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Abstract

Metabolic models can estimate intrinsic product yields for microbial factories, but such

frameworks struggle to predict cell performance (including product titer or rate) under sub-

optimal metabolism and complex bioprocess conditions. On the other hand, machine learn-

ing, complementary to metabolic modeling necessitates large amounts of data. Building

such a database for metabolic engineering designs requires significant manpower and is

prone to human errors and bias. We propose an approach to integrate data-driven methods

with genome scale metabolic model for assessment of microbial bio-production (yield, titer

and rate). Using engineered E. coli as an example, we manually extracted and curated a

data set comprising about 1200 experimentally realized cell factories from ~100 papers.

We furthermore augmented the key design features (e.g., genetic modifications and biopro-

cess variables) extracted from literature with additional features derived from running the

genome-scale metabolic model iML1515 simulations with constraints that match the experi-

mental data. Then, data augmentation and ensemble learning (e.g., support vector

machines, gradient boosted trees, and neural networks in a stacked regressor model) are

employed to alleviate the challenges of sparse, non-standardized, and incomplete data

sets, while multiple correspondence analysis/principal component analysis are used to rank

influential factors on bio-production. The hybrid framework demonstrates a reasonably high

cross-validation accuracy for prediction of E.coli factory performance metrics under pre-

sumed bioprocess and pathway conditions (Pearson correlation coefficients between 0.8

and 0.93 on new data not seen by the model).

Introduction

Despite the rapid advances in designing synthetic biological systems for various important

applications, prediction of cellular behavior remains a challenge [1]. High fidelity predictive

tools are critical for enabling rational strain design. While earlier tools were based on steady-

state constraint-based methods, newer tools leveraging kinetic information [2] and integrating
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omics data [3] have been developed to improve model prediction accuracy. However, the prac-

tical utility of these tools has not been extensively demonstrated, and the majority of metabolic

engineering efforts are still currently based on experience, intuition, and laborious testing of

large numbers of designs. This is because mechanistic models cannot account for complete

bioprocess variables or metabolic regulatory interactions, while hidden physiological con-

straints (such as metabolite channeling, metabolic burdens, strain stability, changes in enzyme

expression in different phases of cell growth, and strain nongenetic variations) lead to subopti-

mal cell metabolisms [4,5]. Quantitative modeling of these phenomena is critical for the suc-

cess of metabolic engineering designs. Since mechanistic models may not be comprehensive

enough to guarantee accurate predictions, data-driven approaches have shown promise for

accounting for nontrivial factors without detailed knowledge of cellular processes [6]. Given

the extensive microbial researches to produce variety of bio-products, there has been a lot of

interests in utilizing published metabolic engineering data to facilitate new designs and

shorten the ‘design-build-test-learn’ paradigm of strain improvement [7]. Currently, metabolic

engineering case studies are rapidly growing. Databases for strain development and related

omics studies are being developed [1,8–13]. These databases provide genomic information to

gain insights into cellular processes and their regulations. On the other hand, there are still few

knowledge engineering efforts to extract and standardize holistic bioinformatics from the pub-

lished papers including genetic modification strategies, cell physiological responses, and bio-

process conditions. In fact, these published papers may contain wealthy resources and lessons

to support machine learning for strain designs, and thus leveraging published data may assist

metabolic models to predict accurate cell performances and tradeoffs among TRY (titer, rate

and yield) under realistic conditions (e.g., product inhibitions and suboptimal pathway func-

tions, etc.).

Nevertheless, the use of literature data for computer based strain design and performance

predictions still faces difficulties: 1) Lack of standardization of data reports from different

research labs, 2) Incomplete production metrics (titer, yield, and rate) and experimental

parameters; 3) Sparse data coverage (most of the available data are focused on a few popular

products and designs). Moreover, it has been demonstrated that machine learning models

with high predictive fidelity may not be useful to provide mechanistic explanations [14].To

digest the noisy information from thousands of metabolic engineering publications, data col-

lections, curations, and feature categorizations must be performed to make sufficiently large

data sets assessable to machine learning tools. Such knowledge engineering requires an

extremely large amount of manpower. To resolve this problem, this proof-of-concept study

has manually extracted data from ~100 published E. coli biomanufacturing papers over the

past decade (Fig 1). Advanced machine learning techniques (data augmentation, ensemble

learning) are employed to alleviate the challenges of sparse and small data sets. Constraint-

based modeling is used to provide additional features for training the ensemble machine learn-

ing models (Fig 2). The hybrid platform provides reasonable estimations of E.coli TRY perfor-

mance, which may open a new direction for metabolic modeling and strain design.

Results and discussion

Description of curated database

This study focuses on E. coli platforms with native or heterologous pathways for producing

small molecules. About 1200 metabolic engineering designs for producing more than 20 com-

pounds were manually extracted and estimated from ~100 journal articles (provided in the

supplementary excel file) to the authors’ best efforts. The genetic strategies and microbial fer-

mentation conditions were extracted based on Table 1, as proposed by the previous paper
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[15,16]. In brief, data are organized as six categories, including carbon sources, bioprocess con-

ditions (e.g., medium types), genetic modification strategies, product features (e.g., molecular

weight, enzyme steps from central pathways, etc.), production metrics TRY, and other unac-

countable factors. To summarize extracted data, the distribution of titer (the most commonly

reported metric) for the different compounds is shown in Fig 3, where native products (syn-

thesized by native enzymes in E.coli) often have higher titer than non-native products (synthe-

sis via heterologous pathways).

Biomanufacturing requires cell factories to achieve the desired TRY. Fig 4 provides correla-

tions among the three metrics as well as product molecular weight (mol. wt). There appears to

be positive correlations between titer and yield (i.e., an increase of feedstock conversion

improves product concentration). However, production rate can be impaired by very high

production yield/titer (i.e., elevation of yield reduces carbon resources to generate ATP and

biomass for cell well-being, while the high titer may stress cell physiologies). In general, it is

difficult to maximize all three biomanufacturing metrics due to the tradeoff of carbon/energy

metabolisms and product inhibitions. Fig 4 shows that these maximal production rates from

published case studies are in the medium ranges of titer (6~10g/L) and yield (0.45g/g~0.75g/

g), while some products (e.g., succinate) achieve very high yields (>1g /g substrate) due to

Fig 1. Database curation and feature extraction methodology.

https://doi.org/10.1371/journal.pone.0210558.g001
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cellular carbon fixations. These extracted data sets can be used as the base for machine learning

to predict fermentation performance and tradeoffs.

Identification of critical metabolic engineering factors

Many factors may play a role in optimal metabolic engineering design. To analyze the data

based on our custom-designed features, we utilized the complementary approaches of multiple

correspondence analysis (MCA) [17] and principal component analysis (PCA) [18]. MCA is

more suited for categorical data while PCA works best with continuous data. Interestingly,

both techniques yielded similar results (clustering of the high titer values around the zero of

the first principal component and along the second principal component). Fig 5A shows the

plot of the first two principal components of the MCA with the titer values superimposed.

Regions of high titers are clustered along the second principal component and most have a

value of zero for the first principal component. This indicates that the factors that make up the

second principal component are critical for high titers. The contributions of different factors

to the first two principal components of the PCA are shown in Fig 5B and are indicative of

their relative influence on microbial cell performance. Bioprocess factors such as reactor vol-

ume, temperature, oxygen conditions (anaerobic or aerobic), medium types, substrate charac-

teristics (molecular weight, C, H, O composition) have an impact on cell performance.

Therefore, further categorization and addition of bioprocess conditions as model inputs can

improve machine learning accuracy. On the other hand, outcomes from genetic factors/modi-

fications are more uncertain due to complex genomic causes and metabolic responses to engi-

neered pathways. To overcome this problem, the E. coli genome-scale metabolic network

Fig 2. Feature additions via genome scale model simulations and data augmentation based on case studies described

in the literatures.

https://doi.org/10.1371/journal.pone.0210558.g002
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Table 1. Metabolic engineering design factors template used for feature extraction. Sample values are taken from [19]. Features that refer to a list of genes are entered

as a vector of ones and zeros as categorical numbers. For example, in the sample values, ‘het_gene’ (whether the gene inserted/overexpressed was heterologous) is entered

as 1,0,0 meaning alsS is heterologous while ilvC, ilvD are not. YE stands for yeast extract.

Feature Description Sample value

carbon source

characterization

1 cs1 first carbon source 1

2 cs1_mw first carbon source molecular weight 180

3 cs_conc1 first carbon source concentration (mM) 111

4 CS_C1 mol C in first carbon source 6

5 CS_H1 mol H in first carbon source 12

6 CS_O1 mol O in first carbon source 6

Bioprocess conditions 7 reactor_type type of reactor (continuous, batch or fed-batch) 1

8 rxt_volume working volume of reactor (L) 2

9 media media used for fermentation (M9,AM1,AM2, M9

+ yeast extract,LB,NBS,TB,other rich media)

YE

10 temp temperature of medium used for fermentation (oC) 37

11 time total time for fermentation 36

Genetic modifications 12 oxygen oxygen condition in reactor (aerobic, anaerobic,

microaerobic,extra aerobic)

2

13 sbg_ref reference strain in the study BFA7.001(DE3) PCT01

14 s_ref_gen genes modified from the strain MG1655 lacI, rrnB, lacZ, hsdR514, araBAD, rhaBAD, zwf, mdh, frdA,

ndh, pta, poxB, ldhA,T7 RNA polymerase

15 s_gen_mod type of gene modification: insertion/deletion 0,0,0,0,0,0,0,0,0,0,0,0,0,1

16 gene_mod genes modified from reference strain of study alsS, ilvC, ilvD

17 gene_del whether or not the gene was deleted 0,0,0

18 gene_ovr whether or not the gene was overexpressed 1,1,1

19 het_gene is the gene heterologous? (yes/no) 1,0,0

20 rep_origin plasmid copy numbers 5,5,5

21 codon_opt codon optimization? 0,0,0

22 sen_reg sensor regulator? 0,0,0

23 enz_design enzyme redesign evolution? 0,0,0

24 protein_scaffold protein scaffolding? 0,0,0

25 dir_evo direction evolution? 0

26 Mod_path_opt modular pathway optimization? 0

Product

characterization

27 prod_name name of the product Isobutanol

28 no_C mol C in product 4

29 no_H mol H in product 10

30 no_O mol O in product 1

31 no_N mol N in product 0

32 mw molecular weight of product 74

33 precursor precursor from central metabolism 6

34 enz_steps number of enzyme steps from precursor 5

35 atp_cost number of atp molecules needed from precursor to

product

0

36 na_cost number of nadh/nadph molecules needed from

precursor to product

2

Production metrics 37 yield_1 yield in gProduct/g Carbon source fed 0.0405

38 yield_2 yield in gProduct/g Carbon source consumed NA

39 yield_3 yield in gProduct/g Biomass 0.623

40 titer concentration of product in g/L 0.81

41 rate maximum productivity in g Product/ L /h 0.0225

42 bio_titre biomass concentration (g/L) 1.3

43 bio_grw_rate biomass growth rate in exponential phase (/h) 0.45

(Continued)
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reconstruction (iML1515) is simulated to estimate metabolic network capabilities (subject to

the experimental genetic modifications and bioprocess conditions) (Eqs 1–5). The results of

the simulations are used as additional features for training the machine learning models. The

hybrid of constraint-based simulation with machine learning provides a more realistic estima-

tion of cell performance.

Model performance validation

The predictive ability of the machine learning model on the test data set (not previously seen

by the model) is shown Fig 6. Despite the small data set size (~1200) from a variety of studies

(~120), the predictive performance of the model is high for native and non-native E. coli prod-

ucts. The use of techniques such as data augmentation and stacked regression (discussed in the

methods section) significantly improve model performance. The model also does well for

products with wide ranges of titer, rate, or yield values (for example, L-lactate and succinate).

The use of extra features from constraint-based simulations as well as ensemble learning of dif-

ferent machine learning models improves predictive performance (Fig 7). Some models (like

Table 1. (Continued)

Feature Description Sample value

other 44 gen_info are all the genetic modifications in the paper fully

captured by the above categories? (yes/no)

1

45 env_info are all the reactor conditions in the paper fully

captured by the above categories? (yes/no)

1

https://doi.org/10.1371/journal.pone.0210558.t001

Fig 3. Summary of curated database showing distribution of titers (units in g/L) for 25 different products from the bacterium E. coli.

https://doi.org/10.1371/journal.pone.0210558.g003
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Extreme Gradient boosted trees, which is itself an ensemble technique) give good performance

for one metric but not others. Others, like Support Vector Machines (SVMs), give high test

scores but the cross-validation accuracies are not robust, showing the model might not gener-

alize well to new data not seen by the model. The final model (stacked regressor) gives a bal-

anced performance across all metrics TRY. One important thing to note is that most of the

experimental data points are clustered at very low and very high values with very few points in

the middle. Thus, the trained model will differentiate between very good and relatively poor

performing strains but might struggle with average performing strains. Obtaining more exper-

imental data with average performance will enable more robust model predictions. We experi-

mented with scaling the yield data with the maximum computed theoretical yield for each

product to enable a fairer comparison across products. However, the performance of the

model on the scaled data did not improve with this scaling.

Fig 4. Comparison of production metrics (titer, rate, and yield). The size of the dots corresponds to the rate values (in g/L/h scaled by the minimum and

maximum value– 0.000043 and 10.83 g/L/h respectively). Molecular weight of each product (g/mol) is shown by the color gradient of the dots (color bar).

https://doi.org/10.1371/journal.pone.0210558.g004
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Model improvement

While there is a decent correlation between experiment and model predictions, cross valida-

tion analyses reveal variability in model predictions. There are three limitations for machine

learning approaches. First, data extraction and curation from published data are prohibitively

time-consuming. This is because metabolic engineering papers do not have standard reports

of yield/titer and cell productivity can be strikingly different under different growth stages.

Manual estimation of production metrics from incomplete published data sets is bound to

contain human subjective errors. Second, fermentation media are often undefined (with sig-

nificant amount of yeast extract or other secondary substrates), which makes yield calculations

inaccurate (i.e., the model predictions on production rate and yield are subpar to titer). Third,

our data size and extracted features are still limited, and there are other influential factors

(such as waste byproduct secretion during fermentation and strain stability) that are ignored

during data curations. Therefore, high-accuracy computational methods for predicting com-

plex cellular phenomena under bioprocess conditions remain challenging. Much effort and

resources must be devoted to data curation, feature extractions, and tailoring of machine

learning techniques for application to metabolic engineering data. For example, learning

curves demonstrate the possibility of more robust model predictions with larger data sets

(Fig 8). Learning curves for yield and rate are shown in S2 and S3 Figs in S2 File.

Methods

Database curation

E. coli is the most common platform for metabolic engineering. The database is manually curated

from metabolic engineering literature on the production of diverse chemicals from E. coli grown

Fig 5. Inferring possible influential factors on metabolic engineering design performance. A. First two principal components from multiple

correspondence analysis (MCA). The labels correspond to titer values in g/L. The shaded areas for each point show the predicted area within which all points

have a high probability of belonging to the specified titer range. B. Impact of different influential factors on first two principal components from principal

component analysis (PCA). PCA plot shown in S1 Fig in S2 File. Carbon source 1, 2 and 3 are used to capture the cases in which more than one carbon source

was used. If only one was used, corresponding entries of carbon source 2 and 3 were set to zero. E.coli MG1655 was taken as the reference strain and all

modifications done to get the background strain used in each study were captured as ‘background modifications’. The scores describe the relative contribution

of each feature to the principal components.

https://doi.org/10.1371/journal.pone.0210558.g005
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on different substrates. The feature selections and data curation strategy are based on our previous

work [15]. This involves identifying possible influential factors a priori (shown in Fig 1 and

Table 1). The full list of papers is shown in the supplementary file. A sample of feature extraction

from a journal paper is shown in Table 1. The list of features is iteratively updated based on model

performance. Because of incomplete experimental descriptions found in some papers, compre-

hensive data extraction may be difficult. Two additional features are used to describe whether or

not all the genetic and experimental conditions have been fully included by the feature list.

Constraint-based simulations

Given the genetic and environmental background, the most recent E. coli genome-scale meta-

bolic reconstruction, iML1515 [20] is used to simulate theoretical microbial yields based on

reaction stoichiometry. First, iML1515 flux network is modified based on each case study (e.g.,

gene knockouts), while inflow and outflow fluxes are constrained based on bioprocess condi-

tions (such as carbon sources, aeration level in the reactor, growth rate, etc.) by setting the upper

and lower bounds of the associated reactions to zero. A flux balance analysis (FBA) simulation

(maximize biomass growth objective) is then performed to test if the resulting model is feasible.

Then, further genetic interventions (in form of knockouts or overexpression) are similarly simu-

lated so that the in-silico model represents the actual experimental conditions as closely as possi-

ble (Eq 1). To simulate overexpression of a biosynthesis pathway, the lower boundary of the

Fig 6. Prediction of production metrics TRY. R2: coefficient of determination. Solid lines are shown on the diagonal that represent where all the points would

fall for perfect prediction. A scaled version of Fig 6 is presented in S4 Fig in S2 File (enabling the fit to visualized without the outlier effects). The data points are

scaled based on the maximum value (titer, rate or yield) for the particular product in our curated database.

https://doi.org/10.1371/journal.pone.0210558.g006
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Fig 7. Model performance analyses. A. Quantification of the effect of COBRA (Constraint-Based Reconstruction and Analysis)—based features on model

performance. CV stands for the best cross validation accuracy (R2 values). Higher scores imply a better fit. B. Comparing individual machine learning

performance with ensemble model. TS stands for Test Scores (R2 values). CV stands for the best cross validation accuracy (R2 values). Higher scores imply a

better fit.

https://doi.org/10.1371/journal.pone.0210558.g007

Fig 8. Titer learning curve as the function of size of training data set. The training scores (R2) and cross validation (CV) scores (also R2) are shown. Below

800 training examples, the cross-validation accuracies variation were too large. The hybrid model can fit the training data set (red points) well irrespective of

the number of training examples. The cross-validation scores improve slightly with more data points. This implies that more feature engineering (and not

necessarily more data) would be necessary to significantly improve model performance.

https://doi.org/10.1371/journal.pone.0210558.g008
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associated flux is set to 10% of the theoretical maximum flux through this pathway. To character-

ize the metabolic capacity of the network after genetic modification under the applied process

conditions (feature engineering), we have computed the product and biomass yield under differ-

ent constraints. These are: maximum biomass growth and product yield, maximum biomass

growth at 50% maximum product yield, maximum product yield at 50% biomass growth (Eqs

2–5). FBA results are used as additional features used in training the various machine learning

models employed, which captures the metabolic network capabilities (in terms of feature vari-

ables) for data driven models. For certain cases, the iML1515 model (with the experimental

genetic and bioprocess conditions imposed) can predict feasible solution spaces. The corre-

sponding FBA can be constrained based on biomass growth, the number of genes modified, and

the fraction of those genes that are overexpressed or deleted. The FBA simulation outcomes

(simulated yields under presumed experimental conditions) are fed into machine learning pipe-

lines as additional features from Table 1 for model training (Figs 2 and 9).

max cbv

subject to

( S:v ¼ 0

lbej � vj � ubej

ð1Þ

where cb is a vector of zeros with one for the biomass flux variable lbej and ub
e
j are the flux bounds

adjusted based on the bioprocess condtions and genetic modifications (using the gene–to–protein
relationships)

max cpv

subject to

( S:v ¼ 0

lbej � vj � ubej

ð2Þ

where cp is a vector of zeros with one for the desired product flux variable

Fig 9. Machine learning pipeline. Ensemble learning using stacked regressors.

https://doi.org/10.1371/journal.pone.0210558.g009
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max cbv

subject to

S:v ¼ 0

lbej � vj � ubej

cpv ¼ 0:5v�p

ð3Þ

8
>>>><

>>>>:

where v�p is a maximum product flux computed by Eq 2

max cpv

subject to

S:v ¼ 0

lbej � vj � ubej

cbv ¼ 0:5v�b

ð4Þ

8
>>>><

>>>>:

where v�b is a maximum product flux computed by Eq 1

ymax
b ¼

v�b
v�c
; ymax

p ¼
v�p
vpc
; y50p

b ¼
v50p
b

v50p
c

; y50b
p ¼

v50b
p

v50b
c

ð5Þ

where v�c ; v
p
c ; v

50p
c ; v50b

c are carbon source uptake rates from Eqs 1–4 respectively
v�p; v

50b
p are the product fluxes from Eqs 2 and 4 respectively

v�b; v
50p
b are the biomass growth rates from Eqs 1 and 4 respectively

ymax
b is the maximum biomass yield
y50p
b is the biomass yield at 50% of the maximum product flux
ymax
p is the maximum product yield
y50b
p is the product yield at 50% of the maximum biomass growth rate

Data pre-processing and augmentation

Principal component analysis and data standardization (using mean and standard devia-

tion) are used to transform the input data (The first 40 components of the PCA are used in

training the model). The data set is divided into training, validation, and test sets (test set is

10% of the whole data set). The test set is handled separately to prevent the data leakage

(where some properties of the test distribution are inadvertently used in tune the model

resulting in overly optimistic prediction accuracies). For the training and validation sets,

data augmentation (a popular technique used in computer vision) [21] was employed as fol-

lows: for each data the point, n number of points where generated by randomly adjusting

the values of titer, rate and yield within t % of the reported value. A grid search is used to

tune hyperparameters n and t. n ranged from 10 to 90 and t ranged from 0.1% to 1%. Final

values of n and t used are 50 and 0.1% respectively. Data augmentation improved the cross

validation and test set accuracies.

Ensemble learning and hyperparameter tuning

An overview of the machine learning pipeline is shown in Fig 9. Different machine learning

models are tested. Support vector machines, elastic nets, random forest, gradient boosted
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trees, k nearest neighbors, and neural network models (densely connected, 5 hidden layers

(100 neurons each) with batch normalization and dropout between layers) are trained sepa-

rately on the training set. The results (test scores, cross validation and learning curves) of each

of the ML models are shown in the supplementary file. Ensemble learning is then performed

using the output of the different ML models. This is done with a stacked regressor (using gra-

dient boosted trees as a meta regressor). This helps to combine the best effects of the different

machine learning models to obtain higher predictive accuracies. Hyper parameter tuning for

each machine learning model and final stacked regressor was based on grid search with five-

fold cross validation. The modeling framework was implemented in Python. Scikit-learn [22],

XGBoost [23] and Keras [24] machine learning libraries were used in the supervised learning

module. COBRApy [25] implementations of constraint-based methods were used. Visualiza-

tions generated with Matplotlib [26] and Bokeh (http://bokeh.pydata.org) libraries.

Supporting information

S1 File. Excel file containing list of journal papers and link to data extracted.

(XLSX)

S2 File. Supplementary figures describing the results. S1 Fig. First two principal compo-

nents from principal correspondence analysis (PCA). Color labels correspond to increasing

titer values (1 being lowest and 4 being highest). S2 Fig. Rate learning curve. S3 Fig. Yield

learning curve. S4 Fig. Prediction of production metrics (titer, yield and rate). The yield,

titer and rate are scaled by the maximum reported values for each product in our curated data-

base.

(DOCX)
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