
Performance Analysis, Design Considerations, and Applications of
Extreme-scale In Situ Infrastructures

Utkarsh Ayachit†, Andrew Bauer†, Earl P. N. Duque§, Greg Eisenhauer¶, Nicola Ferrier‡, Junmin Gu∗, Kenneth
E. Jansen‖, Burlen Loring∗, Zarija Lukić∗, Suresh Menon¶, Dmitriy Morozov∗, Patrick O’Leary†, Reetesh Ranjan¶,
Michel Rasquin∗∗, Christopher P. Stone††, Venkat Vishwanath‡, Gunther H. Weber∗, Brad Whitlock§, Matthew
Wolf¶, K. John Wu∗, and E. Wes Bethel∗

Abstract— A key trend facing extreme-scale computational science is the widening gap between computational and I/O rates, and the
challenge that follows is how to best gain insight from simulation data when it is increasingly impractical to save it to persistent storage
for subsequent visual exploration and analysis. One approach to this challenge is centered around the idea of in situ processing, where
visualization and analysis processing is performed while data is still resident in memory. This paper examines several key design and
performance issues related to the idea of in situ processing at extreme scale on modern platforms: scalability, overhead, performance
measurement and analysis, comparison and contrast with a traditional post hoc approach, and interfacing with simulation codes. We
illustrate these principles in practice with studies, conducted on large-scale HPC platforms, that include a miniapplication and multiple science
application codes, one of which demonstrates in situ methods in use at greater than 1M-way concurrency.

1 Introduction

As Hamming observed in 1962, the purpose of computing is insight,
not numbers [1]. However, the widening gap between computational
capacity and I/O capacity results in an increasingly challenging scenario
for gaining insight. As the amount of data computed increases, less
and less of it is actually stored and analyzed. It is this concern, well
documented by experts in the field (c.f., [2]), that motivates this work.

The focus of this paper is on examining issues related to solving
that problem: how to enable deriving insight despite the diminishing
opportunity to do so. So-called in situ methods, those that perform anal-
ysis and visualization on computed data while still resident in memory,
have shown promise for some time, and are becoming an increasingly
important part of the computational landscape as the FLOPS-to-I/O
gap continues to widen. Recent work in this space includes examples
of in situ methods being applied to various computational science prob-
lems, as well as the emergence of production-quality in situ software
infrastructure.

In this paper, we examine and provide insight into key questions
related to the design, use, and application of in situ methods and in-
frastructure. Given that computational science applications tend to be
“memory hungry” and strive to achieve the best possible performance

∗ Bethel, Gu, Loring, Lukić, Morozov, Weber, and Wu are with Lawrence
Berkeley National Laboratory, email:
[ewbethel,jgu,bloring,zlukic,dmorozov,ghweber,kwu]@lbl.gov.
† Ayachit, Bauer, and O’Leary are with Kitware, Inc., email:
[utkarsh.ayachit,andy.bauer,patrick.oleary]@kitware.com.
‡ Ferrier and Vishwanath are with Argonne National Laboratory, email:
[nferrier, venkat]@anl.gov.
§ Duque and Whitlock are with Intelligent Light, email:
[epd,bjw]@ilight.com.
¶ Eisenhauer, Wolf, Menon and Ranjan are with Georgia Tech, email:
[eisen,mwolf]@cc.gatech.edu;
[suresh.menon,reetesh.ranjan]@ae.gatech.edu.
‖ Jansen is with U. Colorado Boulder, email: jansenke@colorado.edu.
∗∗ Rasquin is with Cenaero and U. Colorado Boulder, email:
michel.rasquin@cenaero.be.
†† Stone is with Computational Science and Engineering, LLC, email:
chris.stone@computational-science.com.

SC16; Salt Lake City, Utah, USA; November 2016
978-1-4673-8815-3/16/$31.00 c©2016 IEEE

(runtime, use of system resources like memory), how much overhead
is associated with use of in situ methods and infrastructure? How do
these characteristics change over varying levels of concurrency? Is
there variation in these characteristics across platforms? Is it possible
to achieve some level of portability, where a given in situ method might
be used in multiple in situ infrastructures, or, conversely, might it be
possible for a given computational science application to make use of
any number of in situ infrastructures with little or no code modification?

Our approach to answering these performance-related questions
is to conduct analysis studies that use a lightweight miniapplication,
multiple in situ infrastructures, and multiple in situ methods of varying
computational complexity. We evaluate the performance of these codes
on multiple contemporary HPC platforms and at varying levels of
concurrency, taking performance measurements that provide insights
into questions related to their runtime and memory overhead. Next, we
extend these studies by applying the same methodology with multiple
contemporary computational science codes run at high concurrency on
multiple contemporary HPC platforms. The concurrency levels range
from routine, from thousands to tens of thousands cores, to the extreme,
where one application is run at million-way concurrency.

For the portability question, our approach centers around the idea of
a lightweight, generic data interface. This interface provides the ability
to bridge between simulation and in situ infrastructure or methods in a
way that supports highly efficient, zero-copy operation. We show that
this approach results in negligible performance overhead even at high
concurrency, and has the potential for broad applicability.

The contributions of this paper are as follows. We present a com-
prehensive study showing the cost of in situ at scale on modern HPC
platforms. For this study, we use a carefully designed miniapplica-
tion coupled with multiple in situ infrastructures invoking multiple in
situ methods. The choice of miniapplication and in situ methods re-
flects design and execution patterns representative of common scientific
workloads. We present a new, generic in situ interface, which makes it
possible to instrument a simulation code once and then have it make
use of any number of in situ infrastructures. Additionally, developers
of in situ methods may write them once, and reasonably expect them to
run in any number of in situ infrastructures. Finally, we demonstrate
these methods and designs with three different science applications
run at scale on current extreme-scale computational platforms. One of
these examples is run at greater than 1M-way concurrency.

2 Background and PreviousWork

2.1 Terminology and Concepts

For the sake of brevity, we use the phrase scientific data management,
analysis/analytics, and visualization, and the acronym SDMAV, to refer
to any number of data-centric operations that could include visual-
ization; analysis; and data processing operations like transformations,

compression, subsetting, indexing.
Traditionally, the approach for performing SDMAV processing is a

post hoc process, whereby simulation output is first written to persistent
storage. Then, later, the SDMAV software will read the simulation
output from persistent storage then perform its task.

The opposite of post hoc is a process whereby SDMAV processing
happens without round-trip transit to persistent storage. There are many
different ways to perform this type of operation. In situ approaches
perform SDMAV operations on data while it is still resident in the same
physical memory used by the simulation. In transit approaches involve
some form of data movement from simulation memory to some other
location, where it is then subject to SDMAV processing. “Some other
location” could mean other nodes in the same system shared with the
simulation, or it could mean a completely different platform. Over time,
the phrase “in situ processing” has come to be generally accepted as an
umbrella term that refers to both kinds of processing, both in situ and
in transit.

We draw the distinction between in situ methods and in situ in-
frastructure. In situ methods are algorithms that perform some type
of SDMAV processing, such as a method for statistical analysis or a
method for visualization. An in situ infrastructure is more akin to a
framework in which an in situ method would exist and run. Typically,
but not always, the simulation code would interface to the method via
a framework, which is then responsible for activities (if needed) like
marshaling data movement, provisioning external resources, and so
forth. This importance of this distinction will become apparent in later
sections of this paper.

There are many more ways, or dimensions, that one can think about
in situ processing that go well beyond in situ vs. in transit. These
additional ways of thinking about the in situ space are summarized in
a 2016 EuroVis STAR report [3], and reflect the thinking of a rather
large group of SDMAV researchers [4].

2.2 Previous Work
2.2.1 Early In Situ Implementations

The idea of in situ processing is not new, though it has received renewed
interest in recent years due to broad recognition of the widening gap
between our ability to compute data and our ability to analyze it using
traditional post hoc approaches [2].

The idea of generating images without first writing data to persistent
storage is as old as the field of computer graphics itself. In what may be
the earliest known and documented example, Zajac, 1964 [5] computes
the orbital path of two bodies and generates movie frames on-the-fly
through a direct-to-film process. The NCAR Graphics Library [6],
originating in the 1960s, may be some of the earliest production-quality
“in situ infrastructure and methods”, and continues to be developed
and used by a world-wide community today. It consists of a set of
subroutine-callable methods for generating images/plots of scientific
data. The NCAR Graphics Library has been widely utilized for both in
situ and post hoc use cases.

2.2.2 Co-processing and Computational Steering

In the 1990s, the term “co-processing” was used to describe some-
thing very similar to what we refer to today as in situ processing. In
a survey work in this space, Heiland and Baker, 1998 [7], referred to
such technology as “co-processing systems”. That report focused on
systems/methods that support interactive computation, computational
monitoring and steering. The systems they surveyed—CUMULVS [8],
pV3 [9], AVS [10], and others—each have some visual data exploration
and analysis dimension. A year later, Mulder, et al., 1999 [11] per-
formed a similar survey that included several additional systems. These
studies were useful in terms of providing an inventory of systems and
their capabilities, but there was no concerted effort during this period
to study the scalability of these systems nor their overhead they add to
parallel simulation codes.

More recent work targets code development, execution, steering, and
SDMAV processing capabilities into a single environment. The Cactus
Code framework [12] consists of infrastructure for building codes
(the “flesh”) and then add-on components (the “thorns”) that provide

specific types of functionality. Cactus provides in situ visualization and
analysis capability through this thorn mechanism. For example, one
can view a Cactus-generated in situ visualization of simulation results
while it is running by pointing a browser at a URL that is specific and
unique to that simulation run. Similarly, SCIRun [13] is a problem
solving environment for interactive construction and in situ steering of
simulations.

2.2.3 Contemporary In Situ Frameworks

In the present day, there are four production-quality in situ infrastruc-
tures, GLEAN, Catalyst, Libsim, ADIOS, which are described below.
In brief, these four all run at scale on modern HPC platforms, and are
actively developed and supported efforts.

ParaView Catalyst [14] (aka Catalyst) is an in situ analysis and
visualization library that enables using ParaView’s visualization capa-
bilities in in situ workflows. Applications can use Catalyst to execute
complex analysis pipelines in step with the simulation, as well as con-
necting with the ParaView GUI for live, interactive visualization. To
minimize memory footprint, Catalyst libraries are available in various
flavors, called Editions [15], that only enable components of ParaView
used in the analysis pipelines.

Libsim [16, 17] is a library that makes available the full complement
of features from VisIt so they may be used in situ. Libsim enables VisIt
to connect interactively to running simulations for live exploration.
Libsim can also be used directly to set up visualizations or it can use
VisIt session files, which are XML files saved from the VisIt GUI,
which can specify more complex visualizations. Once visualizations
are set up, Libsim can save images for movie-making or it can save
reduced-size data extracts for post hoc analysis.

ADIOS [18, 19] is an adaptive I/O service that is designed to allow
applications to easily change between different I/O service providers.
Only a tweak to the input parameters is needed to swap methods. This
design allows for rapid conversion of post hoc analysis pipelines to
in situ, in transit, or hybrid solutions by using one of the memory-to-
memory “staging” methods, such as FlexPath or DataSpaces. The Flex-
Path transport used in this effort can support same-node, multi-node,
or even multi-machine deployment configurations. Unlike Catalyst
and Libsim, ADIOS does not include any of the analytics function-
ality itself; it marshals the memory and metadata to make such code
self-describing and adaptable to new situations. As such, it can partner
effectively with Catalyst, Libsim, and other analytics infrastructures to
provide whatever tools the scientist currently needs.

GLEAN [20] is a flexible and extensible framework that takes ap-
plication, analysis, and system characteristics into account to facilitate
simulation-time data analysis and I/O acceleration. The GLEAN in-
frastructure hides significant details from the end user, while at the
same time providing a flexible interface to the fastest path for their data
and analysis needs and, in the end, scientific insight. It provides an
infrastructure for accelerating I/O, interfacing to running simulations
for in transit analysis, and/or an interface for in situ analysis with zero
or minimal modifications to the existing application code base.

These contemporary in situ infrastructures share key traits with
historical systems for “co-processing” and “computational steering”.
First, they all have an architecture that enables SDMAV processing
but without writing data to persistent storage. In many cases, the
frameworks do support writing data to persistent storage, but doing so
is not a prerequisite for performing in situ SDMAV operations. Second,
they all are “frameworks” in which individual “methods” are executed,
including user-written methods. This architecture has proven useful in
that it is modular, to support expansion and growth of new methods.

In this paper, we are focusing on the in situ infrastructure, with an
eye towards gaining insight about key questions facing the community
as we move forward into the exascale regime, which is characterized by
increasing node-level and systemwide concurrency, shrinking per-core
memory, and a widening gap between computational and I/O rates.
These key questions focus on understanding the cost of using in situ
systems in terms of performance and resource utilization, portability,
scalability, and studies that include use at scale across multiple science
applications.

2.2.4 Overcoming the Limitations of In Situ Approaches

While the idea of performing SDMAV processing in situ to avoid the
cost of performing I/O is an attractive one, it does come with some limi-
tations. Specifically, one typically needs to set, a priori, the parameters
for the SDMAV operation. If performing visualization, for example,
then one would need to set the camera position, isocontouring level,
and so forth before running the simulation code. If those parameters
were set in a way that did not produce satisfying results, the simulation
would need to be rerun with new parameters for the in situ SDMAV
methods.

There is a substantial amount of prior work in this space going back
around two decades, all of which centers around the idea of computing
“explorable data products” that are much smaller than the full-resolution
data, and that support varying degrees of post hoc interactive explo-
ration.

Globus, 1995 [21] proposed a model where data extracts could be
generated in the simulation run to reduce the size of output, then later
processed to generate visuals. More recently, Ye et al., 2013 [22]
focused on facilitating flow-field visualization in an in situ setting,
where post hoc interactions focus on changing viewpoint, doing block
cutaways, or changing the lighting or color transfer function. Ahrens et
al., 2014 [23] explore extracting many images and creating animations
using the Cinema system.

While this research thrust of overcoming the limits of in situ methods
is certainly important in terms of usability, this set of topics is not the
primary focus of this paper. Methods that produce “explorable extracts”
will be run in situ, most likely using one of the infrastructures we study
(§2.2.3), and future work in this area will be shaped, in part, by an
understanding of the issues we study in this paper. Related, there has
been little or no work at all on temporal in situ analysis. To that end, one
of the in situ analysis methods we employ in our performance studies
uses temporal analysis. This method, an autocorrelation calculation,
performs a computation over time. It is described later in §3.3 and its
performance studied in §4.1.

2.2.5 Simplified In Situ Interfaces

Ours is not the first effort to look at a simplified interface to in situ frame-
works. Recent examples include Damaris/Viz [24], Freeprocessing [25]
and Strawman [26]. Damaris/Viz’s API has sharing semantics for ar-
rays to be used by both the simulation and the in situ application safely.
The allocation is done through Damaris/Viz and works most efficiently
when double-buffering is used when updating the simulation’s data
structures during time-stepping. Freeprocessing has the potential to
completely avoid instrumenting a simulation code while enabling in
situ computation. This is done by intercepting the results being written
to disk and using that to construct the grids and fields. This has the
potential for multiple data copies though as the simulation may make an
initial data copy to prepare it for a specific file format and then another
data copy from the file format to the in situ processing engine. Straw-
man supports Cartesian, rectilinear and unstructured grids and uses
Conduit’s [27] data model. It supports zero-copy arrays but requires a
matching array layout.

Our work differs in that we are focusing on implementations that are
computationally efficient and have a low-as-possible memory footprint.

Our approach to this issue (§3.2) offers some unique advantages and
capabilities. We leverage the VTK data model, which simplifies the
process of interfacing different infrastructures together while maintain-
ing computational efficiency. The sophisticated data model allows in
situ infrastructures (§§2.2.3) to be chained together in interesting and
desirable ways instead of each acting as individual data sinks. One of
our contributions is a detailed study that examines the overhead of such
an interface in terms of performance and memory footprint.

3 Implementation

3.1 Design Principles and Objective

The long-term goal of our work is to characterize the building blocks
to design and refactor analysis codes on diverse in situ infrastructures

as well as on a wide-variety of systems for diverse computational sci-
ence simulations. Doing so will enable analysis algorithms to fully
exploit the underlying concurrency and heterogeneity of the system. To
achieve this objective, one needs to consider the parallel algorithmic
patterns for our target science analysis; the implementation patterns to
extract high-level of concurrency on the underlying hardware; and the
in situ execution patterns to scale these analysis on the in situ infras-
tructures. Parallel algorithmic patterns define high-level abstractions to
exploit concurrency in analysis computation for execution on a parallel
machine such as structured and unstructured grids, spectral methods,
particle methods, Monte Carlo methods, and graph traversal, as well as
temporal dimensions of these. Implementation patterns help to realize
algorithmic patterns via parallel software constructs. Common imple-
mentation patterns include SPMD, Map/Reduce, Master/Slave, Bulk
Synchronous Parallel, Fork-Joins, and Task Lists. Execution patterns
expose the underlying in situ infrastructure for in situ analysis. The
goal is to understand the functional decomposition of the analysis and
map it on to the execution pattern for improved performance. To realize
this vision, we have designed an initial set of miniapplications and
analyses to help us understand this spectrum.

3.2 SENSEI Generic Data Interface
There are two main challenges to using in situ analysis for advanced
modeling and simulation workflows. First, on the simulation side,
is the complexity of instrumenting simulation codes to use any in
situ infrastructure. Presently, one has to instrument their simulation
codes separately for each of the infrastructures. Each infrastructure has
their own idiosyncrasies that the application developer has to endure,
including mapping simulation data structures to the target infrastructure.
Second, on the analysis side, analysis developers face the challenge
of having to decide on the infrastructure in which to implement their
analysis. It is not feasible to write analysis code once and use it in
various infrastructure without modifications.

Simulation In situ BridgeData
Adaptor

Analysis

Analysis
Adaptor

Histogram
Autocorrelation
Slice
...

Fig. 1: The in situ bridge uses two adaptors (data and analysis) to hide
complexity and enable write once use everywhere analysis.

The SENSEI generic data interface addresses both these key chal-
lenges. First, it provides application developers with a generic data
interface that they then tailor for a particular use. Second, it provides
analysis developers with a data model that they may use to write anal-
ysis routines. Both of these components are independent of the in
situ infrastructure being used and hence provide both the simulation
and the analysis routine isolation from which in situ infrastructure is
being used. For example, if the application is instrumented with the
SENSEI interface, application end-users can easily choose between
ParaView/Catalyst and VisIt/Libsim for generating visualizations in
situ. Furthermore, since ParaView/Catalyst and VisIt/Libsim both are
treated as analysis routines under SENSEI, these visualizations can be
run in situ, or in transit using ADIOS or GLEAN transparently.

This write once, use anywhere goal is only achievable when we
have a mutually agreed platform for communicating the data between
the simulation and analysis components – the data model. For the
SENSEI interface, we selected the VTK data model [28]. The VTK
data model is widely used in the scientific and engineering data analysis
and visualization community, leveraged by visualization tools like
ParaView [29] and VisIt [30] and hence already familiar to a broader
community.

To minimize effort and memory overhead when mapping memory
layouts for data arrays from applications to VTK, we enhanced the

VTK data model to support arbitrary layouts for multicomponent arrays.
VTK now natively supports the commonly encountered structure-of-
arrays and array-of-structures layouts. This allows for mapping data
arrays from application codes to the VTK data model without additional
memory copying (zero-copy).

Besides the data model, the other components that comprise the
SENSEI interface are simple and quite light weight. Fig. 1 shows the
main components of the SENSEI interface. The data adaptor provides
a mapping between simulation data structures and the VTK data model.
The analysis adaptor passes the data described in form of VTK data
objects to any analysis code, doing any necessary transformations. The
in situ bridge is a simple mechanism to assemble the analysis workflow,
i.e., to initialize the data adaptor and execute selected analysis routines.

To instrument an application with SENSEI, one provides a concrete
implementation for the data adaptor API. The data adaptor API pro-
vides the analysis code with access to mesh and attributes arrays as
needed. By providing an API that encourages lazy mapping to VTK
data model for the mesh and attribute arrays, the data adaptor avoids
any work to map simulation data to VTK data when not needed. Thus
when no analysis is enabled, the SENSEI instrumentation overhead is
almost nonexistent.

To add an analysis routine to SENSEI, one provides a concrete
implementation for the analysis adaptor API. The analysis adaptor is
provided an instance of the data adaptor that it may use to gain access
to the simulation data through VTK data model.

Finally, the in situ bridge is simply an API and the corresponding
implementation that the application developer implements to pass data
and control to SENSEI during the application execution. A typical
bridge implementation will initialize the data adaptor and one or more
analysis adaptors during the initialization phase of the simulation; then
for each time step pass the current simulation data arrays and any other
metadata to the data adaptor and call execute on the analysis adaptors.

The analysis adaptor is also the mechanism for the SENSEI interface
to connect with the different in situ infrastructures. For example, an
analysis adaptor may use ADIOS to save the data out to an ADIOS BP
file, or it may serve as a ParaView/Catalyst-based adaptor that starts
up ParaView/Catalyst to process the data using ParaView/Catalyst data
processing pipelines, including rendering.

Simulation

In Situ

GLEAN

Libsim

In Transit

GLEAN

End Points

GLEAN

Libsim

Fig. 2: The SENSEI generic data interface creates several possibilities
for in situ, in transit, in flight and hybrid analysis. In enables a developer
to instrument a simulation code once, then have access to multiple in
situ infrastructures.

Allowing additional in situ infrastructures to be coupled via the
SENSEI generic data interface, as depicted in Fig. 2, provides a number
of analysis techniques to map to future high-performance computing
architectures.

The current limitations of the SENSEI interface are an incomplete
data model and an immature analysis adaptor specification. The SEN-
SEI interface will truly be simpler when more complex simulation data
structures easily map to the SENSEI data model through the data adap-
tor. Although this study examined several analysis and visualization
use cases, this is just the tip of an iceberg of analysis techniques, and

the adaptor infrastructure must grow to accommodate the requirements
of the others.

3.3 Mini Application and In Situ Analysis Methods

As a prototypical data source, we implemented a miniapplication, an
MPI code in C++, that simulates a collection of periodic, damped, or
decaying oscillators. Placed on a grid, each oscillator is convolved
with a Gaussian of a prescribed width. The oscillator parameters are
specified as the input, which is read and broadcast from the root process.
The user also specifies the time resolution, duration of the simulation,
and the dimensions of the grid, partitioned between the processes using
regular decomposition. The code iteratively fills the grid cells with
the sum of the convolved oscillator values; the computation on each
rank takes O(mN3) per time step, where m is the number of oscillators
and N3 is the size of the subgrid on the rank. The computation is
embarrassingly parallel; optionally, the ranks may synchronize after
every time step, but this synchronization is off in the experiments below.

As a simple analysis routine, we compute the histogram of the
data. At any given time step, the processes perform two reductions
to determine the minimum and maximum values on the grid. Each
processor divides the range into the prescribed number of bins and fills
the histogram of its local data. The histograms are reduced to the root
process. The only extra storage required is proportional to the number
of bins in the histogram.

As a prototypical time-dependent analysis, we compute autocorrela-
tion. Given a signal f (x) and a delay t, we find

∑
x f (x) f (x+ t). Starting

with an integer time delay t, we maintain in a circular buffer, for each
grid cell, a window of values of the last t time steps. We also maintain
a window of running correlations for each t′ ≤ t. When called, the
analysis updates the autocorrelations and the circular buffer. When the
execution completes, all processes perform a global reduction to deter-
mine the top k autocorrelations for each delay t′ ≤ t (k is specified by
the user). For periodic oscillators, this reduction identifies the centers
of the oscillators. Each MPI rank performs O(tN3) work per time step,
where N3 is the size of its subgrid, and maintains two circular buffers,
each of size O(tN3).

This particular miniapplication and these in situ analysis methods
are representative of some, but not all, common design and execution
patterns (§3.1). This approach, of using miniapplications representative
of larger, more complex workloads, is a commonly accepted practice
in studying the performance of workloads on HPC systems (c.f., [31]).

4 Results

The objective for the experiments we run is to shed light on the per-
formance impact that in situ infrastructures and methods will have on
codes. These results help to shed light on understanding “the cost of
in situ” from several different vantage points. We are interested in
the potential runtime and memory footprint impact of using in situ
methods/infrastructures when used with a focused, limited-complexity
miniapplication (§4.1), as well as when used with contemporary sci-
ence application codes run at extreme scale on modern architectures
(§4.2).

4.1 Mini Application Study

4.1.1 Methodology and Test Configurations

Objectives. The high level objective of the miniapplication tests in this
section is to provide insight into the “cost of in situ processing.” To
do so, we run the miniapplication in several different configurations,
described below, with/without an in situ workload, and with/without an
in situ infrastructure and in situ workload.
Measurement methodology. To measure the impact, or overhead, of
in situ methods and infrastructure, we are using two metrics in these
tests: runtime and memory footprint. Runtime is measured as elapsed
wall-clock time. Memory footprint is measured as the memory high
water mark. In the case of parallel runs, the memory high water mark
is the sum of the high water marks from all MPI ranks. We collect both
measures for the various test configurations (below) and use them as
the basis for gaining insight into the cost of in situ processing.

Platform and Problem Configuration. We ran these miniapplication
tests on Cori Phase I at the National Energy Research Scientific Com-
puting Center (NERSC). Cori Phase I is a Cray XC system based on
Intel Haswell processors. It contains 1,630 compute nodes, each with
two 2.3 GHz 16-core Haswell processors and 128 GB of memory. It
utilizes the Cray Aries high speed dragonfly topology interconnect,
and has a Lustre file system with 30 PB of disk and greater than 700
GB/second I/O bandwidth.

The miniapplication tests use a weak scaling configuration: at 812
(∼1K), 6496 (∼6K) and 45440 (∼45K) cores. The amount of work
per core is the same as we go from 1K to 6K, but increases by about
100K degrees of freedom per core at the 45K level. The reason for
the imbalance is due to an operational limit on Cori, where we were
restricted to 1420 nodes/45K cores, but performed the amount of work
per core originally planned for the 50K-core configuration.
Application/In Situ configurations. The miniapplication test config-
urations, listed below, show the various combinations of the oscilla-
tor miniapplication (§3.3), in situ the ParaView/Catalyst (ParaView
v4.4.0, Catalyst v5.0.1 with patches, which are in v5.1.0), VisIt/Libsim
(v2.11.0), and ADIOS (v1.9) infrastructures (§2.2.3), different in situ
analysis methods (§3.3), and with/without use of the SENSEI data
interface.
• Original: miniapplication with no SENSEI interface and no I/O.

In some test configurations, we do perform in situ analysis, but
that coupling is done directly via subroutine call and does not use
any in situ interface. The distinction of with vs. without analysis
will be called out when needed in the subsections that follow.

• Baseline: miniapplication with SENSEI interface enabled, but no
in situ analysis or I/O. This configuration is useful in measuring
the overhead of the SENSEI data interface in isolation from other
processing.

• Histogram: miniapplication with the SENSEI interface enabled,
and connected directly to an in situ histogram calculation, but
without any of the in situ infrastructures.

• Autocorrelation: miniapplication with the SENSEI interface en-
abled, and connected directly to an in situ autocorrelation calcula-
tion, but without any of the in situ infrastructures.

• Catalyst-slice: miniapplication with SENSEI interface enabled,
and connected to Catalyst, which performs in situ rendering of a
2D slice from a 3D volume, then writes the image to disk.

• Libsim-slice: miniapplication with SENSEI interface enabled,
and connected to Libsim, which performs in situ rendering of a
2D slice from a 3D volume, then writes the image to disk.

• ADIOS-FlexPath: miniapplication with SENSEI interface en-
abled, and connected to the ADIOS FlexPath in situ infrastructure.
Within this miniapplication/in situ infrastructure combination,
we further refine the configuration in §§4.1.4 to include in situ
workloads for histogram, autocorrelation, and Catalyst-slice.

Overview of Tests. We begin in §§4.1.2 with a test that measures cu-
mulative performance impact of the SENSEI interface over the course
of an entire run where we perform an autocorrelation computation
using two configurations: a subroutine-called version of the autocorre-
lation computation, and the Autocorrelation implementation. Next in
§§4.1.3, we go into more detail by using several different application
configurations, and report both one-time (startup) costs as well as per-
timestep costs. Similarly, in §§4.1.4, we look at one-time (startup) and
per-timestep costs, but using an ADIOS-based in transit configuration.
We compare the cost of post hoc and in situ runs in §§4.1.5.

4.1.2 Measuring Impact of SENSEI Interface

The focus of this test is to measure the impact to the miniapplication of
the SENSEI generic data interface over the course of an entire run. This
result gives a high-level view of the overall impact to the application of
using the SENSEI interface over the course of the run.

We compare the runtime and memory footprint of a the Original con-
figuration with subroutine-called autocorrelation, and Autocorrelation
configurations at varying levels of concurrency in a weak-scaling study.
Looking at time-to-solution (Fig. 3), and memory footprint (Fig. 4), we
see no measurable difference between the two.

0	 50	 100	 150	 200	 250	

812	

6496	

45440	

812	

6496	

45440	

O
rig

in
al
	

SE
N
SE
I	

Au
to
co
rr
el
a;

on
	

Original	Time	(seconds)	 SENSEI	Time	(seconds)	

Fig. 3: Time to solution for the 1K, 6K and 45K runs comparing the
Original and Autocorrelation test configurations. These results show
comparable runtimes for the two configurations.

0

10

20

30

40

50

60

70

812 6496 45440 812 6496 45440

Original SENSEI	Autocorrelation
M
ax
	V
m
HW

M
	in
	M

Bs

Fig. 4: Memory footprint for the 1K, 6K, and 45K configurations
comparing the Original and Autocorrelation test configurations. The
results show comparable memory footprint for the two configurations.

These results confirm the desired operation of a zero-copy data
interface, which in this case is straightforward due to the fact both
the miniapplication and the autocorrelation code are working with
structured grids. These results could be different in cases where some
additional effort is required to map from the source/simulation data
model into the generic data model (§3.2).

4.1.3 Miniapplication, Libsim, and Catalyst SENSEI-enabled Test
Configurations

In this section, we examine performance more deeply by looking at
multiple in situ miniapplication configurations. Due to some key dif-
ferences, the ADIOS-FlexPath in transit configuration is the subject
of §§4.1.4. Our analysis consists of looking at runtime performance
in terms of one-time costs (Fig. 5) and recurring costs (Fig. 6), and
memory utilization (Fig. 7).

Fig. 5 shows the one-time onetime costs for initializing the sim-
ulation and analysis, as well as finalization. Here, we see that the
simulation initialization is negligible. The analysis initialization is
minimal, although the Libsim-slice shows a ∼3.5 second initialization
time on the 45K run. This overhead currently represents per-rank con-
figuration file checks and can be removed with very little effort. The
only finalization timing that is non-negligible is for the autocorrelation
output and is due to a reduction operation that happens at the end of
the computation.

In Fig. 6, we examine the per-timestep, recurring runtime measures.
(As a forward reference, we later examine the overall performance
metrics of these applications over their entire run in Fig. 12, where
we compare post hoc and in situ configurations.) In these figures, we
see that the portion of the chart labeled “simulation,” which is the
oscillator miniapplication, exhibits nearly perfect weak-scaling runtime
performance.

For the Catalyst-slice and Libsim-slice configurations, we are ex-
tracting a 2D slice from a 3D volume, then rendering the result using
a pseudocoloring, or heatmap technique. Rendering is a two-stage
process. First, only those ranks whose domains intersect the slice plane

0 0.5 1 1.5 2 2.5 3 3.5 4

812

6496

45440

812

6496

45440

812

6496

45440

812

6496

45440

812

6496

45440

Ba
se
lin
e

H
is
to
gr
am

Au
to
co
rr
el
at
io
n

Ca
ta
ly
st
-S
lic
e

Li
bs
im
-S
lic
e

initialize initialize	analysis finalize

Fig. 5: The onetime costs of various in situ analysis and visualization
use cases including: simulation initialize (blue), analysis initialize
(orange), and finalize (grey). (b) The per time step costs of various in
situ analysis and visualization use cases including: simulation (blue)
and analysis (orange).

0 0.5 1 1.5 2 2.5

812

6496

45440

812

6496

45440

812

6496

45440

812

6496

45440

812

6496

45440

Ba
se
lin
e

H
is
to
gr
am

Au
to
co
rr
el
at
io
n

Ca
ta
ly
st
-S
lic
e

Li
bs
im
-S
lic
e

simulate	(avg	over	100	timesteps) analyze	 (avg	over	100	timesteps)

Fig. 6: The per time step costs of various in situ analysis and visualiza-
tion use cases including: simulation (blue) and analysis (orange).

will extract and render the slice geometry. Second, there is a costly
compositing operation that involves communication of image-sized
buffers among a hierarchical set of ranks to ultimately produce a final
composite image on a single rank, which then writes the image to disk.
Catalyst and Libsim use different compositing algorithms, but both
perform essentially the same task, and produce images of resolution
1920x1080 and 1600x1600 respectively. There are differences in the
scaling characteristics between these two algorithms visible in Fig. 6.
These differences, while noticeable in these charts, are not of significant
concern because scalable compositing is a challenging problem that
can require significant tuning to optimize [32]. We have not endeavored
to perform any specific tuning for compositing optimization as part of
this study.

0 50 100 150 200 250 300 350 400 450 500

812

6496

45440

812

6496

45440

812

6496

45440

812

6496

45440

812

6496

45440

812

6496

45440

O
rig
in
al

Ba
se
lin
e

H
is
to
gr
am

Au
to
co
rr
el
at
io
n

Ca
ta
ly
st
-S
lic
e

Li
bs
im
-S
lic
e

max	VmHWM	at	Startup	 (MBs) max	VmHWM	at	End	(MBs)

Fig. 7: The memory overhead of the studies runs where the startup
executable footprint is represented in blue and the high-water memory
mark throughout a run.

Looking at the memory utilization in Fig. 7, we see the memory
footprint at startup and at the high-water memory mark for each use
case. The startup executable footprint is essentially the equivalent
to the Baseline simulation runs for each of the in situ analysis and
visualization use cases. In contrast, the high-water memory mark varies
once again based on the specific in situ analysis. This high-water mark
is the sum across all MPI ranks, so it is no surprise that the memory
footprint grows with scale for all processing phases.

4.1.4 ADIOS-FlexPath SENSEI-enabled Test Configurations

The FlexPath transport [19] within ADIOS offers the ability to con-
figure a set of resources for doing in situ computations in a number
of configurations: on node (traditional in situ), across several nodes
(in transit), or in hybrid combinations. For this paper, we study the
performance of the Histogram, Autocorrelation, and Catalyst-slice con-
figurations using an ADIOS FlexPath endpoint (as in Figure 2). For
the purposes of these runs, we have deployed the endpoint onto the
same nodes using Cori’s slurm scheduler so that each core will have
two hyperthreads: one for the simulation, and one for the analysis. This
means that we use all of the same cores as the other in situ runs, but we
will experience some additional perturbation due to the Linux scheduler
utilizing both hyperthreads.

Unlike the other methods discussed so far, the ADIOS FlexPath
approach leads to having two different executables that are invoked.
The simulation executable can be compiled and linked with the SENSEI
infrastructure once, while the endpoint could be modified, recompiled,
and redeployed in order to support changes to the intended analysis.
Indeed, FlexPath allows for dynamic disconnection and reconnection,
so that this could take place while the executable is running [33],
although we do not expect this to be a regular concern for SENSEI
usage scenarios. As a result, we report two different timing schemes:
those for the writer/simulation, and those for the endpoint/analysis.

In Figure 8, we see the costs associated with the writer. The tim-
ing for adios::advance is associated with updating the metadata

0 0.2 0.4 0.6 0.8 1 1.2 1.4

812

6496

45440

oscillators::initialize oscillators::analysis::initialize
oscillators::advance	(avg	over	100	timesteps) oscillators::analysis	(avg	over	100	timesteps)
oscillators::finalize

Fig. 8: Time costs (in seconds) of the one-time and per-timestep writer
actions when coupled to the histogram computation.

between the writer and reader, and the adios::analysis timing is for
transmission of data to the analysis reader as well as any blocking time
if the reader is not yet ready. Note that we have not tuned the transport
specifically for the hyperthreading shared memory environment; this
same transport would also connect processes on separate nodes.

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

812	

6496	

45440	

812	

6496	

45440	

812	

6496	

Hi
st
og
ra
m
	

Au
to
	

co
rr
el
a:

on
	
Ca
ta
ly
st
-

Sl
ic
e	

adios::dataadaptor::open	 adios::advance	(avg	over	100)	
adios::analysis	(avg	over	100)	 adios::finalize	

Fig. 9: ADIOS FlexPath in situ analysis use case timings (in seconds).

Figure 9 shows the time for the analytic component. The analysis
times are in line with the execution times for the Catalyst-slice, auto-
correlation and histogram timings seen in §§4.1.3. The initialization
times for the reader on Cori requires additional tuning; part of that may
be due to additional OS jitter from the hyperthread co-allocation, as
well as delays caused by shared use of the Cray interconnect. Similar
runs on Titan at the Oak Ridge Leadership Class Facility had an order
of magnitude lower initialization time, so this is an area for further
improvement in the Cori environment.

We found that there was only an average of a 50% runtime penalty
associated with the Catalyst-Slice operation compared to doing it in-
lined in the simulation code. This time counts the additional buffer
costs, since the current FlexPath transport does not yet use zero-copy,
as well as the penalty associated with co-scheduling the network and
cores. A direction for future testing, which has shown promise on
other hardware [34], is to subdivide the cores on each node so that,
for instance, one core per socket would be for analysis, and the other
eleven cores would be for simulation. Additionally, this approach can
smoothly transition to in transit deployments, simply by adjusting the
launch batch script.

4.1.5 Comparing In Situ and Post Hoc Configurations

The studies thus far have focused on gaining insight into the “cost of
doing in situ processing” in various configurations. In this section,
we look at the problem a little differently, and do a comparison of a
use case done in situ with one done in post hoc fashion. We conduct
tests that quantify the costs of doing post hoc processing in a way
that parallels the post hoc use model. First, a code will write data to
persistent storage, which has a cost, and that we report on a per-timestep
basis (Fig. 10). Later, an analysis or visualization code will read that
data from persistent storage and perform its tasks, which also has a
cost, that we report in terms of aggregate cost over complete post hoc
application runs at varying concurrency (Fig. 11). Finally, we conduct
weak-scaling studies of several application configurations run in situ

Writes 812 6496 45440
Size 2 GB 16 GB 123 GB
VTK I/O 0.12 s 0.67 s 9.05 s
MPI-IO 0.40 s 3.17 s 22.87 s

Table 1: One time step costs of a write using multi-file VTK I/O versus
unoptimized MPI-IO for 812, 6496 and 45440 core runs.

(Fig. 12) for the purpose of comparing with the similar-concurrency
post hoc runs.

Cost of writes. In Fig. 10, we compare a SENSEI-enabled Baseline
run to a version of Baseline instrumented to perform data writes at every
timestep. The one-time costs for both initialize and finalize
have a combination of the SENSEI and miniapplication computational
overhead. The SENSEI data interface computational and memory
overhead is demonstrated to be negligible in § §4.1.2.

0 1 2 3 4 5 6 7 8 9 10

812

6496

45440

812

6496

45440*

Ba
se
lin
e

Ba
se
lin
e	
+	
IO

initialize simulate	(avg	over	100	timesteps) write	 (avg	over	100	timesteps) finalize

Fig. 10: For a hundred time steps, the initialize (blue), the average
per time step simulation time (orange), the average per time step write
time (grey), and the finalize (yellow) are depicted for a baseline and a
baseline plus I/O runs.

For the 1K run, the write cost has little impact on the overall time
to solution. In the 6K run, the writes take about four times as much
as the simulation itself. In the 45K run, the writes take about 20× as
much time. It is no surprise that I/O takes a substantial time or on-disk
storage (2GB per time step for 1K, 16GB per time step for 6K and 123
GB per time step for 45K runs). Figure 10 presents a file-per-core VTK
I/O, which should be faster, than a more traditional, but slower, MPI-IO
approach (see Table 1).

For the MPI-IO implementation, we relied on a vanilla MPI collec-
tive I/O (using MPI_Type_create_subarray, MPI_File_set_view,
MPI_File_write_all) to save the multi-dimensional arrays. We set
the striping using NERSC’s recommended stripe_large command.
By following the MPI and NERSC recommendations, we get sub-
optimal, but realistic performance.

Cost of reads. In a typical post hoc use case, all simulation cores
will be producing data, although the exact mechanism for doing I/O—
collective, non-collective, many-to-few, etc.—will vary from implemen-
tation to implementation. In contrast, on the read side, it is typically
the case that far fewer cores are involved in post hoc analysis. In our
studies below of read costs, we use 10% of the cores used in each of the
write configurations above. While this number is somewhat arbitrary, it
reflects our experience in post hoc use cases.

In Fig. 11, we compare the read times for doing post hoc versions of
the histogram and autocorrelation computations, along with a ParaView-
based slice extraction/rendering. This figure shows significant variabil-
ity in read times on the NERSC Lustre system at scale. This variability
could come from (1) sharing the I/O system resources across the pro-
cesses of individual run and/or (2) internal and external interference
with our runs from multiple simultaneous running programs, which are
discussed in detail by Lofstead et al. [35].

There’s no surprise here that the read takes a significant amount of
time, as much as 5× to 10× that of the miniapplication itself. While
changing the number of cores used for reads could change these results,
we believe it demonstrates a common post hoc use of computational

0 500 1000 1500 2000 2500

82
650

4545
82*

650*
4545*

82
650

4545
hi
st
og
ra
m

au
to
	

co
rr
el
at
io
n

pa
ra
vi
ew

-
sli
ce

read process write

Fig. 11: The histogram, autocorrelation, slice with ParaView post hoc
analysis and visualization with time broken out in a stacked bar chart
including read (blue), process (orange) and write (grey). Note that
since for the post hoc scenario, we are using 10% of the cores used to
generate the data, we are showing core counts of 82, 650, and 4545.
?The autocorrelation runs were done using twice as many nodes (same
number of MPI ranks) as the other runs since they need more memory
to cache timesteps for the analysis.

resources.
Comparing In Situ and Post Hoc configurations. The overall

times to solution for the in situ configurations, shown in Fig 12, are
significantly faster than the post hoc configurations. While we did not
construct a chart showing the sum of write and read times, it is easy
to see the ∼9 seconds/write at 45K concurrency, multiplied by 100
timesteps, is significantly longer than any of the configurations shown
in Fig. 12.

0	 50	 100	 150	 200	 250	

812	

6496	

45440	

812	

6496	

45440	

812	

6496	

45440	

812	

6496	

45440	

812	

6496	

45440	

Ba
se
lin
e	

Hi
st
og
ra
m
	

Au
to
	

co
rr
el
a:

on
	
Ca
ta
ly
st
-	

Sl
ic
e	

Li
bs
im

-	
Sl
ic
e	

simula:on	 analysis	

Fig. 12: Weak-scaling of the oscillator simulation with associated
analysis time in a time to solution bar graph.

4.2 Science Application Examples
In the subsections that follow, we present results showing coupling three
science application codes with the SENSEI in situ adaptor, and thence to
in situ infrastructures. We selected these exemplar applications because
they are known to scale on current extreme-scale DOE systems, and
also we have a collaborative relationship with the code development
teams. These applications cover a spectrum in advanced modeling and
simulation including structured- and unstructured-mesh computational
approaches.

4.2.1 PHASTA Science Application

Name of code. PHASTA solves the Navier-Stokes [36, 37] equations
either directly (DNS) or after turbulence modeling [38] using a stabi-
lized finite element method. It has scaled to over 3M processes [39]
on applications ranging from fundamental science benchmarks like
channel flow [40] to more complex systems like aircraft [41, 42], car-
diovascular systems [43, 44] and multiphase flow [45, 46]. It is an open
source code [47] led by K.E. Jansen.

In Situ implementation. PHASTA’s1 core computational routines
are written in Fortran 90 and compute over an unstructured grid. The
data adaptor uses VTK’s zero-copy ability to map the nodal coordinates
and field variables while the VTK grid connectivity is a full copy.
The grid and fields are constructed as needed but the pointers to the
PHASTA grid data structures are passed every time in situ is accessed.

The SENSEI infrastructure used Catalyst functionality to generate
image outputs from slices, which are 2D slices extracted from a 3D
mesh and pseudo-colored by velocity magnitude. To reduce executable
size, we used a specific Catalyst Edition that includes rendering and
a small subset of the filters available in VTK and ParaView. This
Edition executable size was 153 MB after SENSEI, Catalyst and its
dependencies (e.g. OSMesa) were statically linked with PHASTA.
Without static linking, the executable size was 87 MB.

Platform. Our target platform for running PHASTA was Mira, a
BlueGene/Q, at Argonne National Laboratory. PHASTA runs most
efficiently on Mira with 4 MPI ranks per core which results in 64 MPI
ranks per node. This results in 256 MB of memory per MPI rank.
With SENSEI’s Catalyst slice output, an image size of 800x200 was
able to be generated keeping the same run configuration. When the
image output size was increased to 2900x725, the simulation ran out
of memory so the number of MPI ranks per core was halved and the
number of cores used was doubled. The runs we performed on Mira
include:

IS1 1.28 Billion element grid with 262,144 MPI ranks on 4,092 nodes
(64 MPI ranks per node) with output image size of 800x200 and
120 time steps.

IS2 1.28 Billion element grid with 262,144 MPI ranks on 8,192 nodes
(32 MPI ranks per node) with output size of 2900x725 and 120
time steps.

IS3 6.33 Billion element grid with 1,048,576 MPI ranks on 32,768
nodes (32 MPI ranks per node) with output size of 2900x725 and
30 time steps.

Note that all runs were done outputting images every other time step.
Application results. PHASTA was used to simulate flow over a

vertical tail-rudder assembly for a geometry that exactly matches the
configuration of an ongoing wind tunnel experiment. As shown in
Figure 13, SENSEI provides live, reconfigurable data analytics from
an ongoing simulation. This capability enables the science in two
important ways. First, it allows scientists and engineers to confirm
that the ongoing simulation is properly set up since they can quickly
scan the domain to be sure realistic results are being obtained. Second,
PHASTA allows many of its input parameters to be reconfigured on the
fly. In this way the SENSEI results close the loop on live problem re-
definition thus enabling scientists and engineers to interactively explore
the fluid flow and see the response in ”really useful” time. In this
particular application, a very small synthetic jet is placed near the point
where the flow would otherwise separate but, using visual feedback
from images provided by SENSEI, the frequency and the amplitude
of the flow control can be manipulated to interactively determine the
combination that, through interactions with the primary flow structures,
provide the most improvement to the aerodynamic performance of the
aircraft.

Fig. 13: Sample zoomed slice of PHASTA simulation through the wing.

1PHASTA available at https://github.com/PHASTA/phasta. Our work was
based on Git revision “39bc1351f6d” with modifications to use the SENSEI
interface.

Discussion. The main purpose of these runs was to examine how
well the SENSEI infrastructure worked at large scale. We started with
the IS1 and IS2 runs in order to get a baseline for code performance at a
reasonably high process count. We then pushed for the larger IS3 run to
ensure that SENSEI will operate efficiently at the problem and compute
size that codes like PHASTA are targeting. The timing numbers are
shown in Table 2.

The time spent in in situ is deemed reasonable for the IS1 and IS3
runs with 8.2% and 13% of the run time dedicated to in situ process-
ing. Taking 33% of the compute time for the IS2 run case may be
considered excessive enough for some data scientists to avoid using
in situ. Because of this, we delved further into the timings to analyze
what could be improved. The SENSEI one-time costs are a very small
fraction of the total compute time and the in situ compute time per
time step dominates. We found it surprising that there was a significant
increase in in situ compute time per time step when changing the size
of the outputted image (runs IS1 and IS2) while very little difference
when the problem and compute size differed (runs IS2 and IS3). Upon
further investigation, we determined that the ZLIB compression time
in generating the PNG file was the culprit. This is a serial process
only computed on rank 0. For an 8 process toy problem, the in situ
compute time per time step went from 4.03 seconds to 0.518 seconds
when skipping the compression portion of generating the PNG file.

In Situ One- In Situ Compute Total Percent In
Run Time Cost per Time Step Time Situ Time
IS1 1.76 1.40 1051 8.2
IS2 1.07 5.24 962 33
IS3 1.93 5.62 653 13

Table 2: PHASTA execution times in seconds.

4.2.2 AVF/Leslie Science Application

Name of code. AVF-LESLIE [48, 49, 50] is a reactive flow multi-
physics code for Direct Numerical Simulation or Large Eddy Simula-
tion (DNS/LES) investigation of canonical reactive flows. It solves the
reactive multi-species compressible Navier-Stokes equations using a
finite volume discretization upon a Cartesian grid. AVF-LESLIE is writ-
ten in FORTRAN90 and has capability to export volumetric datafiles
in several formats. It has been used for various applications: flame-
vortex interaction, premixed flame turbulence interaction, non-reactive
channel/Couette flow, and passive scalar mixing.

In Situ implementation. We instrumented AVF-LESLIE (v10) with
a SENSEI adaptor that calculates vorticity magnitude and exposes data
array slices (to remove ghost cells). The SENSEI analysis adaptor was
provided a VisIt session file to set up the visualization. The visualization
consists of 3 isosurfaces and 3 slice planes of vorticity magnitude. Its
purpose is to give a visual reference to the evolution of the turbulent
flow features from initial mixing through homogeneous turbulence.

Platform. We conducted benchmarks on Titan at Oak Ridge Lead-
ership Class Compute Facility. The scaling studies were performed on
a Cartesian grid size of 10253 and physical non-dimensional domain
sizes of 4π x 4π x 2π. The study used between 8192 and 131072 cores,
using all 16 cores per compute node.

Application results. The benchmarks study the strong-scaling char-
acteristics of AVF-LESLIE, and the memory and computational over-
head associated with the in situ methods and infrastructure.

Each run represents AVF-LESLIE running for 100 time steps, with
SENSEI being called at each time step and Libsim analysis every 5
time steps. The study simulates unsteady dynamics of a temporally
evolving planar mixing layer (TML). This type of fundamental flow
mimics the dynamics encountered when two fluid layers slide past one
another and is found in atmospheric and ocean fluid dynamics as well
as combustion and chemical processing. The two sliding fluid layers are
subject to inviscid instabilities and can evolve from largely 2D laminar
flow into fully developed, 3D homogeneous turbulent flow as shown in
[51]. Figure 14 presents visualizations of the TML flowfield at 10,000
and 200,000 time steps where the flow evolves from the initial flow

Fig. 14: The Evolution of Temporal Mixing Layer from Initial to Vortex
Breakdown

0

2

4

6

8

10

12

14

8000 32000 56000 80000 104000 128000
Ti

m
e

(s
)

Cores

avf_insitu::initialize

libsim::initialize

avf timestep (avg)

avf_insitu::analyze (avg)

avf_insitu::release-data (avg)

avf_insitu::finalize

Fig. 15: AVF-LESLIE Performance with SENSEI/Libsim In Situ Pro-
cessing 10253 Dataset (Render Session for Isosurface and Coordinate
Cuts).

field, vortex braids begin to form, wrap and then the flow breaks down
leading to homogeneous turbulence, respectively.

Before in situ processing was implemented, AVF-LESLIE scaled
well up to 16K cores, but efficiency degraded at higher core counts.
After SENSEI/Libsim in situ rendering was added, the per-iteration time
for AVF-LESLIE increased due to the time taken for in situ processing.
The time taken to initialize SENSEI increases with processor count,
largely due to one-time Libsim initialization costs (see §§4.1.3). The
analysis time "avf_insitu::analyze", which includes the time to
expose data to SENSEI, read a session file, set up plots, perform data
extraction, render geometry, create the composited image, and save the
image, quickly exceeded the time spent in the solver "avf timestep"
due to the complexity of the visualization, as shown in Figure 15. In
Situ analysis time is highly dependent on the complexity of the analysis,
or in this case, the nature of visualizations being produced. Over the
100 time step run, the costs of calling Libsim to produce rendered
images added an average of 1-1.5 seconds per time step to the solver
runs over the numbers of cores tested.

Discussion. Since the Libsim visualization was complex, it was
executed one out of every 5 times in which SENSEI was invoked by the
solver. This means that 4/5 times, the SENSEI analysis time was low
and the 1/5 times that Libsim analysis was invoked, the time was high.
To see the actual costs of calling Libsim to produce the visualizations,
AVF-LESLIE reported the time spent in SENSEI analysis for each time
step. Figure 16 shows for the 65K run that the cost of generating the
images via Libsim is in the range of 7-8 seconds while the normal
SENSEI overhead for the data adaptor is less than 0.5 seconds, showing
that SENSEI overhead is low and analysis overhead can be arbitrarily
high, depending on the requested operations.

It is important to contrast the in situ overhead to the traditional post
hoc workflow. At 10253 and 65K core, AVF requires approximately 24
seconds to save a time step of volume data. Therefore, based upon the
current overhead numbers, one can afford 3-4 times greater temporal
resolution for visualization and analysis in comparison to writing out
volume data for post hoc processing. This capability is very important

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

)

Solver Iteration

Time to Execute SENSEI/Libsim Analysis at 65K Cores

Best Fit

Libsim Analysis Times

Fig. 16: Per Iteration cost for calling SENSEI at 65K on 10253 dataset
when Libsim analysis pipeline is invoked every 5 time steps.

for transient data and resolving turbulent flow characteristics. Future
work is focused on reducing this in situ overhead further and applying
it towards extracting further knowledge about the TML flowfield.

4.2.3 Nyx – Computational Cosmology

Name of code. Nyx [52] is BoxLib-based code—co-developed by the
Center for Computational Sciences and Engineering (CCSE) and the
Center for Computational Cosmology (C3) at the Lawrence Berkeley
National Laboratory—for large-scale cosmological simulations explor-
ing structure formation in the universe2.
Problem focus. We quantify the impact of integrating lightweight
in situ analysis—computing histograms using VTK and slices using
ParaView/Catalyst—on simulation time and memory requirements for
a realistic application scenario. In contrast to the miniapplication study
(Section §3.3), Nyx simulation time steps require significantly more
compute time to complete, reducing the impact of analysis on the
simulation.
In Situ implementation. We consider only simulations that do not use
adaptive mesh refinement and represent the domain as a single level,
comprising axis-aligned rectilinear boxes. We avoid data replication by
directly passing a pointer to the BoxLib data to VTK and blanking out
ghost cells in the Nyx simulation by associating a vtkGhostLevels
attribute—a byte array of flags marking ghost cells—with the mesh.
Platform. We evaluate the impact of the SENSEI framework on the
resource utilization of the Nyx code by running 40 timesteps, the
typical number of steps comprising a convergence study [53], on the
Cori system at NERSC. We consider simulations with grid sizes of
10243, 20483 and 40963 initialized from files with 10243, 20483 and
40963 particles, respectively. To ensure load balancing, we run the
simulations on 512 cores (16 nodes), 4096 cores (128 nodes) and
32768 cores (1024) nodes for the 10243, 20483 and 40963 simulations
respectively, using one MPI rank per core. We compare simulations that
use SENSEI to compute histograms or a slice to running a baseline Nyx
executable compiled without SENSEI support. Due to limited compute
time, we omitted histogram computation for the 40963 simulation.
Application results.
Executable size: The SENSEI framework increases the size of the static
Nyx executable significantly from 68MB to 109MB, also resulting
in longer link times. This size increase has a negligible effect on
simulation run time and memory utilization.
Simulation wall-clock times and time overhead per simulation time
step: Running the Nyx simulations took approximately 45 minutes for
the 10243 simulation, one hour for 20483 simulation and two hours
fifteen minutes for the 40963 simulations. Wall-clock time differences
between runs of the same simulation—due to differences in I/O and
communication network utilization—were generally larger than the
time added by the analysis. In fact, some runs without in situ analysis

2Nyx is available to CCSE collaborators at gam-
era.lbl.gov:/usr/local/gitroot/Nyx.gita. We used the Nyx “LyA” simulation based
on Git revision “0b2a7e613c1c7f56108fd3b869e27fcfe0700e2b.” Nyx is based
on BoxLib, which is available at https://github.com/BoxLib-Codes/BoxLib. Our
experiments used Git revision “d3f5141be3a8768bbf1d540f4172bdbd716970b1”
of BoxLib.

0.00	 20.00	 40.00	 60.00	 80.00	 100.00	 120.00	

512	

4096	

512	

4096	

32768	

Hi
st
og
ra
m
	
Ca
ta
ly
st
-S
lic
e	

Simula>on	 Analysis	

Fig. 17: Scaling results for Nyx instrumented with SENSEI in situ
analysis. Times are averaged over all time steps.

took longer to complete than some run with analysis enabled. Figure 17
shows that the in situ analysis time is negligible compared to solution
time, both for the histogram and the slice at all concurrency levels.
Since the simulation runs 40 timesteps and both histogram and slice
require less than a second per time step, the total run time difference
due to in situ analysis is less than a minute, less than a typical time
difference between multiple runs of the same simulation.
Memory overhead: We collected system memory statistics (VmPeak,
VmSize, VmHWM, VmRSS) using BoxLib’s built in profiling for all
runs. Most statistics varied significantly over multiple runs of the same
executable, making interpretation difficult. The peak resident set size
(VmHWM) is the most stable measure across multiple runs. Based
on these measurements, the memory overhead for the histogram is
minimal, mainly due to the overhead of 2MB for the ghost zone array
per MPI rank. The slice increases memory usage by 200–300MB,
which is small compared to simulation size and memory available per
node and consistent with our expectations based on the miniapplication
study. Further experiments are necessary to quantify the exact memory
overhead.

Fig. 18: Time steps 200 and 300 of the 10243 Nyx Lyman α forest
simulation. Simulations often only save every 100th time step. The
difference between these time steps is considerable, hampering feature
tracking.

Temporal resolution: Simulations typically only produce a plot file
for analysis every 100th time step to avoid I/O. Figure 18 shows that
the simulation changes significantly over a 100 time steps, making it
difficult to track features. Producing images for every time step makes
it possible to observe gradual changes in the simulation and easily track
features.
Posthoc analysis: Writing plot files takes approximately 17 seconds
for 10243, 80 seconds for 20483 and 312 seconds for 40963, though
these plot files contain eight variables, more than we use in the analysis.
Even if some analysis needs to be performed post hoc, each plot file
that does not need to be written to disk saves significant time, making
it possible for in situ analysis to amortize itself.
Discussion. In several use cases, in situ analysis can produce valuable
results with barely noticeable impact on the simulation. Going forward,
we need to add more analysis operations to the SENSEI framework.
Typically Nyx simulations use 1–2 MPI ranks per compute node and
use OpenMP within a node. For effective use in simulations, in situ
analysis must support hybrid MPI+OpenMP (or other thread-based)
execution models.

4.3 Discussion and Lesson Learned
The miniapplication, as a low-cost proxy for a simulation, proved to be
a highly useful approach for studying the runtime/memory impact of in
situ methods and infrastructures at scale. With the miniapplication, we
were able to quickly identify and repair many bottlenecks that would
otherwise not be apparent when run at smaller scale. It enabled us
to quickly explore different design patterns for in situ methods, and
to engage in an agile and rapid design/test cycle for the generic data
interface. The miniapplication approach has a much lower cost-of-entry
for these activities compared to working with a production simulation
code.

5 Conclusion and FutureWork
The primary findings suggest that, even in the presence of some vari-
ation from one in situ infrastructure or method to another, that the
runtime and memory overhead for in situ methods and infrastructure
is quite low, especially when compared to the performance of modern
computational solver codes. We show that using in situ for analysis
offers significant cost advantages when compared to the post hoc ap-
proach when using a traditional I/O path. The performance studies
reveal room for improvement in all in situ infrastructures. For example,
weak-scaling characteristics for a BSP design and execution pattern
where there is a final reduction (e.g., Fig. 12) show room for improve-
ment as concurrency increases. The studies, both miniapplication and
science applications, focus on a specific type of design and execution
pattern. Future work will examine additional design and execution
patterns, as well as other types of in situ use cases and science applica-
tions having additional computational approaches, such as unstructured
meshes and particle-based codes.

The idea of a generic data interface that would enable portability
is something that is of significance. Our results show that a particular
approach, the SENSEI generic in situ interface, (§3.2) is highly flexible,
has low overhead, and is broadly applicable to a potentially large
number of simulation codes. It provides portability, so that a simulation
using the interface can make use of, without code changes, four different
in situ infrastructures. Conversely, an in situ method that makes use of
this interface can, without code modifications, be used in multiple in
situ infrastructures.

As platforms continue to evolve, it will be increasingly important that
in situ methods and infrastructures are able to adapt to new platforms
as well as new simulation codes that run on those platforms. For
example, concepts like run-time configuration of shared cores within
a node is of great interest, as simulations will often adapt themselves
for optimal performance, perhaps by choosing core counts that allow
them to meet certain memory footprint requirements, or by taking
advantage of architectural features, like the burst buffers on Cori, to
achieve accelerated staging operations or as a workaround to node-level
memory limitations. In Situ methods and infrastructures need to adapt
to work harmoniously in these settings. Ongoing benchmarking will
aid in better understanding how changes in architecture and system
components might affect the balance of in situ vs. post hoc performance.
We found Cori to be a highly useful platform. We complemented those
results with large-scale science application runs on Mira and Titan;
the in situ elements of those runs performed as predicted by the the
miniapplication results on Cori.

Acknowledgements
This work was supported by the Director, Office of Science, Office of
Advanced Scientific Computing Research, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231, through the grant
“Scalable Analysis Methods and In Situ Infrastructure for Extreme
Scale Knowledge Discovery,” program manager Dr. Lucy Nowell. This
research used resources of the Argonne Leadership Computing Facility
(ALCF), the Oak Ridge Leadership Computing Facility (OLCF), and
the National Energy Research Scientific Computing Center (NERSC).

References
[1] R. W. Hamming, Numerical Methods for Scientists and Engineers (1st.

ed.). McGraw-Hill, 1962.

[2] S. A. (ed.), “Scientific Discovery at the Exascale: Report from the DOE
ASCR 2011 Workshop on Exascale Data Management, Analysis, and
Visualization,” Houston, TX, USA, Feb. 2011.

[3] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky,
K. Moreland, P. O’Leary, V. Vishwanath, B. Whitlock, and E. W. Bethel,
“In Situ Methods, Infrastructures, and Applications on High Performance
Computing Platforms, a State-of-the-art (STAR) Report,” Computer
Graphics Forum, Proceedings of Eurovis 2016, vol. 35, no. 3, Jun. 2016.

[4] H. Childs and et al., “The In Situ Terminology
Project,” https://ix.cs.uoregon.edu/ hank/insituterminology/in-
dex.cgi?n=Phase1D.Phase1DSurveyInput, Feb. 2016.

[5] E. E. Zajac, “Computer-made perspective movies as a scientific and com-
munication tool,” Communications of the ACM, vol. 7, no. 3, pp. 169–170,
Mar. 1964.

[6] “NCAR Graphics,” http://ngwww.ucar.edu/, last accessed Feb. 2016.
[7] R. Heiland and M. P. Baker, “A survey of co-processing systems,”

Technical Report, NCSA University of Illinois, Tech. Rep., August 1998.
[Online]. Available: http://sda.iu.edu/docs/CoprocSurvey.pdf

[8] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos, “CUMULVS: Providing
Fault-Tolerance, Visualization, and Steering of Parallel Applications,” In-
ternational Journal of High Performance Computing Applications, vol. 11,
no. 3, pp. 224–236, 1997.

[9] R. Haimes, “pV3: A Distributed System for Large-scale Unsteady Visual-
ization,” in AIAA Paper 91-0794, 1994.

[10] C. Upson, T. A. Faulhaber, Jr., D. Kamins, D. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam, “The Application Visualization
System: a computational environment for scientific visualization,” j-IEEE-
CGA, vol. 9, no. 4, pp. 30–42, Jul. 1989.

[11] J. D. Mulder, J. J. van Wijk, and R. van Liere, “A survey
of computational steering environments,” Future Gener. Comput.
Syst., vol. 15, no. 1, pp. 119–129, Feb. 1999. [Online]. Available:
http://dx.doi.org/10.1016/S0167-739X(98)00047-8

[12] T. Goodale, G. Allen, G. Lanfermann, J. Mass, T. Radke, E. Seidel, and
J. Shalf, “The Cactus Framework and Toolkit: Design and Applications,”
in Vector and Parallel Processing - VECPAR ’2002, 5th International
Conference. Springer, 2003.

[13] “SCIRun: A Scientific Computing Problem Solving Environment,” 2015,
Scientific Computing and Imaging Institute (SCI), Download from
http://www.scirun.org.

[14] A. C. Bauer, B. Geveci, and W. Schroeder, The ParaView Catalyst User’s
Guide v2.0. Kitware, Inc., 2015.

[15] N. Fabian, K. Moreland, J. Mauldin, B. Boeckel, U. Ayachit, and B. Geveci,
“Instruction memory overhead of in situ visualization and analysis libraries
on hpc machines,” Ultrascale Visualization Workshop at SC’14, November
2014.

[16] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel in situ coupling of
simulation with a fully featured visualization system,” in Proceedings of
the 11th Eurographics conference on Parallel Graphics and Visualization.
Eurographics Association, 2011, pp. 101–109.

[17] H. Childs, K.-L. Ma, H. Yu, B. Whitlock, J. Meredith, J. Favre, S. Klasky,
N. Podhorszki, K. Schwan, M. Wolf, M. Parashar, and F. Zhang, “In
Situ Processing,” in High Performance Visualization—Enabling Extreme-
Scale Scientific Insight, ser. Chapman & Hall, CRC Computational Sci-
ence, E. W. Bethel, H. Childs, and C. Hansen, Eds. Boca Raton,
FL, USA: CRC Press/Francis–Taylor Group, Nov. 2012, pp. 307–329,
http://www.crcpress.com/product/isbn/9781439875728, LBNL-6466E.

[18] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi, S. Klasky,
R. Tchoua, J. Lofstead, R. Oldfield et al., “Hello adios: the challenges and
lessons of developing leadership class i/o frameworks,” Concurrency and
Computation: Practice and Experience, vol. 26, no. 7, pp. 1453–1473,
2014.

[19] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang,
H. Abbasi, S. Klasky, and N. Podhorszki, “Flexpath: Type-based publish/-
subscribe system for large-scale science analytics,” in Cluster, Cloud and
Grid Computing (CCGrid), 2014 14th IEEE/ACM International Sympo-
sium on. IEEE, 2014, pp. 246–255.

[20] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka, “Topology-
aware data movement and staging for I/O acceleration on Blue
Gene/P supercomputing systems,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’11. New York, NY, USA: ACM, 2011, pp. 19:1–19:11.
[Online]. Available: http://doi.acm.org/10.1145/2063384.2063409

[21] A. Globus, “A software model for visualization of large unsteady 3-d cfd

results,” in 33rd Aerospace Sciences Meeting and Exhibit, ser. AIAA,
1995. [Online]. Available: http://arc.aiaa.org/doi/abs/10.2514/6.1995-115

[22] Y. Ye, R. Miller, and K.-L. Ma, “In situ pathtube visualization with
explorable images,” in Proceedings of the 13th Eurographics Symposium
on Parallel Graphics and Visualization, ser. EGPGV ’13. Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association, 2013, pp. 9–16.
[Online]. Available: http://dx.doi.org/10.2312/EGPGV/EGPGV13/009-
016

[23] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers,
and M. Petersen, “An image-based approach to extreme scale in situ
visualization and analysis,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, ser.
SC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 424–434. [Online].
Available: http://dx.doi.org/10.1109/SC.2014.40

[24] M. Dorier, R. Sisneros, T. Peterka, G. Antoniu, and D. Semeraro,
“Damaris/viz: a nonintrusive, adaptable and user-friendly in situ visualiza-
tion framework,” in Proceedings of the IEEE Symposium on Large-Scale
Data Analysis and Visualization (LDAV ’13), Oct. 2013, pp. 67–75.

[25] T. Fogal, F. Proch, A. Schiewe, O. Hasemann, A. Kempf, and J. Krüger,
“Freeprocessing: Transparent in situ visualization via data interception,”
in Eurographics Symposium on Parallel Graphics and Visualization: EG
PGV:[proceedings] sponsored by Eurographics Association in cooperation
with ACM SIGGRAPH. Eurographics Symposium on Parallel Graphics
and Visualization, vol. 2014. NIH Public Access, 2014, p. 49.

[26] M. Larsen, E. Brugger, H. Childs, J. Eliot, K. Griffin, and C. Harrison,
“Strawman: A batch in situ visualization and analysis infrastructure for
multi-physics simulation codes,” in Proceedings of the First Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and
Visualization, ser. ISAV2015. New York, NY, USA: ACM, 2015, pp.
30–35. [Online]. Available: http://doi.acm.org/10.1145/2828612.2828625

[27] “Conduit,” April 2016. [Online]. Available:
http://software.llnl.gov/conduit/

[28] “VTK,” June 2010. [Online]. Available: http://www.vtk.org/

[29] “ParaView,” June 2010. [Online]. Available: http://www.paraview.org/

[30] “VisIt,” June 2015. [Online]. Available: http://visit.llnl.gov
[31] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH

Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006. [Online].
Available: http://doi.acm.org/10.1145/1186736.1186737

[32] M. Howison, E. W. Bethel, and H. Childs, “Hybrid Parallelism for Volume
Rendering on Large, Multi, and Many-core Systems,” IEEE Transactions
on Visualization and Computer Graphics, vol. 18, no. 1, pp. 17–29, Jan.
2012, lBNL-4370E.

[33] J. Dayal, J. Lofstead, G. Eisenhauer, K. Schwan, M. Wolf, H. Abbasi, and
S. Klasky, “Soda: Science-driven orchestration of data analytics,” in e-
Science (e-Science), 2015 IEEE 11th International Conference on. IEEE,
2015, pp. 475–484.

[34] F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer, K. Schwan, H. Ab-
basi, and S. Klasky, “Goldrush: Resource efficient in situ scientific data
analytics using fine-grained interference aware execution,” in Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. ACM, 2013, p. 78.

[35] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing variability in the io performance
of petascale storage systems,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society, 2010, pp. 1–12.

[36] C. H. Whiting, K. E. Jansen, and S. Dey, “Hierarchical basis in stabilized
finite element methods for compressible flows,” Comp. Meth. Appl. Mech.
Engng., vol. 192, no. 47-48, pp. 5167–5185, 2003.

[37] C. H. Whiting and K. E. Jansen, “A stabilized finite element method for
the incompressible Navier-Stokes equations using a hierarchical basis,”
International Journal of Numerical Methods in Fluids, vol. 35, pp. 93–116,
2001.

[38] K. E. Jansen, “A stabilized finite element method for computing turbu-
lence,” Comp. Meth. Appl. Mech. Engng., vol. 174, pp. 299–317, 1999.

[39] M. Rasquin, C. Smith, K. Chitale, S. Seol, B. Matthews, J. Martin,
O. Sahni, R. Loy, M. Shephard, and K. Jansen, “Scalable fully implicit
finite element flow solver with application to high-fidelity flow control
simulations on a realistic wing design,” Computing in Science and Engi-
neering, vol. 16, no. 6, pp. 13–21, 2014.

[40] A. E. Tejada-Martı́nez and K. E. Jansen, “A dynamic Smagorinsky model
with dynamic determination of the filter width ratio,” Physics of Fluids,
vol. 16, pp. 2514–2528, 2004.

[41] O. Sahni, J. Wood, K. Jansen, and M. Amitay, “Three-dimensional interac-
tions between a finite-span synthetic jet and a crossflow,” Journal of Fluid
Mechanics, vol. 671, pp. 254–287, 2011.

[42] J. Vaccaro, Y. Elimelech, Y. Chen, O. Sahni, K. Jansen, M., and Amitay,
“Experimental and numerical investigation on steady blowing flow control
within a compact inlet duct,” International Journal of Heat and Fluid
Flow, vol. 54, pp. 143–152, 2015).

[43] I. Vignon-Clementel, A. Figueroa, K. Jansen, and C. Taylor, “Outflow
boundary conditios for three-dimensional finite element modeling of blood
flow and pressure in arteries,” Comp. Meth. Appl. Mech. Engng., vol. 195,
pp. 3776–3796, 2006.

[44] H. J. Kim, C. A. Figueroa, T. J. R. Hughes, K. E. Jansen, and C. A.
Taylor, “Augmented lagrangian method for constraining the shape of
velocity profiles at outlet boundaries for three-dimensional finite element
simulations of blood flow,” Comput. Methods Appl. Mech. Engrg., vol.
198, no. 45-46, pp. 3551–3566, 2009.

[45] F. Behafarid, K. Jansen, and M. Podowski, “A study on large bubble
motion and liquid film in vertical pipes and inclined narrow channels,”
International Journal of Mulitphase Flow, vol. 75, pp. 288–299, 2015.

[46] J. Rodriguez, O. Sahni, R. L. Jr., and K. Jansen, “A parallel adaptive mesh
method for the numerical simulation of multiphase flows,” Computers and
Fluids, vol. 87, pp. 115–131, 2013.

[47] K. Jansen, “https://github.com/phasta.”
[48] C. D. Spradling, “Spec cpu2006 benchmark tools,” ACM SIGARCH Com-

puter Architecture News, vol. 35, no. 1, pp. 130–134, 2007.
[49] T. M. Smith and S. Menon, “The structure of premixed flames in a spatially

evolving turbulent flow,” Combustion science and technology, vol. 119,
no. 1-6, pp. 77–106, 1996.

[50] C. Stone and S. Menon, “Open-loop control of combustion instabilities in
a model gas turbine combustor*,” Journal of Turbulence, vol. 4, no. 20,
2003.

[51] R. W. Metcalfe, S. A. Orszag, M. E. Brachet, S. Menon, and J. J. Riley,
“Secondary instability of a temporally growing mixing layer,” Journal of
Fluid Mechanics, vol. 184, pp. 207–243, 1987.

[52] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. V. Andel,
“Nyx: A massively parallel amr code for computational cosmology,” The
Astrophysical Journal, vol. 765, no. 1, p. 39, 2013.

[53] Z. Lukić, C. W. Stark, P. Nugent, M. White, A. A. Meiksin, and A. Alm-
gren, “The lyman α forest in optically thin hydrodynamical simulations,”
Monthly Notices of the Royal Astronomical Society, vol. 446, no. 4, pp.
3697–3724, 2015.

