity with NDVI may be because areas 
with greater NDVI (and thus more canopy) are also expected to have 
deeper and more laterally extensive roots (Mao et al., 2018; Tumber-
Dávila et  al., 2022), allowing for greater access to water reserves 
that allow sustained water uptake even during drier periods. By con-
trast, at NDVI values greater than 0.35, the expected greater loss 
of water to transpiration because of greater leaf area may lead the 
PWS to stop decreasing and instead increase slightly. The accumu-
lated local effect of mean VPD on PWS increases continuously with 
VPD (particularly in the driest regions with the greatest VPD, as dis-
cussed above), consistent with previous findings by D'Orangeville 

F I G U R E  2 PWS probability density for the top five most 
common species among the dataset used (colored lines) and for all 
sites (black line), plotted using kernel density estimation.
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    |  7 of 14KONINGS et al.

et al. (2018) that growth responses to drought are stronger in areas 
with greater long-term mean potential evapotranspiration. The ac-
cumulated local effects plots also show that, counter-intuitively, 
PWS decreases with increasing slope, particularly for low slopes less 
than 1%. A possible explanation for this pattern is that these ex-
tremely flat areas receive little lateral flow run-off from other areas, 
and thus, all else held constant, depend more strongly on local cli-
mate (and have greater PWS as a result). For sufficiently high values 
(e.g., in sufficiently steep terrain), this reverses, with the significantly 
greater precipitation losses to run-off in higher slope areas increas-
ing plant water sensitivity. Lastly, the accumulated local effect of the 
coefficient of variation of precipitation on PWS with the coefficient 
of variation of precipitation is positive. That is, if all other features 
are held constant, areas with more variable rain have lower PWS. 

F I G U R E  3 Variability in PWS predicted 
by (a) the observed species-mean PWS for 
the dominant species at each site and (b) 
the random forest of climate, plant trait, 
soil, and topographic factors. Narrow-
bandwidth kernel density estimation was 
applied for visualization purposes; lighter 
colors indicate greater density. For each 
panel, the one-to-one line is shown in 
blue.

F I G U R E  4 Variable importance of input features for the region-
wide random forest model predicting PWS, individually (Panel a) 
and aggregated by feature type (Panel b). In panel a, individual 
input features are colored by their category type. Panel (b) shows 
the relative importance of climatic descriptions (blue), vegetation 
density (green), topographic descriptors (yellow), and soil properties 
(brown) in the random forest model. For each category except 
vegetation density, the relative importance shown is the sum of 
that calculated for all three features in each category. Because each 
category contains the same number of features, the sum of the 
individual feature importances can be compared more easily. The 
exception is the vegetation density, for which only a single feature 
was used to avoid confounding influences from the high cross-
correlations between vegetation density metrics.

(a)

(b)

F I G U R E  5 Accumulated local effects plots for the four most 
important random forest features. The tick marks along each axis 
represent the relative density of the distribution of that variable 
across all sites studied.
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8 of 14  |     KONINGS et al.

This may be initially surprising, as more variable rainfall may be ex-
pected to effectively decrease water availability to forests (because 
water is more likely to run off, or because more variable rainfall may 
be associated with longer dry seasons). Thus, the response of PWS 
to the coefficient of variation of rainfall may be expected to have 
the same sign as the response to mean VPD, while Figure 4 shows 
the opposite is the case. This complexity reflects the multi-faceted 
nature of plant responses to water stress, with trait adaptations to 
minimize vulnerability leading to a range of transpiration (and thus, 
possible LFMC) responses, and vice versa (Feng et al., 2017).

Overall, the random forest model is likely to include some com-
pensating errors because not all possible covariates of PWS are in-
cluded in the model, and because some cross-correlations remain 
between the input features of the model (and between input fea-
tures and other variables that are not included in the model but may 
plausibly affect PWS, see Table S1). We therefore do not interpret 
the accumulated local effects plot of features that are less important 
to the random forest predictions, and focus on the explained vari-
ability of the model predictions rather than the model itself.

Further insight can be gained by aggregating the feature impor-
tance by type (Figure 4b). Note that in Figure 4b, the only vegetation 
density feature contributing to the importance is the mean NDVI, 
whereas the climate, topography, and soil categories represent the 
sum of the importance of each category's three features. Climate 
features are the most important category, but despite only being 
able to capture one dimension of ‘vegetation density’ through mean 
NDVI, the vegetation density category is nevertheless the second-
most important, and is more than twice as important as the topog-
raphy category and more than four times as important as the soil 
category. By contrast, the topographic category (including slope, as-
pect, and topographic wetness index) and the soils category (includ-
ing the saturated soil hydraulic conductivity, maximum root-zone 
water storage, and bulk density) has only a relatively small impor-
tance for the region-wide model. This may be because topographic 
and soil features are only relevant in a smaller subset of temporal 
(e.g., particularly wet) or spatial (e.g., particularly steep) conditions. 
The explained variability of random forest models built with only one 
feature type at a time (e.g., only climate, only soil, etc.) (Figure S3) is 
also consistent with the patterns in Figure 4b.

4  |  DISCUSSION

4.1  |  Species type only partially influences plant 
water stress sensitivity

Only 23% of the spatial variability in PWS is explained by which spe-
cies is dominant. This relatively low number may be partially explained 
by noise in our PWS dataset, including the simplifying assumption of 
linearity in the PWS calculation (Equation 1) and the presence of noise 
in the LFMC and DFMC sets. Additionally, we calculate a single PWS 
for each pixel based on the response of LFMC to meteorological arid-
ity over a 6-year period. Six years is not enough to fully average over 

climatic variability, and thus the degree of water stress on the vegeta-
tion varies across space not just because of difference in vegetation 
behavior between pixels, but also because of the different distribu-
tion/amount of meteorological aridity observed during the study pe-
riod (Slette et al., 2019). While the climate during the 6 years used to 
calculate PWS is close to that across a much longer 42-year period 
across pixels (Figure S4), the relatively short 6-year period may still be 
a source of error at individual pixels. Nevertheless, the 43% of spatial 
variability in PWS explained by the random forest model puts a bound 
on the degree to which noise limits the explanatory power of the PWS 
patterns. It provides context for the 23% explanatory power of spe-
cies information, which is considerably lower than 43%. That is, only 
53% (0.23/0.43) of total explainable PWS variations can be explained 
by species information alone. This suggests that, while a considerable 
amount of PWS is dependent on the dominant species, other factors 
(such as changes in soil, topography, vegetation density, or adaptation 
to mean climate) are almost as important as which species is dominant 
for predicting local plant sensitivity to water stress.

Note that although several of the factors considered in the ran-
dom forest model are cross-correlated with species dominance (be-
cause species tend to grow in specific climate and biogeographical 
niches), this does not affect our conclusion of significant controls 
of other factors. The geographic distribution of species may affect 
the finding that 43% of PWS spatial variability can be explained, but 
not that species-explained variability is only 53% of total explain-
able variability. That is, because the random forest explains almost 
twice as much of the spatial variability in PWS as a mathematically 
optimal species-only model does, factors beyond cross-correlations 
between species niches and the random forests' input features must 
be contributing substantially to the total 43% observed variability of 
the random forest model.

Our result is consistent with a previous finding that growth 
sensitivity to drought in Eastern North American forests are often 
more variable within species than between them (D'Orangeville 
et  al.,  2018). Such consistency is not surprising, as many of the 
factors causing environmentally driven differences in PWS also 
affect growth rates, and many of the processes controlling growth 
responses to drought are likely to also influence plant water stress 
response across a range of hydrometeorological conditions.

Several other factors may contribute to the low explanatory vari-
ability of species, including but not limited to the features consid-
ered in the random forest model. For example, the amount of water 
available to vegetation at any point depends on a number of factors. 
These include the degree to which rainfall ends up as root-available 
water under different conditions—as influenced by, for example, the 
seasonal timing of rainfall (Romme et  al.,  2009) or by topographic 
factors that affect what fraction of rainfall runs off either above- or 
belowground and how quickly, for example, Fan et al.  (2019). Other 
factors include soil texture and its effect on both water retention and 
the amount of water that can be stored in the soil (Hahm et al., 2019). 
These factors are partially captured in the features that we consider. 
However, other properties such as variability in soil properties with 
depth (De Kauwe et al., 2015), sub-grid scale hillslope distribution and 

 13652486, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17425 by U

niversity O
f C

alifornia, L
os, W

iley O
nline L

ibrary on [31/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  9 of 14KONINGS et al.

orientation (Fan et al., 2019), and groundwater or rock moisture inter-
actions (Giardina et al., 2023; McCormick et al., 2021; Miguez-Macho 
& Fan, 2021) likely also play a role. Furthermore, transpiration from un-
derstory species (which are not captured here) also responds to—and 
feeds back on—soil water availability (McIver et al., 2022). Locations 
with greater average root-available water likely also support greater 
stand density or leaf area, which in turn influences rates of water loss 
and thus, PWS (Bottero et al., 2017). Lastly, while hydraulic traits vary 
substantially between species, they can also exhibit non-negligible 
intra-specific variability. For example, Rosas et  al.  (2019) examined 
sources of variability across several plant hydraulic traits in six tree 
species, and found that for a majority of traits studied, intra-specific 
variability accounted for roughly 20%–45% of total variability in that 
trait. Additionally, across a hydrologic gradient in the Amazon, intra-
specific variability in P50 for two species was 76% and 97% of the 
local community's inter-specific variation, respectively (with equiva-
lent ratios of 55% and 63% for wood density) (Garcia et al., 2022).

We note that the 23% explanatory power of species informa-
tion we calculated may also be limited by the strong assumption that 
the dominant species in FIA plots are also dominant over the entire 
4 km PWS pixel (as long as the PWS pixel's dominant land cover class 
is consistent with the dominant species type of the FIA plot). This 
assumption is likely violated in at least some of the 21,455 pixels 
studied. Nevertheless, the value of studying species effects across 
a domain as large as the entire western United States is expected to 
outweigh the disadvantages of this strong simplifying assumption. 
Thus, the conclusion that other factors are at least as important as 
which species is dominant in controlling local sensitivity to hydrocli-
mate is likely to be robust.

Overall, our results imply that studies of inter-specific differ-
ences in plant water stress response should also explicitly consider 
the environments in which observations for each species are made, 
and whether those environments are representative of the entire 
species range. If the study sites lie at the extreme end of the species' 
climatic range or, to a lesser degree, in unusual soil and topographic 
conditions, the conclusions of the study may not be robust every-
where in the range. Such analyses of study site ‘representativeness’ 
are currently quite rare. Yet they can be performed for many spe-
cies, facilitated by efforts to aggregate species occurrence records 
like the Global Biodiversity Information Facility (GBIF, Robertson 
et al., 2014). Additionally, our findings point to the utility of consid-
ering not just a single study site when analyzing a particular species, 
but studying the same species' behavior across an expansive net-
work of study sites (e.g., Cabon et al., 2023; Lockwood et al., 2023; 
Novick, Jo, et al., 2022), so that the roles of climate, soil, and topog-
raphy are at least partially integrated.

4.2  |  Relative importance of controls beyond 
species on PWS variability

The random forest cross-validation R2 is on par with the explained 
variability in several other studies of different plant water stress 

response metrics (e.g., R2 = .36 for trees in Ukkola et  al.  (2021), 
R2 = .38– .46 for Fu et al. (2022), R2 = .39 and .52 for Yang et al. (2022)), 
building confidence in its implied relative importance of different 
factors. Nevertheless, the fact that many known controls on PWS 
are not included because their variation across the western United 
States is poorly mapped (e.g., groundwater and rock moisture influ-
ences on root water uptake, stand age and disturbance history, etc.) 
likely limits the explained variability of the random forest model.

Mean NDVI, a partial proxy for vegetation density, is intimately 
tied to plant water use, explaining its role as the most important 
feature of the random forest model. Greater NDVI suggests greater 
leaf area, and thus, all else being equal, greater water loss rates 
through transpiration. Indeed, it has long-been hypothesized that 
canopy density in a given environment acts to minimize the average 
water stress (Eagleson, 1982). At the tree scale, growth sensitivity 
to drought has been shown to vary with rates of intra-species com-
petition (which is expected to be greater at greater stand density), 
and with stand density itself (e.g., Bottero et  al.,  2017; Gleason 
et al., 2017). As a result, either externally imposed or self-incurred 
thinning processes can reduce plant growth sensitivity to drought 
(Giuggiola et al., 2013; Jump et al., 2017; Thomas & Waring, 2015). 
The high importance of mean NDVI in the random forest model sug-
gests that such density-dependence is highly important even when 
water uptake and loss patterns are considered (as is the case here), 
rather than the previously studied growth responses to drought.

Climatic factors also have high importance in the random for-
est model, consistent with previous studies of drought sensitivity 
(D'Orangeville et al., 2018; Felton et al., 2021; Fu et al., 2022; Ukkola 
et al., 2021). Indeed, D'Orangeville et al. (2018) and Fu et al. (2022) 
also found a particularly large role for evaporative demand and VPD, 
respectively, in studies of growth response to drought and sensitiv-
ity of evaporative fraction to soil moisture. This is consistent with 
mean VPD being the second-most important feature in our study.

Several factors likely explain why climatic factors are so im-
portant for explaining the PWS spatial variability (Figure  4b). 
Mean climate is a first order control on water availability at a site, 
and thus on the likelihood of hydrologic stress. Additionally, sev-
eral individual studies have shown the potential for significant 
plant trait adaptation to climate (Blackman et al., 2017; Depardieu 
et al., 2020; Pritzkow et al., 2020; Tuomela, 1997). Finally, there 
are likely some methodological artifacts. For example, although 
the specific vegetation density and climatic factors used as input 
features in the random forest model have been chosen to mini-
mize cross-correlation, they are far from zero (Figure S1). Likewise, 
mean NDVI is highly cross-correlated with several climate fea-
tures. For example, rmean NDVI,mean annual precipitation = .74. Thus, the 
exact explanatory power of vegetation density versus climatic 
factors may be difficult to disentangle. Further, the mean DFMC 
and temporal standard deviation of DFMC have a low to interme-
diate cross-correlation with climate variables used in the random 
forest model (r = −.34 to  .25, Figure S5). This is roughly on par with 
the cross-correlation between PWS and aridity index (r = −.20) and 
only slightly lower than the cross-correlation between PWS and 
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10 of 14  |     KONINGS et al.

mean VPD (r = .38). Even in the absence of a causative relation-
ship between the climate features and PWS, the cross-correlation 
between mean climate and the DFMC patterns used to calculate 
PWS may therefore create an artificial dependence of PWS on cli-
mate. It is, however, difficult to imagine how one might design a 
metric of plant sensitivity to water limitations that is not sensitive 
to such cross-correlations. Overall, we expect the high importance 
of climate features for the random forest to reflect a combination 
of artificial cross-correlations and substantial true influences of 
climate on PWS. This suggests efforts to improve the parametri-
zation of plant traits related to water stress in land surface models 
(Anderegg, 2015; Liu et al., 2021) might benefit from incorporating 
relationships between traits and climate (Famiglietti et al., 2023; 
Wu et al., 2020).

The relatively low influence of soil properties in the model 
(Figure  4b) is surprising, particularly in light of the expected high 
quality of the gNATSGO data used to derive soil properties. This may 
be because the role of soil properties is quite temporally variable 
(e.g., saturated hydraulic conductivity is likely to be quite important 
in very wet conditions, whereas wilting point or retention parame-
ters would be more important influences on root-zone water avail-
ability during dry conditions). In addition, the most relevant depths 
of the soil properties likely also vary across space and time (whereas 
we assume a constant averaging depth of 50 cm). Finally, the low in-
fluence of soil properties could also be influenced by soil-vegetation 
interactions that are not accounted for here, such as rock moisture 
uptake (Fan et  al.,  2019; McCormick et  al., 2021), root effects on 
soil structure (Fatichi et al., 2020), or soil–hydraulic parameter re-
lationships that are not accounted for more generally (e.g., pedo-
transfer function uncertainty (Novick, Ficklin, et al., 2022; Paschalis 
et al., 2022)). Despite the relatively low influence of soil properties 
on PWS found here, more research is needed to assess how soil hy-
draulics influence large-scale patterns of ecosystem sensitivity to 
water stress.

5  |  CONCLUSIONS

In this study, we analyzed the relative influence of species and other 
factors across tens of thousands of forested locations across the 
Western United States. By coupling a remotely sensed measure of 
PWS with species dominance information from FIA plots, we are able 
to analyze the drivers of regional scale behavior without ignoring 
the role of species variability or without relying on species-specific 
means obtained from trait databases (e.g., Anderegg et  al., 2018; 
Trugman et al., 2020). Species explain a significant, but not a domi-
nant, amount of the variability in PWS. This suggests that efforts 
to account for species distributions in land surface models (Quetin 
et al., 2023) may improve representation of ecosystem responses to 
water stress. However, it also implies that species-specific studies 
of water stress responses may provide only limited information if 
the locations they study are not representative of the typical envi-
ronment in which that species grows. Thus, species-specific studies 

should study individuals of a species across a range of the climate, 
soil, and topographic environments in which it grows. Our result 
that many different factors contribute to the overall ecosystem-
scale sensitivity of vegetation to hydroclimatic variability is with a 
number of previous studies (e.g., D'Orangeville et al., 2018; Green 
et al., 2022; Ukkola et al., 2021). However, the large influence of site-
specific climate factors shown here suggests that further research 
is needed to quantify the amount of plasticity of plant hydraulic 
traits to climate across a wide range of species and biogeographic 
conditions.
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