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ABSTRACT OF THE DISSERTATION

Study of Stochastic and Sparse Neural Network Models with Applications

By

Thu Dinh

Doctor of Philosophy in Mathematics

University of California, Irvine, 2020

Professor Jack Xin, Chair

We study the diffusivity of random walks with transition probabilities depending on the

number of consecutive traversals of the last traversed edge, the so called senile reinforced

random walk (SeRW). In one dimension, the walk is known to be sub-diffusive with iden-

tity reinforcement function. We perturb the model by introducing a small probability δ of

escaping the last traversed edge at each step. The perturbed SeRW model is diffusive for

any δ > 0, with enhanced diffusivity (� O(δ2)) in the small δ regime. We further study

stochastically perturbed SeRW models by having the last edge escape probability of the form

δ ξn with ξn’s being independent random variables. Enhanced diffusivity in such models are

logarithmically close to the so called residual diffusivity (positive in the zero δ limit), with

diffusivity between O
(

1
| log δ|

)
and O

(
1

log | log δ|

)
. Finally, we generalize our results to higher

dimensions where the unperturbed model is already diffusive. The enhanced diffusivity can

be as much as O(log−2 δ).

Regularization of deep neural networks (DNN’s) is one of the effective complexity reduction

methods to improve efficiency and generalizability. We consider the problem of regularizing

a one hidden layer convolutional neural network with ReLU activation function via gradient

descent under sparsity promoting penalties. It is known that when the input data is Gaussian

xi



distributed, no-overlap networks (without penalties) in regression problems with ground

truth can be learned in polynomial time at high probability. We propose a Relaxed Variable

Splitting Method (RVSM), integrating thresholding and gradient descent to overcome the

non-smoothness in the associated loss function. The sparsity in network weight is realized

during the optimization (training) process. We prove that under `1, `0, and transformed-

`1 penalties, no-overlap networks can be learned with high probability, and the iterative

weights converge to a global limit which is a transformation of the true weight under a novel

thresholding operation. Numerical experiments confirm theoretical finding, and compare the

accuracy and sparsity trade-off among the penalties. On the CIFAR10 dataset, RVSM can

sparsify ResNet18 up to 93.70%, with less than 0.2% loss in accuracy.

Finally, we generalize the RVSM algorithm to structured pruning, with applications to ad-

versarial training. With structure sparsity, a DNN can be effectively pruned off without

sacrificing performance, resulting in both smaller model size and the number of floating

point operations. Furthermore, DNN’s security and compression are two crucial tasks for

deploying secure A.I. applications in resource-limited environments, such as self-driving cars

or facial recognition on mobile devices. Traditionally, sparsity and robustness have been

addressed separately, and not many pruning methods are known to perform well on robustly

trained DNN’s. We modify and integrate RVSM into the adversarial training process, and

show that one can create a model that is both robust and sparse. On the CIFAR10 dataset,

one can ensemble a model similar in size to ResNet38, but with over 40% channel sparisty

(thus can be reduced in size accordingly), and better performance in both natural accuracy

and accuracy against many standard adversarial attacks.
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Chapter 1

Introduction

1.1 Residual Diffusion and the Senile Reinforced Ran-

dom Walk Model

Enhanced diffusivity arises in large scale fluid transport through chaotic and turbulent flows,

and has been studied for nearly a century, see [60, 31, 30, 4, 18, 46, 51, 43] among others.

It refers to the much larger macroscopic effective diffusivity (DE) than the microscopic

molecular diffusivity (D0) as the latter approaches zero. An example of smooth chaotic flow

is the time periodic Hamiltonian flow (X = (x, y) ∈ R2):

v(X, t) = (cos(y), cos(x)) + θ cos(t) (sin(y), sin(x)), θ ∈ (0, 1]. (1.1)

The first term of (1.1) is a steady flow consisting of periodic arrays of counter-rotating

vortices, and the second term is a time periodic perturbation that injects an increasing

amount of disorder into the flow trajectories as θ becomes larger. At θ = 1, the flow is fully

mixing, and empirically sub-diffusive [80]. The flow (1.1) is one of the simplest models of
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chaotic advection in Rayleigh-Bénard experiment [8]. The motion of a diffusing particle in

the flow (1.1) satisfies the stochastic differential equation (SDE):

dXt = v(Xt, t) dt+
√

2D0 dWt, X(0) = (x0, y0) ∈ R2, (1.2)

where Wt is the standard 2-dimensional Wiener process. The mean square displacement in

the unit direction e at large times is given by [3]:

lim
t↑+∞

E(|(X(t)−X(0)) · e|2)/t = DE, (1.3)

where DE = DE(D0, e, θ) > D0 is the effective diffusivity. Numerical simulations [4, 51, 43]

based on the associated Fokker-Planck equations (or cell problems of homogenization [3])

suggest that at e = (1, 0), θ = 1, DE = O(1) as D0 ↓ 0, the residual diffusivity emerges.

In fact, DE = O(1) for e = (0, 1) and a range of values in θ ∈ (0, 1) as well [43]. Recently,

computation of (1.2)-(1.3) by structure preserving schemes [68] reveals residual diffusivity

also for a time stochastic version of (1.1). At θ = 0, enhanced DE scales as O(
√
D0) � D0

as D0 ↓ 0, see [17, 26, 53] for various proofs and generalizations.

Motivated by enhanced diffusion in advecting fluids, we are interested in the enhanced dif-

fusion phenomenon in discrete stochastic dynamics such as random walk models with some

memory or tendency to return. The memory effects on a walker induce a slowdown of trans-

port (movement) similar to spinning vortices in fluid flows. We shall add a small probability

of symmetric random walk and examine the large time behavior of the second moment, in

similar spirit to (1.3). The first work along this line of inquiry is [44] where the baseline

model is the so called elephant random walk model with stops (ERWS) [56, 33]. The ERWS is

non-Markovian and exhibits sub-diffusive, diffusive and super-diffusive regimes. The ERWS

plays the role of flow (1.1). A transition from sub-diffusive to enhanced diffusive regime

2



emerges with diffusivity strictly above that of the baseline model (hence residual diffusivity

appears) as the added probability of symmetric random walk tends to zero [44].

In chapter 2, we study enhanced diffusivity by perturbing the Nearest-neighbor Senile Rein-

forced Random Walk model (SeRW, [28]). The model involves a standard random walk on

Zd and a reinforcement function f : N→ [−1,∞). The walk {Sn}n≥0 starts at the origin and

initially steps to one of the 2 d nearest neighbors with equal probability. Subsequent steps

are defined by the number of times the current undirected edge has been traversed consecu-

tively: If {Sn−1, Sn} has been traversed m consecutive times in the immediate past, then the

probability of traversing that edge in the next step is 1+f(m)
2d+f(m)

, with the rest of the possible

2d − 1 choices being equally likely. As soon as a new edge is traversed, the reinforcement

ends on the previous edge and restarts on the new edge. For identity reinforcement function

f , the walk is sub-diffusive in d = 1, and diffusive in higher dimension [28]. We analyze

the asymptotics of the enhanced diffusivity when adding a variety of symmetric random

walks at small probability. For multi-dimensional SeRW (d ≥ 2), the enhancements come

logarithmically close to residual diffusivity.

1.2 Regularization for Deep Neural Network Pruning

In the subsequent chapters, we study the theory of Deep neural networks (DNN) compression.

The theory of machine learning has been around since the 1950’s (Turing, 1950 [62]), but it

was not until the 2010’s that the field really gained worldwide recognition. The discovery of

DNN’s has significantly changed the way of life in the last decade. Many highly technical

tasks can now be done completely using DNN’s such as speech recognition (Hinton et al.,

2012 [27]), computer vision (Krizhevsky et al., 2016 [32]), and natural language processing

(Dauphin et al., 2016 [15]).

3



In general, a neural network is a non-linear function that takes the input (image, sound,

video,...) and outputs a “score” for the corresponding task. In most applications, the output

can be a probability for classification tasks, a real number estimation for regression problems,

or a coordinate prediction for object detection. For example: consider the digit recognition

task, where a neural network takes in a picture of a handwritten digit, from 0 to 9, and gives

a prediction for this number. A network for this classification problem can have L layers,

each of which gives an output

xi+1 = f i(xi) := σ(W ixi + bi)

where xi,W i and bi are the input, weight (kernel), and bias of the ith layer, for 1 ≤ i ≤ L;

and σ is the Rectified Linear Unit (ReLU) function, σ(x) = max{x, 0}. Given an input x (a

matrix of pixel values for an image), the output of the network is then

y = fL ◦ ... ◦ f 1(x)

In practice, fL is usually a soft-max layer, and y ∈ R10 is a vector of probability for the

numbers 0 to 9. The component with highest value is then chosen to be the prediction of

the network.

Training such networks is a problem of minimizing a high-dimensional non-convex and non-

smooth objective function, and is often solved by simple first-order methods such as stochas-

tic gradient descent. Nevertheless, the success of neural network training remains to be

understood from a theoretical perspective. Progress has been made in simplified model

problems. Shamir (2016) showed learning a simple one-layer fully connected neural network

is hard for some specific input distributions [57]. Recently, several works ([61, 7]) focused

on the geometric properties of loss functions, which is made possible by assuming that the

4



input data distribution is Gaussian; and showed that stochastic gradient descent (SGD) with

random or zero initialization is able to train a no-overlap neural network in polynomial time.

In the last decade, many different DNN designs were introduced. Taking advantage of the

state-of-the-art computing power, there has been an upward trend in model size and number

of parameters [35, 29, 24, 79, 58] (Table 1.1). Most notably, VGG16 is a network with over

500MB in size and 138 million trainable parameters.

Table 1.1: Size and number of parameters of some modern DNN’s.

Model Size Parameters

LeNet 0.25MB 60K

MobileNet 16MB 4.2M

ResNet50 98MB 25.5M

NASNet 343MB 89M

VGG16 528MB 138M

An immediate issue is that DNN’s are often over-parameterized with millions of parame-

ters that contain lots of redundancies, which can cause over-fitting and poor generalization

[74], besides spending unnecessary computational resources and storage space. On resource-

limited devices such as mobile phones or tablets, it is important that one can reduce the

model size and computational latency, while also maintaining reasonable performance. To

achieve this goal, two common techniques are regularization and quantization.

In regularization, the network is (possibly) retrained and pruned in such a way that results in

lots of zero components. A sparse network has a much smaller number of floating point oper-

ations (FLOPS) during computation, giving much faster inference rate. Networks can also be

trained such that all the zero components occur in a certain structure (channel/filter/depth),

which can then be effectively pruned off.

5



In quantization, all the weights and biases in the network are quantized to a certain (low)

bit. In these reduced precision ranges, one can achieve faster inference rate by using opti-

mized kernels like GEMMLOWP [20], Intel MKL-DNN [47], or TensorRT [54]. With 8-bit

quantization, one can reduce the model size by a factor of 4 (from 32-bit floating point)

without any noticeable loss to performance. Quantization is also critical if one wants to run

a neural network on a hardware without floating point support, for example Digital Signal

Processor chips.

Our research focuses on improving network sparsity and reducing latency via regularization.

In this sub-area, many modern algorithms are based on an empirical technique called pruning

[36, 23], where all the non-essential components can be zeroed out with minimal loss of

performance [63, 49]. A typical workflow for network pruning involves three stages: (1) train

the over-parameterized model (which can take up to days or weeks on some state-of-the-art

networks); (2) prune the model based on some criterion; (3) fine-tuning the pruned model

(which may involve some re-training). Recently, a surrogate `0 regularization approach

based on a continuous relaxation of Bernoulli random variables in the distribution sense

is introduced with encouraging results on small size image data sets [42]. This motivated

our work here to study the deterministic regularization of `0 (and `1 penalty) via its Moreau

envelope. The method we propose here combines all three stages of network pruning into one,

and will be shown to have competitive performance with many state-of-the-art techniques.

Figure 1.1: The architecture of a no-overlap neural network
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In chapter 3, we propose a new method to sparsify DNN’s called the Relaxed Variable

Splitting Method (RVSM), and prove its convergence a simple one-layer network. The archi-

tecture of this network is illustrated in Figure 1.1, similar to [7]. We consider a convolution

layer in which a sparse filter w ∈ Rd is shared among k different hidden nodes. The input

sample is x ∈ Rkd. We assume the convolution filter is applied in a non-overlap way to k

patches of the input: x[1], ...,x[k], each with size d. We also assume that the input vectors

x are i.i.d. Gaussian random vectors with zero mean and unit variance. The output of the

network in Figure 1 is given by:

L(x;w) =
1

k

k∑
i=1

σ(w · x[i]) (1.4)

We address the realizable case, where the response training data is mapped from the in-

put training data x by equation (1.4) with a ground truth unit weight vector w∗. The

input training data is generated by sampling n training points x1, ..,xn from a Gaussian

distribution. The learning problem seeks w to solve the minimization problem:

min
w

1

n

n∑
j=1

(L(x;w)− L(x;w∗))2 (1.5)

In the limit n→∞, this is equivalent to minimizing the population risk:

f(w) := Ex∼G
[
(L(x;w)− L(x;w∗))2

]
(1.6)

As the training size is often large, we believe the problem of population loss minimization

can sufficiently capture the key features of the network. We note that the iterative thresh-

olding algorithms (IT) are commonly used for retrieving sparse signals ([14, 9, 6, 5, 76] and

references therein). In high dimensional setting, IT algorithms provide simplicity and low

computational cost, while also promote sparsity of the target vector. We shall investigate

the convergence of training the network with simultaneous thresholding for the following
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objective function

φ(w) = f(w) + λP (w) (1.7)

where f(w) is defined in (1.6), and P is `0, `1, or the transformed-`1 (T`1) function: a

one parameter family of bilinear transformations composed with the absolute value function

[52, 77]. When acting on vectors, the T`1 penalty interpolates `0 and `1 with thresholding in

closed analytical form for any parameter value [76]. The `1 thresholding function is known

as soft-thresholding [14, 16], and that of `0 the hard-thresholding [6, 5]. As pointed out in

[42], it is beneficial to attain sparsity during the optimization (training) process.

We propose a Relaxed Variable Splitting Method (RVSM), which combines thresholding and

gradient descent for minimizing the following augmented objective function

Lβ(u,w) = f(w) + λP (u) +
β

2
‖w − u‖2

for a positive parameter β. We note in passing that minimizing Lβ in u recovers the original

objective (1.7) with penalty P replaced by its Moreau envelope [50]. We shall prove that

our algorithm (RVSM), which alternately minimizes u and w, converges for `0, `1, and T`1

penalties to a global limit (w̄, ū) with high probability. The limit w̄ is a novel shrinkage of

the true weight w∗ up to a scalar multiple, and the limit ū is a sparse approximation of w∗.

In chapter 4, we extend RVSM to address two important topics in modern network compres-

sion: structured pruning and robust network compression.

While sparsifying a DNN can greatly reduce the number of floating point operations (FLOPs),

in practice, it is also important to study the problem of structured pruning. If a Conv2D

layer has a channel (or filter) that contains only zero’s, that channel (or filter) can be safely

pruned off. The resulting is both smaller in size and faster in inference rate, while still main-

8



taining similar performance. This is especially important on resource-limited devices such

as mobile phones or tablets. Many techniques were introduced to address channel sparsity,

ranging from group-lasso SSL regularization [69], to channel-wise scaling factor training [40].

We will show that, with some modification, RVSM can be generalized to address many vari-

ations of structured pruning, with competitive performance against other state-of-the-art

techniques.

Finally, we discuss the application of our pruning algorithm in adversarially trained network.

An adversarial attack is a carefully crafted input that can fool a network’s prediction, leaving

the network vulnerable to malicious attackers. As a result, robust DNN’s compression is a

fundamental problem for secure AI applications in resource-constrained environments such

as biometric verification, facial login on mobile devices, and computer vision tasks for the

internet of things (IoT) [12, 71, 48]. Though compression and robustness have been sepa-

rately addressed in recent years, it is important to explicitly have a method that can address

both issues simultaneously, as their critical roles in the modern machine learning framework

cannot be understated.
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Figure 1.2: Histograms of the ResNet20’s weights.

Adversarial training (AT) can create models that are more robust than natural training (NT)

DNN’s to attacks [45, 2]. However, AT models contain weights that are much less sparse

9



than that of NT models. As shown in Fig. 1.2, start from the same default initialization

in PyTorch, the NT ResNet20’s weights are much sparser than that of the AT counterpart,

for instance, the percent of weights that have magnitude less than 10−3 for NT and AT

ResNet20 are 8.66% and 3.64% (averaged over 10 trials), respectively. Recently, a Feynman-

Kac formalism principled ResNet ensemble was proposed in [65]; this is an AT algorithm

that ensembles many identical ResNets and train in such a way that the resulting model

with more small weights and more robust than a larger ResNet of similar size. We will

incorporate RVSM into the AT process and show that such one can achieve a very sparse

model that is also robust to standard adversarial attacks.
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Chapter 2

Enhanced Diffusivity in Perturbed

Senile Reinforced Random Walk

Models

2.1 Nearest Neighbor SeRW Model

A nearest-neighbor senile reinforced random walk in Zd is a sequence {Sn}n≥0 of Zd-valued

random variables on a probability space (Ω,F ,Pf ), with corresponding filtration {Fn =

σ(S0, ..., Sn)}n≥0, defined by:

• The walk begins at the origin of Zd, i.e. S0 = 0,Pf -almost surely.

• Pf (S1 = x) = D(x), where D(x) = (2d)−11|x|=1

• For n ∈ N, en = {Sn−1, Sn} is an Fn-measurable undirected edge and

mn = max{k ≥ 1 : en−l+1 = en for all 1 ≤ l ≤ k}

11



is an N-valued, Fn-measurable random variable.

• For n ∈ N and x ∈ Zd such that |x| = 1:

Pf (Sn+1 = Sn + x|Fn) =


1+f(mn)
2d+f(mn)

, if {Sn, Sn + x} = en,

1
2d+f(mn)

, if {Sn, Sn + x} 6= en,

We shall consider the case f(mn) = mn, and suppress the f dependence in the probability

Pf notation. We shall refer to the analysis of SeRW model by Holmes and Sakai [28] and

their main results without proofs.

Let τ = sup{n ≥ 1 : Sm = 0 or S1 ∀m ≤ n} denote the number of times that the walk

traverses the first edge before leaving that edge for the first time. Note that τ is not a

stopping time (however τ + 1 = inf{n ≥ 2 : Sn 6= Sn−2} is a stopping time). Let Nx denote

the number of times the walk Sn visits x. If P(Nx = ∞) = 1 for all x, we say the walk is

recurrent (I). If P(Nx = ∞) = 0 for all x, we say the walk is transient (I). If E[Nx] = ∞

for every x, we say the walk is recurrent (II), and if E[Nx] < ∞ for all x, we say the

walk is transient (II). Note that for the standard random walk, the two characterizations

of recurrence/transience are equivalent, and the walk is recurrent in d ≤ 2, and transient

otherwise. For the senile reinforced random walks, the two notions need not be the same.

Theorem 2.1. (Holmes and Sakai [28]) For f satisfying Pf (τ =∞) = 0, but excluding the

degenerate case where d = 1 and f(1) = −1, we have:

(1) SeRWf is recurrent (I)/transient (I) if and only if SeRW0 is recurrent (I)/transient (I).

(2) When Ef [τ ] <∞, SeRWf is recurrent (II)/transient (II) if and only if SeRW0 is recur-

rent (II)/transient (II).

(3) When Ef [τ ] =∞, SeRWf is recurrent (II).

A consequence of this proposition is the following corollary:

12



Corollary 1. The nearest-neighbor senile reinforced random walk with linear reinforcement

of the form f(m) = C m is recurrent (I), (II) when d = 1, 2 and transient (I) when d > 2.

It is transient (II) for d > 2 if and only if C < 2d− 1.

The diffusion constant is defined as ν = lim
n→∞

E[|Sn|2] (=1 for the standard random walk)

whenever this limit exists. An important result of [28] is:

Theorem 2.2. (Holmes and Sakai [28]) Suppose that there exists ε > 0 and E[τ 1+ε] < ∞.

Then the walk is diffusive and the diffusion constant is given by

ν =
P(τ odd)

1− 1
d
P(τ odd)

1

E[τ ]
. (2.1)

The proof of Theorem 2.2 is based on the formula for the Green’s function, and a Tauberian

theorem, whose application requires the (1 + ε)th moment of τ to be finite. Except for

the degenerate case, it was shown in [28] that the result holds for all f by a time-change

argument. When E[τ ] =∞, the right-hand side of (2.1) is zero, which suggest that the walk

is sub-diffusive.

When f(m) = m, special hypergeometric functions are applicable and various well-known

properties of these functions enable a proof of:

Proposition 2.2.1. (Holmes and Sakai [28]) The diffusion constant ν of the nearest-neighbor

senile random walk with reinforcement f(l) = l satisfies 0 < ν < 1 when d > 1. For the

one-dimensional nearest-neighbor model,

lim
n→∞

log n

n
E[|Sn|2] =

1− log 2

2 log 2− 1
.

Hence at d = 1, the walk is sub-diffusive, slower than diffusion by a logarithmic factor

(log n)−1/2.
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2.2 Perturbed SeRW Models

2.2.1 Deterministic Perturbation (Model I)

The one-dimensional model with f(m) = m is sub-diffusive. This is partly due to the walk

having a strong tendency to return to the last traversed edge. We add a small perturbation

δ to the conditional probability of Sn+1:

P(Sn+1 = Sn + x|Fn) =


1+mn
2+mn

− δ, if {Sn, Sn + x} = en,

1
2+mn

+ δ, if {Sn, Sn + x} 6= en.

In other words, at each step we add a small probability δ of escaping the last traversed

edge, where δ > 0 is deterministic. As mn → ∞, 1
2+mn

→ 0. So if an edge has already

been traversed consecutively too many times, the probability of escaping will be dominantly

determined by δ. As a result, the perturbed model will gradually converge to a simplified

model where the probability of returning to the last traversed edge is 1− δ.

2.2.2 Stochastic Perturbation

Sequence of i.i.d. perturbations (Model II)

Let (ξn)n∈N be a sequence of independent identically distributed (i.i.d.) non-negative random

variables and we consider:

P(Sn+1 = Sn + x|Fn) =


max{1+n

2+n
− δξn, 0}, if {Sn, Sn + x} = en,

min{ 1
2+n

+ δξn, 1}, if {Sn, Sn + x} 6= en.

14



At each step, the random variable ξn takes a value, then the reinforcement is based on this

value. We only assume that ξn is continuous with probability density function f = fξn .

Notice that if ξn takes any value greater than 1+n
2+n

, the walk will escape the last traversed

edge on the n+ 1th turn. So in this model, the tail of the distribution function f provides a

stronger chance of breaking out of the last traversed step, leading to more enhanced diffusion.

Sequence of independent perturbations (Model III)

To further enhance diffusivity, we shall consider the situation that (ξn)n∈N are no longer

i.i.d., but rather have n-dependent distributions.

P(Sn+1 = Sn + x|Fn) =


max{1+n

2+n
− δξn, 0}, if {Sn, Sn + x} = en,

min{ 1
2+n

+ δξn, 1}, if {Sn, Sn + x} 6= en,

For example, ξn’s can have the same type of distribution and expectation, but with variance

n2. This modification will reinforce the probability of the walk breaking out of the last

traversed edge. We only assume that E[ξn] <∞, for all n.

2.3 Main Results

The diffusivity from the perturbation (the simple symmetric random walk) similar to “molec-

ular diffusivity” D0 of (1.2) is νδ = δ2. We will show that, in all of our three models, the

enhanced diffusivity is much greater than O(δ2). Our main results are stated in the following

theorems.
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Theorem 2.3. The deterministic perturbed model (I) is diffusive for any δ > 0, and the

diffusion constant is given by

ν =
P(τ odd)

P(τ even)E[τ ]
. (2.2)

Moreover,

ν(δ) = O

(
1

| log δ|

)
as δ → 0+. (2.3)

The formula (2.2) for ν is a direct result of Theorem 2.2. It is dramatic that the walk

becomes diffusive for any value of δ > 0. From proposition 2.2.1, the walk is sub-diffusive by

an order of log n. The added (deterministic) perturbation, no matter how small, is enough

to create diffusivity.

To prove Theorem 2.3, we first verify that the model is diffusive by checking the condition

of Theorem 2.2, then we find a lower bound for E[τ ] and show that the bound goes to ∞

as n → ∞. A straightforward computation shows 1 ≤ P(τ odd)
P(τ even)

≤ 2, which gives (2.2). This

concludes the proof. Finally, we discuss the rate at which ν goes to zero as δ tends to zero.

Theorem 2.4. The stochastic perturbed model (II) is diffusive for any δ > 0, and the

diffusion constant is also given by (2.2). Moreover,

(i) If E[ξn] <∞, then ν(δ) = O
(

1
| log δ|

)
as δ → 0+.

(ii) If E[ξn] =∞, one can construct ξn so that ν(δ) = O( 1
log | log δ|) as δ → 0+.

Similar to the deterministic case, the stochastic perturbed model is still not strong enough

to sustain residual diffusivity. We can, however, reduce the rate at which ν converges to 0.

If ξn has infinite expected value (fat tail), then ξn is more likely to attain very large val-

ues, and the walk is less likely to get stuck. The maximal enhancement on ν(δ) is O( 1
log | log δ|).
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Theorem 2.5. The stochastic perturbed model (III) is diffusive for any δ > 0. The diffusion

constant is also given by (2.2) with ν(δ) = O
(

1
| log δ|

)
as δ → 0+.

The proofs of the three theorems above are based on Theorem 2.2 to show diffusivity and

the calculation of the diffusion constant ν. Our approach is elementary and relies heavily on

the computation of the quantity P(τ ≥ n). The absence of residual diffusivity and the rate

of convergence are obtained via asymptotic analysis in the small δ regime.

Theorem 2.6. When the baseline diffusive SeRW model on Zd (d ≥ 2) is perturbed into

models (I, II, III), we have the following:

(i) Under model I, the walk has a linearly enhanced diffusivity:

νδ = ν0 +O(δ),

where ν0 is the diffusivity of the unpeturbed model.

(ii) Under models II and III, if E[ξn] <∞, for all n, the walk has the same linear enhanced

diffusivity as in model I.

(iii) Under models II and III, if E[ξn] = ∞, for all n, one can construct ξn to achieve the

following enhanced diffusivity rates:

(a) νδ = ν0 +O(δ | log δ|),

(b) νδ = ν0 +O(δj), for some j ∈ (0, 1),

(c) νδ = ν0 +O(log−2 δ).
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2.4 Proofs of Main Results

2.4.1 Theorem 2.3: Existence of Positive Diffusion Constant

First we verify the perturbed model is diffusive. Notice that

P(τ = 1) =
1

3
+ δ and P(τ = n) =

[
n∏
k=2

(
k

k + 1
− δ
)](

1

n+ 2
+ δ

)

for n ≥ 2. We will show there exists ε > 0 such that E[τ 1+ε] < ∞ and apply Theorem 2.2.

The following is an upper bound for P(τ = n) when n ≥ 2:

P(τ = n) =

[
n∏
k=2

(
k

k + 1
− δ
)](

1

n+ 2
+ δ

)
=

(
2

3
− δ
)(

3

4
− δ
)
...

(
n

n+ 1
− δ
)(

1

n+ 2
+ δ

)
=

2(1− 3δ
2

)3(1− 4δ
3

)...n(1− (n+1)δ
n

)

3 · 4... · (n+ 1)

(
1

n+ 2
+ δ

)
≤ 2

n+ 1
e−

3δ
2 e−

4δ
3 ...e−

(n+1)δ
n

(
1

n+ 2
+ δ

)
=

2

n+ 1
exp

{
−

n∑
k=2

δ

(
1 +

1

k

)}(
1

n+ 2
+ δ

)
≤ 2

n+ 1
exp {δ(−n+ 1− log n+ 1)}

(
1

n+ 2
+ δ

)
=

2e2δ(1 + (n+ 2)δ)

(n+ 1)(n+ 2)eδnnδ

where the first inequality follows since 1− x ≤ e−x for all x, and the second inequality since

log n ≤
∑n

k=1
1
n
. Letting ε = δ, we have

E[τ 1+δ] =
∞∑
n=1

n1+δP(τ = n)

=
1

3
+ δ +

∞∑
n=2

2e2δn(1 + (n+ 2)δ)

eδn(n+ 1)(n+ 2)
<∞

18



By Theorem 2.2, the walk is diffusive, and the diffusion constant simplifies to

ν =
P(τ odd)

P(τ even)E[τ ]
.

It remains to show ν → 0 as δ → 0+. To that end, recall E[τ ] =
∑∞

n=1 P(τ ≥ n). We have

P(τ ≥ 1) = 1 and P(τ ≥ n) =
n∏
k=2

(
k

k + 1
− δ
)

for n ≥ 2. The following computation gives a lower bound for P(τ ≥ n) when n ≥ 2:

P(τ ≥ n) =
n∏
k=2

(
k

k + 1
− δ
)

=
2(1− 3δ

2
)3(1− 4δ

3
)...n(1− (n+1)δ

n
)

3 · 4... · (n+ 1)

≥ 2

n+ 1
e−2(

3δ
2
)e−2(

4δ
3
)...e−2(

(n+1)δ
n

)

=
2

n+ 1
exp

{
−2

n∑
k=2

δ

(
1 +

1

k

)}

≥ 2

n+ 1
exp {−2δ(n− 2 + log n+ γ)}

=
2e4δ

(n+ 1)e2δγe2δnn2δ

≥ 2e4δ

2ne2δγe2δnn2δ

where the first inequality follows since 1 − x ≥ e−2x holds for small x ≥ 0, and the second

equality since
∑n

k=1
1
k
≤ log n+ γ, where γ is the Euler constant.

We will show
∑∞

n=1
2e4δ

(n+1)e2δγe2δnn2δ → ∞ as δ → 0+. Since the terms in the summation are

positive and decreasing, we can use the integral test for convergence. After multiplying by

some constant, it suffices to compute

∫ ∞
1

e−2δx

x1+2δ
dx.
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Letting t = −2δ, we have

∫ ∞
1

e−2δx

x1+2δ
dx =

∫ ∞
2δ

e−t(
t
2δ

)1+δ dt2δ
= (2δ)δ

∫ ∞
2δ

e−t

t1+2δ
dt = (2δ)δΓ(−2δ, 2δ)

where Γ(·, ·) is the Incomplete Upper Gamma function [1]. It is straightforward to verify

that (2δ)δ → 1 as δ → 0+. By [1], Γ(−2δ, 2δ)→∞ as δ → 0+.

Thus, we have shown that a lower bound for E[τ ] diverges as δ tends to 0. By Theorem 2.2,

ν converges to 0. Therefore the perturbed model is not strong enough to sustain a residual

diffusivity.

2.4.2 Rate of Convergence

Since a residual diffusion is not achievable, it is natural to ask how fast ν is decreasing as

δ tends to 0. In this section, we will verify that in the perturbed model, the diffusivity

converges to 0 at a rate of O
(

1
| log δ|

)
.

Let k = 2δ and consider the integral above as a function of k:

f(k) =

∫ ∞
1

e−kx

x1+k
dx (2.4)

Then

f ′(k) = −
∫ ∞
1

e−kx

x1+k
(x+ log x)dx

Since x� log x as x→∞, f ′(k) is dominantly determined by the term with x, namely

f ′(k) ∼ −
∫ ∞
1

e−kx

xk
dx
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let u = x1−k, so du = (1− k)x−kdx, we have

f ′(k) ∼ − 1

1− k

∫ ∞
1

e−ku
1

1−k
du = − 1

1− k

∫ ∞
1

e−(k
1−ku)

1
1−k

du

let v = k1−ku, the integral becomes

f ′(k) ∼ −k
−1+k

1− k

∫ ∞
k1−k

e−v
1

1−k
dv

as k → 0+,

∫ ∞
k1−k

e−v
1

1−k
dv →

∫ ∞
0

e−vdv = 1

thus f ′(k) ∼ −k−1+k

1−k as k → 0+. Finally,

lim
k→0+

−f(k)

log(δ)
= lim

k→0+

−f(k)

log k − log 2
L’H
= lim

k→0+

−f ′(k)

1/k
= lim

k→0+

k−1+kk

1− k
= 1

An identical computation shows limk→0+
f(δ)
− log δ

= 1. Since

∞∑
n=1

2e4δ

(n+ 1)e2δγe2δnn2δ
≤ E[τ ] ≤

∞∑
n=1

2e2δ

(n+ 1)eδγeδnnδ
,

after multiplying by some constant, E[τ ] ∼ C1 | log δ|. Applying (2.2), νδ = O
(

1
| log δ|

)
.

2.4.3 Theorem 2.4: Existence of Positive Diffusion Constant

The formula for the diffusion constant ν follows directly from Theorem 2.2. The proof of

Theorem 2.2 is based on the formula for the Green’s function, and a standard Tauberian
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theorem. It utilized the following functions and quantities:

Gz(x) =
∞∑
n=0

znP(Sn = x), for z ∈ [0, 1]


az =

∞∑
n=2

znP(τ ≥ n)1{n even}

bz =
∞∑
n=2

znP(τ ≥ n)1{n odd}


pz =

∞∑
n=1

znP(τ = n)1{n even}

qz =
∞∑
n=1

znP(τ = n)1{n odd}

and other variables built up from az, bz, pz, and qz. We will show below that, even though

the model is stochastic, P(τ ≥ n) is still deterministic. Thus the proof of Theorem 2.2 still

applies and gives the formula for ν.

Given that an edge has been traversed nth times, let Pn denote the total probability of

breaking out of this edge on the (n+1)th turn, and let Qn denote the probability of traversing

this edge again on the (n+ 1)th turn. Then loosely speaking, Pn is the sum of all the terms

of the form n+1
n+2
− δξ, given that ξn = ξ ≤ n+1

δ(n+2)
. Formally,

Pn =

∫ n+1
δ(n+2)

0

(
n+ 1

n+ 2
− δx

)
f(x)dx

and

Qn =

(∫ n+1
δ(n+2)

0

(
1

n+ 2
− δx

)
f(x)dx

)
+ P

(
ξn >

n+ 1

δ(n+ 2)

)

Similar to the previous result, for n ≥ 2, we have

P(τ = n) =

(
n−1∏
i=1

Pi

)
Qn and P(τ ≥ n) =

n−1∏
i=1

Pi.
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An upper bound for P(τ ≥ n) is

P(τ ≥ n) =
n−1∏
i=1

(∫ i+1
δ(i+2)

0

(
i+ 1

i+ 2
− δx

)
f(x)dx

)

≤
n−1∏
i=1

(
i+ 1

i+ 2
− δ

∫ i+1
δ(i+2)

0

xf(x)dx

)

≤
n−1∏
i=1

(
i+ 1

i+ 2
− δ

∫ 2
3δ

0

xf(x)dx

)
.

Let µ := δ
∫ 2

3δ

0
xf(x)dx. Then µ is a constant for each fixed δ. Thus P(τ ≥ n) =∏n−1

i=1

(
i+1
i+2
− µ

)
, which has the same form as in the deterministic case. By a similar compu-

tation, there exists ε > 0 such that E[τ 1+ε] <∞, and the walk is diffusive.

Recall Theorem 2.2, the diffusion constant is

ν =
P(τ odd)

P(τ even)

1

E[τ ]

In order to sustain residual diffusivity, we need E[τ ] 6→ ∞ as δ → 0+. Using the formula

E[τ ] =
∑∞

n=1 P(τ ≥ n), we get

E[τ ] = 1 +
∞∑
n=2

n−1∏
i=1

(∫ i+1
δ(i+2)

0

(
i+ 1

i+ 2
− δx

)
f(x)dx

)
. (2.5)
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Suppose E[ξn] <∞. By Fatou’s lemma,

lim inf
δ→0+

E[τ ] = lim inf
δ→0+

(
1 +

∞∑
n=2

[
n−1∏
i=1

∫ i+1
δ(i+2)

0

(
i+ 1

i+ 2
− δx

)
f(x)dx

])

≥ 1 +
∞∑
n=2

lim inf
δ→0+

n−1∏
i=1

[(
i+ 1

i+ 2

)∫ i+1
δ(i+2)

0

f(x)dx− δ
∫ i+1

δ(i+2)

0

xf(x)dx

]

= 1 +
∞∑
n=2

lim inf
δ→0+

[
n−1∏
i=1

(
i+ 1

i+ 2
− δE[ξn]

)]

= 1 +
∞∑
n=2

(
n−1∏
i=1

i+ 1

i+ 2

)

= 1 +
∞∑
n=2

2

n+ 1
=∞.

Since a lower bound for E[τ ] diverges to ∞, the corresponding upper bound for ν converges

to 0. Thus ν → 0 as δ → 0+. Moreover, since E[ξn] is a finite constant, the computation

from Section 2.4.2 shows ν(δ) = O( 1
| log δ|) as δ → 0+.

2.4.4 Random Variables with Infinite Expectation

Necessary symptotic behavior of the pdf of ξn

Suppose ξn is a random variable with support in [0,∞) and E[ξn] = +∞. Let f = fξn be

the probability density function (pdf) of ξn, we have

∫ ∞
0

f(x)dx = 1 and

∫ ∞
0

xf(x)dx =∞.

We will study the asymptotic behavior of such f . Since
∫∞
0
f(x)dx = 1, we require f(x) ≤

O(x−n), for some n > 1.

On the other hand,
∫∞
0
xf(x)dx =∞ implies xf(x) ≥ O(x−1). Thus, the necessary asymp-
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totic behavior for f is

O

(
1

x2

)
≤ f(x) < O

(
1

x

)
.

Example 2.4.1. A random variable ξn with f(x) = O
(

1
x2

)
.

Let ξn be non-negative Cauchy random variables with x0 = 0 and pdf

fξn(x) =
2

πγ

[
1 +

(
x
γ

)2] =
2γ

π(x2 + γ2)
.

Then

P(τ ≥ n) =
n−1∏
i=1

[(
i+ 1

i+ 2

)∫ i+1
δ(i+2)

0

2γ

π(x2 + γ2)
dx− δ

∫ i+1
δ(i+2)

0

2γx

π(x2 + γ2)
dx

]

=
n−1∏
i=1

[(
i+ 1

i+ 2

)∫ i+1
δ(i+2)

0

2γ

π(x2 + γ2)
dx− δ

(
γ log(x2 + γ2)

π

) ∣∣∣∣x= i+1
δ(i+2)

x=0

]

=
n−1∏
i=1

[(
i+ 1

i+ 2

)∫ i+1
δ(i+2)

0

2γ

π(x2 + γ2)
dx−O

(
δ log

1

δ

)]

and by Fatou’s lemma,

lim inf
δ→0+

E[τ ] ≥ 1 +
∞∑
n=2

lim inf
δ→0+

P(τ ≥ n)

= 1 +
∞∑
n=2

lim inf
δ→0+

n−1∏
i=1

[(
i+ 1

i+ 2

)∫ i+1
δ(i+2)

0

2γ

π(x2 + γ2)
dx−O

(
δ log

1

δ

)
.

]

= 1 +
∞∑
n=2

2

n+ 1
=∞.

Similar to the previous section, since a lower bound for E[τ ] diverges to ∞, we have ν → 0

as δ → 0+. Thus, even though the non-negative Cauchy distribution has a “fat” tail, the

growth rate of
∫ i+1
δ(i+2)

0 xf(x)dx is still not fast enough to produce residual diffusivity.
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Non-existence of residual diffusivity, rate of convergence

The case where f(x) = O(x−2) was covered in example 2.4.1. In general, if

O

(
1

x2

)
< f(x) < O

(
1

x

)

then

O

(
1

x

)
< xf(x) < O(1)

which implies

δO

(
log

1

δ

)
< δ

∫ i+1
δ(i+2)

0

xf(x) < δO

(
1

δ

)
.

Taking the limit as δ → 0+, we have δ
∫ i+1
δ(i+2)

0 xf(x)→ 0, which implies

P(τ ≥ n) =
n−1∏
i=1

(∫ i+1
δ(i+2)

0

(
i+ 1

i+ 2
− δx

)
f(x)dx

)
→ 1

n
as δ → 0+.

Therefore E[τ ]→∞ and, subsequently, ν → 0.

For the asymptotic behavior of ν(δ), we study 3 cases:

Case 1, f(x) = O(x−2) :

By example 2.4.1, as δ → 0+,

P(τ ≥ n) =
n−1∏
i=1

(
i+ 1

i+ 2
− Cδ log

(
1

δ

))
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A similar computation to the last part of section 2.4.1 shows that, after multiplying by some

constant, to compute E[τ ], it suffices to compute

g(δ log(1/δ)) =

∫ ∞
1

e−δ log(1/δ)

x1+δ log(1/δ)
.

And by the computation of section 2.4.2, which shows limδ→0+
g(k)
log k

= 1, we have

lim
δ→0

g(δ log(1/δ))

log(δ log(1/δ))
= 1.

This implies E[τ ] ∼ C1 log(|δ log δ|), and therefore

ν ∼ C2

log(|δ log δ|)
∼ C3

log δ
.

Case 2, f(x) = O(x−(1+j)), for 0 < j < 1 :

A similar calculation to example 2.4.1 shows, as δ → 0+,

P(τ ≥ n) =
n−1∏
i=1

(
i+ 1

i+ 2
− Cδj

)

and a calculation similar to Case 1 shows E[τ ] ∼ C1 | log(δj)| = C2 | log(δ)|. So in this case,

ν ∼ C3

| log(δ)|
,

which gives the same result as the deterministic case.

Case 3, f(x) < O(x−(1+j)), for any 0 < j < 1 and f(x) > O(x−2) :

One such example is f(x) = O
(

1
x(log x)2

)
. Then

∫ i+1
δ(i+2)

0

xf(x)dx =

∫ i+1
δ(i+2)

0

C

log2 x
dx
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which is a well known logarithm integral with asymptotic behavior:

∫
1

log2 x
dx = li(x)− x

log x
= O

(
x

log2 x

)

therefore

δ

∫ i+1
δ(i+2)

0

xf(x)dx = δO

(
1

δ log2
(
C1

δ

)) = O

(
1

log2(δ)

)

as δ → 0+. This implies

P(τ ≥ n) =
n−1∏
i=1

(
i+ 1

i+ 2
− C2

log2 δ

)

and a similar calculation to Case 1 shows E[τ ] ∼ C3 log(log2 δ) = C4 log | log δ|. Thus, we

have constructed a random variable ξn such that ν converges to zero at a rate of

ν ∼ C

log | log δ|
.

2.4.5 Proof of Theorem 2.5

Theorem 2.5 is a consequence of Theorem 2.4. The fact that the model is diffusive for any

δ > 0 follows directly. For the rate at which ν tends to 0, let fn be the p.d.f. of ξn and recall

that

P(τ ≥ n) =
n−1∏
i=1

(∫ i+1
δ(i+2)

0

(
i+ 1

i+ 2
− δx

)
fn(x)dx

)
.
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Since E[ξn] <∞ for all n, one can find a random variable Y with E[Y ] =∞ with p.d.f. fY

such that, for sufficiently small δ,

δ

∫ i+1
δ(i+2)

0

xfn(x)dx ≤ δ

∫ i+1
δ(i+2)

0

yfY (y)dy

so as δ → 0+,

P(τ ≥ n) ≥
n−1∏
i=1

(
i+ 1

i+ 2
− δ

∫ i+1
δ(i+2)

0

yfY (y)dy

)
.

Notice the expression on the RHS matches the case of infinite expectation of the Theorem

2.4. Therefore E[τ ] grows at least as fast as the previous case, and hence so is the decay rate

of νδ. One can choose Y so that fY (y) = O(y−2) (Similar to Case 1 of section 2.4.4), so that

νY (δ) ∼ O(| log δ|). Then νδ decays at a rate of at most O(| log δ|) (by section 2.4.3), and at

least O(log δ), from the previous case. It follows that νδ = O(log δ).

2.4.6 Theorem 6: Results in Higher Dimensions

Perturbation under model I:

For d ≥ 2, the model becomes

P(Sn+1 = Sn + x|Fn) =


max{ 1+n

2d+n
− δ, 0}, if {Sn, Sn + x} = en,

min{ 1
2d+n

+ δ, 1}, if {Sn, Sn + x} 6= en.
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A similar computation to that of the one-dimensional case shows, for n ≥ 2d,

P(τ ≥ n) =
n∏
k=2

(
1 + k

2d+ k
− δ
)

=
(2d)!

(n+ 2)(n+ 3)...(n+ 2d)

(
1− 2d+ 1

2
δ

)
...

(
1− 2d+ n

n+ 1
δ

)
→ (2d)!

(n+ 2)(n+ 3)...(n+ 2d)
exp

{
−δ

n∑
k=2

(
1 +

2d− 1

k

)}

∼ (2d)!

(n+ 2)(n+ 3)...(n+ 2d)
exp {−δ(n− 1 + (2d− 1) log n− (2d− 1))}

=
(2d)!

(n+ 2)(n+ 3)...(n+ 2d)

e−δne2δd

nδ(2d−1)

which has the same form as in the one-dimensional case. For d ≥ 2, the unperturbed walk is

diffusive, as
∑∞

n=1 P(τ ≥ n) < ∞. Let τδ denote the model perturbed by δ. By Dominated

Convergence Theorem

lim
δ→0+

E[τδ] = lim
δ→0+

∞∑
n=1

P(τ ≥ n) =
∞∑
n=1

lim
δ→0+

P(τ ≥ n) = E[τ0].

Thus νδ → ν as δ → 0+. For the enhanced diffusivity, by the integral test, it suffices to

consider the integral
∫∞
1

e−kx

x(2d−1)(1+k)dx =: f(k). We have

∂

∂k
f(k) =

∫ ∞
1

e−kx

x(2d−1)k+2d−2 (x+ (2d− 1) log x)dx.

Since d ≥ 2, the integral converges for any non-negative value of k. By the Dominated

Convergence Theorem,

lim
k→0+

∂

∂k
f(k) =

∫ ∞
1

lim
k→0+

e−kx

x(2d−1)k+2d−2 (x+ (2d− 1) log x)dx <∞,

which implies that E[τδ] grows at a linear rate near δ = 0, and therefore

νδ = ν0 +O(δ).
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Perturbation under model II and III:

Let us consider the model

P(Sn+1 = Sn + x|Fn) =


max{ 1+n

2d+n
− δξn, 0}, if {Sn, Sn + x} = en,

min{ 1
2d+n

+ δξn, 1}, if {Sn, Sn + x} 6= en.

If (ξn)n∈N is a sequence of random variables such that E[ξn] < ∞, for all n, one can use an

analogous argument to that of section 2.4.3 to show νδ → ν0 at the same rate as model I.

When E[ξn] = ∞, let f = fξn . The proof of all three cases are identical. We present the

proof of the second case below:

Case 2: f(x) = O(x−(1+j)), for 0 < j < 1 :

Using a similar computation to section 2.4.4, we have

P(τ ≥ n) =
n∏
k=2

(∫ 1+k
δ(2d+k)

0

(
1 + k

2d+ k
− δx

)
f(x)dx

)

→
n∏
k=2

(
1 + k

2d+ k
− C1δ

j

)
→ C2

(n+ 2)(n+ 3)...(n+ 2d)

e−δ
jne2δ

jd

nδj(2d−1)

and the Dominated Convergence Theorem guarantees convergence of νδ. For the enhanced

diffusivity, it suffices to consider the integral
∫∞
1

e−k
jx

x(2d−1)(1+kj)
dx =: f(kj). In this case,

∂

∂kj
f(kj) =

∫ ∞
1

e−k
jx

x(2d−1)(1+kj)
(x+ (2d− 1) log x)dx <∞
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the integral converges for any non-negative value of k. This implies E[τδ] grows at a rate of

δj near δ = 0. Therefore

νδ = ν0 +O(δj).

Using an analogous argument, one gets the result for Cases 1 and 3, where the construction

for Case 3 is the same as in section 2.4.4.
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Chapter 3

The Relaxed Variable Splitting

Method

3.1 Preliminaries

3.1.1 The One-layer Non-overlap Network

Consider a one-layer non-overlap network (Figure 1.1). For this model, a filter w ∈ Rd is

shared among k different hidden nodes, and the input feature is x ∈ Rkd. We assume the

filter w is applied in a non-overlap way to k patches of the input: x[1], ...,x[k], each with

size d. We also assume that the input vectors x are i.i.d. Gaussian random vectors with zero

mean and unit variance, and let G denote this distribution. Let L(x,w) :=
1

k

k∑
i=1

σ(w ·x[i])

be the output of this network. We assume there exists a ground truth w∗ by which the

training data is generated. The population risk is then:

f(w) = Ex∼G[(L(x;w)− L(x;w∗))2].
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We define

g(u,v) = EG[σ(u · x)σ(v · x)]. (3.1)

Lemma 1. [7, 13] Assume x ∈ Rd is a vector where the entries are i.i.d. Gaussian random

variables with mean 0 and variance 1. Given u,v ∈ Rd, denote by θu,v the angle between u

and v. Then

g(u,v) =
1

2π
‖u‖‖v‖ (sin θu,v + (π − θu,v) cos θu,v) .

For the no-overlap network, the population risk is simplified to:

f(w) =
1

k2
[
a(‖w‖2 + ‖w∗‖2)− 2kg(w,w∗)− 2b‖w‖‖w∗‖

]
. (3.2)

where b = k2−k
2π

and a = b+ k
2
.

3.1.2 Modification with Binarized Activation

The model described here is identical to the section above, with the exception of the ac-

tivation function. We honor the original notation of [73] and give a brief summary of the

structure, as well as the associated loss function and gradient. Consider a one-layer non-

overlap network with input Z ∈ Rk×d and filter w ∈ Rd. Let σ denote the binarized ReLU

activation function, σ(z) := χ{z>0}. The empirical risk for each input Z is then

l(w,Z) := (1Tσ(Zw)− 1Tσ(Zw∗))2, (3.3)

where w∗ ∈ Rd is the underlying (non-zero) teaching parameter. Note that (3.4) is invariant

under scaling w → w/c, w∗ → w∗/c, for any scalar c > 0. Without loss of generality,
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we assume ‖w∗‖ = 1. Similar to the previous section, we are interested in minimizing the

population loss:

f(w) := EZ∼G[(1
Tσ(Zw)− 1Tσ(Zw∗))2] (3.4)

The empirical risk function in (3.3) is piece-wise constant and has a.e. zero partial w

gradient. If σ were differentiable, the back-propagation would read:

∂ l

∂w
(w,Z) = ZTσ′(Zw)(σ(Zw)− σ(Zw∗)). (3.5)

However, σ has zero derivative a.e., rendering (3.5) inapplicable. We study the coarse gradi-

ent descent with σ′ in (3.5) replaced by the (sub)derivative µ′ of the regular ReLU function

µ(x) := max(x, 0). More precisely, we use the following surrogate of ∂l
∂w

(w,Z):

g(w,Z) =

√
2

π
ZTµ′(Zw)(σ(Zw)− σ(Zw∗)) (3.6)

with µ′(x) = σ(x). The constant
√

2
π

represents a ReLU function µ with a smaller slope,

and will be necessary to give a stronger convergence result for our main findings. To simplify

our analysis, we let N ↑ ∞ in (3.3), so that its coarse gradient approaches EZ [g(w,Z)]. The

following lemma asserts that EZ [g(w,Z)] has positive correlation with the true gradient

∇f(w), and consequently, −EZ [g(w,Z)] gives a reasonable descent direction.

Lemma 2. [73] If θ(w,w∗) ∈ (0, π), and ‖w‖ 6= 0, then the inner product between the

expected coarse and true gradient w.r.t. w is

〈EZ [g(w,Z)],∇f(w)〉 =
sin(θ(w,w∗))

2(
√

2π)3‖w‖
k2 ≥ 0.
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3.1.3 The Relaxed Variable Splitting Method

Let η > 0 denote the training step size. Consider a simple gradient descent update:

wt+1 = wt − η∇f(wt). (3.7)

It was shown [7] that the one-layer non-overlap network can be learned with high probability

and in polynomial time. We seek to improve sparsity in the limit weight while also maintain

good accuracy. A classical method to accomplish this task is to introduce `1 regulariza-

tion to the population loss function, and the modified gradient update rule. Consider the

minimization problem:

l(w) = f(w) + λ‖w‖1. (3.8)

for some λ > 0. We propose a new approach to solve this minimization problem, called the

Relaxed Variable Splitting Method (RVSM). We first convert (3.8) into an equation of two

variables

l(w,u) = f(w) + λ‖u‖1.

and consider the augmented Lagrangian

Lβ(w,u) = f(w) + λ‖u‖1 +
β

2
‖w − u‖2. (3.9)

We minimize Lβ(wt,ut) by alternatively decreasing the Lagrangian inwt and ut: the update

on wt is a simple gradient descent step, and the update on ut is ut+1 = arg minu Lβ(wt,u).

Let Sλ/β(w) := sgn(w)(|w|−λ/β)χ{|w|>λ/β} be the soft thresholding operator. The RVSM is

described in Algorithm 1; and the variation for binarized activation, RVSCGD, is described

in Algorithm 2.
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Algorithm 1 RVSM

Input: η, β, λ, maxepoch, maxbatch

Initialize:w0

Define: u0 = Sλ/β(w0)

for t = 0, 1, 2, ...,maxepoch do

for batch = 1, 2, ...,maxbatch do

wt+1 ← wt − η∇f(wt)− ηβ(wt − ut)

ut+1 ← arg minu Lβ(wt,u) = Sλ/β(wt)

end for

end for

Output:ut,wt

Algorithm 2 RVSCGD

1: Input: η, β, λ, maxepoch, maxbatch

2: Initialize:w0

3: Define: u0 = Sλ/β(w0)

4: for t = 0, 1, 2, ...,maxepoch do

5: for batch = 1, 2, ...,maxbatch do

6: ŵt+1 ← wt − ηEZ [g(wt,Z)]− ηβ(wt − ut+1)

7: wt+1 = ŵt+1

‖ŵt+1‖

8: ut+1 ← arg minu Lβ(wt,u) = Sλ/β(wt)

9: end for

10: end for

11: Output:ut,wt
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3.1.4 Comparison with ADMM

A well-known, modern classical to solve the minimization problem (3.8) is the Alternating

Direction Method of Multipliers (or ADMM). In ADMM, we consider the Lagrangian

Lβ(w,u, z) = f(w) + λ‖u‖1 + 〈z,w − u〉+
β

2
‖w − u‖2. (3.10)

and apply the updates:


wt+1 ← arg minw Lβ(w,ut, zt)

ut+1 ← arg minu Lβ(wt+1,u, zt)

zt+1 ← zt + β(wt+1 − ut+1)

(3.11)

Although widely used in practice, the ADMM method has several drawbacks when it comes

to regularizing deep neural networks: First, the loss function f is often non-convex and only

differentiable in some very specific regions, thus the current theory of optimizations does not

apply [67]. Secondly, the update

wt+1 ← arg min
w
Lβ(wt+1,u, zt)

is not applicable in practice, as it requires one to know fully how f(w) behaves. In most

ADMM adaptations on DNN, this step is replaced by a simple gradient descent. Lastly, the

Lagrange multiplier zt tends to reduce the sparsity of the limit of ut, as it seeks to close the

gap between wt and ut.

In contrast, the RVSM method resolves all these difficulties presented by ADMM. First, we

will show that in a one-layer non-overlap network, the iterations will keep wt and ut in a nice

region, where one can guarantee Lipschitz gradient property for f(w). Secondly, the update

of wt is not an arg min update, but rather a gradient descent iteration itself, so our theory
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does not deviate from practice. Lastly, without the Lagrange multiplier term zt, there will

be a gap between wt and ut at the limit. The ut is much more sparse than in the case of

ADMM, and numerical results shows that one can replace wt by ut after each training epoch

without incurring any performance loss. An intuitive explanation for this is that when the

dimension of wt is high, most of its components that will be pruned off to get ut have very

small magnitudes, and are often the redundant weights.

In short, the RVSM method is easier to implement (no need to keep track of the variable zt),

can greatly increase sparsity in the weight variable ut, while also maintaining the same per-

formance as ADMM. Moreover, RVSM has convergence guarantee and limit characterization

as stated below.

3.2 Convergence Results

3.2.1 The One-layer Model with ReLU Activation

Before we state our main results, the following Lemma is needed to establish the existence

of a Lipschitz constant L:

Lemma 3. (Lipschitz gradient)

There exists a global constant L such that the iterations of Algorithm 1 satisfy

‖∇f(wt)−∇f(wt+1)‖ ≤ L‖wt −wt+1‖, ∀t. (3.12)

An important consequence of Lemma 3 is: for all t, the iterations of Algorithm 1 satisfy:

f(wt+1)− f(wt) ≤ 〈∇f(wt),wt+1 −wt〉+
L

2
‖wt+1 −wt‖2.
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Theorem 3.1. Suppose the initialization of the RVSM Algorithm satisfies:

(i) Step size η is small so that η ≤ 1
β+L

;

(ii) Initial angle θ(w0,w∗) ≤ π − δ, for some δ > 0;

(iii) Parameters k, β, λ are such that k ≥ 2, β ≤ δ sin δ
kπ

, and λ
β
< 1√

d
.

Then the Lagrangian Lβ(wt,ut) decreases monotonically; and (wt,ut) converges sub-sequentially

to a limit point (w̄, ū), with ū = Sλ/β(w̄), such that:

(i) 0 ∈ ∂uLβ(w̄, ū) and ∇wLβ(w̄, ū) = 0;

(ii) ∇w Lβ(wt,ut) = O(ε) in O(1/ε2) iterations;

(iii) The limit point w̄ is close to the ground truth w∗ in the sense that θ(w̄,w∗) < δ and

‖w̄ −w∗‖ = O(β).

The full proof of Theorem 3.1 is given in the next section. Here we overview the key steps.

First, we show that the iterations of Algorithm 1 will eventually bring wt to within a closed

annulus D of width 2M around the sphere centered at origin with radius ‖w∗‖. In other

words, there exists a T such that for all t ≥ T, ‖wt‖ ∈ [‖w∗‖ −M, ‖w∗‖ + M ], for some

0 < M < ‖w∗‖. Then with no loss of generality, we can assume that wt is in this closed

strip, for all t.

Next, for the region D of the iterations, we will show there exists a global constant L such

that the Lipschitz gradient property in Lemma 3 holds.

Finally, the Lipschitz gradient property allows us to show the descent of angle θt and La-

grangian Lβ(wt,ut). The conditions on η, β, λ are used to show θt+1 ≤ θt; and an analysis

of the limit point gives the bound on θ(w̄,w∗) and ‖w̄ − w∗‖. From the descent prop-

erty of Lβ(wt,ut), classical results from optimization [7] can be used to show that after

T = O (ε−2) iterations, we have ∇wLβ(wt,ut) = O(ε), for some t ∈ (0, T ]. This leads to the

desired convergence rate and finishes the proof.

It should be noted that without the condition on β being small, one may not guarantee

monotonicity of θt. However, it still can be shown that Lβ(wt,ut) decreases and thus the
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iteration will converge to some limit point (w̄, ū). In this case, the limit point may not be

near the ground truth w∗; i.e. we may not have θ(w̄,w∗) < δ. Furthermore, the bound on

‖w̄ −w∗‖ will also be weaker.

Corollary 2. Suppose the initialization of the RVSM Algorithm satisfies Theorem 3.1, then

the w̄ equation below holds:

w∗ =
kπ

π − θ
β(w̄ − Sλ/β(w̄)) + Cw̄, (3.13)

where θ := θ(w̄,w∗), constant C ∈ (0, 1
1−2kλ

√
d
). Since component-wise, w̄ − Sλ/β(w̄) has

the same sign as w̄, the ground truth w∗ is an expansion of C w̄, or equivalently w̄ is (up

to scalar multiple) a shrinkage of w∗.

The proofs of Theorem 1 and Corollary 1.1 do not require convexity of the regularization

term λ‖u‖1, hence extend to other sparse penalties such as `0 and transformed `1 penalty

[76]. We have:

Corollary 3. Under the conditions of Theorem 1 however with the l1 penalty replaced by

an `0 or transformed-`1 penalty, the RVSM Algorithm converges sub-sequentially to a limit

point (w̄, ū) satisfying ∇wLβ(w̄, ū) = 0. The Lagrangian and angle θt also decrease mono-

tonically, with the limit angle satisfying θ(w̄,w∗) < δ. Here ū is a thresholding of w̄, and

equation (3.13) holds with Sλ/β(·) replaced by the thresholding operator of the corresponding

penalty.

3.2.2 The One-layer Model with Binarized ReLU Activation

Theorem 3.2. Suppose that the initialization and penalty parameters of the RVSCGD al-

gorithm satisfy:
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(i) θ(w0,w∗) ≤ π − δ, for some δ > 0;

(ii) β ≤ k sin δ
2
√
2π

, and λ < k
2
√
2πd

;

(iii) η is small such η ≤ min
{

1
β+L

, 2
√
2π
k

}
, where L is the Lipschitz constant in Lemma 10;

and for all t, η ‖EZ [g(wt,Z)] + β (wt − ut+1)‖ ≤ 1
2
.

Then the Lagrangian Lβ(ut,wt) decreases monotonically; and (ut,wt) converges sub-sequentially

to a limit point (ū, w̄), with ū = Sλ/β(w̄), such that:

(i) Let θ := θ(w̄,w∗) and γ := θ(ū, w̄), then θ < δ

(ii) The limit point (ū, w̄) satisfies ū = Sλ/β(w̄) and

w∗ =
2
√

2π

k
β(w̄ − Sλ/β(w̄)) + Cw̄ (3.14)

where Sλ/β(·) is the soft-thresholding operator of `1, for some constant 0 < C ≤ k
k−2λ

√
2πd

(iii) The limit point w̄ is close to the ground truth w∗ such that

‖w∗ − w̄ ‖ ≤ 4
√

2πβ sin γ

k
. (3.15)

Remark. As the sign of (w̄ − Sλ/β(w̄)) agrees with w̄, eq. (3.14) implies that w∗ equals

an expansion of C w̄ or equivalently w̄ is (up to a scalar multiple) a shrinkage of w∗, which

explains the source of sparsity in w̄. The assumption on η is reasonable, as will be shown

below: ‖EZ [g(wt,Z)]‖ is bounded away from zero, and thus ‖EZ [g(wt,Z)] + β(wt − ut+1)‖

is also bounded.

The proof is provided in details in section 3.4. Here we provide an overview of the key steps.

First, we show that there exists a constant Lf such that

‖∇f(wt+1)−∇f(wt)‖ ≤ Lf‖wt+1 −wt‖
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then we show that the Lipschitz gradient property still holds when replaced by the coarse

gradient:

‖EZ [g(wt+1,Z)]− EZ [g(wt,Z)]‖ ≤ K‖wt+1 −wt‖

and subsequently show

f(w2)− f(w1) ≤ 〈∇EZ [g(w1,Z)],w2 −w1〉+
L

2
‖w2 −w1‖2.

These inequalities hold when ‖wt‖ ≥ M , for some M > 0. It can be shown that with

bad initialization, one may have ‖wt‖ → 0 as t → ∞. We circumvent this problem by

normalizing wt at each iteration.

Next, we show the iterations satisfy θt+1 ≤ θt, and Lβ(ut+1,wt+1) ≤ Lβ(ut,wt). Finally, an

analysis of the stationary point yields the desired bound.

In none of these steps do we use convexity of the `1 penalty term. Here we extend our result

to `0 and transformed `1 (T`1) regularization [77].

Corollary 4. Suppose that the initialization of the RVSCGD algorithm satisfies the condi-

tions in Theorem 3.2, and that the `1 penalty is replaced by `0 or T`1. Then the RVSCGD

iterations converge to a limit point (ū, w̄) satisfying equation (3.14) with `0’s hard thresh-

olding operator [5] or T`1 thresholding [76] replacing Sλ/β, and similar bound (3.15) holds.

3.3 Proof of the First Convergence Result

The following Lemmas will be needed to prove Theorem 3.1:

Lemma 4. (Properties of the gradient, [7])

For the loss function f(w) of equation (3.2), the following holds:

1. f(w) is differentiable if and only if w 6= 0.
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2. For k > 1, f(w) has three critical points:

(a) A local maximum at w = 0.

(b) A unique global minimum at w = w∗.

(c) A degenerate saddle point at w = −
(

k2−k
k2+(π−1)k

)
w∗.

For k = 1, w = 0 is not a local maximum and the unique global minimum w∗ is the only

differentiable critical point.

Given θ := θ(w,w∗), the gradient of f can be expressed as

∇f(w) =
1

k2

[(
k +

k2 − k
π
− k

π

‖w∗‖
‖w‖

sin θ − k2 − k
π

‖w∗‖
‖w‖

)
w − k

π
(π − θ)w∗

]
. (3.16)

Lemma 5. (Lipschitz gradient with co-planar assumption, [7])

Assume ‖w1‖, ‖w2‖ ≥ M , w1,w2,w
∗ are on the same two dimensional half-plane defined

by w∗, then

‖∇f(w1)−∇f(w2)‖ ≤ L‖w1 − w2‖

for L = 1 + 3‖w∗‖
M

.

Lemma 6. For k ≥ 1, there exists constants Mk, T > 0 such that for all t ≥ T , the iterations

of Algorithm 1 satisfy:

‖wt‖ ∈ [‖w∗‖ −Mk, ‖w∗‖+Mk]. (3.17)

where Mk < ‖w∗‖, and Mk → 0 as k →∞.

From Lemma 6, WLOG, we will assume that T = 0.
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Figure 3.1: Geometry of the update of wt and the corresponding wt+1,vt+1.

Lemma 7. (Descent of Lβ due to w update)

For η small such that η ≤ 1
β+L

, we have

Lβ(ut+1,wt+1) ≤ Lβ(wt,ut).

3.3.1 Proof of Lemma 3

By Algorithm 1 and Lemma 6, ‖wt‖ ≥ ‖w∗‖ −M > 0, for all t, and wt+1 is in some closed

neighborhood of wt. We consider the subspace spanned by wt,wt+1, and w∗, this reduces

the problem to a 3-dimensional space.

Consider the plane formed by wt and w∗. Let vt+1 be the point on this plane, closest to

wt, such that ‖wt+1‖ = ‖vt+1‖ and θ(wt+1,w∗) = θ(vt+1,w∗). In other words, vt+1 is the

intersection of the plane formed by wt,w∗ and the cone with tip at zero, side length ‖wt+1‖,

and main axis w∗ (See Figure 3.1). Then

‖∇f(wt)−∇f(wt+1)‖ ≤‖∇f(wt)−∇f(vt+1)‖+ ‖∇f(vt+1)−∇f(wt+1)‖

≤L1‖wt − vt+1‖+ L2‖vt+1 −wt+1‖ (3.18)
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for some constants L1, L2. The first term is bounded since wt,vt+1,w∗ are co-planar by

construction, and Lemma 5 applies. The second term is bounded by applying Equation 3.16

with ‖wt+1‖ = ‖vt+1‖ and θ(wt+1,w∗) = θ(vt+1,w∗). It remains to show there exists a

constant L3 > 0 such that

‖wt − vt+1‖+ ‖vt+1 −wt+1‖ ≤ L3‖wt −wt+1‖

Let A,B,C be the tips of wt,vt+1,wt+1, respectively. Let P be the point on w∗ that is at

the base of the cone (so P is the center of the circle with B,C on the arc). We will show

there exists a constant L3 such that

|AB|+ |BC| ≤ L3|AC| (3.19)

Case 1: A,B, P are collinear: By looking at the cross-section of the plane formed by AB,AC,

it can be seen that AC is not the smallest edge in 4ABC. Thus there exists some L3 such

that Equation 3.19 holds.

Case 2: A,B, P are not collinear: Translate B,C, P to B′, C ′, P ′ such that A,B′, P ′ are

collinear and BB′, CC ′, PP ′//w∗. Then by Case 1:

|AB′|+ |B′C ′| ≤ L3|AC ′|

and AC ′ is not the smallest edge in 4AB′C ′. By back-translating B′, C ′ to B,C, it can be

seen that AC is again not the smallest edge in 4ABC. This implies

|AB|+ |BC| ≤ L4|AC|

for some constant L4. Thus Equation 3.19 is proved. Combining with Equation 3.18, Lemma

3 is proved.
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3.3.2 Proof of Lemma 6

First we show that if ‖wt‖ < ‖w∗‖, the update of Algorithm 1 will satisfy ‖wt+1‖ > ‖wt‖.

By Lemma 4,

∇f(w) =
1

k2

[(
k +

k2 − k
π
− k

π

‖w∗‖
‖w‖

sin θ − k2 − k
π

‖w∗‖
‖w‖

)
w − k

π
(π − θ)w∗

]
=

1

k2
(C1w − C2w

∗)

so the update of wt reads

wt+1 = wt − ηC
t
1 + βk2

k2
wt + η

Ct
2

k2
w∗ + ηβut+1,

where Ct
2 > 0. Since ut+1 = Sλ/β(wt), the term ηβut+1 will increase the norm of wt. For

the remaining terms,

Ct
1 = k +

k2 − k
π
− k

π

‖w∗‖
‖wt‖

sin θ − k2 − k
π

‖w∗‖
‖wt‖

≤ k +
k2 − k
π

(
1− ‖w

∗‖
‖wt‖

)

When ‖w
∗‖

‖wt‖ is large, Ct
1 is negative. The update will increase the norm of ‖wt‖ if Ct

1+βk2 ≤ 0

and

∥∥∥∥Ct
1 + βk2

k2
wt

∥∥∥∥ > ∥∥∥∥Ct
2

k2
w∗
∥∥∥∥

This condition is satisfied when

−
[
k +

k2 − k
π

(
1− ‖w

∗‖
‖wt‖

)
+ βk2

]
>
k

π

‖w∗‖
‖wt‖

When ‖w∗‖
‖wt‖ > 1, the LHS is O(k2), while the RHS is O(k). Thus there exists some Mk such

that wt will eventually stay in the region ‖wt‖ ≥ ‖w∗‖−Mk. Moreover, as k →∞, we have

Mk → 0.
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Next, when ‖wt‖ > ‖w∗‖, the update of wt reads

wt+1 = wt − ηC
t
1

k2
wt + η

Ct
2

k2
w∗ − ηβ(wt − ut+1)

the last term decreases the norm of wt. In this case, Ct
1 is positive and

Ct
1 ≥

kπ − k
π

+
k2 − k
π

(
1− ‖w

∗‖
‖wt‖

)

The update will decrease the norm of wt if

kπ − k
π

+
k2 − k
π

(
1− ‖w

∗‖
‖wt‖

)
>
k

π

‖w∗‖
‖wt‖

which holds when ‖w∗‖
‖wt‖ < 1, and the Lemma is proved.

3.3.3 Proof of Lemma 7

By the update of ut, Lβ(wt,ut+1) ≤ Lβ(wt,ut). For the update of wt, notice that

∇f(wt) =
1

η

(
wt −wt+1

)
− β(wt − ut+1)
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Then for a fixed u := ut+1, we have

Lβ(wt+1,u)− Lβ(wt,u)

=f(wt+1)− f(wt) +
β

2

(
‖wt+1 − u‖2 − ‖wt − u‖2

)
≤〈∇f(wt),wt+1 −wt〉+

L

2
‖wt+1 −wt‖2 +

β

2

(
‖wt+1 − u‖2 − ‖wt − u‖2

)
=

1

η
〈wt −wt+1,wt+1 −wt〉 − β〈wt − u,wt+1 −wt〉+

L

2
‖wt+1 −wt‖2

+
β

2

(
‖wt+1 − u‖2 − ‖wt − u‖2

)
=

1

η
〈wt −wt+1,wt+1 −wt〉+

(
L

2
+
β

2

)
‖wt+1 −wt‖2 +

β

2
‖wt+1 − u‖2 − β

2
‖wt − u‖2

−β〈wt − u,wt+1 −wt〉 − β

2
‖wt+1 −wt‖2

=

(
L

2
+
β

2
− 1

η

)
‖wt+1 −wt‖2

Therefore, when η is small such that η ≤ 2
β+L

, the update on wt will decrease Lβ.

3.3.4 Proof of Theorem 3.1

We will first show that if θ(w0,w∗) ≤ π− δ, then θ(wt,w∗) ≤ π− δ, for all t. We will show

θ(w1,w∗) ≤ π − δ, the statement is then followed by induction. To this end, by the update

of wt, one has

w1 = Cw0 +

(
η
π − θ(w0,w∗)

kπ

)
w∗ + ηβu1

= Cw0 + η
π − θ(w0,w∗)

kπ
w∗ + ηβu1

for some constant C > 0. Since u1 = Sλ/β(w0), θ(u1,w0) ≤ π
2
. Notice that the sum of the

first two terms on the RHS brings the vector closer to w∗, while the last term may behave

unexpectedly. Consider the worst case scenario: w0,w∗,u1 are co-planar with θ(u1,w0) = π
2
,
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Figure 3.2: Worst case of the update on wt

and w∗,u1 are on two sides of w0 (See Figure 3.2). We need δ
kπ
w∗ + βu1 to be in region I.

This condition is satisfied when β is small such that

sin δ ≥ β‖u1‖
δ
kπ
‖w∗‖

=
kπβ‖u1‖

δ

since ‖u1‖ ≤ 1, it is sufficient to have β ≤ δ sin δ
kπ

.

Next, consider the limit of the RVSM algorithm. Since Lβ(wt,ut) is non-negative, by Lemma

7, Lβ converges to some limit L. This implies (wt,ut) converges to some stationary point

(w̄, ū). By Lemma 4 and the update of wt, we have

w = c1w + ηc2w
∗ + ηβu (3.20)

for some constant c1 > 0, c2 ≥ 0, where c2 = π−θ
kπ

, with θ := θ(w̄,w∗), and ū = Sλ/β(w̄). If

c2 = 0, then we must have w̄//ū. But since ū = Sλ/β, this implies all non-zero components of

w̄ are either equal in magnitude, or all have magnitude smaller than λ
β
. The latter case is not

possible when λ
β
< 1√

d
. Furthermore, c2 = 0 when θ(w̄,w∗) = π or 0. We have shown that

θ(w̄,w∗) ≤ π − δ, thus θ(w̄,w∗) = 0. Thus, w̄ = w∗, and all non-zero components of w∗

are equal in magnitude. This has probability zero if we assume w∗ is initiated uniformly on
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the unit circle. Hence we will assume that almost surely, c2 > 0. Expression (3.20) implies

(c2w
∗ + βū)//w̄ (3.21)

Expression (3.21) implies w̄, ū, and w∗ are co-planar. Let γ := θ(w̄, ū). From expression

(3.21), and the assumption that ‖w∗‖ = 1, we have

(〈c2w∗ + βū, w̄〉)2 = ‖c2w∗ + βū‖2‖w̄‖2

or

‖w̄‖2(c22 cos2 θ + 2c2β‖ū‖ cos θ cos γ + β2‖ū‖2 cos2 γ)

=‖w̄‖2(c22 + 2c2β‖ū‖ cos(θ + γ) + β2‖ū‖2)

This reduces to

c22 sin2 θ − 2c2β‖ū‖ sin θ sin γ + β2‖ū‖2 sin2 γ = 0,

which implies π−θ
kπ

sin θ = β‖ū‖ sin γ. By the initialization β ≤ δ sin δ
kπ

, we have π−θ
kπ

sin θ <

δ
kπ

sin δ. This implies θ < δ.

Finally, the limit point satisfies ‖∇f(w̄)+β(w̄− ū)‖ = 0. By the initialization requirement,

we have ‖β(w̄− ū)‖ < β ≤ δ sin δ
kπ

. This implies ‖∇f(w̄)‖ ≤ δ sin δ
kπ

. By the Lipschitz gardient

property in Lemma 3 and critical points property in Lemma 4, w̄ must be close to w∗. In

other words, ‖w̄ −w∗‖ is comparable to the chord length of the circle of radius ‖w∗‖ and

angle θ:

‖w̄ −w∗‖ = O

(
2 sin

(
θ

2

))
= O(sin θ) = O

(
kπβ‖ū‖ sin γ

π − θ

)
= O(kβ sin γ).
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3.4 Proof of the Second Convergence Result

The following Lemmas give an outline for the proof of Theorem 3.2.

Lemma 8. If every entry of Z is i.i.d. sampled from N (0, 1), ‖w∗‖ = 1, and ‖w‖ 6= 0, then

the true gradient of the population loss f(w) is

∇f(w) =
−k

2π‖w‖

(
I − wwT

‖w‖2

)
w∗∥∥∥(I − wwT

‖w‖2

)
w∗
∥∥∥ , (3.22)

for θ(w,w∗) ∈ (0, π); and the expected coarse gradient w.r.t. w is

EZ [g(w,Z)] =
k

π

 w

‖w‖
− cos

(
θ(w,w∗)

2

) w
‖w‖ +w∗∥∥∥ w
‖w‖ +w∗

∥∥∥
 (3.23)

Lemma 9. (Properties of true gradient)

Given w1,w2 with min{‖w1‖, ‖w2‖} = c > 0 and max{‖w1‖, ‖w2‖} = C, there exists a

constant Lf > 0 depends on c and C such that

‖∇f(w1)−∇f(w2)‖ ≤ Lf‖w1 −w2‖

Moreover, we have

f(w2) ≤ f(w1) + 〈∇f(w1),w2 −w1〉+
Lf
2
‖w2 −w1‖2.

Lemma 10. (Properties of expected coarse gradient)

If w1,w2 satisfy 1
2
≤ ‖w1‖, ‖w2‖ ≤ 3

2
, and θ(w1,w

∗), θ(w2,w
∗) ∈ (0, π), then there exists a

constant K such that

‖EZ [g(w1,Z)]− EZ [g(w2,Z)]‖ ≤ K‖w1 −w2‖ (3.24)
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Moreover, there exists a constant L such that

f(w2)− f(w1) ≤ 〈EZ [g(w1,Z)],w2 −w1〉+
L

2
‖w2 −w1‖2. (3.25)

Remark. The condition 1
2
≤ ‖w1‖, ‖w2‖ ≤ 3

2
in Lemma 10 is to match the RVSCGD

algorithm and to give an explicit value for K. The result still holds in general when 0 < c ≤

‖w1‖, ‖w2‖ ≤ C. Compared to Lemma 9, when c = 1
2

and C = 3
2
, one has Lf = 4

√
k

π
, which

is a sharper bound than K = k√
2π

in the coarse gradient case.

Lemma 11. (Angle Descent)

Let θt := θ(wt,w∗). Suppose the initialization of the RVSCGD algorithm satisfies θ0 ≤ π−δ

and β ≤ k sin δ
2
√
2π

, then θt+1 ≤ θt.

Lemma 12. (Lagrangian Descent)

Suppose the initialization of the RVSCGD algorithm satisfies η ≤ 1
β+L

, where L is the Lips-

chitz constant in Lemma 10, then Lβ(ut+1,wt+1) ≤ Lβ(ut,wt).

Lemma 13. (Properties of limit point)

Suppose the initialization of the RVSCGD algorithm satisfies: θ(w0,w∗) ≤ π − δ, for some

δ > 0, λ is small such that 2
√
2π
k
λ
√
d < 1, and η is small such that η k

2
√
2π

< 1. Let

θ := θ(w̄,w∗) and γ := θ(ū, w̄), then (ut,wt) converges to a limit point (ū, w̄) such that

θ < δ and ‖w∗ − w̄‖ ≤ 4
√

2πβ sin γ

k
.

Lemmas 8, 9 follow directly from [73]. The proof of Lemmas 10, 11, 12, 13 are provided

below.
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Figure 3.3: Geometry of wt and w∗ when ‖wt‖ = ‖w∗‖ = 1.

3.4.1 Proof of Lemma 10

First suppose ‖w1‖ = ‖w2‖ = 1. By Lemma 5.3 of [73], we have

EZ [g(wj,Z)] =
k

π

[
wj − cos

(
θ(wj,w

∗)

2

)
wj +w∗

‖wj +w∗‖

]

for j = 1, 2. Consider the plane formed bywj andw∗, since ‖w∗‖ = 1, we have an equilateral

triangle formed by wj and w∗ (See Fig. 3.3).

Simple geometry shows

cos

(
θ(wj,w

∗)

2

)
=

1
2
‖wj +w∗‖
‖w∗‖

=
1

2
‖wj +w∗‖

Thus the expected coarse gradient simplifies to

EZ [g(wj,Z)] =
k

π

[
wj −

wj +w∗

2

]
=

k

2π
wj −

k

2π
w∗ (3.26)

which implies

‖EZ [g(w1,Z)]− EZ [g(w2,Z)]‖ ≤ K‖w1 −w2‖ (3.27)

with K = k
2π

.

Now suppose 1
2
≤ ‖w1‖, ‖w2‖ ≤ 3

2
. By equation (3.23), we have EZ [g(w,Z)] = EZ [g(w

C
,Z)],
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for all C > 0. Then

‖EZ [g(w1,Z)]− EZ [g(w2,Z)]‖ =

∥∥∥∥EZ

[
g

(
w1

‖w1‖
,Z

)]
− EZ

[
g

(
w2

‖w2‖
,Z

)]∥∥∥∥
≤K ′

∥∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥∥
≤2K ′‖w1 −w2‖

where the first inequality follows from (3.27), and the second inequality is from the constraint

1
2
≤ ‖w1‖, ‖w2‖ ≤ 3

2
, with equality when ‖w1‖ = ‖w2‖ = 1

2
. Letting K = 2K ′ = k

π
, the first

claim is proved.

It remains to show the gradient descent inequality. By [73], we have

f(w) =
1

8

[
1T (I + 11T )1− 21T

((
1− 2

π
θ(w,w∗)

)
I + 11T

)
1 + 1T (I + 11T )1

]

Let θ1 = θ(w1,w
∗), θ2 = θ(w2,w

∗). Then

f(w2)− f(w1) =
1

4

[
1T
((

2

π
θ2 −

2

π
θ1

)
I

)
1

]
=

k

2π
(θ2 − θ1)

We will show

f(w2)− f(w1) ≤ 〈EZ [g(w1,Z)],w2 −w1〉+ L‖w2 −w1‖2

for ‖w1‖ = ‖w2‖ = 1 and θ2 ≤ θ1. By equation (3.26),

EZ [g(w1,Z)] =
k

2π
(w1 −w∗)
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It remains to show

k

2π
(θ2 − θ1) ≤

〈
k

2π
(w1 −w∗) ,w2 −w1

〉
+ L‖w2 −w1‖2

or there exists a constant K1 such that

θ2 − θ1 ≤ 〈w1 −w∗,w2 −w1〉+K1‖w2 −w1‖2

Notice that by writing K1 = 1
2

+K2, we have

〈w1 −w∗,w2 −w1〉+K1‖w2 −w1‖2

=〈w1 −w∗,w2 −w1〉+K1〈w2 −w1,w2 −w1〉

=〈w1 −w∗,w2 −w1〉+
1

2
〈w2 −w1,w2 −w1〉+K2‖w2 −w1‖2

=〈1
2
w1 +

1

2
w2 −w∗,w2 −w1〉+K2‖w2 −w1‖2

=〈−w∗,w2 −w1〉+
1

2
〈w1 +w2,w2 −w1〉+K2‖w2 −w1‖2

=〈−w∗,w2 −w1〉+K2‖w2 −w1‖2

where the last equality follows since ‖w1‖ = ‖w2‖ = 1 implies 〈w1 +w2,w2 −w1〉 = 0. On

the other hand,

〈−w∗,w2 −w1〉 = −‖w∗‖‖w2‖ cos θ2 + ‖w∗‖‖w1‖ cos θ1 = cos θ1 − cos θ2

so it suffices to show there exists a constant K2 such that

θ2 + cos θ2 − θ1 − cos θ1 ≤ K2‖w2 −w1‖2
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Notice the function θ 7→ θ+cos θ is monotonically increasing on [0, π]. For θ1, θ2 ∈ [0, π] with

θ2 ≤ θ1, the LHS is non-positive, and the inequality holds. Thus one can takeK2 = 0, K1 = 1
2
,

and L = k
4π

.

3.4.2 Proof of Lemma 11

Due to normalization in the RVSCGD algorithm, ‖wt‖ = 1 for all t. By equation (3.26), we

have

wt − ηEZ [g(wt,Z)] =

(
1− η k

2
√

2π

)
wt + η

k

2
√

2π
w∗

and the update of u is the well-known soft-thresholding of w [16, 14]:

ut+1 = arg min
u
Lβ(u,wt) = Sλ/β(wt)

where Sλ/β(w) := sgn(w)(|w|−λ/β)χ{|w|>λ/β} is the soft-thresholding operator; and Sλ/β(w)

applies the thresholding to each component of w. Then the update of w has the form

wt+1 = Ctwt + η
k

2
√

2π
w∗ + ηβut+1

for some constant Ct > 0. Suppose the initialization satisfies θ(w0,w∗) ≤ π − δ, for some

δ > 0. It suffices to show that if θt ≤ π − δ, then θt+1 ≤ π − δ. To this end, since

ut+1 = Sλ/β(wt), we have θ(wt,ut+1) ≤ π
2
. Consider the worst case scenario: wt,w∗,ut+1

are co-planar with θ(ut+1,wt) = π
2
, and w∗,ut+1 are on two sides of wt (See Figure 3). We

need k
2
√
2π
w∗ + βut+1 to be in region I. This condition is satisfied when β is small such that

sin δ ≥ β‖ut+1‖
k

2
√
2π
‖w∗‖

=
2
√

2πβ‖ut+1‖
k
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or β ≤ k sin δ
2
√
2π‖ut+1‖ . Since ut+1 = Sλ/β(wt), we have ‖ut+1‖ ≤ 1. Thus it suffices to have

β ≤ k sin δ
2
√
2π

.

3.4.3 Proof of Lemma 12

By definition of the update on u, we have Lβ(ut+1,wt) ≤ Lβ(ut,wt). It remains to show

Lβ(ut+1,wt+1) ≤ Lβ(ut+1,wt). First notice that since

wt+1 = Ct(wt − ηEZ [g(wt,Z)]− ηβ(wt − ut+1))

where Ct > 0 is the normalizing constant, thus

EZ [g(wt,Z)] =
1

η

(
wt − w

t+1

Ct

)
− β(wt − ut+1)

For a fixed u := ut+1 we have

Lβ(u,wt+1)− Lβ(u,wt)

=f(wt+1)− f(wt) +
β

2

(
‖wt+1 − u‖2 − ‖wt − u‖2

)
≤〈EZ [g(wt,Z)],wt+1 −wt〉+

L

2
‖wt+1 −wt‖2 +

β

2

(
‖wt+1 − u‖2 − ‖wt − u‖2

)
=

1

η
〈wt − w

t+1

Ct
,wt+1 −wt〉 − β〈wt − u,wt+1 −wt〉

+
L

2
‖wt+1 −wt‖2 +

β

2

(
‖wt+1 − u‖2 − ‖wt − u‖2

)
=

1

η
〈wt − w

t+1

Ct
,wt+1 −wt〉+

(
L

2
+
β

2

)
‖wt+1 −wt‖2

+
β

2
‖wt+1 − u‖2 − β

2
‖wt − u‖2 − β〈wt − u,wt+1 −wt〉 − β

2
‖wt+1 −wt‖2

=
1

η
〈wt − w

t+1

Ct
,wt+1 −wt〉+

(
L

2
+
β

2

)
‖wt+1 −wt‖2
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Since ‖wt‖, ‖wt+1‖ = 1, we know (wt+1−wt) bisects the angle between wt+1 and −wt. The

assumption ‖ηEZ [g(wt,Z)]+ηβ(wt−ut+1)‖ ≤ 1
2

guarantees 2
3
≤ Ct ≤ 2 and θ(−wt,wt+1) <

π. It follows that θ(wt+1 −wt,wt) and θ(wt+1 −wt,wt+1) are strictly less than π
2
. On the

other hand,
(

wt+1

Ct
−wt

)
also lies in the plane bounded by wt+1 and −wt. Therefore

θ

(
wt+1

Ct
−wt,wt+1 −wt

)
<
π

2
.

This implies 〈wt+1

Ct
−wt,wt+1 −wt〉 ≥ 0. Moreover, when Ct ≥ 1:

〈w
t+1

Ct
−wt,wt+1 −wt〉 =〈w

t+1

Ct
− w

t

Ct
,wt+1 −wt〉 − 〈C

t − 1

Ct
wt,wt+1 −wt〉

≥ 1

Ct
‖wt+1 −wt‖2

And when 2
3
≤ Ct ≤ 1:

〈w
t+1

Ct
−wt,wt+1 −wt〉 =〈wt+1 −wt,wt+1 −wt〉+ 〈1− C

t

Ct
wt+1,wt+1 −wt〉

≥‖wt+1 −wt‖2

Thus we have

Lβ(u,wt+1)− Lβ(u,wt) ≤
(
L

2
+
β

2
−
χ{Ct≥1}
ηCt

−
χ{ 2

3
≤Ct≤1}

η

)
‖wt+1 −wt‖2

Therefore, if η is small so that η ≤ 2
Ct(β+L)

and η ≤ 2
β+L

, the update on w will decrease Lβ.

Since Ct ≤ 2, the condition is satisfied when η ≤ 1
β+L

.

3.4.4 Proof of Lemma 13

Using an argument similar to section 3.3.4, one can show θ < δ.
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Notice that at convergence, after some simplification, we have

(
w∗ − 2

√
2π

k
β(w̄ − ū)

)
//w̄ (3.28)

From expression (3.28), we see that w∗, after subtracting some vector whose signs agree with

w̄, and whose non-zero components have the same magnitude 2
√
2π
k
λ, is parallel to w̄. This

implies w̄ is some soft-thresholded version of w∗, modulo normalization. Moreover, since∥∥∥2
√
2π
k
β(w̄ − ū)

∥∥∥ ≤ 2
√
2π
k
λ
√
d, for small λ such that 2

√
2π
k
λ
√
d < 1, we must have

θ

(
w∗ − 2

√
2π

k
β(w̄ − ū), w̄

)
= 0

On the other hand,

∥∥∥∥∥w∗ − 2
√

2π

k
β(w̄ − ū)

∥∥∥∥∥ ≥ ‖w∗‖ −
∥∥∥∥∥2
√

2π

k
β(w̄ − ū)

∥∥∥∥∥
≥ 1− 2

√
2π

k
λ
√
d

therefore, w∗ − 2
√
2π
k
β(w̄ − ū) = Cw̄, for some constant C such that 0 < C ≤ k

k−2λ
√
2πd

.

Finally, consider the equilateral triangle with sides w∗, w̄, and w∗− w̄. By the law of sines,

‖w∗ − w̄‖
sin θ

=
‖w∗‖

sin θ(w̄,w∗ − w̄)
=

1

sin θ(w̄,w∗ − w̄)

as θ is small, θ(w̄,w∗ − w̄) is near π
2
. We can assume sin θ(w̄,w∗ − w̄) ≥ 1

2
. Together with

the condition k
2
√
2π

sin θ = β‖ū‖ sin γ, we have

‖w∗ − w̄‖ ≤ 2 sin θ =
4
√

2πβ‖ū‖ sin γ

k
≤ 4
√

2πβ sin γ

k
.
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3.4.5 Proof of Theorem 3.2

Combining Lemmas 8 - 13, Theorem 3.2 is proved.

3.4.6 Proof of Corollary

Lemma 14. [76] Let

fλ,x(y) =
1

2
(y − x)2 + λ ρa(y),

gλ(x) = sgn(x)

{
2

3
(a+ |x|) cos

(
φ(x)

3

)
− 2a

3
+
|x|
3

}
where φ(x) = arccos

(
1− 27λa(a+1)

2(a+|x|)3

)
. Then y∗λ(x) = arg miny fλ,x(y) is the T`1 thresholding,

equal to gλ(x) if |x| > t; zero elsewhere. Here t = λa+1
a

if λ ≤ a2

2(a+1)
; t =

√
2λ(a+ 1) − a

2
,

elsewhere.

Lemma 15. [5] Let fλ,x(y) = 1
2
(y − x)2 + λ ‖y‖0. Then y∗λ(x) = arg miny fλ,x(y) is the `0

hard thresholding y∗λ(x) = x, if |x| >
√

2λ; zero elsewhere.

We proceed by an outline similar to the proof of Theorem 3.2:

Step 1. First we show that Lβ,T `1(u
t,wt) and Lβ,0(u

t,wt) both decrease under the update of

ut andwt. To see this, notice that the update on ut decreases Lβ,T `1(u
t,wt) and Lβ,0(u

t,wt)

by definition. Then, for a fixed u = ut+1, the update on wt decreases Lβ,T `1(u
t,wt) and

Lβ,0(u
t,wt) by a similar argument to that found in Theorem 3.2.

Step 2. Next, we show θ(wt,w∗) ≤ π − δ, for some δ > 0, for all t, with initialization

θ(w0,w∗) = π − δ. For Lβ,T `1(u
t,wt), by Lemma 14, we have

ut+1 = (gλ/β(wt1), gλ/β(wt2), ..., gλ/β(wtd))
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And for Lβ,0(u
t,wt) , by Lemma 15,

ut+1 = (wt1χ{|wt1|≥t}, w
t
2χ{|wt2|≥t}, ...)

In both cases, each component of ut+1 is a thresholded version of the corresponding com-

ponent of wt. This implies θ(ut+1,wt) ≤ π
2
, and thus the argument in Theorem 3.2 follows

through, and we have θ(wt,w∗) ≤ π − θ, for all t.

Step 3. Finally, the equilibrium condition from equation (3.21) still holds for the limit point,

and a similar argument shows that θ(w̄,w∗) < δ.

3.5 Numerical Experiments

First, we experiment RVSM with VGG-16 on the CIFAR10 data set. Table 3.1 shows the

result of RVSM under different penalties. The parameters used are λ = 1.e− 5, β = 1.e− 2,

and a = 1 for T`1 penalty. It can be seen that RVSM can maintain very good accuracy while

also promotes good sparsity in the trained network. Between the penalties, `0 gives the best

sparsity, `1 the best accuracy, and T`1 gives a middle ground between `0 and `1. Since the

only difference between these parameters is in the pruning threshold, in practice, one may

simply stick to `0 regularization and just fine-tune the hyper-parameters.

Secondly, we experiment our method on ResNet18 and the CIFAR10 data set. The results

are displayed in Table 3.2. The base model was trained on 200 epochs using standard SGD

method with initial learning rate 0.1, which decays by a factor of 10 at the 80th, 120th, and

160th epochs. For the RVSM method, we use `0 regularization and set λ = 1.e-6, β = 8.e-2.

For ADMM, we set the pruning threshold to be 60% and ρ =1.e-2. The ADMM method

implemented here is per [78], an “empirical variation” of the true ADMM (Eq. 3.11). In
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particular, the arg min update of wt is replaced by a gradient descent step. Such “modified”

ADMM is commonly used in practice on DNN.

It can be seen in Table 3.2 that RVSM runs quite effectively on the benchmark deep net-

work, promote much better sparsity than ADMM (93.70% vs. 47.08%), and has slightly

better performance. The sparsity here is the percentage of zero components over all network

weights.

Table 3.1: Sparsity and accuracy of RVSM under different penalties on VGG-16 on CIFAR10.

Penalty Accuracy Sparsity

Base model 93.82 0

`1 93.7 35.68

T`1 93.07 63.34

`0 92.54 86.89

Table 3.2: Comparison between ADMM and RVSM (`0) for ResNet18 training on the CI-
FAR10 dataset.

ResNet18 Accuracy Sparsity

SGD 95.07 0

ADMM 94.84 47.08

RVSM (`0) 94.89 93.70
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Chapter 4

Generalization of RVSM

4.1 Structured Pruning and Multi-layer Network

4.1.1 The Relaxed Group-wise Splitting Method

In this section, we generalize the framework of RVSM to structured pruning. In the previous

chapter, we showed that RVSM can greatly reduce the number of floating point operations

(FLOPs) in a network. However, to actually prune and reduce the size of a DNN, it is

more convenient if certain structures (for example channels, filters,...) of the network are

fully zero. Depending on the hardware limitation, one may choose to prioritize latency over

model size, or vice versa.

Consider a one-layer convolution network (not necessarily non-overlap) with weight W and

loss function f(W ). Consider the minimization problem on the Lagrangian:

Lβ(W ,U) = f(W ) + λP (U) +
β

2
‖W −U‖22 (4.1)
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where P (U) is some regularization function. SupposeW has L channels and letW1,W2, ...,WL

(resp. U1, ...,UL) be the channels of W (resp. U). Let P (·) be the Group-Lasso norm [69],

equation (4.1) becomes

Lβ(W ,U) = f(W ) + λ
L∑
i=1

‖Ui‖2 +
β

2
(
L∑
i=1

‖Wi −Ui‖22). (4.2)

Let Ig be the indices of W in Wg. The solution to

U ∗g = arg min
Ug

λ‖Ug‖2 +
β

2

∑
i∈Ig

‖Wi,g −Ui,g‖22

 (4.3)

is a soft-thresholding operation:

U∗g = ProxGL,λ/β(Wg) :=
Wg

‖Wg‖2
max

(
‖Wg‖2 −

λ

β
, 0

)
(4.4)

Thus, we can extend RVSM to channel pruning by repeatedly minimizing each group Ug,

for g = 1, ..., L, and applying gradient descent (of the Lagrangian) on W . The steps are

described in Algorithm 3.

Algorithm 3 RGSM

Input: η, β, λ, maxepoch, maxbatch
Initialization: W 0,U 0

for t = 0, 1, 2, ...,maxepoch do
for batch = 1, 2, ...,maxbatch do
W t+1 ←W t − η∇f(W t)− ηβ(W t −U t)
for g = 1, 2, ..., L do
U t+1
g ← arg minUg Lβ(W t,U) = ProxGL,λ/β(W t

g )
end for

end for
end for
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Another useful penalty P (·) is the Group-`0 norm: ‖W ‖G`0 =
∑L

g=1 1{‖Wg‖2 6=0}. Under the

Group-`0 norm, the solution to

U ∗g = arg min
Ug

λ1{‖Ug‖2 6=0} +
β

2

∑
i∈Ig

‖Wi,g −Ui,g‖22

 (4.5)

is a hard-thresholding operation:

U ∗g = ProxG`0,λ/β(Wg) := Wg1{‖Wg‖2>
√

2λ/β} (4.6)

and Algorithm 3 can be modified accordingly.

In a similar manner, RVSM/RGSM can be extended to multi-layer DNN by repeatedly ap-

plying the algorithm to each layer separately. With some extra assumption on the regularity

of the gradient, one can extend the proof in chapter 3 to a general DNN.

4.1.2 Convergence Analysis

We discuss and give a sketch of proof for the convergence result of a multi-layer DNN. The

detailed proof is similar to chapter 3.

Assumption 1. Let W1,W2, ...,WM be the weights in the L layers of a DNN with population

loss f(W1,W2, ...,WM). Then there exists a positive constant L such that for all t,

‖∇f(...,W t+1
j , ...)−∇f(...,W t

j , ...)‖ ≤ L‖W t+1
j −W t

j ‖ (4.7)

for j = 1, 2, ...,M .

Assumption 1 is a weaker version of that made by [66, 59], in which the empirical loss

function is assumed to be smooth in both the input x and parameters W . Here we only

66



require the population loss to be smooth in each layer of the DNN, in the region of iterations.

An important consequence of Assumption 1 is:

f(..,W t+1
j , ...)−f(...,W t

j , ...) ≤ ∇f(...,W t
j , ...)·(...,W t+1

j −W t
j , ...)+

L

2
‖W t+1

j −W t
j ‖2 (4.8)

Theorem 4.1. Suppose Assumption 1 holds, and Algorithm 3 is initiated with step size

η < 2
β+L

. Then the Lagrangian Lβ(W t,U t) decreases monotonically and converges sub-

sequentially to a stationary point (W̄ , Ū).

Sketch of Proof: Since RGSM is applied sequentially on each layer, it suffices to consider

a one layer network and show Lβ(W t+1,U t+1) ≤ Lβ(W t,U t). Note that for each group

weight, the update of U t
g decreases the Lagrangian. Therefore Lβ(W t,U t+1) ≤ Lβ(W t,U t).

Using a similar argument to section 3 and assumption 1, one can show Lβ(W t+1,U t+1) ≤

Lβ(W t,U t). This concludes the proof.

4.1.3 Numerical Experiments

First, we implement RGSM on LeNet [35] on the MNIST dataset. The model was trained

for 100 epochs using Stochastic GD with momentum 0.9, weight decay 5.e-4, and initial step

size 0.1, which is divided by 10 at epoch 60. The results are displayed in Table 4.1. RGSM

can achieve higher channel sparsity than [69], with very little performance loss. Notice

that a channel sparsity of 71.43% is the highest possible value for LeNet, as there are only

7 channels across the two convolution layers. Therefore, we have shown that RGSM can

optimally reduce each convolution layer to one non-zero channel.
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Table 4.1: Accuracy and channel sparsity of RGSM on LeNet and MNIST, with parameters
β = 1 and λ = 1.

Penalty Accuracy Channel Sparsity

Base model 99.1 0

RGSM (GL) 98.74 71.43

Next, we extend our experiments on two other standard networks: ResNet18 and VGG16

on the CIFAR10. These models were trained on 200 epochs using Stochastic GD with

momentum 0.9, weight decay 5.e-4, and initial step size 0.1, which decays by a factor of 10

at epochs 100 and 160. The results are displayed in Table 4.2. For both models, RGSM can

maintain accuracy within 0.5% of the base model, while greatly improving channel sparsity.

For ResNet18, almost half (45.8%) of the channels can be pruned off with minimal loss to

performance. And since VGG16 is a much larger network, channel sparsity

Table 4.2: Accuracy and channel sparsity of RGSM on ResNet18 and VGG16, on CIFAR10.

Model Penalty β λ Accuracy Channel Sparsity

ResNet18 Base model 1 0 94.97 0

RGSM (GL) 1 1.e-3 94.74 45.8

VGG16 Base model 1 0 93.94 0

RGSM (GL) 1 1.e-3 93.68 69.0

4.1.4 On The Modern Approach to Pruning

Traditionally, the pruning pipeline involves three major steps: train; prune; and optimize

(which may involves retraining). Recently, [41] proposed a new approach: It is better to

start with a pruned model and retrain from scratch. Using this method, one can achieve

better performance (both accuracy and sparsity) than many modern post-training pruning
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techniques. In this section, we compare RGSM with this training-from-scratch approach on

some standard networks and dataset. Notice that RGSM does not fit into either of these

methods; as it trains, prunes, and optimizes the model in one single iteration.

An important question in the implementation of [41] is: Before retraining from scratch,

how do we prune a model? If one trains a model until convergence, prunes, and retrains,

then this approach is no different than the traditional working pipeline. On the other hand,

random initialization pruning requires careful consideration for the network structure. A

fixed percentage pruning in each layer is certainly not ideal, as some layers contain more

important channels than others.

One notable method for channel selection is Network Slimming [40]. We tested this approach

against RGSM for VGG-16 on CIFAR10. With post-training pruning, Network Slimming

fails to compile the model at 70% channel sparsity. Their implementation results in layers

with 0 channels, thus giving invalid configuration for rebuilding and retraining. With random

weight initialization, the results are shown in Table 4.3. RGSM consistently outperforms

retrain-from-scratch with Network Slimming at all levels, even at 70% RGSM vs. 50% NS

channel sparsity (93.62% vs. 90.91% accuracy).

We also include in Table 4.3 the implementation of `1-norm pruning [37]. This is a standard

train-prune-optimize approach, where the optimization step involves some retraining. It can

be seen that RGSM gives better result in both accuracy (93.62% vs. 93.30%) and sparsity

(70% vs. 64%).

Finally, as pointed out by [70], each layer may have a different number of unimportant

channels. For example, with ResNet18, the last two layers contain so many unimportant

channels, over 90% of which could be pruned off; for other layers, this number can be as

low as under 10%. With or without retraining, choosing the correct channels to prune is a

69



Table 4.3: Performance of RGSM against some state-of-the-art pruning algorithms, for VGG-
16 on CIFAR10.

VGG-16 Sparsity Accuracy
Baseline 0 93.96

Network slimming 50% 90.91
Network slimming 60% 90.27
Network slimming 70% 71.88
`1-norm pruning 64% 93.30

RGSM 70% 93.62

critical step for model compression. We have shown that RGSM can effectively accomplish

this task while also out-performing many state-of-the-art techniques.

4.2 Pruning Robustly Trained Network

In general, networks that are trained against adversarial attacks are less sparse than those

naturally trained (Figure 1.2). As a result, traditional post-training pruning methods do not

work as well on AT models. In this section, we discuss the common techniques in generating

AT models, and show that RVSM/RGSM can still effectively sparsify such networks.

4.2.1 Overview

First, we go over some common adversarial attacks. We focus on the `∞ norm based un-

targeted approach. For a given image-label pair {x, y} and a network with weights w whose

output is F (x,w):

• Fast gradient sign method (FGSM) searches an adversarial image x′ by maximizing the

loss function L(x′, y) = L(F (x′,w), y)), subject to the constraint ‖x′ − x‖∞ ≤ ε, where

ε is the maximum perturbation. Linear approximation method shows that the optimal
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adversarial image is

x′ = x+ ε · sign (∇xL(x, y)) .

• Iterative FGSM (IFGSMM) [19] iterates FGSM M times with step size α and clip the

perturbed image on each step as

x(m) = Clipx,ε

{
x(m−1) + α · sign

(
∇x(m−1)L(x(m−1), y)

)}
where m = 1, 2, ...,M , with x(0) = x and x(M) = x′.

• C&W attack [10] searches the adversarial image by solving

min
δ
||δ||∞, subject to F (w,x+ δ) = t, x+ δ ∈ [0, 1]d,

where δ is the perturbation and t is the target label.

Recently, [22, 72, 55] showed that there is a relationship between the sparsity of weights

in a DNN and its adversarial robustness. Under certain conditions, increasing a model’s

sparsity can also improve its robustness. For practical implementation, [21] considered a

low-rank form of the DNN weight matrix with `0 constraints on the matrix factors in the

adversarial training setting. The training algorithm used is a projected gradient descent

(PGD) [45] based on finding the worst adversary. This method, however, only applies to the

unstructured (component-wise) setting.

We consider a class of Neural ordinary differential equations (ODE) [11]: the Feynman-Kac

formalism principled Robust DNN’s [65]. Neural ODE is a DNN structure that uses an ODE

to describe the data flow of each input data, rather than having a concrete definition for

each layer. Specifically, [65, 64, 39] use the theory of transport equation (TE) to model the
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flow for the whole input distribution. In particular, from the TE viewpoint, [65] modeled

training ResNet [25] as finding the optimal control of the following TE:



∂u
∂t

(x, t) +G(x,w(t)) · ∇u(x, t) = 0, x ∈ Rd,

u(x, 1) = g(x), x ∈ Rd,

u(xi, 0) = yi, xi ∈ T, with T being the training set.

(4.9)

where G(x,w(t)) encodes the architecture and weights of the underlying ResNet, u(x, 0)

serves as the classifier, g(x) is the output activation of ResNet, and yi is the label of xi.

Regarding robustness, [65] interpreted adversarial vulnerability of ResNet as arising from

the irregularity of u(x, 0) of the above TE. To enhance u(x, 0)’s regularity, one can add

a diffusion term, 1
2
σ2∆u(x, t), to the governing equation of (4.9) which resulting in the

convection-diffusion equation (CDE). By the Feynman-Kac formula, u(x, 0) of the CDE can

be approximated by the following two steps:

• Modify ResNet by injecting Gaussian noise to each residual mapping;

• Average the output of n jointly trained modified ResNets.

Let EnnResNet denote this ensemble of n ResNets. It was shown in [65] that EnResNet can

improve both natural and robust accuracies of the AT networks.
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4.2.2 Regularity and Sparsity of the Feynman-Kac Formalism Prin-

cipled Robust DNNs’ Weights

From a partial differential equation (PDE) viewpoint, a diffusion term to the governing

equation (4.9) not only smooths u(x, 0), but can also enhance regularity of the velocity

field G(x,w(t)) [34]. For the DNN counterpart, we expect that when we plot the weights

of EnResNet and ResNet at a randomly selected layer, the pattern of the former one will

look smoother than the latter. To validate this, we follow the same AT with the same

parameters that were used in [65] to train En5ResNet20 and ResNet20, resp. After training,

we randomly select and plot the weights of a convolutional layer of ResNet20 whose shape is

64×64×3×3, and plot the weights at the same layer of the first ResNet20 in En5ResNet20.

As shown in Figure 4.1, most of En5ResNet20’s weights are close to 0, and they are more

regularly distributed in the sense that the neighboring weights are closer to each other than

ResNet20’s weights. The complete visualization of this randomly selected layer’s weights is

shown in section A.1.

(a) ResNet20 (AT) (b) En5ResNet20 (AT)

Figure 4.1: Weights visualization

Figure 4.2 shows the weight plot of this convolution layer. The weights of En5ResNet20 are

more concentrated around zero than that of ResNet20.
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(a) ResNet20 (AT) (b) En5ResNet20 (AT)

Figure 4.2: Histogram of weights.

Our approach is to apply the RVSM/RGSM algorithm together with robust PGD training

to train and sparsify the model from scratch. Specifically, at each iteration, we apply a PGD

attack to generate the adversarial image x′, which is then used in the forward-propagation

process to generate prediction y′. The back-propagation process will modify loss function to

an appropriate Lagrangian and apply RVSM/RGSM accordingly to update the model.

4.2.3 Numerical Results

In this section, we verify that:

• RVSM/RGSM is efficient for unstructured/channel-wise pruning for the AT DNNs,

and in general outperforms ADMM-based [78] pruning algorithms.

• After pruning by RVSM and RGSM, EnResNet’s weights are significantly more sparse

than the baseline ResNet’s, and more accurate in classifying both natural and adver-

sarial images.

These two results show that a synergistic integration of RVSM/RGSM with the Feynman-Kac

formula principled EnResNet can produce models that meet both sparsity and robustness.

We perform adversarial training by PGD integrated with RVSM/RGSM/ADMM on-the-fly.

For all the experiments below, we run 200 epochs of the PGD (10 iterations of the iterative
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fast gradient sign method (IFGSM10) with α = 2/255, ε = 8/255, and an initial random

perturbation of magnitude ε). The initial learning rate is 0.1 and decays by a factor of 10 at

the 80th, 120th, and 160th epochs, and the RVSM/RGSM/ADMM sparsification takes place

in the back-propagation stage. We split the training data into 45K/5K for training and

validation, and the model with the best validation accuracy is used for testing. We test the

trained models for both natural accuracy (on clean images) and robustness (against FGSM,

IFGSM20, and C&W attacks with the same parameters as that used in [65, 75, 45]). We

denote the accuracy on the clean images and under the FGSM, IFGSM20 [19], C&W [10], and

NAttack [38] attacks as A1, A2, A3, A4, and A5, respectively. We use sparsity for RVSM

and channel sparsity for RGSM to measure the performance of the pruning algorithms, where

sparsity is defined to be the percentage of zero weights, and channel sparsity is the percentage

of channels whose weights’ `2 norm is less than 1.e− 15.

Model Compression for AT ResNet and EnResNets

First, we show that RVSM is efficient to sparsify ResNet and EnResNet. Table 4.4 shows

performance of ResNet20 and En2ResNet20 under the unstructured sparsification with λ =

1.e−6 and varying β. Notice that En2ResNet20 is has better sparsity, accuracy, and robust-

ness than to the baseline ResNet20. For instance, when β = 0.5, En2ResNet20’s weights are

16.42% more sparse than ResNet20’s (56.34% vs. 39.92%). Moreover, En2ResNet20 boost

the natural and robust accuracies of ResNet20 from 74.08%, 50.64%, 46.67%, and 57.24% to

78.47%, 56.13%, 49.54%, and 65.57%, respectively.

Second, we measure the performance of RGSM in the channel pruning setting. We lists

the accuracy and channel sparsity of ResNet20, En2ResNet20, and En5ResNet20 in Ta-

ble 4.5. Without any sparsification, En2ResNet20 improves the four type of accuracies by

4.27% (76.07% vs. 80.34%), 5.87% (51.24% vs. 57.11%), 2.77% (47.25% vs. 50.02%),

and 7.47% (59.30% vs. 66.77%), respectively. For RGSM with β = 1, λ1 = 5e − 2, and
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Table 4.4: Accuracy and sparsity of ResNet20 and En2ResNet20 under RVSM, with λ =
1.e− 6 and varying β.

ResNet20 En2ResNet20

β A1 A2 A3 A4 Sparsity A1 A2 A3 A4 Sparsity

n/a 76.07 51.24 47.25 59.30 0 80.34 57.11 50.02 66.77 0

0.01 70.26 46.68 43.79 55.59 80.91 72.81 51.98 46.62 63.10 89.86

0.1 73.45 49.48 45.79 57.72 56.88 77.78 55.48 49.26 65.56 70.55

0.5 74.08 50.64 46.67 57.24 39.92 78.47 56.13 49.54 65.57 56.34

λ2 = 1.e−5, both natural and robust accuracies of ResNet20 and En2ResNet20 remain close

to the baseline models, but En2ResNet20’s weights are 33.48% (41.48% vs. 8%) more sparse

than that of ResNet20’s. When we increase λ1 to 1.e − 1, both the accuracy and channel

sparsity gaps between ResNet20 and En2ResNet20 are enlarged. En5ResNet20 can future

improve both natural and robust accuracies on top of En2ResNet20. For instance, at ∼ 55%

(53.36% vs. 56.74%) channel sparsity, En5ResNet20 can improve the four types of accuracy

of En2ResNet20 by 4.66% (80.53% vs. 75.87%), 2.73% (57.38% vs. 54.65%), 2.86% (50.63%

vs. 47.77%), and 1.11% (66.52% vs. 65.41%), respectively.

Table 4.5: Accuracy and sparsity of different EnResNet20 under RGSM.

Net β λ1 λ2 A1 A2 A3 A4 A5 Channel Sparsity

ResNet20 n/a n/a n/a 76.07 51.24 47.25 59.30 45.88 0

1 5.e-02 1.e-05 75.91 51.52 47.14 58.77 45.02 8.00

1 1.e-01 1.e-05 71.84 48.23 45.21 57.09 43.84 25.33

En2ResNet20 n/a n/a n/a 80.34 57.11 50.02 66.77 49.35 0

1 5.e-02 1.e-05 78.28 56.53 49.58 66.56 49.11 41.48

1 1.e-01 1.e-05 75.87 54.65 47.77 65.41 46.77 56.74

En5ResNet20 n/a n/a n/a 81.41 58.21 51.60 66.48 50.21 0

1 1.e-02 1.e-05 81.46 58.34 51.35 66.84 50.07 19.76

1 2.e-02 1.e-05 80.53 57.38 50.63 66.52 48.23 53.36

Third, we show that an ensemble of small ResNets via the Feynman-Kac formalism performs

better than a larger ResNet of similar size in accuracy, robustness, and sparsity. We apply

adversarial training on En2ResNet20 and ResNet38 (∼ 0.54M and ∼ 0.56M parameters,
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respectively), with and without channel pruning. As shown in Table 4.6, under different sets

of parameters, after RGSM pruning, En2ResNet20 always has better channel sparsity than

ResNet38, and is also more accurate and robust. For instance, when we set β = 1, λ1 = 5e−2,

and λ2 = 1.e− 5, ResNet38 and En2ResNet20 achieve 17.67% and 41.48% channel sparsity,

respectively. Moreover, En2ResNet20 outperforms ResNet38 in the four types of accuracy

by 0.36% (78.28% vs. 77.92%), 3.02% (56.53% vs. 53.51%), 0.23% (49.58% vs. 49.35%), and

6.34% (66.56% vs. 60.32%), respectively. As shown in Figure 4.3, En2ResNet20’s channel

sparsity grows much faster than ResNet38’s. We verify this observation by plotting the

corresponding performances over 5 runs against different λ1 in Figure 4.4.

Table 4.6: Accuracy and sparsity of En2ResNet20 and ResNet38 under RVSM.

Net β λ1 λ2 A1 A2 A3 A4 Channel Sparsity

En2ResNet20 n/a n/a n/a 80.34 57.11 50.02 66.77 0

ResNet38 n/a n/a n/a 78.03 54.09 49.81 61.72 0

En2ResNet20 1 5.e-02 1.e-05 78.28 56.53 49.58 66.56 41.48

ResNet38 1 5.e-02 1.e-05 77.92 53.51 49.35 60.32 17.67

En2ResNet20 1 1.e-01 1.e-05 76.30 54.65 47.77 65.41 56.74

ResNet38 1 1.e-01 1.e-05 72.95 49.78 46.48 57.92 43.80

Figure 4.3: Sparsity of En2ResNet20 and ResNet38 under different parameters λ1.
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Figure 4.4: Accuracy of En2ResNet20 and ResNet38 under different parameters λ1.

Table 4.7: Contrasting ADMM versus RVSM (unstructured) and RGSM (channel) for the
robustly trained ResNet20.

Unstructured Pruning Channel Pruning

A1 A2 A3 A4 Sp. A1 A2 A3 A4 Ch. Sp.

RVSM/RGSM 70.26 46.68 43.79 55.59 80.91 71.84 48.23 45.21 57.09 25.33

ADMM 71.55 47.37 44.30 55.79 10.92 63.99 42.06 39.75 51.90 4.44

RVSM/RGSM versus ADMM

In this subsection, we compare the performance of our methods against the classical ADMM

[78] for both unstructured and channel pruning settings. For the robustly trained ResNet20,

and we will show that RVSM/RGSM can promote much higher sparsity with less natural

and robust accuracy degradation than ADMM. We list the performances and sparsities

78



of ResNet20 under ADMM, RVSM, and RGSM in Table 4.7. For unstructured pruning,

ADMM retains slightly better natural (∼ 1.3%) and robust (∼ 0.7%, ∼ 0.5%, and 0.2% under

FGSM, IFGSM20, and C&W attacks) accuracies. However, RVSM gives much better sparsity

(80.91% vs. 10.89%). In the channel pruning setting, RGSM significantly outperforms

ADMM in all categories, with accuracy improving by at least 5.19% and channel sparsity

increasing from 4.44% to 25.33%. Figure 4.5 shows the histograms of channel norms in

ResNet20 under RGSM and ADMM. The result agrees with Chapter 3, and verifies our

argument from Section 3.1.4. Here, the channel norm is defined to be the `2 norm of the

weights in each channel of the DNN [69].
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Figure 4.5: Channel norms of the AT ResNet20 under RGSM and ADMM.

4.2.4 Beyond CIFAR10

We further show the advantage of applying RVSM/RGSM on EnResNet in compressing and

improving accuracy, robustness on the CIFAR100 dataset. The results of ResNet20 and

En2ResNet20 are listed in Table 4.8. For (β, λ1, λ2) = (1, 5.e − 2, 1.e − 5), RGSM almost
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preserves the performance of the baseline model, and also improves channel sparsity by 7.11%

for ResNet20, and 16.89% for En2ResNet20. As we increase λ1 to 0.1, the channel sparsity

becomes 18.37% for ResNet20 and 39.23% for En2ResNet20, with less than 3% performance

degradation. Without any channel pruning, En2ResNet20 improves natural accuracy by

4.66% (50.68% vs. 46.02%), and robust accuracies by 5.25% (30.2% vs. 24.77%), 3.02%

(26.25% vs. 23.23%), and 7.64% (40.06% vs. 32.42%), respectively, under the FGSM,

IFGSM20, and C&W attacks. Even in very high channel sparsity scenario (λ1 = 0.05),

En2ResNet20 still dramatically increase A1, A2, A3, and A4 by 2.90%, 4.31%, 1.89%, and

5.86%, resp. These results are similar to the one obtained on the CIFAR10 in Table 4.5, and

further confirm that RGSM together with the Feynman-Kac formalism principled ResNets

ensemble can significantly improve both natural and robust accuracy, as well as sparsity of

the baseline ResNets.

Table 4.8: Accuracy and sparsity of different Ensembles of ResNet20’s on the CIFAR100.

Net β λ1 λ2 A1 A2 A3 A4 Ch. Sp.

ResNet20 n/a n/a n/a 46.02 24.77 23.23 32.42 0

1 5.e-02 1.e-05 45.74 25.34 23.55 33.53 7.11

1 1.e-01 1.e-05 44.34 24.46 23.12 32.38 18.37

En2ResNet20 n/a n/a n/a 50.68 30.2 26.25 40.06 0

1 5.e-02 1.e-05 50.56 30.33 26.23 39.85 16.89

1 1.e-01 1.e-05 47.24 28.77 25.01 38.24 39.23
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Chapter 5

Conclusion

We studied the enhanced diffusivity in the perturbed Senile Reinforced Random Walk model.

The SeRW model in one dimension with identity reinforcement function was found to be

diffusive when perturbed with a small probability δ of breaking out of the last traversed

edge, no matter how small δ is. The enhanced diffusivity is logarithmically close to residual

diffusivity as δ tends to zero. We studied a few variations of the perturbed models, where

the perturbation δ ξn is stochastic, and the distribution of ξn may or may not depend on

n. These models intend to create a “fat tail” as n increases so it is more likely for the

walk to break out of the last traversed edge. For most cases, the enhanced diffusivity is

νδ = O
(

1
| log δ|

)
. The highest enhanced diffusivity is νδ = O

(
1

log | log δ|

)
. This was achieved

when ξn has a very fat tail, fξn(x) = O
(

1
x(log x)2

)
, which is much fatter than that of the

Cauchy distribution. In higher dimensions, the baseline SeRW with identity reinforcement

function is already diffusive and the enhanced diffusivity reaches a rate as high as O(log−2 δ).

Next, we studied the problem of complexity reduction for deep neural networks (DNN’s)

via regularization. We propose a Relaxed Variables Splitting Method (RVSM) to regularize

DNN’s and improve sparsity in the network weights. We proved the global convergence of
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RVSM for a one-layer convolution network on a regression problem, analyzed the sparsity

of the limiting weight vector and its error estimate from the ground truth (i.e. the global

minimum), and demonstrated the effectiveness on training multi-layer models via numerical

experiments. The proof used geometric argument to establish angle and Lagrangian descent

properties of the iterations thereby overcame the non-existence of gradient at the origin of

the population loss function. Our experimental results provided additional support for the

effectiveness of RVSM via `0, `1 and T`1 penalties on standard DNN’s on the CIFAR10

dataset.

Finally, we generalized the RVSM algorithm to structured pruning and studied its application

to adversarial training of DNN’s. With structured sparsity, the non-essential weight groups

can be safely pruned off without any performance degradation, resulting in a model with

smaller size and faster inference rate. We showed through experiments that our generalization

holds, one can prune off 70% of the channels in VGG16 with minimal accuracy loss on the

CIFAR10 dataset. For robustly trained network, we discussed some common adversarial

attacks and how our method can be incorporated into the adversarial training process. For

numerical experiments, we tested our approach on the Feynman-Kac formalism principled

ResNet ensembles. The result verified that one can create a model that is both sparse and

robust via RVSM/RGSM: Compared to traditional ResNets that are robustly trained, our

method results in a model with half the size and better performance, in both natural accuracy

and robustness.

Our proposed method of DNN’s regularization combines the standard three-step pruning

pipeline (train, prune, fine-tune) into one, and provides a competitive alternative to other

state-of-the-art pruning techniques. One can apply quantization after regularization to fur-

ther compress the network. For example, on the CIFAR10, the VGG16 can be reduced over

3x in size using RGSM; with 8-bit quantization, the model can be further compressed by 4x,

resulting in a model that is over 12x smaller, and has much faster inference rate.
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[34] O. Ladyženskaja, V. Solonnikov, and N. Ural’ceva. Linear and quasi-linear equations
of parabolic type, volume 23. American Mathematical Soc., 1988.

[35] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

[36] Y. LeCun, J. Denker, and S. Solla. Optimal brain damage. In Proceedings of the 2nd
International Conference on Neural Information Processing Systems, NIPS’89, page
598–605, Cambridge, MA, USA, 1989. MIT Press.

[37] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient
convnets. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017.

85



[38] Y. Li, L. Li, L. Wang, T. Zhang, and B. Gong. NATTACK: learning the distributions
of adversarial examples for an improved black-box attack on deep neural networks.
In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 3866–3876. PMLR, 2019.

[39] Z. Li and Z. Shi. Deep residual learning and pdes on manifold. arXiv preprint
arXiv:1708.05115, 2017.

[40] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning efficient convolutional
networks through network slimming. In ICCV, 2017.

[41] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of network
pruning. In ICLR, 2019.

[42] C. Louizos, M. Welling, and D. Kingma. Learning sparse neural networks through
l 0 regularization. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, 2018.

[43] J. Lyu, J. Xin, and Y. Yu. Computing residual diffusivity by adaptive basis learning via
spectral method. Numerical Mathematics: Theory, Methods & Applications, 10(2):351–
372, 2017.

[44] J. Lyu, J. Xin, and Y. yu. Residual diffusivity in elephant random walk models with
stops. Communications in Mathematical Sciences, 16, 05 2017.

[45] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In International Conference on Learning
Representations, 2018.

[46] A. Majda and P. Kramer. Simplified models for turbulent diffusion: Theory, numerical
modelling, and physical phenomena. Physics Reports, 314:237–574, 1999.

[47] I. MKL-DNN. Intel(r) math kernel library for deep neural networks. https://intel.

github.io/mkl-dnn/index.html.

[48] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani. Deep learning for iot big
data and streaming analytics: A survey. IEEE Communications Surveys & Tutorials,
20(4):2923–2960, 2018.

[49] D. Molchanov, A. Ashukha, and D. Vetrov. Variational dropout sparsifies deep neural
networks. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, page 2498–2507, Sydney, NSW, Australia, 2017. JMLR.org.
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Appendix A

Appendix Title

A.1 More Visualizations of the DNNs’ Weights

In section 4.2.2, we showed some visualization results for a portion of the weights of a ran-

domly selected convolutional layer of the robustly trained ResNet20 and En5ResNet20. The

complete visualization of this layer is shown in Figs. A.1 and A.2. It can be seen that

En5ResNet20’s weights generally have smaller magnitude and more regular weight distribu-

tion than that of ResNet20.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.1: Weights of a randomly selected convolutional layer of the PGD AT ResNet20.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.2: Weights of the PGD AT En5ResNet20 at the same layer as that shown in
Figure A.1.
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