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Abstract
Spatiotemporal	 patterns	 of	 plant	 water	 uptake,	 loss,	 and	 storage	 exert	 a	 first-	
order	 control	 on	 photosynthesis	 and	 evapotranspiration.	 Many	 studies	 of	 plant	
responses to water stress have focused on differences between species because 
of	their	different	stomatal	closure,	xylem	conductance,	and	root	traits.	However,	
several other ecohydrological factors are also relevant, including soil hydraulics, 
topographically driven redistribution of water, plant adaptation to local climatic 
variations,	 and	 changes	 in	 vegetation	 density.	 Here,	we	 seek	 to	 understand	 the	
relative	importance	of	the	dominant	species	for	regional-	scale	variations	in	woody	
plant	 responses	 to	water	stress.	We	map	plant	water	sensitivity	 (PWS)	based	on	
the response of remotely sensed live fuel moisture content to variations in hydro-
meteorology	using	an	auto-	regressive	model.	Live	fuel	moisture	content	dynamics	
are	informative	of	PWS	because	they	directly	reflect	vegetation	water	content	and	
therefore	patterns	of	plant	water	uptake	and	evapotranspiration.	The	PWS	is	stud-
ied	using	21,455	wooded	locations	containing	U.S.	Forest	Service	Forest	Inventory	
and	Analysis	plots	across	the	western	United	States,	where	species	cover	is	known	
and	where	a	single	species	is	locally	dominant.	Using	a	species-	specific	mean	PWS	
value	 explains	 23%	 of	 observed	 PWS	 variability.	 By	 contrast,	 a	 random	 forest	
driven by mean vegetation density, mean climate, soil properties, and topographic 
descriptors	 explains	 43%	 of	 observed	 PWS	 variability.	 Thus,	 the	 dominant	 spe-
cies	explains	only	53%	(23%	compared	to	43%)	of	explainable	variations	 in	PWS.	
Mean	climate	and	mean	NDVI	also	exert	significant	influence	on	PWS.	Our	results	
suggest	that	studies	of	differences	between	species	should	explicitly	consider	the	
environments	(climate,	soil,	topography)	in	which	observations	for	each	species	are	
made, and whether those environments are representative of the entire species 
range.
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content,	plant	hydraulic	traits,	plant-	water	interactions,	water	
stress

1  |  INTRODUC TION

The response of plants to water stress has myriad effects on local 
ecosystems	and	water	cycling.	 It	 is	a	 first-	order	control	on	evapo-
transpiration	 (ET,	Pappas	et	 al.,	2016)	 and	 thus	a	 key	determinant	
of	 water	 availability	 for	 human	 consumption	 (Mastrotheodoros	
et al., 2020;	Seager	et	al.,	2013;	Ukkola,	Prentice,	et	al.,	2016),	land-	
atmosphere interactions, and drought and heatwave evolution 
(Miralles	 et	 al.,	 2019).	 Additionally,	 plant	 water	 stress	 responses	
also	affect	rates	of	photosynthesis	(Pappas	et	al.,	2016),	vegetation	
growth,	mortality,	and	wildfire	risk	(Brodribb	et	al.,	2020).	As	a	re-
sult, they are also a significant control on vegetation's potential to 
sequester	carbon	(Anderegg	et	al.,	2020; Coffield et al., 2021;	Wu	
et al., 2023).

Despite	 significant	 concerted	 research	 effort	 (Brodribb	
et al., 2020; Grossiord et al., 2020),	 the	 response	of	vegetation	to	
water stress remains poorly understood. Development of a reliable 
model of stomatal closure has been argued to be one of the holy 
grails	of	plant	physiology	 (Buckley,	2017),	but	continues	 to	be	un-
certain	and	error-	prone	(Sabot	et	al.,	2022;	Wang	et	al.,	2021).	Land	
surface	 models	 overestimate	 the	 impact	 of	 droughts	 (Ukkola,	 De	
Kauwe,	et	al.,	2016)	and	often	cannot	even	predict	the	sign	of	ET's	
response	 to	drought	 (Zhao	et	al.,	2022).	Compensation	and	cross-	
correlation between drought's dual effects of increasing vapor pres-
sure	deficit	(VPD)	and	reduced	root-	zone	soil	moisture	add	further	
complexity	(Liu	et	al.,	2020; Novick et al., 2016;	Vargas	Zeppetello	
et al., 2023).	Efforts	to	reduce	these	uncertainties	are	hindered	by	
the	large	range	of	processes	across	the	soil–plant-	atmosphere	con-
tinuum that influence the effect of hydrometeorology on plants. 
For	example,	precipitation	anomalies	may	translate	non-	linearly	 to	
anomalies	in	root-	zone	water	availability	due	to	soil-	dependent	vari-
ations	 in	 infiltration	 rates,	water	 storage,	 and	 topography-	induced	
lateral	 redistribution	 of	 water	 (e.g.,	 Hahm	 et	 al.,	 2019;	 Miguez-	
Macho	&	Fan,	2021;	Paschalis	et	al.,	2022).	The	resulting	anomalies	
in	the	three-	dimensional	distribution	of	root-	zone	soil	water	content	
are then mediated by a large range of plant traits—including those 
affecting plant rooting depth and distribution, root conductance 
and root water uptake, rates of water movement through the plant 
xylem,	and	stomatal	 closure	 (Fatichi	et	al.,	2016).	Here,	we	collec-
tively refer to these traits as ‘plant hydraulic traits’.

Because	 plant	 hydraulic	 traits	 vary	 significantly	 by	 species	
(Bartlett	 et	 al.,	2016;	 Skelton	 et	 al.,	2015),	 many	 studies	 of	 plant	
drought	and	water	stress	response	analyze	vegetation	behavior	as	
a	function	of	species	(e.g.,	Brzostek	et	al.,	2014; Cabon et al., 2023; 
Serra-	Maluquer	 et	 al.,	 2022).	 However,	 the	 focus	 on	 species-	by-	
species differences in studies of plant water stress neglects the fact 
that	plant	hydraulic	traits	may	exhibit	significant	intra-	specific	vari-
ability	(González	de	Andrés	et	al.,	2021;	Kannenberg	et	al.,	2022; Lu 

et al., 2022),	including	through	adaptation	to	local	climate	(Depardieu	
et al., 2020;	Pritzkow	et	al.,	2020).	It	also	ignores	the	potential	role	
of	soil	and	topography	variations	and	their	interactions	with	species-	
specific physiologies.

To make progress on understanding the response of plants to 
water stress, it is therefore necessary to understand the relative 
contributions of species, soil, topography, and climate to the overall 
response of vegetation to water stress. To this end, several stud-
ies	have	analyzed	the	sources	of	spatial	variability	for	various	water	
stress	 response	 indices	 (e.g.,	 Felton	 et	 al.,	 2021;	 Fu	 et	 al.,	 2022; 
Ukkola	et	al.,	2021; Yang et al., 2022).	However,	these	studies	have	
focused	 on	 analyzing	metrics	 that	 are	 not	 solely	 related	 to	water	
stress.	For	example,	Green	et	al.	 (2022)	analyzed	the	ratio	of	 land	
surface	temperature	to	air	temperature	 (an	 indirect	proxy	for	sen-
sible	heat),	which	is	also	influenced	by	variations	in	other	meteoro-
logical	drivers	 (i.e.,	 radiation,	surface	roughness,	wind	speed)	even	
in the absence of changes in water stress. Other studies have fo-
cused on spatial variability of the response of net primary produc-
tivity	(NPP)	to	precipitation	(Felton	et	al.,	2021;	Ukkola	et	al.,	2021).	
However,	NPP	combines	plant	responses	to	water	stress	along	mul-
tiple	axes,	including	photosynthesis,	respiration,	and	water	uptake.	
Furthermore,	 in	order	to	study	a	 large	spatial	extent,	and	because	
species	 information	 is	 rarely	 available	 over	 large	 areas	 (and	 thus,	
rarely	 considered	 in	 large-	scale	 studies),	 few	 studies	 have	 consid-
ered	the	role	of	species	(though	see	D'Orangeville	et	al.	(2018)	and	
Gazol	et	al.	(2017)	for	exceptions).

In	this	study,	we	quantify	“plant	water	sensitivity”	(PWS)	by	com-
paring	 the	 dynamics	 of	 live	 fuel	 moisture	 content	 (LFMC)	 (which	
quantifies	 the	 relative	water	 content	of	plant	 canopies)	with	dead	
fuel	moisture	 content	 (a	proxy	 for	how	LFMC	would	be	expected	
to evolve in response to hydrometeorology in the absence of soil, 
plant	water	uptake,	and	transpiration	processes).	We	take	advantage	
of	a	recently	derived	high-	resolution	map	of	plant	water	sensitivity	
across	 the	western	United	 States	 (Rao	 et	 al.,	2022),	 a	 region	 that	
covers	a	variety	of	climatic	and	biogeographic	conditions.	We	then	
analyze	the	degree	to	which	species,	plant	traits,	climate,	soil	type,	
and	topography	control	the	spatial	variability	in	LFMC	sensitivity	to	
climate at a large number of locations where a single species is dom-
inant and identified.

2  |  METHODS

2.1  |  Plant water sensitivity mapping

We	create	and	analyze	maps	of	PWS,	which	quantify	the	integrated	
sensitivity	of	 vegetation	water	 to	hydroclimate.	To	estimate	PWS,	
we	follow	an	approach	previously	used	in	Rao	et	al.	(2022).	The	ap-
proach is based on the recognition that moisture content in both soil 
and	plants	has	memory	 (McColl	et	al.,	2017),	and	that	plant	water	
sensitivity must therefore take into account both current and past 
meteorology.	The	first	step	in	the	calculation	of	the	PWS	is	to	per-
form	a	multiple	linear	regression	between	the	LFMC	(defined	as	the	
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weight of water stored in vegetation divided by the dry vegetation 
weight)	and	dead	fuel	moisture	content	(DFMC,	a	metric	of	climate).	
Specifically,	this	regression	is	calculated	as:

Above,	 the	 index	 t represents the time steps of the data, and 
i	 is	an	 index	describing	 the	number	of	 lagged	15-	day	 timesteps.	A	
15-	day	timestep	is	used	because	it	is	the	timestep	of	the	remotely	
sensed	LFMC	dataset,	which	is	described	below.	The	N corresponds 
to	the	number	of	lagged	timesteps	used	in	the	regression.	We	then	
calculate	a	static	map	of	PWS	as	the	sum	of	the	slopes	βi of the mul-
tiple linear regression:

In the above equations, the i	denotes	15-	day	 timesteps	across	
which	average	LFMC	and	DFMC	are	used	and	γ is the intercept of 
the regression. The optimal timescale likely varies from location to 
location	 and	 from	 season	 to	 season	 (e.g.,	 it	may	be	wetter	 during	
seasons	with	more	frequent	rain	than	during	a	dry,	Mediterranean-	
type	summer)	 (Knighton	&	Berghuijs,	2023; Liu et al., 2018).	Here,	
we use N = 8,	representing	a	memory	timescale	of	about	4 months,	
since it represents a reasonable average of previously calculated 
water	memory	timescales	in	vegetation	across	the	western	United	
States	(Liu	et	al.,	2018).

We	 use	 100-	h	 DFMC	 as	 the	 independent	 metric	 of	 hydrocli-
mate in Equation	(1)	because	it	represents	the	integrated	influence	
of	atmospheric	conditions	(i.e.,	precipitation	and	atmospheric	water	
demand)	on	vegetation	in	the	absence	of	modifications	due	to	soil	
infiltration	or	vegetation	(Matthews,	2014).	Specifically,	the	DFMC	
is calculated considering both the effect of precipitation in the pre-
vious	24 h	and	the	drying	power	of	the	atmosphere	(dependent	on	
temperature	 and	 relative	 humidity)	 to	 determine	 the	 equilibrium	
moisture	content	of	the	dead	fuels	(Cohen	&	Deeming,	1985).	The	
calculation is adjusted based on the duration of daylight at a given 
latitude	(Cohen	&	Deeming,	1985).	The	DFMC	can	be	calculated	for	
different	fuel	classes.	Here,	the	100-	h	DFMC	is	chosen	because	it	
represents the wetness of twigs and branches of a few centime-
ters	 in	diameter	 (Burgan,	1988),	which	 is	 similar	 to	 the	vegetation	
elements	contributing	the	most	to	the	remotely	sensed	LFMC	(Rao	
et al., 2022).

The	DFMC	has	the	same	units	(amount	of	water	per	amount	of	
dry	biomass)	as	LFMC,	facilitating	interpretation	of	the	slope	magni-
tudes βi, which are unitless. To keep the influence of DFMCt	on	LFMC	
physically plausible, the regression in Equation	(1)	is	constrained	to	
only	use	non-	negative	values	of	βi. Overall, low values of βi suggest 
that	LFMC	does	not	decrease	as	quickly	when	DFMC	decreases,	be-
cause	of	soil	or	plant	mechanisms	that	limit	the	effect	of	the	climate-	
induced	DFMC	reductions.	Thus,	ecosystems	with	 lower	PWS	are	
less sensitive to water stress.

We	use	a	time	series	of	LFMC	derived	from	Sentinel-	1	SAR	ob-
servations	(which	are	sensitive	to	canopy	water	content	across	much	
of	the	canopy	depth)	and	Landsat	canopy	reflectances.	It	is	based	on	
a	machine	learning	approach	trained	on	in	situ	observations	of	LFMC	
from	the	National	Fuel	Moisture	Database	(Rao	et	al.,	2020).	The	re-
cord	spans	the	western	United	States;	the	eastern	boundary	of	this	
region	 consists	 of	 and	 includes	 the	 states	 of	Montana,	Wyoming,	
Colorado,	and	Texas.	It	has	a	250 m	spatial	resolution	and	a	15-	day	
temporal	resolution.	More	details	of	the	LFMC	dataset	can	be	found	
in	Rao	et	al.	(2020).	The	100-	h	DFMC	record	is	based	on	GRIDMET	
(Abatzoglou,	2013).	PWS	is	calculated	across	the	period	from	2016	
to	 2021,	 coinciding	 with	 Sentinel-	1A	 and	 Sentinel-	1B	 availability.	
Note	that	unlike	the	PWS	maps	used	in	Rao	et	al.	(2022),	which	were	
calculated only based on the summer fire season, here we calculate 
PWS	across	the	entire	year.	As	part	of	the	calculation,	LFMC	is	re-	
sampled	to	match	the	4 km	resolution	of	DFMC,	and	DFMC	data	are	
linearly	averaged	to	match	the	15-	day	temporal	resolution	of	LFMC,	
generating	a	static	spatial	map	of	PWS	at	4 km.

2.2  |  Calculating species influence on PWS

Our	analysis	is	focused	on	locations	with	field	plots	in	the	US	Forest	
Service	Forest	Inventory	and	Analysis	(FIA)	program	(Bechtold	et	al.,	
2005; Gray et al., 2012),	 the	United	States'	program	of	 intensively	
sampled	 long-	term	inventory	plots.	As	such,	we	focus	only	on	for-
ested	 locations.	 Focusing	 on	 only	 these	 plot	 locations	 provides	
information about species composition in each location, since con-
tinuous maps of species composition are not available across the en-
tire	western	United	States.	Furthermore,	we	focus	only	on	FIA	plots	
where	at	least	75%	of	the	basal	area	is	from	a	single	species.	We	in-
terpret these locations as ones where a single species dominates the 
biomass	and	thus,	the	PWS.	Limiting	our	focus	to	such	pixels	allows	
for	analysis	of	the	impact	of	species	on	PWS,	which	would	be	impos-
sible	at	mixed-	species	sites	because	there	is	not	enough	information	
to	deduce	how	much	of	the	PWS	at	a	given	site	is	influenced	by	each	
of the different species present there.

Limiting	our	focus	to	‘single-	species’	locations	reduces	the	num-
ber	of	4 km	pixels	containing	one	or	more	FIA	plots	from	48,305	to	
28,940,	or	about	60%	of	the	original	number.	Of	these,	a	small	subset	
is missing one of the soil, plant, and topographic factors used for com-
parison	 (see	below)	and	 is	 removed	 from	the	analysis.	Additionally,	
we	also	remove	pixels	where	the	dominant	 land	cover	 is	grassland,	
pasture,	or	mixed	forest	(as	estimated	from	the	2016	National	Land	
Cover	Database	(Fry	et	al.,	2011)),	since	in	these	pixels,	the	FIA	plots'	
dominant	species	cannot	be	representative	of	the	entire	PWS	pixel.	
After	 these	 filters,	21,445	pixels	 remain	 in	our	analysis	 (Figure 1a).	
Focusing	on	plots	where	only	a	 single	 species	dominates	 the	basal	
area is likely to bias the distribution of species studied to some de-
gree relative to the full distribution of species composition across the 
western	United	States.	Therefore,	we	further	analyze	the	distribution	
of species remaining in the final plots to ensure that the most com-
mon tree species are well represented in the final dataset.

(1)LFMCt =

N=8
∑

i=0

� i × DFMCt−i + �

(2)PWS =

N=8
∑

i=1

� i
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Having	 identified	 the	21,445	pixels	where	a	single	species	can	
be assumed dominant, we calculate the influence of the dominant 
species	 on	 PWS	 as	 the	 coefficient	 of	 determination	 (R2)	 between	
observed	PWS	and	 a	model	 that	 predicts	PWS	based	on	 species-	
specific	means	alone.	Note	that	we	use	the	phrase	‘observed	PWS’	
here for simplicity, but that it is estimated from a regression of ob-
served	LFMC,	 rather	 than	being	directly	observed.	For	each	pixel,	
this	model	predicts	PWS	as	the	mean	observed	PWS	of	all	pixels	in	
which	the	dominant	species	is	the	same	as	at	the	pixel	under	consid-
eration.	This	 is	 the	mathematically	optimal	PWS	prediction	model	
based on species information alone—no other formulation would 
achieve higher R2 unless other information was used.

There	is	some	spatial	mismatch	in	our	approach.	The	PWS	is	cal-
culated	at	4 km	and	thus	each	pixel	contains	an	area	of	16 km2.	FIA	
plots are more than a thousand times smaller, with only a subset of 
a ~ 4000 m2	 area	 sampled	at	each	 site.	Furthermore,	 the	 identified	
location	of	each	FIA	plot	is	fuzzed	within	a	1.6 km	radius	to	protect	
landowner	privacy	and	protect	the	integrity	of	the	plot.	Additionally,	
plot	locations	on	private	lands	are	swapped	in	up	to	20%	of	cases,	
although such swaps are contained to the same county and to plots 
with	the	same	ecotype	(Burrill	et	al.,	2021; Gray et al., 2012).	Here,	we	
assume	that	if	a	single	species	is	dominant	in	an	FIA	plot,	this	domi-
nance	is	also	in	effect	across	the	entire	4 km	PWS	pixel.	Upon	making	
this	assumption,	it	follows	that	in	most	cases	a	1.6 km	random	offset	
away	from	a	marked	FIA	location	would	not	change	the	PWS	pixel	in	
which	it	falls,	and	nor	would	a	swap	with	another	same-	ecotype	plot	
in the same county. Thus, this location uncertainty does not change 
the	implied	match	between	the	PWS	pixel	and	which	species	is	dom-
inant there. Overall, our analysis rests on the assumption that the 
advantage of being able to study plant water sensitivity across tens 
of thousands of sites outweighs the errors induced by the presence 
of some differences in spatial representativeness differences. The 
impact of the resolution differences on the interpretation of the re-
sults	is	examined	in	the	Discussion	(Section	4)	below.

2.3  |  Comparison to other predictive factors

The R2	 between	 observed	 PWS	 and	 PWS	 predicted	 by	 species-	
specific means is difficult to interpret in isolation. It is unclear how 

much of the R2 is attributable to the magnitude of the noise in our 
species	dominance	and	PWS	calculations	(particularly	in	light	of	the	
resolution	difference	mentioned	above),	and	how	much	is	due	to	the	
true limitations in using the dominant species as the sole predictor of 
PWS.	To	provide	further	context,	we	compare	the	R2	of	the	species-	
cover-	based	predictions	to	the	R2 of a random forest model that pro-
vides	an	estimate	of	how	much	of	the	spatial	variability	in	PWS	can	
be	explained	by	other	factors,	including	soil,	plant,	and	topographic	
factors. This random forest model does not include species informa-
tion. The random forest model contains 120 “trees”, and tests up to 
10 features per split. These hyperparameters were chosen by test-
ing a range of possible values and selecting those that led to the 
best model performance. In addition, the random forest model has 
a	maximum	tree	depth	of	8,	which	balances	sufficient	depth	to	im-
prove	 performance	 and	 avoiding	 over-	fitting.	 The	model	 is	 tested	
with	10-	fold	cross-	validation.	The	importance	of	different	input	fea-
tures to the final random forest model is calculated based on the 
permutation feature importance—the decrease in model score when 
a	feature	is	randomly	shuffled.	We	used	Python's	scikit-	learn	pack-
age	version	0.24.2	to	fit	the	random	forest	model	and	analyze	the	
feature importance.

We	considered	a	variety	of	possible	features	for	inclusion	in	the	
random forest model, representing local climate characteristics, 
stand	density	proxies,	 soil,	 and	 topographic	 factors.	The	 features	
considered, whether they were selected for the final model, and 
their	data	sources	are	summarized	in	Table S1.	As	possible	climate	
characteristics, we test the mean monthly value and the monthly 
coefficient	of	variation	of	VPD,	temperature,	and	precipitation,	as	
well	 as	 the	aridity	 index.	The	coefficient	of	variation	 is	used	as	a	
measure of how variable the climatic driver is across the year, and 
is	 calculated	 as	 the	 standard	 deviation	 of	 the	 long-	term	mean	 of	
each	month,	 divided	 by	 the	 overall	mean	monthly	 value.	We	use	
the coefficient of variation rather than the standard deviation, as 
the latter is highly correlated with the mean for several drivers. 
These	 climate	 data	 are	 derived	 from	 PRISM	 (Daly	 et	 al.,	 2008, 
2015).	The	aridity	 index	 is	calculated	as	 the	 ratio	of	mean	poten-
tial	evapotranspiration	(PET)	to	mean	precipitation,	calculated	over	
the	period	1981–2010,	with	the	GridMET-	calculated	PET	based	on	
the	 Penman-	Monteith	method	 (Abatzoglou,	2013).	 As	 vegetation	
density	 proxies,	 we	 use	mean	NDVI	 (calculated	 as	 the	 long-	term	

F I G U R E  1 FIA	plots	considered	for	
this	study.	Panel	(a)	shows	the	map	of	the	
FIA	plots	used	in	this	study,	overlaid	on	a	
National Land Cover Database 2021 map 
of	forests	and	shrublands.	Panel	(b)	shows	
the number of sites for the top five most 
common species in the dataset.

(a) (b)
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    |  5 of 14KONINGS et al.

average	 across	 the	 2001–2020	 record	 of	 the	MODIS	MOD13Q1	
V6.1	NDVI	product	(Didan	et	al,	2021)),	lidar-	derived	canopy	height	
(from	IceSat	GLAS	(Simard	et	al.,	2011)),	and	aboveground	biomass.	
The aboveground biomass dataset is based on a machine learning 
algorithm that combines inventory data, airborne laser scanning, 
and spaceborne lidar and radar data to estimate aboveground bio-
mass	(Xu	et	al.,	2021).	The	specific	soil	proxies	used	are	based	on	
the	data	available	from	the	gridded	National	Soil	Survey	Geographic	
Database	(gNATSGO)	dataset.	We	use	gNATSGO	instead	of	other	
soil property datasets since it is based solely on data from detailed 
field surveys and avoids errors associated with digital soil mapping 
(Rossiter	 et	 al.,	 2022).	 In	 particular,	 we	 use	 four	 gNATSGO	 vari-
ables:	 (i)	 soil	 bulk	density,	 given	 that	 it	 is	 inversely	 related	 to	 soil	
porosity,	which	would	be	expected	 to	 influence	how	much	water	
soils	can	store	after	saturating	rain	events;	(ii)	total	available	water	
storage;	(iii)	saturated	hydraulic	conductivity,	given	that	it	controls	
the	rate	of	runoff	generation	and	leakage	out	of	the	root	zone;	and	
(iv)	 the	 soil	moisture	 at	 1/3rd	 bar	 as	 a	measure	 of	 soil	 retention.	
The	gNATSGO	data	is	available	across	several	depth	layers,	but	the	
optimal	depth	 is	 likely	variable	 from	 location	to	 location	 (e.g.,	de-
pending	on	local	soil	layers	and	bedrock	depth).	Considering	depths	
that are too small may induce some error because changes in soil 
properties that are below the considered depth but still within the 
rooting	zone	would	not	be	accounted	for.	Alternatively,	depths	that	
are too large may include information about soil profiles that are not 
relevant	to	the	rooting	zone.	Here,	we	use	the	0	to	50 cm	average	as	
a	reasonable	value	for	most	gNATSGO-	derived	soil	properties,	but	
use	the	0	to	150 cm	values	for	the	available	water	storage	(although	
note	that	if	bedrock	is	shallower	than	150 cm,	gNATSGO	automat-
ically	 calculates	 available	 water	 storage	 only	 to	 the	 soil	 depth).	
Beyond	the	above	properties,	we	also	test	an	estimate	of	the	total	
root-	zone	water	storage	capacity	(abbreviated	as	RZ	storage	in	the	
figure	legends)	derived	from	McCormick	et	al.	(2021).	This	dataset	is	
not tied to a particular depth and accounts for water storage in both 
soil and bedrock, given that bedrock water use is considerably more 
widespread	 in	 the	western	United	 States	 than	 generally	 appreci-
ated	(McCormick	et	al.,	2021).	The	root-	zone	water	storage	capacity	
is calculated based on a mass balance approach by determining the 

maximum	accumulation	of	evapotranspiration	in	excess	of	precip-
itation	 over	 a	 multi-	year	 period.	 Finally,	 as	 topographic	 features,	
we	consider	the	local	slope	and	aspect	(obtained	from	the	National	
Elevation	Dataset),	as	well	as	two	indices	intended	to	capture	the	
effect	 of	 topography	 on	 hydrology.	 Specifically,	 we	 consider	 the	
height-	above-	nearest	drainage	(that	is,	the	elevation	difference	be-
tween the local point and the nearest point of drainage, based on 
calculating	drainage	directions	from	a	digital	elevation	model),	and	
the	topographic	wetness	index	(i.e.,	the	ratio	of	the	log	of	the	total	
catchment area per unit flow width and the tangent of the slope, 
(Beven	&	Kirkby,	1979)).	Both	of	 these	datasets	are	derived	 from	
MERIT	HYDRO	 (Yamazaki	 et	 al.,	 2019).	 All	 random	 forest	 inputs	
used are originally calculated at the native resolution of the associ-
ated	dataset,	and	then	interpolated	to	4 km	to	match	the	resolution	
of	the	PWS	dataset.

To enable interpretation of the final feature influence, we elimi-
nate	features	with	a	cross-	correlation	r > .70.	For	example,	because	
the	 height-	above-	nearest-	drainage	 and	 the	 slope	 have	 a	 cross-	
correlation of r = .85,	only	slope	is	included	in	the	final	model.	In	cases	
of	cross-	correlation	between	two	features,	the	feature	with	the	low-
est	univariate	correlation	with	PWS	is	removed,	and	the	other	feature	
retained.	Other	features	removed	because	of	high	cross-	correlations	
included the mean precipitation, mean temperature, coefficient of 
variation	 of	 VPD,	 and	 coefficient	 of	 variation	 of	 temperature.	 All	
vegetation	 density	 and	 size	 proxies	 were	 cross-	correlated	 (e.g.,	
rNDVI,canopy	height = .72	&	 rNDVI,AGB = .75,	 rcanopy	height,AGB = .72),	 so	 this	
axis	is	summarized	using	the	single	feature	of	mean	NDVI,	although	
we note that the greenness of a given level of biomass or density also 
affects	NDVI	to	a	lesser	degree.	The	cross-	correlations	of	the	final	
features are shown in Figure S1.

Beyond	removing	correlated	features,	we	further	aim	to	improve	
interpretability by retaining only a subset of the remaining features 
that	best	predict	PWS.	Specifically,	we	retained	only	three	features	
each from the climate, soil, and topography categories, so that the 
importances of the different categories can be more easily com-
pared without the complicating role of there being different num-
bers of features in different categories. The final features chosen 
and their data sources are also detailed in Table 1.

TA B L E  1 Input	features	for	the	random	forest	model.

Category Name Source Data reference

Soil Bulk	density,	0–50 cm gNATSGO Soil	Survey	Staff	(2023)

Saturated	hydraulic	conductivity,	0–50 cm	(Ks,max) gNATSGO Soil	Survey	Staff	(2023)

Root-	zone	water	storage	(RZ	storage) See	ref. McCormick	et	al.	(2021)

Topography Slope NED Gesch	et	al.	(2002)

Aspect NED Gesch	et	al.	(2002)

Topographic	wetness	index	(TWI) MERIT	HYDRO Yamazaki	et	al.	(2019)

Vegetation Mean	NDVI MODIS	MOD13Q1 Didan	(2021)

Climate Mean	VPD PRISM Daly	et	al.	(2015)

Coefficient of variation of precipitation PRISM Daly	et	al.	(2008)

Aridity	index gridMET Abatzoglou	(2013)
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6 of 14  |     KONINGS et al.

3  |  RESULTS

As	shown	in	Figure 1a,	the	selected	FIA	sites	span	the	forests	(and	in	
some	cases,	shrublands)	of	the	western	United	States.	Although	the	
criteria	for	establishing	dominance	of	a	single	species	exclude	more	
sites in some locations than others, most regions with forest cover 
measured	by	FIA	have	at	 least	 some	sites	 included	 in	our	dataset.	
The	regions	where	focusing	on	dominant-	species	sites	excludes	the	
most forest land include northern California, central Oregon, west-
ern Idaho, and eastern Nevada. Considering only locations where a 
single species dominates the basal area inevitably biases the species 
distribution somewhat, as some species may be more likely to grow 
in	areas	with	little	species	diversity	(e.g.,	plantations).	Still,	the	five	
most	common	species	by	basal	area	in	the	western	United	states	are	
represented	in	the	analyzed	sites,	including	Douglas-	fir	(Pseudotsuga 
menziesii,	3553	sites),	ponderosa	pine	(Pinus ponderosa,	2373	sites),	
Utah	juniper	(Juniperus osteosperma,	2063	sites),	and	lodgepole	pine	
(Pinus contorta,	1121	sites).	One	exception	 is	the	western	hemlock	
(Tsuga heterophylla),	for	which	only	145	sites	are	included	in	our	final	
dataset.	Several	genera	are	likely	under-	represented	in	our	dataset	
relative to western forests as a whole, but nevertheless include a 
reasonably	large	sample	size.	These	include	several	oak	(e.g.,	Gambel	
oak, Quercus gambelii, 473 sites and blue oak, Quercus douglasii, 174 
sites),	 fir	 (e.g.,	white	fir,	Abies concolor, 273 sites, and subalpine fir, 
Abies lasiocarpa,	286	sites),	and	spruce	(e.g.,	Engelmann	spruce,	Picae 
englemannii,	381	sites)	species.	Other	common	species	in	our	data-
set	 include	 honey	 mesquite	 (Prosopsis glandulosa,	 2692	 sites)	 and	
oneseed	juniper	(Juniperus monosperma,	1142	sites).	The	number	of	
sites for the top five most common sites is compared graphically in 
Figure 1b.

The	PWS	varies	considerably	within	species.	Although	the	exact	
shape	of	the	distribution	of	PWS	(Figure 2, showing the top 5 most 
common	 species	 in	 the	 region)	 varies	 from	 species	 to	 species,	 all	
distributions are relatively wide and overlap considerably. Indeed, 

when	considering	all	species	that	have	at	 least	50	dominant	pixels	
(to	ensure	sufficient	sample	size),	and	calculating	the	species	mean	
of	each,	the	standard	deviation	of	the	species-	mean	PWS	values	is	
0.27.	 By	 contrast,	 the	 average	 standard	 deviation	 of	 PWS	 across	
sites	with	the	same	dominant	species	is	0.91.	That	is,	the	mean	val-
ues	of	PWS	for	each	species	are	much	less	variable	than	the	PWS	is	
across different sites with the same dominant species. This suggests 
that	 species	 knowledge	 can	 provide	 information	 about	 PWS,	 but	
not	fully	constrain	it.	Indeed,	using	the	species-	specific	mean	PWS	
value	to	predict	PWS	variation	explains	only	23%	of	observed	vari-
ability	in	PWS	(Figure 3a).	By	contrast,	using	a	random	forest	driven	
by	geographic	factors	allows	for	43%	of	observed	variability	to	be	
explained—almost	 double	 (Figure 3b).	 This	 number	 was	 relatively	
consistent	across	the	10	cross-	validation	folds	of	the	random	forest	
model,	varying	between	40%	and	46%.

The errors in the random forest predictions are largest for low 
values	of	PWS,	and	values	of	PWS	below	0.6	are	never	predicted,	de-
spite	making	up	25%	of	observations.	Similarly,	the	species-	average	
model	predicts	a	value	of	PWS < 0.6	in	only	3%	of	conditions.	If	low	
PWS	values	cannot	be	explained	by	either	species	models	or	the	ran-
dom	forest	model,	this	may	point	to	the	influence	of	LFMC	retrieval	
errors	 in	these	pixels,	since	these	would	tend	to	reduce	the	calcu-
lated	PWS	values.	High	PWS	values	(e.g.,	greater	than	3)	are	rarely	
predicted	by	 the	 species-	based	model,	but	are	a	 common	 random	
forest prediction that matches observations in areas such as Eastern 
Arizona	and	Southern	Texas	(Figure S2).

The random forest predictions are particularly sensitive to mean 
VPD	and	mean	NDVI,	which	are	almost	or	more	than	twice	as	import-
ant	as	the	other	features	(Figure 4a).	Mean	NDVI	is	cross-	correlated	
with	mean	precipitation	 (r = .74)	across	 the	study	sites.	Mean	VPD	
is	also	partially	cross-	correlated	(e.g.	absolute	cross-	correlations	be-
tween	0.4	and	0.6)	with	several	other	 features	 (aridity	 index,	bulk	
density,	slope,	TWI;	Figure S1),	 likely	because	of	 its	strong	depen-
dence	on	 temperature,	 and	 thus	elevation.	Based	on	 accumulated	
local	 effects	 plots	 of	 the	 four	most	 important	 features	 (Figure 5),	
mean	NDVI	and	mean	VPD	are	particularly	important	at	low	NDVI	
and	high	VPD	values,	respectively.	Thus,	the	combined	effect	of	cli-
mate aridity and vegetation density is most important in the drier 
regions	of	 the	western	United	States,	 that	 is,	outside	of	higher	el-
evation,	 densely	 forested	 areas.	When	 all	 other	 features	 are	 held	
constant,	the	PWS	first	decreases	with	mean	NDVI	until	it	reaches	
a	value	of	approximately	0.35,	and	then	increases	slowly	with	NDVI.	
The	 initial	 decline	 in	 sensitivity	with	NDVI	may	 be	 because	 areas	
with	greater	NDVI	(and	thus	more	canopy)	are	also	expected	to	have	
deeper	and	more	laterally	extensive	roots	(Mao	et	al.,	2018;	Tumber-	
Dávila	 et	 al.,	2022),	 allowing	 for	 greater	 access	 to	water	 reserves	
that	allow	sustained	water	uptake	even	during	drier	periods.	By	con-
trast,	at	NDVI	values	greater	 than	0.35,	 the	expected	greater	 loss	
of water to transpiration because of greater leaf area may lead the 
PWS	to	stop	decreasing	and	instead	increase	slightly.	The	accumu-
lated	local	effect	of	mean	VPD	on	PWS	increases	continuously	with	
VPD	(particularly	in	the	driest	regions	with	the	greatest	VPD,	as	dis-
cussed	 above),	 consistent	with	 previous	 findings	 by	D'Orangeville	

F I G U R E  2 PWS	probability	density	for	the	top	five	most	
common	species	among	the	dataset	used	(colored	lines)	and	for	all	
sites	(black	line),	plotted	using	kernel	density	estimation.
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    |  7 of 14KONINGS et al.

et	al.	(2018)	that	growth	responses	to	drought	are	stronger	in	areas	
with	greater	 long-	term	mean	potential	evapotranspiration.	The	ac-
cumulated	 local	 effects	 plots	 also	 show	 that,	 counter-	intuitively,	
PWS	decreases	with	increasing	slope,	particularly	for	low	slopes	less	
than	 1%.	 A	 possible	 explanation	 for	 this	 pattern	 is	 that	 these	 ex-
tremely	flat	areas	receive	little	lateral	flow	run-	off	from	other	areas,	
and thus, all else held constant, depend more strongly on local cli-
mate	(and	have	greater	PWS	as	a	result).	For	sufficiently	high	values	
(e.g.,	in	sufficiently	steep	terrain),	this	reverses,	with	the	significantly	
greater	precipitation	losses	to	run-	off	in	higher	slope	areas	increas-
ing plant water sensitivity. Lastly, the accumulated local effect of the 
coefficient	of	variation	of	precipitation	on	PWS	with	the	coefficient	
of variation of precipitation is positive. That is, if all other features 
are	held	constant,	 areas	with	more	variable	 rain	have	 lower	PWS.	

F I G U R E  3 Variability	in	PWS	predicted	
by	(a)	the	observed	species-	mean	PWS	for	
the	dominant	species	at	each	site	and	(b)	
the random forest of climate, plant trait, 
soil,	and	topographic	factors.	Narrow-	
bandwidth kernel density estimation was 
applied	for	visualization	purposes;	lighter	
colors	indicate	greater	density.	For	each	
panel,	the	one-	to-	one	line	is	shown	in	
blue.

F I G U R E  4 Variable	importance	of	input	features	for	the	region-	
wide	random	forest	model	predicting	PWS,	individually	(Panel	a)	
and	aggregated	by	feature	type	(Panel	b).	In	panel	a,	individual	
input	features	are	colored	by	their	category	type.	Panel	(b)	shows	
the	relative	importance	of	climatic	descriptions	(blue),	vegetation	
density	(green),	topographic	descriptors	(yellow),	and	soil	properties	
(brown)	in	the	random	forest	model.	For	each	category	except	
vegetation density, the relative importance shown is the sum of 
that	calculated	for	all	three	features	in	each	category.	Because	each	
category contains the same number of features, the sum of the 
individual feature importances can be compared more easily. The 
exception	is	the	vegetation	density,	for	which	only	a	single	feature	
was	used	to	avoid	confounding	influences	from	the	high	cross-	
correlations between vegetation density metrics.

(a)

(b)

F I G U R E  5 Accumulated	local	effects	plots	for	the	four	most	
important	random	forest	features.	The	tick	marks	along	each	axis	
represent the relative density of the distribution of that variable 
across all sites studied.
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8 of 14  |     KONINGS et al.

This	may	be	initially	surprising,	as	more	variable	rainfall	may	be	ex-
pected	to	effectively	decrease	water	availability	to	forests	(because	
water is more likely to run off, or because more variable rainfall may 
be	associated	with	longer	dry	seasons).	Thus,	the	response	of	PWS	
to	 the	coefficient	of	variation	of	 rainfall	may	be	expected	 to	have	
the	same	sign	as	the	response	to	mean	VPD,	while	Figure 4 shows 
the	opposite	is	the	case.	This	complexity	reflects	the	multi-	faceted	
nature of plant responses to water stress, with trait adaptations to 
minimize	vulnerability	leading	to	a	range	of	transpiration	(and	thus,	
possible	LFMC)	responses,	and	vice	versa	(Feng	et	al.,	2017).

Overall, the random forest model is likely to include some com-
pensating	errors	because	not	all	possible	covariates	of	PWS	are	in-
cluded	 in	 the	model,	 and	 because	 some	 cross-	correlations	 remain	
between	 the	 input	 features	of	 the	model	 (and	between	 input	 fea-
tures and other variables that are not included in the model but may 
plausibly	affect	PWS,	see	Table S1).	We	therefore	do	not	interpret	
the accumulated local effects plot of features that are less important 
to	the	random	forest	predictions,	and	focus	on	the	explained	vari-
ability of the model predictions rather than the model itself.

Further	insight	can	be	gained	by	aggregating	the	feature	impor-
tance	by	type	(Figure 4b).	Note	that	in	Figure 4b, the only vegetation 
density	 feature	contributing	 to	 the	 importance	 is	 the	mean	NDVI,	
whereas the climate, topography, and soil categories represent the 
sum of the importance of each category's three features. Climate 
features are the most important category, but despite only being 
able to capture one dimension of ‘vegetation density’ through mean 
NDVI,	the	vegetation	density	category	is	nevertheless	the	second-	
most important, and is more than twice as important as the topog-
raphy category and more than four times as important as the soil 
category.	By	contrast,	the	topographic	category	(including	slope,	as-
pect,	and	topographic	wetness	index)	and	the	soils	category	(includ-
ing	 the	 saturated	 soil	 hydraulic	 conductivity,	 maximum	 root-	zone	
water	 storage,	 and	bulk	density)	has	only	a	 relatively	 small	 impor-
tance	for	the	region-	wide	model.	This	may	be	because	topographic	
and soil features are only relevant in a smaller subset of temporal 
(e.g.,	particularly	wet)	or	spatial	(e.g.,	particularly	steep)	conditions.	
The	explained	variability	of	random	forest	models	built	with	only	one	
feature	type	at	a	time	(e.g.,	only	climate,	only	soil,	etc.)	(Figure S3)	is	
also consistent with the patterns in Figure 4b.

4  |  DISCUSSION

4.1  |  Species type only partially influences plant 
water stress sensitivity

Only	23%	of	the	spatial	variability	in	PWS	is	explained	by	which	spe-
cies	is	dominant.	This	relatively	low	number	may	be	partially	explained	
by	noise	in	our	PWS	dataset,	including	the	simplifying	assumption	of	
linearity	in	the	PWS	calculation	(Equation 1)	and	the	presence	of	noise	
in	the	LFMC	and	DFMC	sets.	Additionally,	we	calculate	a	single	PWS	
for	each	pixel	based	on	the	response	of	LFMC	to	meteorological	arid-
ity	over	a	6-	year	period.	Six	years	is	not	enough	to	fully	average	over	

climatic variability, and thus the degree of water stress on the vegeta-
tion varies across space not just because of difference in vegetation 
behavior	between	pixels,	but	also	because	of	 the	different	distribu-
tion/amount of meteorological aridity observed during the study pe-
riod	(Slette	et	al.,	2019).	While	the	climate	during	the	6 years	used	to	
calculate	PWS	 is	 close	 to	 that	 across	 a	much	 longer	42-	year	 period	
across	pixels	(Figure S4),	the	relatively	short	6-	year	period	may	still	be	
a	source	of	error	at	individual	pixels.	Nevertheless,	the	43%	of	spatial	
variability	in	PWS	explained	by	the	random	forest	model	puts	a	bound	
on	the	degree	to	which	noise	limits	the	explanatory	power	of	the	PWS	
patterns.	 It	provides	context	for	the	23%	explanatory	power	of	spe-
cies	information,	which	is	considerably	lower	than	43%.	That	is,	only	
53%	(0.23/0.43)	of	total	explainable	PWS	variations	can	be	explained	
by species information alone. This suggests that, while a considerable 
amount	of	PWS	is	dependent	on	the	dominant	species,	other	factors	
(such	as	changes	in	soil,	topography,	vegetation	density,	or	adaptation	
to	mean	climate)	are	almost	as	important	as	which	species	is	dominant	
for predicting local plant sensitivity to water stress.

Note that although several of the factors considered in the ran-
dom	forest	model	are	cross-	correlated	with	species	dominance	(be-
cause species tend to grow in specific climate and biogeographical 
niches),	 this	 does	 not	 affect	 our	 conclusion	 of	 significant	 controls	
of other factors. The geographic distribution of species may affect 
the	finding	that	43%	of	PWS	spatial	variability	can	be	explained,	but	
not	 that	 species-	explained	variability	 is	only	53%	of	 total	 explain-
able	variability.	That	is,	because	the	random	forest	explains	almost	
twice	as	much	of	the	spatial	variability	in	PWS	as	a	mathematically	
optimal	species-	only	model	does,	factors	beyond	cross-	correlations	
between species niches and the random forests' input features must 
be	contributing	substantially	to	the	total	43%	observed	variability	of	
the random forest model.

Our result is consistent with a previous finding that growth 
sensitivity	to	drought	in	Eastern	North	American	forests	are	often	
more	 variable	 within	 species	 than	 between	 them	 (D'Orangeville	
et al., 2018).	 Such	 consistency	 is	 not	 surprising,	 as	 many	 of	 the	
factors	 causing	 environmentally	 driven	 differences	 in	 PWS	 also	
affect growth rates, and many of the processes controlling growth 
responses to drought are likely to also influence plant water stress 
response across a range of hydrometeorological conditions.

Several	other	factors	may	contribute	to	the	low	explanatory	vari-
ability of species, including but not limited to the features consid-
ered	in	the	random	forest	model.	For	example,	the	amount	of	water	
available to vegetation at any point depends on a number of factors. 
These	include	the	degree	to	which	rainfall	ends	up	as	root-	available	
water	under	different	conditions—as	influenced	by,	for	example,	the	
seasonal	 timing	 of	 rainfall	 (Romme	 et	 al.,	 2009)	 or	 by	 topographic	
factors	that	affect	what	fraction	of	rainfall	runs	off	either	above-		or	
belowground	and	how	quickly,	for	example,	Fan	et	al.	 (2019).	Other	
factors	include	soil	texture	and	its	effect	on	both	water	retention	and	
the	amount	of	water	that	can	be	stored	in	the	soil	(Hahm	et	al.,	2019).	
These factors are partially captured in the features that we consider. 
However,	other	properties	such	as	variability	 in	soil	properties	with	
depth	(De	Kauwe	et	al.,	2015),	sub-	grid	scale	hillslope	distribution	and	
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orientation	(Fan	et	al.,	2019),	and	groundwater	or	rock	moisture	inter-
actions	(Giardina	et	al.,	2023;	McCormick	et	al.,	2021;	Miguez-	Macho	
&	Fan,	2021)	likely	also	play	a	role.	Furthermore,	transpiration	from	un-
derstory	species	(which	are	not	captured	here)	also	responds	to—and	
feeds	back	on—soil	water	availability	(McIver	et	al.,	2022).	Locations	
with	greater	average	root-	available	water	likely	also	support	greater	
stand density or leaf area, which in turn influences rates of water loss 
and	thus,	PWS	(Bottero	et	al.,	2017).	Lastly,	while	hydraulic	traits	vary	
substantially	 between	 species,	 they	 can	 also	 exhibit	 non-	negligible	
intra-	specific	 variability.	 For	 example,	 Rosas	 et	 al.	 (2019)	 examined	
sources	of	variability	across	several	plant	hydraulic	traits	 in	six	tree	
species,	and	found	that	for	a	majority	of	traits	studied,	intra-	specific	
variability	accounted	for	roughly	20%–45%	of	total	variability	in	that	
trait.	Additionally,	across	a	hydrologic	gradient	in	the	Amazon,	intra-	
specific	variability	 in	P50	for	 two	species	was	76%	and	97%	of	 the	
local	community's	 inter-	specific	variation,	respectively	(with	equiva-
lent	ratios	of	55%	and	63%	for	wood	density)	(Garcia	et	al.,	2022).

We	 note	 that	 the	 23%	explanatory	 power	 of	 species	 informa-
tion we calculated may also be limited by the strong assumption that 
the	dominant	species	in	FIA	plots	are	also	dominant	over	the	entire	
4 km	PWS	pixel	(as	long	as	the	PWS	pixel's	dominant	land	cover	class	
is	consistent	with	the	dominant	species	type	of	the	FIA	plot).	This	
assumption	 is	 likely	 violated	 in	 at	 least	 some	of	 the	21,455	pixels	
studied. Nevertheless, the value of studying species effects across 
a	domain	as	large	as	the	entire	western	United	States	is	expected	to	
outweigh the disadvantages of this strong simplifying assumption. 
Thus, the conclusion that other factors are at least as important as 
which species is dominant in controlling local sensitivity to hydrocli-
mate is likely to be robust.

Overall,	 our	 results	 imply	 that	 studies	 of	 inter-	specific	 differ-
ences	in	plant	water	stress	response	should	also	explicitly	consider	
the environments in which observations for each species are made, 
and whether those environments are representative of the entire 
species	range.	If	the	study	sites	lie	at	the	extreme	end	of	the	species'	
climatic range or, to a lesser degree, in unusual soil and topographic 
conditions, the conclusions of the study may not be robust every-
where	in	the	range.	Such	analyses	of	study	site	‘representativeness’	
are currently quite rare. Yet they can be performed for many spe-
cies, facilitated by efforts to aggregate species occurrence records 
like	 the	 Global	 Biodiversity	 Information	 Facility	 (GBIF,	 Robertson	
et al., 2014).	Additionally,	our	findings	point	to	the	utility	of	consid-
ering	not	just	a	single	study	site	when	analyzing	a	particular	species,	
but	 studying	 the	 same	 species'	 behavior	 across	 an	 expansive	 net-
work	of	study	sites	(e.g.,	Cabon	et	al.,	2023; Lockwood et al., 2023; 
Novick,	Jo,	et	al.,	2022),	so	that	the	roles	of	climate,	soil,	and	topog-
raphy are at least partially integrated.

4.2  |  Relative importance of controls beyond 
species on PWS variability

The	random	forest	cross-	validation	R2	 is	on	par	with	the	explained	
variability in several other studies of different plant water stress 

response	 metrics	 (e.g.,	 R2 = .36	 for	 trees	 in	 Ukkola	 et	 al.	 (2021),	
R2 = .38– .46	for	Fu	et	al.	(2022),	R2 = .39	and	.52	for	Yang	et	al.	(2022)),	
building confidence in its implied relative importance of different 
factors.	Nevertheless,	 the	fact	 that	many	known	controls	on	PWS	
are	not	included	because	their	variation	across	the	western	United	
States	is	poorly	mapped	(e.g.,	groundwater	and	rock	moisture	influ-
ences	on	root	water	uptake,	stand	age	and	disturbance	history,	etc.)	
likely	limits	the	explained	variability	of	the	random	forest	model.

Mean	NDVI,	a	partial	proxy	for	vegetation	density,	is	intimately	
tied	 to	 plant	water	 use,	 explaining	 its	 role	 as	 the	most	 important	
feature	of	the	random	forest	model.	Greater	NDVI	suggests	greater	
leaf area, and thus, all else being equal, greater water loss rates 
through	 transpiration.	 Indeed,	 it	 has	 long-	been	 hypothesized	 that	
canopy	density	in	a	given	environment	acts	to	minimize	the	average	
water	stress	 (Eagleson,	1982).	At	the	tree	scale,	growth	sensitivity	
to	drought	has	been	shown	to	vary	with	rates	of	intra-	species	com-
petition	(which	is	expected	to	be	greater	at	greater	stand	density),	
and	 with	 stand	 density	 itself	 (e.g.,	 Bottero	 et	 al.,	 2017; Gleason 
et al., 2017).	As	a	result,	either	externally	imposed	or	self-	incurred	
thinning processes can reduce plant growth sensitivity to drought 
(Giuggiola	et	al.,	2013;	Jump	et	al.,	2017;	Thomas	&	Waring,	2015).	
The	high	importance	of	mean	NDVI	in	the	random	forest	model	sug-
gests	that	such	density-	dependence	is	highly	important	even	when	
water	uptake	and	loss	patterns	are	considered	(as	is	the	case	here),	
rather than the previously studied growth responses to drought.

Climatic factors also have high importance in the random for-
est model, consistent with previous studies of drought sensitivity 
(D'Orangeville	et	al.,	2018;	Felton	et	al.,	2021;	Fu	et	al.,	2022;	Ukkola	
et al., 2021).	Indeed,	D'Orangeville	et	al.	(2018)	and	Fu	et	al.	(2022)	
also	found	a	particularly	large	role	for	evaporative	demand	and	VPD,	
respectively, in studies of growth response to drought and sensitiv-
ity of evaporative fraction to soil moisture. This is consistent with 
mean	VPD	being	the	second-	most	important	feature	in	our	study.

Several	 factors	 likely	 explain	why	 climatic	 factors	 are	 so	 im-
portant	 for	 explaining	 the	 PWS	 spatial	 variability	 (Figure 4b).	
Mean	climate	is	a	first	order	control	on	water	availability	at	a	site,	
and	thus	on	the	likelihood	of	hydrologic	stress.	Additionally,	sev-
eral individual studies have shown the potential for significant 
plant	trait	adaptation	to	climate	(Blackman	et	al.,	2017; Depardieu 
et al., 2020;	Pritzkow	et	al.,	2020; Tuomela, 1997).	Finally,	 there	
are	 likely	 some	methodological	 artifacts.	 For	 example,	 although	
the specific vegetation density and climatic factors used as input 
features in the random forest model have been chosen to mini-
mize	cross-	correlation,	they	are	far	from	zero	(Figure S1).	Likewise,	
mean	 NDVI	 is	 highly	 cross-	correlated	 with	 several	 climate	 fea-
tures.	 For	 example,	 rmean	NDVI,mean	 annual	 precipitation = .74.	 Thus,	 the	
exact	 explanatory	 power	 of	 vegetation	 density	 versus	 climatic	
factors	may	be	difficult	to	disentangle.	Further,	the	mean	DFMC	
and	temporal	standard	deviation	of	DFMC	have	a	low	to	interme-
diate	cross-	correlation	with	climate	variables	used	in	the	random	
forest	model	(r = −.34	to	 .25,	Figure S5).	This	is	roughly	on	par	with	
the	cross-	correlation	between	PWS	and	aridity	index	(r = −.20)	and	
only	 slightly	 lower	 than	 the	cross-	correlation	between	PWS	and	
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10 of 14  |     KONINGS et al.

mean	VPD	 (r = .38).	 Even	 in	 the	 absence	of	 a	 causative	 relation-
ship	between	the	climate	features	and	PWS,	the	cross-	correlation	
between	mean	climate	and	the	DFMC	patterns	used	to	calculate	
PWS	may	therefore	create	an	artificial	dependence	of	PWS	on	cli-
mate. It is, however, difficult to imagine how one might design a 
metric of plant sensitivity to water limitations that is not sensitive 
to	such	cross-	correlations.	Overall,	we	expect	the	high	importance	
of climate features for the random forest to reflect a combination 
of	 artificial	 cross-	correlations	 and	 substantial	 true	 influences	 of	
climate	on	PWS.	This	suggests	efforts	to	improve	the	parametri-
zation	of	plant	traits	related	to	water	stress	in	land	surface	models	
(Anderegg,	2015; Liu et al., 2021)	might	benefit	from	incorporating	
relationships	between	traits	and	climate	 (Famiglietti	et	al.,	2023; 
Wu	et	al.,	2020).

The relatively low influence of soil properties in the model 
(Figure 4b)	 is	 surprising,	 particularly	 in	 light	 of	 the	 expected	 high	
quality	of	the	gNATSGO	data	used	to	derive	soil	properties.	This	may	
be because the role of soil properties is quite temporally variable 
(e.g.,	saturated	hydraulic	conductivity	is	likely	to	be	quite	important	
in very wet conditions, whereas wilting point or retention parame-
ters	would	be	more	important	influences	on	root-	zone	water	avail-
ability	during	dry	conditions).	In	addition,	the	most	relevant	depths	
of	the	soil	properties	likely	also	vary	across	space	and	time	(whereas	
we	assume	a	constant	averaging	depth	of	50 cm).	Finally,	the	low	in-
fluence	of	soil	properties	could	also	be	influenced	by	soil-	vegetation	
interactions that are not accounted for here, such as rock moisture 
uptake	 (Fan	 et	 al.,	 2019;	McCormick	 et	 al.,	2021),	 root	 effects	 on	
soil	 structure	 (Fatichi	et	al.,	2020),	or	 soil–hydraulic	parameter	 re-
lationships	 that	 are	 not	 accounted	 for	more	 generally	 (e.g.,	 pedo-
transfer	function	uncertainty	(Novick,	Ficklin,	et	al.,	2022;	Paschalis	
et al., 2022)).	Despite	the	relatively	low	influence	of	soil	properties	
on	PWS	found	here,	more	research	is	needed	to	assess	how	soil	hy-
draulics	 influence	 large-	scale	 patterns	 of	 ecosystem	 sensitivity	 to	
water stress.

5  |  CONCLUSIONS

In	this	study,	we	analyzed	the	relative	influence	of	species	and	other	
factors across tens of thousands of forested locations across the 
Western	United	States.	By	coupling	a	remotely	sensed	measure	of	
PWS	with	species	dominance	information	from	FIA	plots,	we	are	able	
to	 analyze	 the	 drivers	 of	 regional	 scale	 behavior	without	 ignoring	
the	role	of	species	variability	or	without	relying	on	species-	specific	
means	 obtained	 from	 trait	 databases	 (e.g.,	 Anderegg	 et	 al.,	 2018; 
Trugman et al., 2020).	Species	explain	a	significant,	but	not	a	domi-
nant,	 amount	of	 the	variability	 in	PWS.	This	 suggests	 that	 efforts	
to	account	for	species	distributions	in	land	surface	models	(Quetin	
et al., 2023)	may	improve	representation	of	ecosystem	responses	to	
water	stress.	However,	 it	also	 implies	 that	 species-	specific	 studies	
of water stress responses may provide only limited information if 
the locations they study are not representative of the typical envi-
ronment	in	which	that	species	grows.	Thus,	species-	specific	studies	

should study individuals of a species across a range of the climate, 
soil, and topographic environments in which it grows. Our result 
that	 many	 different	 factors	 contribute	 to	 the	 overall	 ecosystem-	
scale sensitivity of vegetation to hydroclimatic variability is with a 
number	of	previous	studies	 (e.g.,	D'Orangeville	et	al.,	2018; Green 
et al., 2022;	Ukkola	et	al.,	2021).	However,	the	large	influence	of	site-	
specific climate factors shown here suggests that further research 
is needed to quantify the amount of plasticity of plant hydraulic 
traits to climate across a wide range of species and biogeographic 
conditions.
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