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ABSTRACT OF THE DISSERTATION 

 

Dynamics and Heterogeneity of Hypothalamus and White Adipose Tissue  

under Internal and External Cues 

 

by 

 

Gaoyan Li 

Doctor of Philosophy in Molecular, Cellular, and Integrative Physiology 

University of California, Los Angeles, 2023 

Professor Xia Yang, Chair 

 

The hypothalamus and the white adipose tissue are both key regulator of energy 

homeostasis. The hypothalamus is the central hub in metabolic control and links the 

neuronal, endocrine, and metabolic systems.  White adipose tissue (WAT) is highly 

metabolically dynamic and has emerged as a multifaceted endocrine organ with crucial 

roles in energy metabolism. Characterized by cell type heterogeneity, these key 

metabolic tissues exhibit complex cell-type-specific dynamics in response to numerous 

factors, including age, sex, nutritional state, and pharmacological interventions. 

Discerning the impacts of these factors broadens our understanding of how metabolic 

tissue dynamics are shaped and their implications for the development of metabolic 

disorders. This knowledge further holds promise for the advent of personalized 

therapeutic strategies. Our research commences by probing the influences of the sex 
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chromosome effect (SCE) and gonadal sex effect (GSE) at a cellular level in the 

hypothalamus, employing the Four Core Genotypes (FCG) mouse model and single-cell 

RNA sequencing (scRNA-seq). Analyses of SCE, GSE, and SCE-GSE interactions 

show that they contribute over 70% of the genetically determined normative sex 

differences across all hypothalamic cell types and neuronal subtypes. Notably, 

enrichment analyses of Genome-Wide Association Study (GWAS) signals of these sex 

factor-specific differentially expressed genes (DEGs) highlight their relevance to 

neurological disorders, obesity, and Type 2 diabetes. Therefore, the comprehensive 

understanding of cell types and pathways underlying sex-specific risks paves the way 

for sex-based personalized therapies. Next, we turn our attention to aging and its effects 

on WAT. Our findings unveil a surprising age-induced surge in adipogenesis, 

particularly in visceral fat. Contrary to the conventional age-associated decline in stem 

cell activity, we reveal that adipocyte progenitor cells (APCs) enhance their adipogenic 

potential during aging. We identify and characterize a novel Committed Preadipocyte 

population uniquely enriched in aged mice (CP-A) through scRNA-seq, showcasing high 

proliferation and adipogenesis activity. Furthermore, we delineate Leukemia Inhibitory 

Factor Receptor (LIFR) as a functional marker of CP-A, thereby uncovering a novel 

mechanism pertinent to fat tissue aging with potential clinical implications for age-

related metabolic disorders. Lastly, we elucidate the effects of the PPARγ activator 

rosiglitazone on WAT remodeling and cellular reprogramming in obesity. We 

demonstrate rosiglitazone's profound influences on adipogenesis, gene expression 

modulation in epididymal white adipose tissue (eWAT) and inguinal white adipose tissue 

(iWAT) progenitor cells and preadipocytes, inflammation mitigation, and the promotion 
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of ATP synthesis and ribosome biogenesis. Interestingly, our data suggest a potential 

role of PPARγ in enhancing ribosome biogenesis efficiency, a facet that merits future 

exploration. In summary, our studies underscore the importance of understanding the 

varying metabolic processes and cellular dynamics across metabolic tissues under the 

influence of internal and external cues, including age, sex, nutritional state, and 

pharmacological intervention. The delineation of the precise cell types and molecular 

mechanisms underlying health modulating factors will bolster target identification and 

pave the way for personalized therapeutic interventions. 
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Chapter 1.   Introduction 

The hypothalamus plays a pivotal role in regulating numerous physiological processes, 

including hunger, satiety, energy expenditure, and glucose homeostasis1. Neurons in 

the hypothalamus integrate signals related to energy status and then orchestrate 

appropriate behavioral and metabolic responses. Dysregulation of these pathways can 

result in cardiometabolic disorders such as obesity and type 2 diabetes2. White adipose 

tissue (WAT), on the other hand, has traditionally been viewed as a passive storage 

depot for energy. However, research in recent years has revealed that WAT is a highly 

active endocrine organ, releasing a variety of hormones, cytokines, and adipokines. 

These adipokines have diverse functions, influencing appetite and energy expenditure, 

insulin sensitivity, inflammation, and lipid metabolism3. Imbalance in the production or 

function of adipokines can contribute to cardiometabolic disorders4. Characterized by 

cell-type heterogeneity, these key metabolic tissues exhibit complex cell-type-specific 

dynamics in response to numerous factors, including age, sex, nutritional state, and 

pharmacological interventions. These differences in cell type composition and cellular 

interactions can induce profound effects on metabolism. Given there are multiple types 

of factors affecting hypothalamus and adipose tissue function, a thorough 

understanding of the dynamics of cell type composition, the specific gene expression 

patterns, and the cell type interactions under different physiological or pathological 

states is essential. The emergence of single-cell transcriptomic approaches has made it 

possible to study the cellular heterogeneity and functional states in metabolic tissues at 

the cell type level and set the stage to allow retrieval of cell type specific mechanisms of 

metabolic diseases.  
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This dissertation seeks to explore the influences of sex, aging, and drug treatment on 

cell type composition, gene expression patterns, cell lineage dynamics, and cell-cell 

interaction within the hypothalamus and WAT. The insights gained from examining 

these effects elucidate how metabolic tissue dynamics are molded and their implications 

for metabolic disorder development, ultimately facilitating the development of 

personalized therapeutic strategies. 

 

In Chapter 2, we examine the influences of sex chromosome effect (SCE) and gonadal 

sex effect (GSE) at a cellular level in the hypothalamus, employing the Four Core 

Genotypes (FCG) mouse model and single-cell RNA sequencing (scRNA-seq). This 

analysis identified 11 distinct cell types and 15 neuronal subtypes within the 

hypothalamus. Based on the analysis of sex-factor-specific and cell type-specific 

differentially expressed genes, SCE, GSE, and SCE-GSE interactions account for over 

70% of the genetically determined normative sex differences across all hypothalamic 

cell types and neuronal subtypes. Moreover, marker set enrichment analysis of GWAS 

signals in these sex-factor-specific and differentially expressed genes revealed 

significant enrichment in neurological disorders, obesity, and type 2 diabetes-related 

GWAS. Such understanding of these sex differences in the hypothalamus and their 

potential implications for disease susceptibility and progression is a crucial area of 

research, paving the way for sex-specific personalized therapies. 
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In Chapter 3, we delve into the impacts of aging on white adipose tissue. We observe 

that mice mirror human age-associated adipose tissue expansion. Utilizing in vivo 

lineage tracing, we document substantial adipogenesis, particularly in visceral fat, 

induced by aging. Interestingly, this contrasts with the typical decline in the proliferative 

and differentiative capacities exhibited by most adult stem cell types, as the adipogenic 

potential of adipocyte progenitor cells (APCs) appears to be activated with aging. Both 

in vivo transplantation and three-dimensional imaging of transplants demonstrate that 

APCs from aged mice autonomously exhibit an elevated adipogenic potential. scRNA-

seq analysis exposed a global remodeling of APCs instigated by aging. Within this 

context, we discern a unique Committed Preadipocyte population that is significantly 

enriched in aged mice (referred to as CP-A), which also exists in humans, and is 

characterized by a global activation of proliferation and adipogenesis pathways. CP-A 

cells show high proliferation and adipogenic activity, both in vitro and in vivo. We identify 

LIFR as a functional marker of CP-A cells, which is conducive to the adipogenesis of 

CP-A. Collectively, these observations delineate a novel foundational mechanism 

implicated in fat tissue aging and hold the potential for the prevention and treatment of 

age-associated metabolic disorders 

 

In Chapter 4, we elucidate the effects of the PPARγ activator rosiglitazone on WAT 

remodeling and cellular reprogramming in obesity. This study provides a cell type-

specific view of how acute rosiglitazone treatment influences white adipose tissue 

remodeling and cellular reprogramming in the context of obesity. Rosiglitazone was 

found to induce adipogenesis, reduce progenitor cells, and alter the transcriptomic 
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landscape of both eWAT and iWAT progenitor cells and preadipocytes. Moreover, 

rosiglitazone demonstrated the capacity to alleviate inflammatory responses and 

enhance ATP synthesis and ribosome biogenesis in iWAT cells. The observed shift in 

macrophage subpopulations further illustrates the potent immunomodulatory effects of 

rosiglitazone. These findings suggest a novel potential role for PPARγ in enhancing 

translation efficiency, underscoring the need for further investigation into its mechanism. 

This study thus opens new avenues for understanding the cellular and molecular 

mechanisms underpinning adipose tissue remodeling and the therapeutic effects of 

PPARγ agonists in the context of obesity. 

 

In summary, our research emphasizes the importance of understanding the cellular 

dynamics and diverse metabolic processes across metabolic tissues influenced by 

various internal and external cues, inclusive of age, sex, nutritional status, and 

pharmacological interventions. Elucidating the specific cell types and molecular 

mechanisms underlying health modulating factors will enhance target identification, thus 

fostering the development of personalized therapeutic strategies. 

Chapter 2.   Dissecting the effects of sex chromosomes versus gonads on 

cellular gene expression in Hypothalamus 

2.1   Introduction 

The hypothalamus, one of the most complex brain regions, is the central regulator of 

energy homeostasis and links the neuronal, endocrine, and metabolic systems1. A 

number of sex differences were reported in both human and murine hypothalami at the 
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structural, functional and molecular levels5. Structural differences included variations in 

the size and number of neurons in specific nuclei, such as the sexually dimorphic 

nucleus (SDN) and the ventromedial nucleus (VMN)6.  As the hypothalamus is heavily 

involved in the regulation of hormone release, the control of reproductive hormones also 

have differing roles and responses between sexes. In females, the hypothalamus 

orchestrates the menstrual or estrous cycle through the secretion of gonadotropin-

releasing hormone (GnRH), which stimulates the pituitary to release follicle-stimulating 

hormone (FSH) and luteinizing hormone (LH). In males, GnRH stimulates the release of 

LH and FSH to regulate testosterone production and spermatogenesis7. Sex differences 

in the hypothalamus also contribute to disparities in behavior and physiological 

responses such as feeding behavior, stress response, thermoregulation, and circadian 

rhythms8,9. Sex-specific patterns of hypothalamic activity have been implicated in the 

sex differences in the prevalence, progression and outcomes of metabolic symptoms, 

psychiatric diseases and neurological disorders such as depression, anxiety, eating 

disorders, and metabolic syndrome1,10–13. However, the mechanisms behind these sex 

biases and their effect on the individual cell types and brain regions is still unclear. 

 

Sex differences in tissue functions and disease susceptibility can arise from two 

biological factors: gonadal sex effect (GSE) and/or the sex chromosome effect (SCE). 

To date, little is known about the relative contribution of GSE vs SCE and their 

interactions in the hypothalamus. Moreover, the hypothalamus contains heterogeneous 

cell populations and neuronal subtypes. Though recent progress in single-cell RNA 

sequencing (scRNA-seq) has facilitated the transcriptional cataloguing of cell types in 
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the hypothalamus, sex differences attributable to GSE or SCE in individual cell types 

have yet to be investigated. Understanding the effects of gonadal sex and sex 

chromosomes on cell-type specific gene regulation will be critical for a high-resolution 

understanding of sex-biased mechanisms in diseases and the implementation of 

precision medicine for each sex. 

 

Dissecting GSE vs SCE is challenging because female gonads typically co-occur with 

XX chromosomes and male gonads with XY chromosomes. Here we used the Four 

Core Genotypes (FCG) mouse model to separate GSE and SCE. Deletion of the testis 

determining Sry gene on Y chromosome and insertion of Sry on Chromosome 3 allow 

the FCG model to consist of 4 types of mice: gonadal males with either XX or XY sex 

chromosomes, and gonadal females with XX or XY sex chromosomes, which allow for 

the separation of GSE from SCE15. Sex differences between gonadal males and 

females can be attributed to the effect of gonads and hormones, while differences 

between XX and XY mice can be attributed to the effects of the X or Y chromosome.  

 

By utilizing the FCG Model, it becomes possible to delineate the distinct contributions of 

sex chromosome effects and gonadal effects on hypothalamic function at the cellular 

level, via the application of scRNA-seq. A comprehensive understanding of the 

molecular physiology underlying the impact of sex differences on hypothalamic 

functions carries considerable importance. Such knowledge has potential implications in 
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the prevention of diseases with a sex bias, as well as in the facilitation of personalized 

therapies tailored according to sex. 

2.2   Results  

Study Overview 

Here, our study used the FCG mice to examine cell-type specific GSE vs SCE using 

scRNAseq. We compared the single-cell transcriptome between four core genotypes to 

identify the cell types and neuronal subtypes and their corresponding differently 

expressed genes (DEGs) and pathways influenced by GSE and SCE. And we further 

investigated the association of the sex-biased genes and circuits with metabolic 

diseases based on their enrichment patterns for hypothalamus-specific expression 

quantitative trait loci (eQTL) and splicing quantitative trait loci (sQTL) associated with 

over 71 GWAS datasets for a broad range of metabolic diseases and neurological 

disorders with known sex differences. Our cell-level analysis also uncovered larger 

SCEs in specific cell populations that are masked in low-resolution bulk tissue analysis. 

（Figure 2.1） 

 

11 Cell types identified by hypothalamus scRNAseq 

An investigation into the contributions of SCE and GSE to sex differences in the 

hypothalamus was conducted through single-cell RNA sequencing of all four genotypes 

in the Four Core Genotype model. These include gonadal males with XX sex 

chromosomes (XXM), gonadal males with XY sex chromosomes (XYM), gonadal 

females with XX sex chromosomes (XXF), and gonadal females with XY sex 
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chromosomes (XYF). Briefly, fastq files from the Drop-seq sequencing data were 

processed using Drop-seq tools (v1.12) and aligned with the mouse reference genome 

(mm10) via STAR-2.5.0c22. A threshold of at least 500 genes and 900 transcripts, with 

no more than 20% of the total reads being mitochondrial, was used to distinguish single 

cells from background noise. 

 

The Louvain algorithm was applied to determine cell clusters based on transcriptome 

pattern similarities, and the clusters were subsequently visualized using Uniform 

Manifold Approximation and Projection (UMAP). This allowed for the identification of 11 

major cell types in the hypothalamus, including neurons, astrocytes, ependymal cells, 

endothelial cells, tanycytes, myelinating oligodendrocytes, newly formed 

oligodendrocytes, oligodendrocyte progenitor cells, microglia, mural cells including 

pericytes and vascular smooth muscle cells (VSMCs), and vascular leptomeningeal 

cells (Figure 2.2A). The cluster-specific expression patterns of these cell types were 

confirmed by examining specific cell-type markers such as Snap25 and Syt1 for 

neurons, and Agt for astrocytes (Figure 2.2B). 

 

Upon further exploration of cell-type expression patterns across all four genotypes 

(Figure 2.2C), differences in expression patterns among all cell types on the UMAP 

became evident. In order to visually isolate the effects of the gonadal and chromosomal 

contributions, UMAPs were generated that focused exclusively on genotypes with 

different sex chromosomes and the same gonads (Figure 2.2D), and on genotypes with 

the different gonads and same sex chromosomes (Figure 2.2E). Visible differences, 
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especially in neurons, were observed between XX and XY chromosomes, indicating a 

substantial contribution from sex chromosome differences. Contrastingly, differences 

between the gonadal female group and gonadal male group were less pronounced, 

suggesting a more modest contribution from gonadal differences. This observation 

underscores the interplay of both gonadal and chromosomal contributions to expression 

differences in hypothalamic cells, with sex chromosome differences having a major 

impact. 

 

15 Neuronal subtypes identified by hypothalamus scRNAseq 

 
As the expression file of hypothalamus neurons are sensitive to both SCE and GSE, 

neurons in the hypothalamus are highly functionally heterogenic and play an essential 

role in maintaining bodily homeostasis. This regulatory function encompasses a range 

of processes, including temperature regulation, hunger, thirst, sleep, and circadian 

rhythms1,23.  Different types of neurons achieve these functions via the secretion of 

numerous neuropeptides. For example, agouti-related peptide is a neuropeptide that 

acts as an antagonist of the melanocortin receptors MC3R and MC4R in the 

hypothalamus. It stimulates appetite and reduces metabolism, promoting weight gain. 

Another neuropeptide, arginine vasopressin, is involved in water retention and 

increased vascular resistance, leading to increased blood pressure24,25. 

 

Aiming to be more precise on neuronal subtype annotation and to pinpoint whether sex 

differences were more pronounced within these diverse neuron populations, the focus 

was narrowed to only the neuron cluster. The cluster was separated and further divided 
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into fifteen subclusters using integrated canonical correlation analysis26 of the four 

genotypes, thereby refining the characterization of hypothalamic neuronal diversity 

(Figure 2.3A). 

 

The identities of these cell types were elucidated by obtaining gene signatures specific 

to each cluster and comparing them to known genes associated with hypothalamic 

peptides. Consequently, subclusters of neurons expressing Agrp (Agouti-related 

protein), Npy (Neuropeptide Y), Avp (Arginine Vasopressin), Oxt (Oxytocin), Bdnf 

(Brain-derived neurotrophic factor), Cck (Cholecystokinin), Gal (Galanin), Nrgn 

(Neurogranin), Pomc (Proopiomelanocortin), Tac2 (Neurokinin B), and Vip (Vasoactive 

intestinal peptide) were identified. The remaining clusters, devoid of subtype-specific 

hypothalamic peptide gene expression, were named after their specific marker genes. 

These marker genes were required to be expressed in at least 20% of the single cells 

within the cluster of interest, to exhibit at least a 0.25 log-fold change compared to other 

cells, and to possess a false discovery rate (FDR) below 5% (Figure 2.3B).  

 

While canonical correlation analysis (CCA) was performed on the four genotypes for 

more refined annotation of viable neuronal subtypes, the clustering based on the 

corrected CCA also minimized the visualized expression pattern differences between 

genotypes (Figure 2.3C). Thus, our exploration of the neuronal subtype expression 

patterns across all four genotypes was based on the Louvain clustering of the top 15 

Principal Components. Differences in expression patterns are evident on the tSNE plot 

(Figure 2.3D). Although XXF, XYF, and XXM genotypes exhibited remarkably similar 
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expression patterns, the pattern for the XYM genotype significantly deviated from the 

other three. This observation underscores the distinct contributions of both SCE and 

GSE to sex differences in the neuronal subtypes of the hypothalamus, particularly within 

the XYM genotype. 

 

Differently expressed genes influenced by individual sex factors 

To determine which genes were affected by Sex Chromosome Effect and/or Gonadal 

Sex Effect, we performed both linear model based DEG analysis and pairwise DEG 

analysis. Linear model based DEGs were identified using the Limma R package27, 

which utilized the model Y = A1SCE + A2GSE + A12SCE-GSE. In this way, we were 

able to identify the genes differently expressed due to SCE, GSE and SCE-GSE 

Interaction separately by comparing all four groups together in a cell type specific 

manner.   Pairwise DEGs were identified by Wilcoxon Rank Sum test between 4 pair-

wise comparisons. The comparisons including 1.XXF vs XYF to identify SCE on 

gonadal female background 2.XXM vs XYM to identify SCE on gonadal male 

background 3.XXF vs XXM to identify GSE on XX sex chromosome background 4.XYF 

vs XYM to identify GSE on XY sex chromosome background. To delve into how each 

individual sex factor contributes to the general normative sex difference phenotype, 

DEGs were also generated by comparing XXF and XYM in both comparison methods 

as a standard of reference.  

 

Overlapped effects and unique contributions of linear model based DEGs 

influenced by individual sex factors across cell types 
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In an examination of the linear model-based DEGs under various sex factors, neurons, 

endothelial cells, and astrocytes emerge as the most affected cell types for both SCE 

and SCE-GSE interaction (Figure 2.4B). In the case of GSE, the most influenced cell 

types include neurons, endothelial cells, and ependymal cells. Across these three sex 

factors (SCE, GSE and SCE-GSE interaction), neurons appear to be the most 

significantly impacted cell type, an observation that aligns with changes in the 

expression pattern. However, the quantity of DEGs alone does not comprehensively 

capture the transcriptional distinctions between each sex factor, as a significant fraction 

of DEGs under a particular sex factor could intersect with those from other sex factors, 

thus not be unique.  

 

To delve deeper into the uniqueness and overlap among sex factor effects beyond 

merely counting linear model-based DEGs, the intersections of DEGs across all 

combinations of sex factors were subsequently explored (Figure 2.4A). For neurons, 

astrocytes, oligodendrocyte precursor cells, myelinating oligodendrocytes, and 

microglia, the largest fraction of DEGs is shared among SCE, GSE, the interaction 

effect, and normative sex difference. This suggests that different sex factors can drive a 

substantial part of the similar transcriptional shift in these cell types. Conversely, for 

tanycytes and vascular leptomeningeal cells, only a small fraction of linear model-based 

DEGs overlap, implying that the effects of sex factors in these cell types are largely 

distinct.  
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In terms of unique sex factor DEGs that are influenced solely by a single sex factor, the 

largest sex factor specific DEG set in oligodendrocyte precursor cells, microglia, and 

vascular leptomeningeal cells is SCE. On the other hand, the GSE-specific DEG have 

the highest number in neurons, ependymal cells, mural pericytes, vascular smooth 

muscle cells, and tanycytes. Astrocytes, myelinating oligodendrocytes, and endothelial 

cells harbor the most extensive SCE-GSE interaction-specific DEGs. The DEGs specific 

to the normative sex difference, XXF vs XYM, are relatively scarce in most cell types, 

suggesting that the linear model-based SCE, GSE, and SCE-GSE interaction DEGs can 

account for a substantial part of the normative sex difference.  

 

Transcriptional contributions of individual sex factors to the normative sex 

difference of linear model based DEGs across cell types 

To better assess the contributions of SCE, GSE, and the SCE-GSE interaction to the 

normative sex difference, we focused on the overlap between the SCE, GSE, and SCE-

GSE interaction DEGs with the XXF vs XYM DEGs in each cell type. This allowed us to 

distinguish GSE-specific, SCE-specific, SCE-GSE interaction-specific contributions, and 

shared contributions, which reflect the DEGs shared between multiple sex factors, to 

the normative sex difference (Figure 2.4C). On examining the proportion of normative 

sex differences accounted for by all three sex factors, these sex factors explain over 

70% of the normative sex differences in all cell types. Notably, in neurons, astrocytes, 

tanycytes, endothelial cells, oligodendrocyte progenitor cells, and myelinating 

oligodendrocytes, these sex factors account for over 85% of the normative sex 
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difference. This affirms the efficacy of our methods in dissecting and explaining a major 

portion of normative sex differences. 

 

When considering the contribution of each individual sex factor, the GSE-specific 

contribution is highest in tanycytes, accounting for over 56% of the total normative sex 

differences. GSE also contributes to over 30% of the normative sex differences in mural 

cells, including pericytes and vascular smooth muscle cells, and ependymal cells. 

However, in other cell types the GSE-specific contribution is lower and in astrocytes 

GSE only contribute to less than 2% of the normative sex differences. The large 

variability in GSE-specific contributions across different cell types indicates a cell-type-

specific effect.  

 

Conversely, the SCE-specific contribution is more consistent in percentage across cell 

types compared to GSE. SCE-specific contribution is highest in microglias (contributing 

to 18% of the total normative sex differences) and contribute to 5-10% total normative 

sex differences in neurons, astrocytes, tanycytes, oligodendrocyte progenitor cells and 

myelinating oligodendrocytes.  Although the SCE-specific contribution is lower than the 

GSE-specific contribution in tanycytes, mural cells, and ependymal cells, it is higher in 

neurons, astrocytes, microglia, oligodendrocyte progenitor cells, and myelinating 

oligodendrocytes. This underscores the important role the SCE-specific effect plays in 

normative sex differences.  
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The SCE-GSE interaction-specific contribution is relatively minor, contributing to 4.3% in 

ependymal cells and less than 2% in all the other cell types. This underscores a 

relatively small influence of the interaction-specific effect on the transcriptional shift 

within the normative sex difference context. 

 

The shared contribution accounts for most of the normative sex differences in all cell 

types, except for tanycytes. This suggests that different sex factors shared a substantial 

part of similar impacts on transcriptional shifts in normative sex differences. 

 

Transcriptional contributions of individual sex factors to the normative sex 

difference of linear model based DEGs across neuronal subtypes 

To gain a more detailed understanding of the influence of sex factors on neurons, 

intersections of DEGs across all combinations of sex factors and normative sex 

differences were evaluated within 15 neuronal subtypes (Figure 2.5A). Notably, the 

largest faction of DEGs in Agrp.Npy, Avp, Ccnd2.Cck, Gal, and Lhx6 neurons was 

solely under the influence of SCE. In contrast, in Apoe, Nrgn, Avp.Oxt, and Pomc 

neurons, the largest faction of DEGs was solely under the influence of GSE. These 

results suggest a potential exaggeration of SCE or GSE effects outside of normative 

sex differences within these cell types by the four core genotypes 

 

Further examination was conducted on the overlap between SCE, GSE, and SCE-GSE 

interaction DEGs with the XXF vs XYM DEGs in each neuronal subtype, allowing for an 

assessment of the individual contributions of SCE, GSE, and SCE-GSE interaction to 
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normative sex differences (Figure 2.5B). Upon examination, these three sex factors 

collectively accounted for 70%-85% of the normative sex differences in all neuronal 

types. These findings validate the effectiveness of our methodology in deconstructing 

and explaining the majority of normative sex differences in these neuronal subtypes. 

 

Regarding the specific contributions of each sex factor, the GSE-specific contribution 

constituted 33% of the total normative sex differences in Avp.Oxt and Pomc neurons. In 

other neuronal subtypes, GSE-specific contributions were less than 20%. On the other 

hand, SCE-specific contributions represented 50% of the total normative sex differences 

in Agrp.Npy neurons and exceeded 20% in Gal, Bdnf, and Pomc neurons. Both SCE 

and GSE-specific contributions varied considerably across neuronal subtypes, and the 

importance of the SCE-specific effect is strongly reflected in normative sex differences 

among neuronal subtypes. Interestingly, the contributions from SCE-GSE interaction 

DEGs were entirely shared with SCE or GSE in neuronal subtypes, thus adding to the 

shared contribution. This shared contribution was the highest, compared to GSE and 

SCE-specific contributions, in Nrgn, Thy1, and Avp neurons, but not in the remaining 

neuronal subtypes. This suggests that the influence of different sex factors contributing 

to normative sex differences is more divergent among neuronal subtypes. 

 

Pairwise Comparison Based Differently Expressed Genes of GSE and SCE 

For the identification of pairwise DEGs using the Wilcoxon Rank Sum test, both XXF vs 

XYF and XXM vs XYM comparisons identify the SCE, albeit on distinct gonadal sex 

backgrounds. Similarly, both XXF vs XXM and XYF vs XYM comparisons identify the 
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GSE, but on different chromosomal sex backgrounds. The comparison of XXF vs XYM 

serves to reflect normative sex differences.  

 

Considering the DEG quantities for the two SCE comparisons (Figure 2.6B), the XXM 

vs XYM comparison captures a higher number of DEGs across all cell types in 

comparison to the XXF vs XYF comparison. In the XXF vs XYF comparison, the top 

three cell types with the highest DEG counts include astrocytes, neurons, and 

endothelial cells. Conversely, in the XXM vs XYM comparison, the top three cell types, 

which have the highest DEG numbers, are neurons, endothelial cells, and ependymal 

cells. By comparing the cell type-specific DEGs identified in the XXF vs XYF 

comparison and those in the XXM vs XYM comparisons (Supplementary Figure 

2.1A)., it is clear that the difference in these two comparisons is not limited to DEG 

numbers alone, notably, a considerable portion of the DEGs identified in these two SCE 

comparisons are not shared across each cell type. This suggests that the gonadal male 

background may amplify the SCE more than the gonadal female background. Moreover, 

the interactions between the SCE and GSE may contribute to the differences in the 

DEGs identified for SCE under the two distinct gonadal sex backgrounds. This effect, 

which influences all cell types in terms of DEG number, also contributes to different cell 

types in a cell-type-specific manner. For instance, astrocytes exhibit a relatively stronger 

SCE in the XXF vs XYM comparison compared to other cell types. 

 

In assessing the DEG counts for the two GSE comparisons (Figure 2.6C), it is evident 

that the XYF vs XYM comparison captures strikingly more DEGs across all cell types 
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than the XXF vs XXM comparison. In both comparisons, neurons have the highest DEG 

numbers. However, in the XYF vs XYM comparison, neurons have 1297 GSE DEGs, 

while in the XXF vs XXM comparison, the number stands at a mere 89. Additionally, the 

overlap in DEGs is quite limited between the two comparisons (Supplementary Figure 

2.1B). This finding suggests that the male sex chromosome background may amplify 

the GSE more than the female sex chromosome background in a cell-type-specific 

manner.  

 

In order to more accurately elucidate the distinctiveness and overlap between the two 

sex factors, SCE and GSE, we combined the DEGs of XXF vs XYF and XXM vs XYM to 

represent SCE, and combined the DEGs of XYF vs XYM and XXF vs XXM to represent 

GSE (Figure 2.6A). Notably, the most substantial fraction of DEGs is shared among 

SCE, GSE and normative sex difference in neurons, astrocytes, endothelial cells and 

myelinating oligodendrocytes but not other cell types. When it comes to unique sex 

factor DEGs, which are solely influenced by a single sex factor, neurons, 

oligodendrocyte precursor cells, ependymal cells, Mural Pericytes VSMCs, Endothelial 

cells, Myelinating Oligodendrocytes, and Tanycytes exhibit the largest GSE-specific 

DEG set. Conversely, the most significant number of SCE-specific DEGs is found in in 

astrocytes and microglias. 

 

Transcriptional contributions of GSE and SCE to the normative sex difference of 

pairwise comparison based DEGs across cell types 
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We focused on the overlap between the SCE and GSE among the XXF vs XYM DEGs 

in each cell type to distinguish GSE-specific, SCE-specific, and shared contributions to 

the normative sex difference (Figure 2.6 D). GSE and SCE in the pairwise DEGs 

together account for over 75% of the normative sex differences in all cell types. 

Furthermore, in mural cells and myelinating oligodendrocytes, SCE and GSE account 

for over 85% of the normative sex difference. 

 

The contributions of each sex factor varied across cell types: the GSE-specific 

contribution was highest in Tanycytes, contributing to 58% of the total normative sex 

differences, while it was lowest in astrocytes, contributing to 7.4% of the total normative 

sex differences. The SCE-specific contribution was highest in astrocytes, contributing to 

17% of the total normative sex differences, while contributing to 5-10% of the total 

normative sex differences in most cell types. The shared contribution of SCE and GSE 

was the highest, compared to GSE and SCE-specific contributions, in astrocytes, 

neurons, oligodendrocyte progenitor cells, and myelinating oligodendrocytes, but not in 

the remaining subtypes. 

 

Similar to the linear model-based DEGs, the pairwise DEGs in general cell types show 

that the effects of the SCE and GSE together, separated with the FCG model, can 

explain the majority of normative sex differences. Different sex factors share a 

substantial portion of similar impacts. The GSE-specific contribution is more varied 

while the SCE-specific contribution is more consistent across cell types. In contrast to 

the linear model-based comparison, the pairwise comparison tends to identify fewer 
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DEGs in each comparison and lacks the capacity to evaluate SCE-GSE interactions. 

Additionally, there is a smaller quantity of cell types whose normative sex differences 

can be explained beyond 85% when applying the pairwise comparison. It's interesting to 

note that the GSE effect captured through the pairwise comparison is more pronounced. 

 

Transcriptional contributions of GSE and SCE to the normative sex difference of 

pairwise comparison based DEGs across neuronal subtypes 

When examining the intersection of DEGs across all combinations of sex factors and 

normative sex differences in 15 neuronal subtypes (Figure 2.7A), we observe a limited 

shared contribution among all sex factors. The greatest proportion of DEGs, observed in 

Avp, Nrgn, Avp.Oxt, Pomc, Chchd, and Thy 1 neurons, are exclusively influenced by 

GSE. Furthermore, the number of DEGs affected solely by SCE is relatively small 

across cell types, which is consistent with the trend that pairwise comparison captures 

more GSE effect. 

 

Contributions of SCE and GSE to normative sex differences was examined with overlap 

between SCE, GSE, and the XXF vs XYM DEGs in each neuronal subtype. In Chchd10 

neurons, GSE-specific contribution accounts for 53% of normative sex differences, the 

highest amongst the neuronal subtypes. Across the remaining neuronal subtypes, GSE-

specific contribution varied between 6% - 48%. The maximum SCE-specific contribution 

was observed in Avp.Oxt neurons (37%), and in other neuronal subtypes, this 

contribution ranged from 3% - 24%. It was noted that in Avp, Avp.Oxt and Chchd10 

neurons, SCE and GSE together explained over 85% of the normative sex differences. 
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However, in Gal and Agrp.Npy neurons, the proportion explained is less than 50%, 

indicating that the pairwise-based DEGs approach was less effective in capturing the 

SCE and GSE effects that could account for the majority of normative sex differences in 

certain neuronal types. 

 

Pathway analysis of genes implicated in Sex Chromosome Effect and Gonadal 

Sex Effect 

To gain insights into the influence of Sex Chromosome Effects (SCE) and Gonadal Sex 

Effects (GSE) on various biological pathways, an analysis of pathway enrichment was 

undertaken. The analysis relied on the framework of linear model-based comparisons, 

due to the capacity of these models to incorporate all four genotypes within a single 

model. This broadens the scope of DEGs captured and exhibits better performance in 

explaining normative sex difference in the context of neuronal subtypes compared to the 

pairwise comparison. 

 

We employed Fisher's exact test to ascertain the overlap between the identified DEGs 

and the biological pathways catalogued in KEGG, REACTOME, BIOCARTA, and 

HALLMARK databases28–31. To control for multiple testing, we applied the Benjamini-

Hochberg method to estimate the FDR. Furthermore, we calculated fold changes based 

on the average fold change across all overlapping genes within a pathway. Pathways 

with -log2(fold change) greater than zero indicate an upregulation in sex chromosomal 

females (XX) compared to sex chromosomal males (XY) for SCE, or an upregulation in 

gonadal females (F) compared to gonadal males (M) for GSE. We defined the 
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enrichment score as the ratio of overlapping genes to the total genes within our cell 

type-specific gene set, scaled by 20,000, and then divided by the total genes within the 

pathway. 

 

Upon scrutinizing the pathway enrichment results from general cell types, a significant 

number of pathways emerged. These were broadly classified into five functional 

categories, namely: ATP Generation, Cell Organization, Cell Signaling, Central Dogma, 

and Immune Response (Figure 2.8).  

 

With respect to ATP generation, it was observed that the ATP synthesis by 

chemiosmotic coupling pathway was upregulated in gonadal females relative to gonadal 

males in endothelial cells. In neurons, pathways including oxidative phosphorylation, 

respiratory electron transport, and ATP synthesis by chemiosmotic coupling, were 

enriched yet exhibited downregulation in sex chromosomal females (XX) relative to sex 

chromosomal males (XY). A similar trend of downregulation was observed for these 

pathways in XXF compared to XYM in neurons. This pattern suggests that SCE may 

have a contributory role in shaping the ATP generation process in the context of 

normative sex differences in neurons. 

 

When examining pathways connected with cell signaling, varying pathways across 

diverse cell types were found to be differently influenced under distinct sex factors. In 

astrocytes mTOR1 signaling and neurotrophin signaling pathways are impacted by 

SCE. Both pathways were enriched and exhibited downregulation in sex chromosomal 
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females when compared to their male counterparts. mTORC1 signaling, pivotal in 

modulating cell growth and metabolism in astrocytes, has been implicated in synaptic 

plasticity and neuronal function regulation32. Similarly, neurotrophin signaling in 

astrocytes, which these cells both produce and receive, promotes neuronal survival and 

growth while also participating in synaptic plasticity33. 

 

Within microglia, the TNF-α signaling via NF-κB pathway was found to be enriched and 

displayed a decrease in activity in sex chromosomal females relative to males. This 

downregulation was similarly observed in the comparison of XXF to XYM. TNF-α 

signaling via NF-κB plays a critical role in microglia as a central component of 

neuroinflammation and neurodegenerative diseases34,35. As the primary immune cells 

within the hypothalamus, microglial activation characterizes neuroinflammatory 

conditions. The activation of the NF-κB pathway in microglia yields further pro-

inflammatory mediators, potentially perpetuating an inflammatory response that may 

lead to neuronal damage.  

 

In myelinating oligodendrocytes, the ErbB signaling pathway was upregulated in 

gonadal females compared to males. With ErbB playing a vital role in myelination and 

neuregulin-activated ErbB2/ErbB3 controlling myelin sheath thickness36,37, this pathway 

is essential in myelinating oligodendrocytes. Evidence has pointed to females exhibiting 

more rapid myelination during development, suggesting that the GSE-influenced ErbB 

signaling pathway might contribute to these sex differences36. 
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Several mRNA metabolism and protein synthesis related pathways were upregulated in 

endothelial cells in gonadal females, sex chromosomal females, and normative females 

when compared to males. Contrarily, in neurons, the same pathways exhibited 

downregulation in gonadal females, sex chromosomal females, and normative females 

compared to males. This indicates that various sex factors might influence mRNA 

metabolism and protein synthesis within a single cell type in the same direction, while 

different cell types may exhibit different directions of regulation. 

 

Biological pathways enriched under SCE and GSE across neuronal subtypes 

To delve deeper into the influence of SCE and GSE on diverse biological pathways in 

different neurons, a similar analysis of pathway enrichment was undertaken for 15 

neuronal subtypes. The significantly enriched pathways were classified into seven 

functional categories: Ion Transportation, Neuronal Activity, ATP Generation, Cell 

Organization, Cell Signaling, Central Dogma, and Immune Response (Figure 2.9). 

 

In neurons, ion channel transport is crucial for the initiation and propagation of electrical 

signals or action potentials. Notably, voltage-gated potassium channel pathways were 

found to be upregulated in gonadal and chromosomal females compared to males in 

Avp, Bdnf, Car10, and Nrgn neurons. Voltage-gated potassium channels, which open in 

response to alterations in membrane potential, are integral to repolarizing the 

membrane post an action potential. Ligand-gated ion channel transport pathways 

demonstrated upregulation in normative females compared to males in Bdnf neurons, in 

gonadal, chromosomal, and normative females in Car10 neurons, and in gonadal and 
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chromosomal females in Nrgn neurons. These ligand-gated channels, opening in 

response to neurotransmitter binding, are critical for neurotransmission, facilitating 

communication between neurons at synapses. Specific to ionotropic glutamate 

receptors, both NMDA receptor binding and activation pathway and the trafficking of 

AMPA receptors pathway were found to be upregulated in normative females in Car10 

neurons and in gonadal, chromosomal, and normative females in Nrgn neurons. Both 

receptors are ion channels that allow for the influx of positive ions into the cell upon 

activation by the neurotransmitter glutamate and can initiate a variety of processes that 

are crucial for neural function and plasticity37,38. These pathway enrichment results 

suggest a heightened activity in female ion channel transport under both SCE and GSE, 

providing insights into the sex differences in neuronal ion channel transport. 

 

For other neuronal activities, the long-term potentiation pathway showed a 

downregulation in both gonadal and chromosomal females and in normative females in 

Bdnf, Car10, and Nrgn neurons. In contrast, the long-term depression pathway 

demonstrated an upregulation under the same sex factors in these neuronal subtypes. 

The observed enrichment directions of these two pathways indicate diminished synaptic 

strengthening and increased synaptic weakening in hypothalamic neuronal subtypes in 

females under both SCE and GSE. This aligns with established knowledge that 

estrogen can modulate Long Term Potentiation (LTP) within specific brain regions and 

at certain stages of the menstrual cycle39,40. The axon guidance pathway, which 

contributes to synaptic plasticity in the adult brain, was found to be upregulated in 

chromosomal, gonadal, and normative females in Avp and Bdnf neurons but 
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downregulated in Thy1 neurons in chromosomal and gonadal females, indicating a 

neuron subtype-specific manner. The enrichment results of these pathways enhance 

our understanding of sex differences in neuronal plasticity, thereby illuminating sex-

specific biological mechanisms. 

 

Disease associated genetic markers enriched in sex factor DEGs 

A number of studies has revealed sex differences in the susceptibility to and 

progression of a wide range of diseases—including Neurodegenerative Disorders, 

Mental Health Disorders, Cardiometabolic Diseases, and Autoimmune Diseases. These 

diseases underscore a intersection with brain function and regulation, also within the 

hypothalamus. The hypothalamus, instrumental in the maintenance of body 

homeostasis, regulates various physiological processes such as stress responses, the 

neuroendocrine system, energy balance, appetite, and hormonal secretion via the 

pituitary gland. It is plausible that sex differentials in hypothalamic function may 

underpin the observed sex-biased disease susceptibilities. 

 

In order to assess the potential significance of identified sex factor-specific and cell-type 

specific DEGs within the human disease context, summary statistics from human 

Genome-Wide Association Studies (GWAS) were collected and analyzed for an array of 

71 traits and diseases16–21 (Supplementary Table 2.1). The association of GWAS 

Single Nucleotide Polymorphisms (SNPs) with specific genes was considered, taking 

into account genes located within a 50 kilobase radius of each SNP and incorporating 

hypothalamus-specific expression and splicing Quantitative Trait Loci (eQTL and sQTL, 
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respectively) from the Genotype-Tissue Expression project (GTEX8) for mapping 

purposes. 

 

The conversion of identified DEGs into their human orthologues was facilitated through 

the BiomaRt R package. The Marker Set Enrichment Analysis (MSEA) function from the 

Mergeomics package was subsequently employed to compare the disease association 

P-values of SNPs linked to the identified DEGs with those linked to a set of random 

genes. The aim of this comparison was to establish whether the DEGs demonstrated a 

more robust association than would be expected by chance, as assessed using a chi-

squared-like statistic41. 

 

The MSEA revealed that 34 of the 71 trait and disease GWAS were enriched in at least 

one sex factor-specific and cell-type-specific DEG set. Three broad categories emerged 

with significant enrichment: Neuropsychiatric Disorders  related GWAS, Obesity-related 

GWAS, and Type 2 Diabetes-related GWAS. Neurological Disorders related GWAS 

included GWAS of Schizophrenia, Major Depressive Disorder (MDD), Anxiety, 

Depressive Symptoms, Anorexia Nervosa, Autism Spectrum Disorder (ASD), and 

Attention Deficit Hyperactivity Disorder (ADHD). Obesity-related GWAS encompassed 

GWAS of Body Mass Index (BMI), Body Mass Index in a European population (BMIeur), 

Waist Circumference (WC), Body Mass Index in women (BMI women), Childhood 

Obesity, and Hip Circumference adjusted for BMI (HIPadjBMI). Type 2 Diabetes-related 

GWAS consisted of GWAS of Type 2 Diabetes (T2D), 2-hour Glucose adjusted for BMI 

(2hrGlucoseBMI), Area Under the Curve for insulin (AUCins), Area Under the Curve for 
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insulin to glucose ratio (AUCinsAUCgluc), Insulin at 30 minutes adjusted for BMI 

(Ins30BMI), Corrected Insulin Response with Insulin Sensitivity Index (CIRISI), 

Corrected Insulin Response (CIR), Fasting Proinsulin, Homeostatic Model Assessment 

for beta cell function (HOMAB), Homeostatic Model Assessment for Insulin Resistance 

(HOMAIR), Insulin Sensitivity Index based on a Joint Model Analysis (ISIJMA), and 

Insulin Sensitivity Index adjusted for Age, Sex, and BMI (ISIAgeSexBMI). 

 

Neuropsychiatric disorders associated genetic markers enriched in sex factor 

DEGs 

Among the Neuropsychiatric Disorders category, Schizophrenia was the most enriched 

GWAS across various cell types and sex factors. Schizophrenia presents distinct sex 

disparities in both incidence and symptom severity, with males typically exhibiting 

symptoms earlier than females. The hypothalamic-pituitary-adrenal (HPA) axis, a critical 

component of the stress response, has been implicated in schizophrenia10,13. Notably, 

while sex factors influenced DEGs in the majority of the general cell types were 

enriched with schizophrenia GWAS signals, DEG sets of tanycytes and microglias were 

not. Furthermore, 8 out of 15 neuronal subtypes related to sex factors DEGs were 

enriched for schizophrenia, including Nrgn, Car10, Avp, Pomc, Gal, Bdnf, Thy1, 

Chchd10. This might point to cell type and neuronal subtype-specific mechanisms 

through which the hypothalamus influences sex differences in schizophrenia. 

 

The GWAS of MDD exhibited strong significance in all of GSE, SCE, and normative sex 

difference-influenced DEGs of Thy1 neurons. It was also enriched in GSE-SCE 
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interaction-influenced DEG sets of microglia and Tac2 neurons. Depressive symptoms 

GWAS had a broader enrichment. Anxiety was significantly enriched in multiple cell 

types and sex factors, while in SCE influenced DEGs of Nrgn neurons and normative 

sex influenced DEGs of Bdnf neurons there was a stronger significance. Women are 

almost twice as likely as men to suffer from these conditions. Estrogen influences 

serotonin and other neurotransmitter systems involved in mood regulation44. Moreover, 

sex differences in stress response, partly controlled by the hypothalamus, may also 

contribute to these differences. 

 

Less broad enrichment was found for ADHD and ASD. ADHD is generally more 

frequently diagnosed in males than in females, and the symptoms can present 

differently between sexes, with males often showing more externalizing behaviors (e.g., 

hyperactivity, impulsivity) and females showing more internalizing behaviors (e.g., 

inattentiveness, daydreaming) 45. ADHD GWAS signals were enriched in both SCE 

influenced DEGs of Gal neurons. Galanin (GAL) is a neuropeptide involved in both 

stress-related behaviors and responses to drugs of abuse46. ASD is diagnosed 

approximately 4 times more often in males than in females47. ASD GWAS signals were 

enriched in both GSE influenced DEGs of Agrp.Npy neurons and GSE-SCE interaction 

influenced Avp neurons. Neurons secreting Agouti-related peptide (AgRP) and 

Neuropeptide Y (NPY) play a role not only in feeding behavior, but also contribute to 

promoting social interaction in mice48. Studies have shown SNPs in AVP signaling are 

associated with social impairments49. These sex factor-influenced neuropeptide 
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systems may contribute to sex differences in ASD and ADHD symptomatology through 

their influence on social behavior and stress response. 

 

Obesity related GWAS signals enriched in sex factor DEGs 

BMI-related GWAS signals exhibited enrichment across multiple cell types and sex 

factors, with BMIall and BMIeur showing enrichment with a pronounced significance in 

SCE, GSE and normative sex differences influenced DEG sets in astrocytes and SCE 

influenced Nrgn neurons. Sex differences are evident in obesity and BMI, with men 

having a significantly higher BMI than women. Also, obesity patterns differ between 

sexes with men are more prone to abdominal obesity. The hypothalamus, crucial in 

regulating energy homeostasis, plays a substantial role in controlling body weight and 

food intake, thereby influencing BMI and obesity rates. Astrocytes interact closely with 

neurons in the hypothalamus, and emerging research suggests they might play a role in 

regulating energy homeostasis. Neurogranin (Nrgn) expressing neurons plays a crucial 

role in synaptic plasticity. The enriched BMI-related GWAS signals may imply a 

potential role for astrocytes and Nrgn neurons in sex differences in obesity and BMI 

through hypothalamic control of energy balance. 

 

Type 2 Diabetes related GWAS signals enriched in sex factor DEGs 

Insulin-related GWAS demonstrate enrichment across diverse cell types and sex 

factors, with variations depending on the specific GWAS. Type 2 Diabetes GWAS 

exhibit heightened significance in sex factor influenced DEG sets in several cell types 

and neurons, including Gal neurons DEGs influenced by SCE, Agrp.Npy neurons DEGs 
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influenced by normative sex differences, and Avp.Oxt neurons DEGs influenced by both 

SCE and normative sex differences. Additionally, ependymal cells demonstrate elevated 

significance in DEGs influenced by SCE and normative sex differences. Type 2 

Diabetes is characterized by insulin resistance and impaired insulin secretion, both of 

which are complex traits that are influenced by a variety of genetic and environmental 

factors. The hypothalamus, with its role in regulating energy balance and glucose 

homeostasis, is a crucial player in the pathogenesis of T2D50. Intriguingly, sex 

differences have been observed in the prevalence and progression of T2D, with men 

more likely to develop the disease at a lower BMI than women, and women 

experiencing a greater increase in cardiovascular risk than men once diagnosed. Agrp 

and Npy neurons in the hypothalamus play pivotal roles in feeding regulation and 

energy balance, and their altered function could potentially influence T2D pathogenesis. 

Gal, Avp, and Oxt neurons are related with stress-related behaviors and an altered 

stress response is suggested to be associated with insulin resistance, a critical factor in 

T2D development. The sex factor influenced differences in these specific cell types and 

neuron types, coupled with hypothalamus roles in stress response and energy balance, 

could underlie sex differences in T2D susceptibility and progression 

 

2.3   Discussion 

The distinction between sex chromosomal effects (SCE) and gonadal sex effects (GSE) 

is an important but understudied area of biological research. SCE refers to the effects 

arising directly from the genetic material of the X or Y chromosome, whereas GSE are 
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effects resulting from the action of the gonads through sex hormone production and the 

structural effect of gonads. These two categories of effects can influence a broad range 

of phenotypes and have traditionally been challenging to tease apart due to their 

intertwined roles in sexual differentiation. SCE are often understudied because their 

effects can be obscured by the potent and pervasive influences of gonadal hormones. 

Consequently, SCE may exert subtle but crucial effects on sex differences that remain 

largely unexplored. This highlights the need for the Four Core Genotypes mouse model, 

which enables the separation of these effects for a more nuanced investigation. 

 

The hypothalamus plays a vital role in numerous physiological functions, including 

thermoregulation, hunger and satiety, and circadian rhythms. As a number of structural 

and functional sex differences was reported in human and murine hypothalamus at the 

structural, functional and molecular levels, the detailed mechanisms underlying these 

sex differences in the hypothalamus are not yet fully understood, leaving a gap in our 

understanding of the biological basis of sex differences. This study was designed to fill 

this knowledge gap and shed light on the role of SCE and GSE in hypothalamus. 

 

In this study, we investigated the cell type-specific contributions of SCE  and GSE in the 

hypothalamus using the FCG mouse model. We observed that SCE, GSE, and their 

interaction account for more than 70% of genetically determined normative sex 

differences across all hypothalamic cell types and neuronal subtypes. Our findings 

illustrate a complex interplay of SCE and GSE within diverse cellular pathways, notably 

those linked to ion transportation, neuronal activity, ATP generation, cell organization, 
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signaling, central dogma, and immune response. This underscores the importance of 

considering sex-specific genetic and gonadal contributions when studying cell-specific 

functions and responses in the hypothalamus. Furthermore, our data suggest that these 

sex differences are not homogenous across cell types but instead manifest in a cell-type 

specific manner. An intriguing outcome of our analysis is the enrichment of marker set 

GWAS signals in sex factor-specific and cell type-specific DEGs for neurological 

disorders, obesity, and type 2 diabetes. These results underscore the potentially 

profound implications of our findings for understanding the sex-specific susceptibilities 

and progressions of these prevalent health conditions. Our work echoes the growing 

recognition in biomedical research that sex differences at the cellular level can 

contribute significantly to disease risk and phenotype. 

 

Future studies will be necessary to validate and extend our findings. For instance, it 

would be informative to probe the mechanistic underpinnings of the SCE and GSE 

effects observed in our study, which could yield new insights into how sex-specific 

molecular and cellular processes in the hypothalamus contribute to disease risk and 

progression. Moreover, it will be critical to determine if and how the pathways we 

identified interact with each other and with external factors such as hormonal regulation, 

environmental stressors, and age. Furthermore, the translation of these findings to 

humans represents an exciting avenue for future research, potentially enabling 

personalized therapeutic strategies based on sex. 
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2.4   Conclusions 

Utilizing the Four Core Genotypes (FCG) mouse model, this study separated the effects 

of GSE and SCE, allowing for a detailed analysis of their distinct influences at a cellular 

level in hypothalamus via the application of single-cell RNA sequencing. Remarkably, 

the analysis in this study identified 11 cell types and 15 neuronal subtypes in 

hypothalamus.  Based on analysis of sex factor specifc and cell type specific DEGs, 

SCE, GSE, and SCE-GSE interaction account for over 70% of the genetically 

determined normative sex differences across all hypothalamic cell types and neuronal 

subtypes. These DEGs were found to be enriched in diverse ion transportation, 

neuronal activity, ATP generation, cell organization, cell signaling, central dogma, and 

immune response related pathways in a cell-type specific manner. Moreover, marker 

set enrichment analysis of GWAS signals in these sex factor specific and DEGs 

revealed that 34 of the 71 traits and diseases GWAS were enriched in at least one sex 

factor-specific and cell-type-specific DEG set. Three broad categories emerged with 

significant enrichment: Neurological Disorders related GWAS, Obesity-related GWAS, 

and Type 2 Diabetes-related GWAS. Understanding these sex differences in the 

hypothalamus and their potential implications for disease susceptibility and progression 

is a crucial area of research. Enhancing the understanding of the key cell types and 

pathways underlying sex- specific risks is important for enabling personalized therapies 

based on sex. 

2.5   Methods 

Experimental Animals and hypothalamus tissue preparation 
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The FCG mice breeders were from Dr. Arthur P. Arnold's laboratory at UCLA. In 

C57BL/6J  XYM mice, the testis-determining gene Sry is deleted from the Y 

chromosome, and an Sry transgene is inserted on chromosome 3. By breeding XYM 

(gonadal and chromosomal male) with C57BL/6J wildtype XXF (gonadal and 

chromosomal female), four genotypes were produced, namely, XYM, XXF, XYF 

(chromosomal male, gonadal female), and XXM (chromosomal female, gonadal male). 

The mice were housed in groups of three to five, with unlimited access to food and 

water and maintained in a 12-hour dark/light cycle. All animal experiments were 

approved by the University of California, Los Angeles Institutional Animal Care and Use 

Committee (IACUC). 

 

Following the protocol described by Brewer et al, the hypothalamus tissue from XXF, 

XXM, XYF, and XYM mice was freshly dissected and digested with papain. The 

resulting suspension was adjusted to a final concentration of 100 cells/μl in 0.01% BSA-

PBS. 

 

scRNA-seq library preparation and sequencing for scRNA-seq 

Barcoded single cells and cDNA libraries were generated using the Drop-seq protocol V 

3.1 and Macosko et al's protocol. A concentration of 100 cells/μl was used to prepare 

single cell suspensions which were co-flowed with EvaGreen droplet generation oil and 

ChemGenes barcoded microparticles through a FlowJEM aquapel-treated Drop-seq 

microfluidic device. The recommended flow speeds for oil, cells, and beads were used 
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(15,000 μl/hr, 4000 μl/hr, and 4000 μl/hr, respectively), resulting in the generation of 

STAMPs (single-cell transcriptomes attached to microparticles). 

 

Library quality, average size, and concentration were checked using a TapeStation high 

sensitivity chip. Tagmentation was then performed using the Nextera DNA Library 

Preparation kit and multiplex indices were added. The molar concentration of the Drop-

seq libraries was quantified using Qubit Fluorometric Quantitation and the library 

fragment length was estimated using a TapeStation. 

 

Sequencing was carried out on an Illumina HiSeq 4000 instrument, with a sequencing 

depth of 31,000-34,000 reads per cell. 

 

scRNA-seq data pre-processing and quality control 

The Drop-seq sequencing data fastq files were pre-processed using Drop-seq tools 

version 1.12 and aligned to the mouse reference genome mm10 using STAR-2.5.0c 

after converting the cleaned reads back to fastq format. Default parameters were 

followed as specified in Drop-seq alignment cookbook v1.2. To assess the quality of the 

Chemgenes beads batch, the DetectBeadSynthesisErrors function was employed, 

which estimated a bead synthesis error rate within the acceptable range (<10%). Single 

cells were distinguished from background noise by imposing a threshold of at least 500 

genes and 900 transcripts, with mitochondrial reads making up no more than 20% of the 

total reads. 
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Cell clustering and cell type identification 

The Cell clustering and cell type identification were performed using the Seurat R 

package version 4.0.2. The Louvain algorithm was employed to determine cell clusters 

based on similarities in transcriptome patterns, and the resulting clusters were 

visualized using t-Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform 

Manifold Approximation and Projection (UMAP). Highly variable genes selected using 

the FindVariableFeatures function with default parameters were subjected to principle 

component analysis (PCA). The number of Principal Components used for Louvain 

clustering and subsequent visualization was determined with the Jackstraw permutation 

approach (n=25 for clustering of all cells and n=15 for neuronal cell sub-clustering). Cell 

type identities of the clusters were resolved by comparing the cell cluster-specific 

marker genes expressed in each cluster in our own dataset, identified with a Wilcoxon 

rank sum test, with known cell-type-specific markers curated from literature, single-cell 

atlases, and previous studies in the hypothalamus and other brain regions. For a gene 

to be considered in the cell cluster marker analysis, it had to be expressed in at least 

10% of the single cells from the cluster of interest and exhibit at least a 0.25 log-fold 

change in the cell cluster of interest compared to other cells. Multiple testing was 

corrected using the Benjamini-Hochberg method to estimate the false discovery rate 

(FDR). Neuronal subtypes were named with hypothalamic peptide genes that the 

cluster expressed and/or other cluster-specific marker genes. 

 

Identification of differentially expressed genes (DEGs) and pathways 
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To determine which genes were affected by SCE and/or GSE, we performed both linear 

model based DEG analysis and pairwise DEG analysis. Linear model based DEGs 

were identified using the Limma R package, which utilized the model Y = A1SCE + 

A2GSE + A12SCEGSE, while pairwise DEGs were identified using the built-in 

"FindMarkers" function in Seurat V4.0.2. 

 

To be considered a DEG, a gene needed to be expressed in at least 10% of the cells 

from the cell type and exhibit at least a 1.1-fold change in gene expression between the 

comparison. The Benjamini-Hochberg method was employed to correct for multiple 

testing and estimate the false discovery rate (FDR) for both linear model based DEGs 

and pairwise DEGs. 

 

To assess pathway enrichment, we performed Fisher's exact test to determine the 

overlap between the DEGs and pathways from KEGG, REACTOME, BIOCARTA, and 

HALLMARK. Multiple testing correction was performed using the Benjamini-Hochberg 

method to estimate FDR. The enrichment score was calculated as the number of 

overlapped genes divided by the number of genes in our cell type-specific gene set, 

multiplied by 20,000 and then divided by the total number of genes in the pathway. 

 

Disease Enrichment Analysis  

To evaluate the potential significance of the identified sex-specific differentially 

expressed genes (DEGs) in human disease context, summary statistics from human 
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Genome-Wide Association Studies (GWAS) were assembled for a compilation of 71 

traits and diseases. The association of GWAS Single Nucleotide Polymorphisms 

(SNPs) with specific genes was considered, taking into account genes located within a 

50 kilobase radius of each SNP and incorporating hypothalamus-specific expression 

and splicing Quantitative Trait Loci (eQTL and sQTL, respectively) from the Genotype-

Tissue Expression project (GTEX8) for mapping purposes. The conversion of the 

identified DEGs into their human orthologues was facilitated through the BiomaRt R 

package. Subsequently, the Marker Set Enrichment Analysis (MSEA) function from the 

Mergeomics package was applied to compare the disease association P-values of 

SNPs linked to the identified DEGs with those linked to a set of random genes. This was 

performed to ascertain if a more robust association than would be expected by chance 

was demonstrated by the DEGs, as assessed using a chi-squared-like statistic. 
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2.6   Figures 

 

Fig 2. The work flow of examining cell-type specific gonadal sex effect and sex 
chromosome effect in hypothalamus with four core genotype model 
 

 

Fig 2. 1 Eleven cell types identified in hypothalamus 
A, Uniform Manifold Approximation and Projection (UMAP) plot illustrates the 11 cell 

types clustered in hypothalamus cells. Each colored dot signifies a cell, with distinct 
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colors indicating various cell types. The Louvain algorithm was utilized to determine cell 

clusters. 

B, Cluster-specific expression of known cell markers: Neurons: Snap25 and Syt1, 

Astrocytes: Agt, Ependymal cells: Ccdc153, Endothelial cells: Flt1, Tanycytes: Rax, 

Myelinating Oligodendrocytes: Olig1 and Mobp, Newly Formed Oligodendrocytes: Olig1 

and Fyn, Oligodendrocyte Progenitor Cells: Olig1 and Pdgfra, Microglia: Cx3cr1, Mural 

cells including pericytes and vascular smooth muscle cells: Acta2, and vascular 

leptomeningeal cells: Lum. 

C, UMAP plot showing expression pattern differences between Four Core Genotypes. 

D, UMAP plot showing expression pattern differences between hypothalamus cells with 

sex chromosomal female (XX) and sex chromosomal male (XY). 

E, UMAP plot showing expression pattern differences between gonadal female and 

gonadal male. 
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Fig 2. 2 Fifteen neuronal subtypes identified in hypothalamus neurons 
A, UMAP plot presenting the integrated clustering of 15 neuronal subtypes across four 

core genotypes. Here the clusters were derived from an integrated gene expression 

matrix, which was created by identifying and using "anchors" to correct across the four 

core genotypes. Each dot represents a single cell, with different colors marking distinct 

neuronal subtypes. This analysis allows for the identification of common neuronal 

subtypes across four core genotypes. 

B, Neuronal subtypes were named with hypothalamic peptide genes that the cluster 

expressed and/or other cluster-specific marker genes. 

C, D, UMAP plot showing expression pattern differences between Four Core Genotypes 

based on integrated gene expression matrix (C) or non-integrated gene expression 

matrix (D), with the latter reflecting the expression pattern between groups as it was 

originally measured 

E, UMAP plot showing of 15 neuronal subtypes on clustering based on non-integrateed 

gene expression matrix. 

FemaleXX
FemaleXY
MaleXX
MaleXY

FemaleXX
FemaleXY
MaleXX
MaleXY

Agrp.Npy
Apoe
Avp
Avp.Oxt
Bdnf
Car10
Ccnd2.Cck
Chchd10
Gal
Lhx6
Nrgn
Pomc
Tac2
Thy1
Vip

Figure 3:

A B

C Agrp.Npy
Apoe
Avp
Avp.Oxt
Bdnf
Car10
Ccnd2.Cck
Chchd10
Gal
Lhx6
Nrgn
Pomc
Tac2
Thy1
Vip

D E



 

43 
 

 

 

Fig 2. 3 Differently expressed genes detected by linear model based method 
across cell types 
A, UpSet plot illustrating intersections of differentially expressed genes (DEGs) under 

the influence of 4 sex factors (SCE, GSE, SCE-GSE Interaction and normative sex 

difference: XXF vs XYM) within each cell type, all at a Bonferroni-adjusted p-value < 

0.05. Horizontal bars (set size) indicate total DEGs for each cluster in each plot. In the 

upset plots, dots point to the specific clusters for which the vertical bars for DEG counts 

are shown, and vertical lines between dots represent the intersections between two or 
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more clusters. 

B, Bar Plot showing DEG numbers under the influence of SCE, GSE and SCE-GSE 

Interaction across each cell type 

C, Stacked bar plot depicting the individual contributions of SCE, GSE, and SCE-GSE 

interaction to normative sex differences in each cell type, based on overlapping DEGs 

between SCE, GSE, and SCE-GSE interaction DEGs with the DEGs from XXF vs XYM. 
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Fig 2. 4 Differently expressed genes detected by linear model based method 
across neuronal subtypes 
A, UpSet plot illustrating intersections of differentially expressed genes (DEGs) under 

the influence of 4 sex factors (SCE, GSE, SCE-GSE Interaction and normative sex 

difference: XXF vs XYM) within each neuronal subtype, all at a Bonferroni-adjusted p-
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value < 0.05. Horizontal bars (set size) indicate total DEGs for each cluster in each plot. 

In the upset plots, dots point to the specific clusters for which the vertical bars for DEG 

counts are shown, and vertical lines between dots represent the intersections between 

two or more clusters. 

B, Stacked bar plot depicting the individual contributions of SCE, GSE, and SCE-GSE 

interaction to normative sex differences in each neuronal subtype, based on overlapping 

DEGs between SCE, GSE, and SCE-GSE interaction DEGs with the DEGs from XXF 

vs XYM. 
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Fig 2. 5 Differently expressed genes detected by pairwise comparison across cell 

types 

A, UpSet plot illustrating intersections of DEGs under the influence of 3 sex factors 

(SCE, GSE, and normative sex difference: XXF vs XYM) within each cell type. SCE 

DEGs are union of XXF vs XYF DEGs and XXM vs XYM DEGs while GSE DEGs are 

union of XXF vs XXM DEGs and XYF vs XYM DEGs all at a Bonferroni-adjusted p-

value < 0.05. Horizontal bars (set size) indicate total DEGs for each cluster in each plot. 

Astrocytes

Endothelial

Ependymal

Microglia

Mural Pericytes VSMCs

Myelinating Oligodendrocytes

Neuron

Newly Formed Oligodendrocytes Oligodendrocyte Precursor Cells

Tanycytes

Vascular Leptomeningeal Cells

GSE

SCE

XXF vs XYM

0

50

100

150

200

Intersection
size

0

20
0

40
0

Set size

GSE

SCE

XXF vs XYM

0

100

200

Intersection
size

0
10

0
20

0
30

0
40

0

Set size

GSE

SCE

XXF vs XYM

0

100

200

300

400

Intersection
size

0

50
0

10
00

Set size

GSE

SCE

XXF vs XYM

0

5

10

Intersection
size

0 10 20

Set size

GSE

SCE

XXF vs XYM

0

50

100

150

Intersection
size

0

10
0

20
0

30
0

Set size

GSE

SCE

XXF vs XYM

0

200

400
Intersection

size

0

50
0

10
00

Set size

GSE

SCE

XXF vs XYM

0

50

100

150

Intersection
size

0
10

0
20

0
30

0
40

0

Set size

GSE

SCE

XXF vs XYM

0

50

100

150

Intersection
size

0

10
0

20
0

30
0

Set size

GSE

SCE

XXF vs XYM

0

0.5

1

Intersection
size

0 1 2

Set size

GSE

SCE

XXF vs XYM

0

2

4

6

Intersection
size

0 10 20

Set size

GSE

SCE

XXF vs XYM

0

2

4

Intersection
size

0 2 4

Set size

A B

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ta
nycy

tes

Micr
ogli

a

Ep
end

ymal

Oligo
.PCs

Mural.P
eric

yte
s

Mye
lin

atin
g.O

lig
os

Neu
ron

Astr
ocyt

es

GSE-Specific Contribution SCE- Specif ic Contribution

Shared Contribution

Figure 6:

C

XXF vs XYF

XXM vs XYM

XXF vs XXM

XYF vs XYM

D



 

48 
 

In the upset plots, dots point to the specific clusters for which the vertical bars for DEG 

counts are shown, and vertical lines between dots represent the intersections between 

two or more clusters. 

B, Bar Plot showing SCE influenced DEG numbers captured in two separate 

comparisons: XXF vs XYF and XXM vs XYM 

C, Bar Plot showing GSE influenced DEG numbers captured in two separate 

comparisons: XXF vs XXM and XYF vs XYM 

D, Stacked bar plot depicting the individual contributions of SCE, GSE, and SCE-GSE 

interaction to normative sex differences in each cell type, based on overlapping DEGs 

between SCE, GSE, and SCE-GSE interaction DEGs with the DEGs from XXF vs XYM. 
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Fig 2. 6 Differently expressed genes detected by pairwise comparison across 
neuronal subtypes 
A, UpSet plot illustrating intersections of DEGs under the influence of 3 sex factors 

(SCE, GSE, and normative sex difference: XXF vs XYM) within each cell type. SCE 
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DEGs are union of XXF vs XYF DEGs and XXM vs XYM DEGs while GSE DEGs are 

union of XXF vs XXM DEGs and XYF vs XYM DEGs all at a Bonferroni-adjusted p-

value < 0.05. Horizontal bars (set size) indicate total DEGs for each neuronal subtype in 

each plot. In the upset plots, dots point to the specific clusters for which the vertical bars 

for DEG counts are shown, and vertical lines between dots represent the intersections 

between two or more clusters. 

D, Stacked bar plot depicting the individual contributions of SCE, GSE, and SCE-GSE 

interaction to normative sex differences in each neuronal subtype, based on overlapping 

DEGs between SCE, GSE, and SCE-GSE interaction DEGs with the DEGs from XXF 

vs XYM. 
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Fig 2. 7 Pathways enriched in cell type specific DEGs affected by SCE , GSE and 
normative sex differences 
Dot Plot visualizing the significant pathways that are enriched within the sex factor-

specific and cell type-specific DEG sets, considering all pathways at a Bonferroni-

adjusted p-value < 0.05. The horizontal axis denotes the cell type-specific DEG set 
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impacted by SCE, GSE, and normative sex differences. On the vertical axis, individual 

pathway names are displayed on the left, with pathway categories on the right. The size 

of each dot corresponds to the enrichment score for each pathway, reflecting the ratio of 

overlapping genes to total genes within the cell type-specific gene set, adjusted by a 

scale factor of 20,000, and then divided by the total number of genes within the 

pathway. Dot color represents the log2(fold change), calculated based on the average 

fold change across all overlapping genes within a pathway. Pathways exhibiting a 

log2(fold change) greater than zero signify an upregulation in SCE-influenced XX 

individuals relative to XY individuals, or in GSE-influenced females as compared to 

males. 
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Fig 2. 8 Pathways enriched in neuronal subtype specific DEGs affected by SCE, 
GSE and normative sex differences 
Dot Plot visualizing the significant pathways that are enriched within the sex factor-

specific and neuronal subtype specific DEG sets, considering all pathways at a 

Bonferroni-adjusted p-value < 0.05. The horizontal axis denotes the neuronal subtype 

specific DEG set impacted by SCE, GSE, and normative sex differences. On the vertical 

axis, individual pathway names are displayed on the left, with pathway categories on the 
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right. The size of each dot corresponds to the enrichment score for each pathway, 

reflecting the ratio of overlapping genes to total genes within the cell type-specific gene 

set, adjusted by a scale factor of 20,000, and then divided by the total number of genes 

within the pathway. Dot color represents the log2(fold change), calculated based on the 

average fold change across all overlapping genes within a pathway. Pathways 

exhibiting a log2(fold change) greater than zero signify an upregulation in SCE-

influenced XX individuals relative to XY individuals, or in GSE-influenced females as 

compared to males. 
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Fig 2. 9 Sexual dimorphic genes associate with diseases or phenotype GWAS at 
cell type level 

6/2/23 15

Linear - Sexual dimorphic genes associate with diseases GWAS at cell type level 
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Heatmap visualizing the GWAS that are enriched within the sex factor-specific and cell 

type specific DEG sets. The vertical axis signifies DEG sets, specific to cell types, 

influenced by SCE, GSE, SCE-GSE interaction, and normative sex differences. The 

horizontal axis represents distinct GWAS. The color within each cell depicts the -

log10(FDR), measured using a chi-square-like metric. Cells demonstrating a FDR < 

0.05 are highlighted with *. 
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Sup Fig. 2. 1 Intersections of DEGs under pairwise comparison 
A, Vein plot showing intersection of DEGs from XXF vs XYF and XXM vs XYM 

comparisons. Both comparisons infer DEGs influenced by SCE 
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B, Vein plot showing intersection of DEGs from XXF vs XXM and XYF vs XYM 

comparisons. Both comparisons infer DEGs influenced by GSE 

C, UpSet plot illustrating intersections of DEGs in 5 pairwise comparisons (XXF vs XYF, 

XXM vs XYM, XXF vs XXM, XYF vs XYM, XXF vs XYM) within each cell type all at a 

Bonferroni-adjusted p-value < 0.05. Horizontal bars (set size) indicate total DEGs for 

each cluster in each plot. In the upset plots, dots point to the specific clusters for which 

the vertical bars for DEG counts are shown, and vertical lines between dots represent 

the intersections between two or more clusters. 
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2.7   Tables 

 

Table 2. 1 Human GWAS of 71 traits and diseases from 16 consortiums used in 

GWAS abbreviation GWAS database GWAS disease or phenotype name
ADIPOGen_Adiponectin ADIPOGen  Adiponectin levels

AMDGene_AdvancedAMD AMDGene  Advanced Age-related Macular Degeneration
AMDGene_GeographicAtrophy AMDGene  Geographic Atrophy

AMDGene_NeovascularDisease AMDGene  Neovascular Disease
ANGST_Anxiety ANGST  Anxiety

CARDIOGRAM_CAD CARDIOGRAM  Coronary Artery Disease
CONVERGE_MDD CONVERGE  Major Depressive Disorder

DIAGRAM_T2D DIAGRAM  Type 2 Diabetes
EAGLE_ADHD EAGLE  Attention Deficit Hyperactivity Disorder

EAGLE_Aggression EAGLE  Aggression
EAGLE_InternalizingProblem EAGLE  Internalizing Problem

EAGLE_SleepBMIadj EAGLE  Sleep (BMI Adjusted)
EGG_BirthLength EGG  Birth Length
EGG_BirthWeight EGG  Birth Weight

EGG_ChildhoodBMI EGG  Childhood Body Mass Index
EGG_ChildhoodObesity EGG  Childhood Obesity

EGG_EarlyGrowth EGG  Early Growth
EGG_HeadCircumference EGG  Head Circumference

EGG_LateGrowth EGG  Late Growth
EGG_TannerStage EGG  Tanner Stage
EGG_TotalGrowth EGG  Total Growth

GCAN_AnorexiaNervosa GCAN  Anorexia Nervosa
GIANT_BMIall GIANT  Body Mass Index (all)
GIANT_BMIeur GIANT  Body Mass Index (European ancestry)
GIANT_BMImen GIANT  Body Mass Index (men)

GIANT_BMIwomen GIANT  Body Mass Index (women)
GIANT_Height GIANT  Height

GIANT_HIP GIANT  Hip Circumference
GIANT_HIPadjBMI GIANT  Hip Circumference (BMI Adjusted)

GIANT_WC GIANT  Waist Circumference
GIANT_WCadjBMI GIANT  Waist Circumference (BMI Adjusted)

GIANT_WHR GIANT  Waist-Hip Ratio
GIANT_WHRadjBMI GIANT  Waist-Hip Ratio (BMI Adjusted)

GLGC_HDL GLGC  High-Density Lipoprotein
GLGC_LDL GLGC  Low-Density Lipoprotein
GLGC_TC GLGC  Total Cholesterol
GLGC_TG GLGC  Triglycerides

GUGC_Gout GUGC  Gout
GUGC_UA GUGC  Uric Acid levels

IGAP_AlzheimerDisease IGAP  Alzheimer's Disease
IIBDGC_CD IIBDGC  Crohn's Disease
IIBDGC_IBD IIBDGC  Inflammatory Bowel Disease
IIBDGC_UC IIBDGC  Ulcerative Colitis

MAGIC_2hrGlucoseBMI MAGIC  Two-hour Glucose (BMI Adjusted)
MAGIC_AUCins MAGIC  Area Under the Curve for Insulin

MAGIC_AUCinsAUCgluc MAGIC  Ratio of Area Under the Curve for Insulin and Glucose
MAGIC_CIR MAGIC  Corrected Insulin Response

MAGIC_CIRISI MAGIC  Corrected Insulin Response and Insulin Sensitivity Index
MAGIC_DI MAGIC  Disposition Index

MAGIC_FastingGlucoseInteraction MAGIC  Fasting Glucose (Interaction Effect)
MAGIC_FastingGlucoseMain MAGIC  Fasting Glucose (Main Effect)

MAGIC_FastingInsulinInteraction MAGIC  Fasting Insulin (Interaction Effect)
MAGIC_FastingInsulinMain MAGIC  Fasting Insulin (Main Effect)
MAGIC_FastingProinsulin MAGIC  Fasting Proinsulin levels

MAGIC_HbA1C MAGIC  Hemoglobin A1C levels
MAGIC_HOMAB MAGIC  Homeostatic Model Assessment for Beta-cell function
MAGIC_HOMAIR MAGIC  Homeostatic Model Assessment for Insulin Resistance

MAGIC_Incr30 MAGIC  Incremental Insulin Response at 30 minutes
MAGIC_Ins30 MAGIC  Insulin level at 30 minutes

MAGIC_Ins30BMI MAGIC  Insulin level at 30 minutes (BMI Adjusted)
MAGIC_ISIAgeSexBMI MAGIC  Insulin Sensitivity Index (Age, Sex, and BMI Adjusted)
MAGIC_ISIAgeSexOnly MAGIC  Insulin Sensitivity Index (Age and Sex Only Adjusted)

MAGIC_ISIJMA MAGIC  Insulin Sensitivity Index (Joint Meta-Analysis)
PGC_ASD PGC  Autism Spectrum Disorder
PGC_BIP PGC  Bipolar Disorder

PGC_MDD PGC  Major Depressive Disorder
PGC_Schizophrenia PGC  Schizophrenia

ReproGen_AgeAtMenarche ReproGen  Age at Menarche
SSGAC_DepressiveSymptoms SSGAC  Depressive Symptoms

SSGAC_Neuroticism SSGAC  Neuroticism
SSGAC_SubjectiveWellbeing SSGAC  Subjective Well-being.
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marker set enrichment analysis (MSEA) 

 

Chapter 3.   Characterizing the effect of aging in mice visceral WAT 

3.1   Introduction 

On average, at an equivalent BMI, older adults have more body fat (white adipose 

tissue, WAT) than younger adults, especially in the visceral (abdominal) area 51,52. This 

is partially due to the progressive decline in skeletal muscle mass with age. These age-

related alterations in body composition are defined as sarcopenic obesity 53,54. Visceral 

adiposity accelerates aging by promoting insulin resistance, cardiovascular dysfunction, 

and many other chronic diseases, significantly shortening health span 55,56. Thus, 

preventing or reducing WAT accumulation is critical for healthy aging. A recent study 

shows that older individuals have reduced energy expenditure, indicating a global 

remodeling of tissue metabolism during aging57. Unfortunately, the cellular mechanism 

of age-related visceral WAT accumulation is still poorly understood. 

 

WAT regulates numerous hormonal and metabolic processes, and exhibits 

compositional and phenotypic plasticity58. WAT expands via adipocyte hypertrophy (cell 

enlargement) or adipogenesis (the generation of new adipocytes). We and others 

generated multiple mouse models that allow in vivo tracking of adipogenesis, and 

showed that the adipogenesis rate is very low in young adult mice 59-61, similar to that in 

young adult humans 62. During aging, it is known that adipocytes undergo hypertrophy 
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63, but it remains unclear if WAT also expands through adipogenesis, which would grant 

WAT an “unlimited” potential to grow. 

 

Adipocyte progenitor cells (APCs), located within the WAT stroma, are a heterogeneous 

group of mesenchymal stem cells, including adipocyte stem cells and committed 

progenitor cells58. Adipogenesis involves two steps, the proliferation of APCs and the 

differentiation of APCs into mature adipocytes. APCs express a set of mesenchymal 

stem cell surface markers, such as Pdgfrα, Pdgfrβ, CD29, CD34, and Sca164. Recently, 

scRNA-seq has provided unprecedented opportunities to define the heterogeneity of 

murine and human APCs65-71, revealing new subtypes and dynamics under various 

pathophysiological conditions. 

 

In this study, we employed an adipocyte-specific lineage tracing system and found the 

first cellular evidence that WAT expands with age through massive adipogenesis. Thus, 

unexpectedly, in contrast to most adult stem cells that exhibit a reduced ability to 

proliferate and differentiate72-74, adipogenesis of APCs is unlocked by aging. These 

newly generated and pre-existing adipocytes are similar in size , and all these cells are 

larger than adipocytes in young adults, confirming age-related adipocyte hypertrophy 

and hyperplasia. Through a series of in vivo transplantations of adipose tissue and 3D 

imaging of the transplants, we showed that the APCs in aged mice cell-autonomously 

gain high adipogenic capacity. scRNA-seq analysis revealed a global transformation of 

APCs in aged mice and older humans and uncovered a new APC population that is 

enriched during aging. This new type of APC displays high proliferation and 
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adipogenesis capacity, both in vivo and in vitro. Leukemia Inhibitory Factor Receptor 

(LIFR), one of the top markers of this new APC population is critical for the adipogenic 

potential of such population. These findings provide new insights into the cellular 

mechanism of age-related adiposity. 

3.2   Results 

Age-related WAT expansion in mice mimics age-related obesity in humans 

As mice age, both males and females showed a gradual increase of bodyweight, and 

the bodyweight gain was much higher in males than females (Supplementary Fig.3. 

1a-c). As male mice gained more weight than female mice, we focused on males in this 

study. The age-related body weight gain in male mice was primarily attributed to gain of 

WAT, as the percentage of fat mass increased >6-fold during aging (Supplementary 

Fig.3.1d), while the percentage of lean mass decreased ~23% (Supplementary 

Fig.3.1e). Total body water content was also decreased with age (Supplementary 

Fig.3.1f). Among the two types of fat depots, gonadal WAT (gWAT), a typical type of 

visceral WAT, had the most significant weight gain with age (4.6-fold) (Supplementary 

Fig.3.1g), while subcutaneous WAT (sWAT) increased 2.8-fold (Supplementary 

Fig.3.1h). The aged mice exhibited dramatically reduced oxygen consumption 

(Supplementary Fig.3.1i), slightly reduced physical activity (Supplementary Fig.3.1j), 

and dramatically reduced energy expenditure (Supplementary Fig.3.1k). Total 

movements were not significantly altered (Supplementary Fig.3.1l), and food intake 

was reduced in aged mice (Supplementary Fig.3.1m). The drop in oxygen 

consumption and energy expenditure suggested that the aged mice have significantly 
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lower basal metabolism, similar to humans57. Intraperitoneal glucose tolerance tests 

(GTT) (Supplementary Fig.3.1n,o) and insulin tolerance tests (ITT) (Supplementary 

Fig.3.1p, q) showed that aged mice have impaired glucose tolerance and are more 

insulin resistant. Therefore, mice display a pattern of age-related visceral adiposity, 

accompanied by reduced energy expenditure and insulin resistance, similar to age-

related obesity and associated metabolic disorder in humans.  

 

WAT undergoes massive adipogenesis during aging.  

To better understand adipocyte dynamics, we previously developed the AdipoChaser 

mice for tracking adipogenesis66,67,69,81,82. This mouse model is a doxycycline (dox)-

based, tet-responsive labeling system for the inducible, permanent labeling of 

Adiponectin (Adipoq) expressing cells, which represent mature adipocytes. With the 

AdipoChaser mice, doxycycline could be introduced at any time to label all mature 

adipocytes, and new adipocytes generated during the chasing period (after doxycycline 

withdrawal) would not be labeled. To determine if aging is accompanied by 

adipogenesis, we labeled all the adipocytes of 3-month-old male AdipoChaser-mT/mG 

mice (Supplementary Fig.3.2a) with GFP and tracked adipogenesis during early aging 

(Supplementary Fig.3. b). Consistent with our previous studies, we observed very few 

new adipocytes (i.e., GFP negative adipocytes) in the gWAT of 6-month-old mice, 

indicating that the turnover rate of adipocytes is extremely low in young adults (Fig. 

3.1a,b). When the mice were 9-month-old, clusters of GFP negative, newly generated 

adipocytes started to emerge, resulting in an adipogenesis rate of 68.05%. More 

adipocytes were generated in 12-month-old mice, as 82.33% of the adipocytes were 
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newly formed (Fig. 3.1a,b). Adipocyte size was also increased at 12-months, confirming 

the adipocyte hypertrophy during aging71 (Fig.3.1c,d). The sizes of newly generated 

adipocytes, however, were not different from the average size of adipocytes of each 

time point (Fig.3.1e). To further confirm adipogenesis during aging, we also generated 

PdgfraChaser-mT/mG mice (Supplementary Fig. 3. 2c) to label and track all Pdgfra+ 

cells, which labels most of the APCs. We treated 3-month-old male PdgfraChaser-

mT/mG mice with doxycycline and tracked adipogenesis of these Pdgfra+ cells during 

early aging (Supplementary Fig.3.2d). In 3-month-old PdgfraChaser-mT/mG mice, 

GFP+ cells were located in peri-endothelial of blood vessels, and mature adipocytes 

were not labeled in the gWAT (Supplementary Fig.3.2e). When the mice were 12-

months-old, clusters of GFP+ adipocytes were found in the gWAT (Supplementary 

Fig.3.2e). These labeled adipocytes represent adipocytes formed during aging 

originated from Pdgfra+ APCs. Thus, adipogenesis of APCs is a significant contributor 

to age-related gWAT expansion in the male mice. 

 

APCs from aged mice have a cell-autonomous high adipogenic capacity in vivo 

Do APCs cell-autonomously undergo massive adipogenesis during aging? Alternatively, 

is there a systemic stimulus required for age-related adipogenesis? APCs were reported 

to be less immunogenic and less subject to rejection than other cell types following 

transplantation into mice83. We then set out to test the in vivo adipogenic ability of APCs 

from gWAT of young vs. aged male mice through transplantation. An equal number of 

APCs (Lin-, CD45- CD31- Ter119-) from the stromal vascular fraction (SVF) of gWAT 

were mixed from 2.5-month-old male CAG-EGFP mice (GFP+, "young" APCs) and from 
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12-month-old male Rosa26-loxp-mTomato-stop-loxp-GFP (Rosa26-mT/mG) mice 

(Tomato+, "aged" APCs). The cell mixture was transplanted into the sWAT of 2.5-

month-old male wide type (WT) mice (Fig.3.1f). When the Matrigel transplants were 

dissected 1 month later, we observed that more "aged" APCs (Tomato+) had 

differentiated into adipocytes (Fig.3.1g), resulting in a 2.5-fold more adipocytes 

compared to “young” APCs (GFP+) (Fig.3.1h). These GFP+ and Tomato+ cells 

(differentiated from GFP+ or Tomato+ APCs) were similar in size (Fig.3.1i), and were 

indeed mature adipocytes, as they had a unilocular morphology (single lipid droplet) 

(Fig.3.1j) and were perilipin positive (Fig.3.1k). To further confirm our observation, we 

also transplanted equal numbers of Tomato+ APCs from the gWAT of 2.5-month-old 

and 12-month-old male Rosa26-mT/mG mice separately into the different sides of 

sWATs of the same male WT mice (Supplementary Fig.3.4a). Four weeks after 

transplantation, the "aged" APCs had a significantly higher (3 fold) adipogenesis rate, 

compared to the "young" APCs (Supplementary Fig.3.4b—e). Thus, the APCs from 

older mice maintain their high adipogenic potential after transplantation into a “young” 

environment. 

 

To test if age-related systemic stimulation is sufficient to trigger APC adipogenesis, we 

then took the reverse approach and transplanted APCs from young mice into aged 

mice. Equal numbers of “young” Tomato+ APCs from gWAT of 2.5-month-old male 

Rosa26-mT/mG were transplanted into sWATs of 12-month-old and 2.5-month-old male 

WT mice (Supplementary Fig.3.4f). Four weeks after the transplantation, no significant 

adipogenesis of the “young” APCs was observed in young or old recipient mice 
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(Supplementary Fig.3.4g,h). Similarly, when GFP+ APCs from young CAG-EGFP 

mice were transplanted into aged WT mice (Supplementary Fig.3.4i), the age-related 

systemic stimulation and microenvironment did not trigger significant adipogenesis of 

the “young” APCs (Supplementary Fig.3.4j,k).  

 

Altogether, these transplantation results indicate that the "aged" APCs cell-

autonomously exhibit greater adipogenic rate in the in vivo setting, regardless of 

“young” or “aged” microenvironment. 

  

Aging generates a new APC population with a globally activated adipogenic 

program  

To explore the molecular underpinnings of the adipogenic properties of the APCs from 

aged mice, we performed scRNA-seq of the CD45- CD31- Ter119- stromal vascular 

cells from the gWAT of aged and young mice (n=3 mice/group) (Supplementary Fig.3. 

5a). Among the 19,534 cells sequenced, 15,194 cells (78%) were identified as 

progenitor cells (Supplementary Fig.3.5b), based on the expression of classic APC 

markers PDGFRα, CD34 and Ly6a64,86,87 (Supplementary Fig.3.5c-e). While the 

variation between mice within the same group was minimal (Supplementary Fig.3.5f, 

g), there were dramatic transcriptomic shifts between young and aged cells 

(Supplementary Fig.3.5h).  

 

Combining the "young" and "aged" progenitor cells, we used unsupervised clustering of 

gene expression profiles and identified five cell clusters (Fig.3.2a). Based on recently 
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published scRNA-seq analyses of WAT APCs78,84,85, these clusters are: 1) adipocyte 

stem cell (ASC); 2) intermediate adipocyte progenitor (IAP); 3) committed preadipocyte 

1 (CP-1); 4) committed preadipocyte 2 (CP-2); 5) committed preadipocyte, age-specific 

(CP-A). We found that aging significantly remodeled the progenitor cell population, as 

"aged" cells had "shifted" away from "young" cells, and cells from the two groups had 

little overlap (Fig.3.2b, c). Using Slingshot trajectory analysis, we revealed potential 

lineage relationships among these APC clusters. Within the "young" progenitor cells, 

ASC had two developmental trajectories, both through IAP, and terminated as CP-1 and 

CP-2 (Fig.3.2d, Supplementary Fig.3.5i). Interestingly, within the "aged' progenitor 

cells, ASC had one additional, unique developmental trajectory, which terminated as 

CP-A. Quantifying the percentage of each cell cluster showed that the CP-A population 

is highly enriched in aged mice, whereas the CP-1 population was dramatically reduced 

in aged mice (Fig.3.2e). These results suggest that the aging process generated a new 

adipogenic lineage from ASC to CP-A. 

 

Next, we used CytoTRACE analysis and sorted the order of these APC clusters based 

on differentiation status as predicted by transcript abundance (Fig.3.2f Supplementary 

Fig.3.5j, k). From stem cells to committed precursor cells, the order of these clusters 

was: ASC, CP-2, IAP, CP-1, and CP-A. For each type of cluster, the “Young” APCs 

were always more stem cell-like compared to the “aged” APCs. And among all clusters, 

the “aged” CP-A cluster was identified as the most committed APC. The mesenchymal 

progenitor marker Pdgfra was universally expressed in all clusters (Fig.3.2g), but each 

cluster also showed unique markers (Supplementary Fig. 3. 5l). The ASC cluster 
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expressed Cd55, Pi16, and Dpp4 (Fig.3.2h, Supplementary Fig. 3. 5l, m); the IAP 

cluster expressed common adipocyte progenitor markers (e.g., Pdgfra), and 

intermediate levels of ASC markers and committed preadipocytes (Supplementary 

Fig.3.5l); the CP-1 cluster expressed Apoe, Igf1, and C7 (Fig.3.2i, Supplementary 

Fig.3.5l); the CP-2 cluster expressed Mfap4, Mgp, and Cilp (Fig.3.2j, Supplementary 

Fig.3.5l). The CP-A cluster was marked by expression of Lifr and Thbs1 (Fig.3.2k, 

Supplementary Fig.3.5l, n). We used LIFR as a CP-A marker and found that LIFRhigh 

cells in Lin- SVFs of gWAT gradually increased as mice aged from 6 to 9 months old, 

and there was a sudden rise (3.8 folds) of LIFRhigh cells in 12-month-old mice (Fig. 3. 2l, 

Supplementary Fig. 3. 6a). LIFRhigh cells in Lin- SVFs of sWAT also increased during 

aging, to a much lesser extent (Fig.3.2l). We then isolated CP-A cells through 

fluorescence-activated cell sorting (FACS) and measured the mRNA levels of CP-A 

markers in CP-A, non-CP-A Lin- SVFs, and mature adipocytes. qPCR confirmed higher 

expression of Thbs1, Lifr, Ccl11, Spry1 and Hsd11b1 (Supplementary Fig.3.6b). 

Among these marker genes, Lifr, Ccl11 and Hsd11b1 were also highly expressed in 

mature adipocytes, while Thbs1 and Spry1 were selectively expressed in APCs. To 

validate the in vivo fate of ASCs from aged mice, Tomato+ primary ASCs (PDGFRα+ 

DPP4+) from young (3-month-old) or aged (12-month-old) male mT/mG mice were 

transplanted into young WT recipients and dissected 3 days after the transplantation. 

Flow cytometry analysis indicated that around 80% of transplanted ASCs from the 

gWAT of aged mice had differentiated into LIFRhigh CP-A cells, while only 15% of ASCs 

from young mice turned into LIFRhigh cells (Fig.3.2m, Supplementary Fig.3.6c). These 
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results demonstrate that ASCs from aged mice are indeed progenitors for CP-As and 

there is a high rate of commitment of ASCs into CP-As.  

 

We then compared our clusters with the previously published APC clusters in WAT. For 

each of the published APC clusters in the indicated studies, gene module scores were 

calculated based on a list of significantly enriched marker genes. Burl et al. identified 

two major APC clusters (ASC1 and ASC2) in gWAT representing different cell states 

during adipogenesis. In comparison65, the ASC cluster we noted highly overlapped with 

the Dpp4/Pi16/Cd55+ ASC2 cluster. Our CP-1 cluster highly overlapped with the 

Icam1/Igf1/Adam12+ ASC1 cluster. Our IAP and CP-2 clusters partially overlapped with 

both ASC1 and ASC2 clusters, and the CP-A cluster partially overlapped with the ASC1 

cluster (Supplementary Fig. 3. 6d, e). Sárvári et al. utilized single-nucleus RNA-seq to 

identify four major APC clusters in gWAT70. Our ASC cluster overlapped with the FAP2, 

FAP3, and FAP4 clusters. IAP, CP-1, CP-2, and CP-A clusters partially overlapped with 

the FAP1 and FAP2 clusters (Supplementary Fig.3.6f, g). Schwalie et al. identified 

three major APC clusters in sWAT87. Our ASC cluster overlaps extensively with the P1 

cluster. Our IAP, CP-1, CP-2, and CP-A clusters overlap with the P2 cluster, and 

partially overlap with the adipogenesis-regulatory cells, the P3 cluster (Supplementary 

Fig.3.6h, i). Nguyen et al. recently identified the aging-dependent regulatory cell (ARC) 

in sWAT of aged mice71. We did not find many ARCs in all our five clusters, confirming 

the sWAT specific location of ARCs (Supplementary Fig.3.6j, k). Taken together, the 

ASC, IAP, CP-1, and CP-2 clusters we identified shared similarities with previously 

defined APC populations. Despite the similarities, our study uniquely identified the CP-A 
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cluster as an age- and depot-specifically enriched population with unique molecular 

characteristics.  

 

Human visceral WAT shows similar patterns of age-related APC remodeling 

To access the translational relevance of these findings, we set out to verify if humans 

also have the same CP-A population with scRNA-seq. CD45-CD31-CD235a- SVFs from 

human peripancreatic WAT (pWAT) were used for scRNA-seq (5 human samples of 

different sexes and ages). Among the 24,794 cells sequenced, 20,431 cells (82%) were 

identified as progenitor cells (Supplementary Fig.3.7a). Unsupervised clustering of 

gene expression profiles divided these APCs into eight cell clusters (Hu0-Hu7) (Fig.3. 

2n). To compare the identified APC populations from mice with the human clusters, we 

calculated the ASC and CP-A gene module score as a sum of mouse marker genes 

(Fig.3.2o). Clusters Hu0, 2, 3, 6 were enriched with mouse ASC markers, while clusters 

Hu1, 5, 7 were enriched with mouse CP-A markers (Fig.3.2o). Thus, both mouse ASC 

and CP-A similar cells can be identified in human pWAT. All progenitor cells showed 

abundant expression of APC marker PDGFRA (Supplementary Fig.3.7b) and 

PDGFRB (Supplementary Fig.3.7c). Human clusters similar to mouse ASC had high 

expression of the ASC markers CD55 and Pi16+ (Supplementary Fig.3.7d,e). Human 

clusters similar to mouse CP-A had high expression of the CP-A marker LIFR 

(Supplementary Fig.3.7f), and moderately (or partially) expressed PPARG, FABP4, 

and LPL (Supplementary Fig.3.7g–i). We then used flow cytometry to analyze the CP-

A (LIFRhigh) population in human pWAT of different age groups. Among the six samples 

obtained from male donors, we isolated SVFs and enriched APC (CD31- CD45- 
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CD235a- PDGFRα+ cells) (Supplementary Fig.3.7j, k), and found a trend for the CP-A 

population to dramatically increase with age (Fig.3.2p). Thus, APCs in human pWAT 

may undergo similar remodeling during aging, and the human CP-A population may 

also contribute to age-related obesity. 

 

CP-A population has a high proliferation and adipogenesis rate both in vitro and 

in vivo  

We next examined the localization of CP-As in human pWAT. Histological examination 

revealed that CP-As in pWAT from aged humans were distributed throughout the tissue 

between mature adipocytes, which is different from the typical perivascular enrichment 

of APCs in young adults (Fig. 3. 3a).  

 

Pathway analysis of the mouse scRNA-seq data suggested that proliferation-related 

pathways, such as TGFβ68 and mitotic signaling, are enriched in the “aged” ASCs 

compared to the “young” ASCs (Fig. 3.3b). Moreover, the adipogenesis pathway is 

highly enriched in the age-specific CP-A population (Fig. 3. 3c). This analysis suggests 

that the “aged” ASC and CP-A populations may have increased proliferation and 

inflammation, and the CP-A population also has increased adipogenesis.  

 

We then determined the capacity of total APC to proliferate and differentiate into 

adipocytes in 3D culture in vitro (Supplementary Fig.3.8a). The enriched APCs were 

first mixed with Matrigel and cultured in the growth medium for 72 hours. An adipogenic 

cocktail was then added to differentiate these cells into adipocytes. Starting with the 
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same number of cells, “aged” APCs proliferated into more cells compared to the “young” 

APCs (Supplementary Fig.3.8b, c). However, the adipogenesis rate (the percentage of 

Bodipy+ adipocytes in Tomato+ cells) for both “young” and “aged” APCs were similarly 

high, close to 100%. The advantage of the 3D culture system is that we do not need the 

APCs to grow densely and attach prior to adipogenesis. We then added the adipogenic 

cocktail 16 hours later after seeding to the enriched APC populations (Supplementary 

Fig.3.8d, e). “Aged” APCs had higher (but not significant) adipogenesis rate, and 

significantly higher proliferation rate, as the total Tomato+ cell number from “aged” 

APCs was more than 2 fold greater than the “young” APCs (Supplementary Fig.3. 8e). 

We used qPCR to validate the increase of mRNAs of specific genes during 

differentiation, after the adipogenic cocktail been added 16 hours after seeding 

(Supplementary Fig.3.8f). 

 

In light of results from the pathway analysis, we next inquired whether the CP-A 

population generated during aging has a greater capacity for proliferation and 

differentiation. We next enriched individual APC populations and tested their 

proliferation and adipogenic capacity in vitro. To minimize stress to cells, a magnetic 

beads-based negative selection was used to enrich APCs (Lin-, CD31- CD45- Ter119-) 

from freshly isolated SVFs from the gWAT of young and aged male Rosa26-mT/mG 

mice. To enrich the ASC population, we isolated the DPP4+ population from APCs. 

DPP4+ and DPP4- populations were validated by flow analysis (Supplementary Fig.3. 

8g). To enrich the CP-1 and CP-A population, negative selection, depleting DPP4+ 

ASC, CD9+ CP-2 and IAP populations in APCs were employed. The enriched 
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populations were validated and showed a low percentage of DPP4 and CD9 expression 

and a high percentage of LIFR expression on flow analysis (Supplementary Fig.3.8h, 

i). Interestingly, more DPP4+ APCs from the gWAT of aged male mice switched from 

CD9- cells to CD9+ cells, suggesting that a certain number of cells in the aged ASC 

population may have started the adipogenesis program along the trajectory to IAP 

(Supplementary Fig.3.8j). This also validates that aged ASCs are more differentiated 

than young ASC as suggested by the CytoTRACE analysis (Fig.3.2e). The “aged” ASC 

population had an adipogenesis rate similar to the “young” ASCs, but they had a 

significantly higher proliferation rate (Fig.3.3d, e). We also compared the age-specific 

CP-A population with the “young” CP-1 population, which shares the highest molecular 

similarity with the CP-A population according to the scRNA-seq results. Importantly, the 

CP-A population not only had a more than four fold higher proliferation rate compared to 

the CP-1 population, but had the highest adipogenesis rate among all populations 

tested (Fig.3.3f, g). Thus, the CP-A population, uniquely enriched with age, has the 

most remarkable capacity for proliferation and differentiation in vitro.  

 

We then enriched APC subpopulations and measured their proliferation rate in vivo. 

Young (3-month-old) or aged (12-month-old) WT male mice were treated with EdU. 2 

hours after EdU incorporation, flow cytometry analysis indicated that around 1.23% of 

ASCs from the gWAT of aged mice were EdU+, while only 0.3% of ASCs from young 

mice were EdU+ (Fig.3.3h, Supplementary Fig.3.8k). For CP-As, around 3.91% of 

them were EdU+, while only 0.86% of CP-1s from young mice were EdU+ (Fig.3.3h, 

Supplementary Fig.3.8k). These data indicate that CP-As have a very high 
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proliferation rate in vivo.  

 

Next, we enriched APC subpopulations and tested their adipogenic capacity in vivo. A 

large amount of DPP4- APCs (containing all APC populations other than ASC), CP-1, 

and CP-A populations were collected from freshly isolated SVFs from gWAT of 2.5-

month-old and 12-month-old male Rosa26-mT/mG mice, and equal numbers of these 

enriched “young” and “aged” populations were transplanted into the different sides of 

the sWATs of male WT mice (Fig.3.3i). The “aged” DPP4- APCs grew substantially 

larger in volume compared to the “young” DPP4- APCs (Fig.3.3j,k). More notably, the 

CP-A population grew six times more in adipocyte number than the CP-1 population 

(Fig. 3.3l,m), indicating that the CP-A population has a striking ability to proliferate and 

differentiate in vivo. These Tomato+ cells (differentiated Tomato+ APCs) were indeed 

mature adipocytes, as they have a unilocular morphology (single lipid droplet) and were 

perilipin positive (Supplementary Fig. 3. 9a, b).  

 

Taken together, both the in vitro and in vivo results indicate that the CP-A population 

has a greater capacity for proliferation and differentiation, compared to the other APC 

populations.  

 

LIFR is essential for CP-A adipogenesis 

As one of the top CP-A markers shared by mice and humans, we next explored the 

function of LIFR in CP-As. LIFR has been reported to play important roles in cell 

proliferation, differentiation, and survival78. However, the role of LIFR in APCs is not 
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clear. We first treated 3D cultured Tomato+ primary CP-As isolated from aged male 

Rosa26-mT/mG mice with LIFR inhibitor EC359, together with adipogenic cocktails. 

LIFR phosphorylates and activates STAT3, which is an essential downstream effector of 

LIFR79. Treating CP-As with LIFR inhibitor EC359 effectively reduced STAT3 

phosphorylation level (Supplementary Fig. 3. 10a), validating EC359 as a potent LIFR 

inhibitor. After induced adipocyte differentiation, LIFR inhibitor blocked adipogenesis of 

these aged APCs, while there was no significant decline in total cell number (Fig. 3. 4a, 

b). When we transplanted GFP+ primary CP-As isolated from aged male CAG-EGFP 

mice and treated mice with EC359, the number of GFP+ adipocytes differentiated from 

GFP+ APCs was only about half of the vehicle-treated GFP+ primary CP-As (Fig. 3. 4c, 

d). We then used Lentivirus-mediated shRNA to knockdown Lifr in Tomato+ primary 

Lin- SVFs isolated from aged male Rosa26-mT/mG mice (Supplementary Fig. 3. 10b). 

At the end of the induced adipocyte differentiation, Lifr knockdown dramatically reduced 

the total cell number and sharply reduced the adipogenesis rate of these aged APCs 

(Fig. 3. 4e, f). When we transplanted Lifr shRNA Lentivirus-transfected Tomato+ 

primary Lin- SVFs (isolated from aged male Rosa26-mT/mG mice), the number of 

Tomato+ adipocytes differentiated from Tomato+ SVFs was only about one-third of the 

control Lentivirus treated Tomato+ SVFs (Fig. 3. 4g, h). We also introduced Lentivirus-

mediated Lifr over-expression to Tomato+ primary Lin- SVFs isolated from young male 

Rosa26-mT/mG mice (Supplementary Fig. 3. 10c). After induced adipocyte 

differentiation, overexpression of Lifr resulted in a fold increase of adipocyte and total 

cell number (Fig. 3. 4i, j). When we transplanted Lifr over-expression Lentivirus-

transfected GFP+ primary Lin- SVFs (isolated from young male CAG-EGFP mice), the 
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number of GFP+ adipocytes differentiated from GFP+ primary Lin- SVFs increased by 

more than one-fold compared to control Lentivirus-transfected GFP+ primary Lin- SVFs 

(Fig. 3. 4k, l). Lastly, we used LIFR inhibitor EC359 to treat mice for 10 weeks, starting 

at 9 months of age. Inhibiting LIFR resulted in a reduction of gWAT weight, while sWAT 

weight was not altered (Supplementary Fig. 3. 10d, e). These results suggest that 

LIFR signaling is a critical regulator of CP-A adipogenesis.  

 

3.3   Discussion 

As a highly plastic organ, WAT alters in volume in adaptation to a variety of 

physiological and pathological metabolic challenges. We and others have shown that 

without any metabolic challenge, healthy young adult mice and humans have extremely 

low adipocyte turnover rates. WAT plasticity under many physiological and pathological 

challenges has been extensively studied, such as cold exposure and high fat diet 

feeding59,60. However, the expansion of WAT during early aging is surprisingly 

understudied. In this study, we provide the first cellular and molecular evidence that 

aging triggers massive adipogenesis and introduce a newly identified an age-enriched 

APC population, the CP-As, which have high adipogenic capacity (Supplementary Fig. 

3. 10f).  

 

Among the two major fat depots, vWAT and sWAT, vWAT exhibits the most 

adipogenesis during aging. As vWAT and sWAT are fundamentally distinct organs with 

distinct development timelines, molecular signatures, and metabolic functions59,60,80, it is 



 

77 
 

not surprising that age-related adiposity happens in the vWAT at a much higher rate. 

Compared to hypertrophy, which gives WAT only limited potential to expand, 

adipogenesis is alarming because it grants WAT unlimited potential for growth. Our 

findings on age-related adipogenesis, therefore, highlights adipogenesis as the key 

process, besides adipocyte hypertrophy, to target for intervention for age-related obesity 

and other associated diseases. 

 

Age-related adiposity accelerates aging and shortens life expectancy. Signaling 

pathways that are known to extend lifespan, e.g., SIRT, FOXO, and JNK, often inhibit 

adipogenesis (the making of new adipocytes) and decrease WAT mass81-85. 

Conversely, signaling pathways that are known to shorten lifespan, e.g., insulin/IGF-1 

and mTOR, often do the opposite86-88. Similarly, strategies that promote longevity and 

youthfulness often inhibit WAT expansion in aged animals and older humans, such as 

caloric restriction89-91 and fasting92. These critical studies suggest that inhibiting WAT 

expansion during aging is closely linked to increased health span and lifespan. Our 

study expands on this and suggests that to limit WAT expansion during aging, it is 

crucial to understand the underlying mechanism of age-related adipogenesis.  

 

Driven by the state-of-art scRNA-seq technique, several elegant studies provided new 

insights into APC heterogeneity in a fat depot-specific manner93-95. A few major APC 

subpopulations had been identified, including 1) adipose stem cells (ASCs)55,56,58, which 

were also identified in our study as the ASC population; 2) committed preadipocytes 

(adipocyte progenitors)65,66,68, which were identified in our study as the CP-1 and CP-2 
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populations; 3) fibro-inflammatory progenitors (FIPs)66,96-98, which were identified in the 

gWAT of young adults with anti-adipogenic behavior, and pro-inflammatory and pro-

fibrosis response; 4) adipogenesis regulators (Aregs)67, Aregs inhibit adipogenesis and 

were found in sWAT of young adults; 5) aging-dependent regulatory cell (ARC)71, ARCs 

were only found in aged sWAT. ARCs secrete pro-inflammatory chemokines and are 

resistant to adipogenesis, and they inhibit the differentiation and proliferation of 

neighboring adipogenic precursors. Our ASC cluster bears a close resemblance to the 

gWAT PDGFRβ+ stromal subpopulation66. The gene signatures of our ASC cells are 

molecularly similar to those of APCs (adipogenic progenitor cells) and CPs (committed 

preadipocytes), the two adipogenic clusters defined previously66. In the same study, 

another anti-adipogenic subpopulation, or FIPs, was also defined in gWAT. In our 

gWAT scRNA-seq data, the FIP markers were not apparently enriched within the 

defined clusters, likely because the previous study analyzed pre-selected PDGFRβ+ 

cells, which represent a fraction of SVF cells so that FIPs are not resolved by scRNA-

seq in our samples. In the present study, we identified a new, committed preadipocyte 

population, the CP-A population. Although in a strict sense, CP-A is not completely 

absent from the young mice, the extremely low frequency in young mice and more than 

20-fold increase in aged mice make the population highly enriched in the aged state. 

CP-As are also uniquely enriched in the visceral WAT of older humans. Importantly, the 

CP-A cells displayed superior capacity, compared to all other known APC 

subpopulations, to proliferate and differentiate into mature adipocytes, both in vitro and 

in vivo. Interestingly, when we observed a high level of adipogenesis in 9-month-old 

mice, the CP-As (as LIFR high expressing Lin- SVFs) were not significantly increased at 
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this time point. It is possible that CP-As are rapidly disappearing because they on the 

active path producing new adipocytes, so we did observe an increase in LIFRhigh APCs. 

When mice were 12 months old, the number of CP-As significantly increased together 

with a high level of adipogenesis. This phenomenon may indicate an overproduction of 

CP-As as mice age further, accelerating the adipogenic capacity of gWAT. CP-As 

(LIFRhigh Lin- SVFs) also exist in the sWAT of mice, and the percentage of CP-As also 

increases during aging, although not as dramatically as in the gWAT. The adipogenesis 

of CP-As in sWAT, however, may be inhibited by the sWAT-specific ARCs, limiting the 

expansion of sWAT during aging. 

 

The CP-A markers LIFR and Thbs1 distinguish these cells from other committed 

preadipocytes. LIFR forms a heterodimer with gp130 and induces the JAK-STAT3 

signaling pathway49, and JAK-STAT3 has been demonstrated to promote adipogenesis 

from APCs50. Pathway enrichment analysis revealed the JAK-STAT3 pathway was 

upregulated in the CP-A population, suggesting that LIFR signaling was activated. 

Indeed, we have shown that LIFR controls CP-A differentiation. Inhibition or knockdown 

LIFR dramatically impairs CP-A adipogenesis, while overexpression of LIFR increases 

adipogenesis. Moreover, EC359, the first-in-class LIFR inhibitor, decreases gWAT mass 

specifically after administration to mice.  Thus, LIFR plays an essential role in promoting 

CP-A adipogenesis. Future experiments will focus on determining the cell type(s) that 

secrete LIF or other ligands that activate LIFR on the CP-A cell membrane. The 

activation could be endocrine- or paracrine-regulated. Moreover, LIFR continues to be 

highly expressed in mature adipocytes, and the function of LIFR in mature adipocytes 
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has yet to be explored. A recent study showed that LIFR signaling induces adipocyte 

lipolysis, which requires STAT379. It is possible that LIFR is only highly expressed in 

newly generated adipocytes. LIFR, together with a yet unknown set of genes, may 

make these newly generated adipocytes unique both molecularly and functionally. 

When we resolve the technical limitations of separating new and pre-existing 

adipocytes, we will be able to answer these critical questions.  

 

In addition to the discovery of the new age-specific CP-A population, our scRNA-seq 

data showed that the other APC populations had little overlap between the aged and 

young groups, indicating that the aging process significantly transformed all APC sub-

populations. Indeed, we found that the “aged” ASC population had a higher proliferation 

rate, which is essential for age-related adipogenesis. Interestingly, a large proportion of 

aged ASCs expressed CD9, a representative marker of IAP and CP-2 populations. 

These findings suggest that aged ASCs might have started the differentiation program 

and have a higher tendency to differentiate into mature adipocytes. CD9 is a marker of 

the FIP population66. Thus, CP-2 is likely to be the analogous population of FIPs. CD9+ 

progenitors have been reported to control adipose tissue fibrosis101. As vWAT fibrosis 

progresses during aging102, the ASC to CP-2 transition could contribute to age-related 

adipose fibrosis and metabolic dysfunction. Due to the presence of anti-adipogenic 

stromal cell subpopulations identified in multiple fat depots66,67,71,96,97, we cannot 

exclude the possibility that the age-dependent gWAT hyperplastic expansion results 

from the dysregulation of suppressive mechanisms governed by anti-adipogenic cells 

such as FIPs or Aregs. This question requires further investigation. 
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Our in vivo transplant and in vitro differentiation results suggest that “aged” APCs cell-

autonomously have a greater adipogenic capacity, even when disassociated within the 

aging microenvironment. However, the aging microenvironment is potentially crucial for 

driving the remodeling of APCs, which may have started during early aging. Dr. James 

Kirkland’s group elegantly showed that APCs could undergo cellular senescence and 

lose the ability to differentiate into adipocytes103. Therefore, their study suggested that 

cellular senescence contributes to age-related fat loss, which happens in the very aged 

population. In this study, we focused on WAT expansion during early and middle-aging. 

Our study indicates that although some APCs may become senescent and stop 

undergoing adipogenesis during aging, sufficient APCs are generated during early 

aging and contribute to the massive adipogenesis we observed in vivo. Interestingly, 

senescent cells accumulate specifically in vWAT during early aging94-96, and we showed 

that the vWAT has the highest adipogenic rate. It is possible that the senescent 

microenvironment promotes adipogenesis of APCs in vWAT during early aging. Firstly, 

cellular senescence positively correlates with WAT mass. Inducing cellular senescence 

through genetic manipulation often results in WAT expansion107,108; in addition to 

accumulating during aging, senescent cells also accumulate in obesity, especially in the 

vWAT109-114, which has active adipogenesis. Secondly, senescent cells are known to 

stimulate adult stem cell proliferation and differentiation or tumor proliferation115-117. 

Lastly, inflammatory signals are known to promote adipogenesis118-170; senescent cells 

may promote adipogenesis through the senescence-associated secretory phenotype121-

123, which contains numerous pro-inflammatory cytokines. Currently, we are trying to 
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determine if cellular senescence promotes adipogenesis by remodeling the APC niche. 

 

Future studies are required to generate new mouse models to specifically track CP-As 

in vivo and quantify the contribution of CP-As to age-related adipogenesis. Effective 

strategies eliminating the CP-A population or inhibiting its proliferation and 

differentiation will prevent the development of visceral adiposity during aging. However, 

whether adipogenesis during aging promotes or protects from metabolic disorders has 

yet to be studied. Meanwhile, the newly generated adipocytes may have distinct 

molecular and metabolic features. Future work will also focus on if manipulating visceral 

adipogenesis could restore the metabolic function of gWAT and improve age-related 

metabolic disorders, and eventually increase healthspan and lifespan. Besides APCs, 

various immune cell types have been reported to regulate APC differentiation and 

adipose homeostasis under different conditions in mice and humans124-127. We have 

also shown a significant shift in nearly all the immune cells in aged gWAT. The 

determination of how the CP-A population emerges during aging and whether the 

immune-regulation of adipose tissue plasticity during aging plays a role in this process 

is another avenue to pursue. It is also worth investigating the crosstalk between 

different immune cell types and all the APC subpopulations to better understand the 

molecular and cellular dynamics in adipose remodeling to pinpoint key regulatory cell 

types and genes. Other than immune cells, other key regulators discussed above, such 

as cellular senescence, adipose fibrosis, may also remodel the APC subpopulations 

and promote the generation of the CP-A population.  
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3.4   Conclusions 

Here, we find that mice mimic age-related fat expansion in humans. In vivo lineage 

tracing shows that massive adipogenesis (the generation of new adipocytes), especially 

in the visceral fat, is triggered during aging. Thus, in contrast to most types of adult stem 

cells that exhibit a reduced ability to proliferate and differentiate, the adipogenic 

potential of adipocyte progenitor cells (APCs) are unlocked by aging. In vivo 

transplantation and 3D imaging of transplants show that visceral APCs in aged mice 

cell-autonomously gain high adipogenic capacity. Single-cell RNA sequencing analyses 

reveal that aging globally remodels APCs. Herein, we identify a novel Committed 

Preadipocyte population uniquely enriched in Aged mice (CP-A), existing both in mice 

and humans, with a global activation of proliferation and adipogenesis pathways. CP-A 

cells display high proliferation and adipogenesis activity, both in vivo and in vitro. LIFR 

serves as a functional marker of CP-A, which promotes CP-A adipogenesis. Together, 

these findings define a new fundamental mechanism involved in fat tissue aging and 

offer prospects for preventing and treating age-related metabolic disorders 

 

3.5   Methods 

Mice 

Mice were maintained in a 12h dark/light cycle and housed in groups of three to five 

with unlimited access to water and food (chow diet, number 5058, lab diet; or 

doxycycline chow diet [600 mg/kg], S4107, Bio-Serv, as described for individual 

experiments). All mice were on a pure C57BL/6J background. Adn-rtTA and FAT-
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ATTAC mouse lines were generated in the Scherer laboratory as previously 

described1,2. TRE-Cre (Jax stock no. 006234), Rosa26-loxP-STOP-loxP-mT/mG (Jax 

stock no. 007676), Pdgfra-rtTA (Jax stock no. 034459), and CAG-EGFP (Jax Stock no. 

006567) mouse lines were obtained from the Jackson Laboratories. The Institutional 

Animal Care and Use Committees of City of Hope, Duarte, have approved all animal 

experiments.  

 

Metabolic cage studies were performed in the City of Hope Comprehensive Metabolic 

Phenotyping Core facility. Oxygen consumption was calculated relative to lean mass. 

GTT was performed in mice without access to food for 12 h before administration of 2 

g/kg body weight glucose by intraperitoneal injection. ITT was performed in mice without 

access to food for six hours before administering 0.75 U/kg body weight insulin (Eli Lilly) 

by intraperitoneal injection. To induce adipocyte apoptosis in FAT-ATTAC mice, 

AP21087 (Ariad Pharmaceuticals) in 4% ethanol, 10% PEG400, 1.75% Tween-20 in 

water were administered by intraperitoneal injection at a dose of 0.2 µg/g body weight 

every day for 7 days. 

 

Isolation of mouse adipose SVFs and enrichment of APC subpopulations 

gWAT was minced and transferred to a 50 mL Falcon tube containing 10 mL digestion 

buffer (100mM HEPES pH 7.4; 120mM NaCl; 50mM KCl; 5mM Glucose; 1mM CaCl2, 

1.5% BSA, and 1 mg/mL collagenase D, Roche, 11088882001). The tissue was 

incubated in a 37℃ shaking water bath for 30 min. Digestion was stopped by adding 35 

mL 2% FBS in PBS. The solution was passed through 100 µm and then 40 µm strainers 
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and centrifuged at 400 g for 5 min. The supernatant was aspirated, and the SVF pellet 

was collected.  

 

Lin- SVF and enriched ASC, CP-A, CP-1 were obtained by MACS (Stemcell 

Technologies, 17656). To obtain Lin- SVF, anti-mouse-CD45-PE (1:200, BioLegend, 

103106), anti-mouse-CD31-PE (1:200, BioLegend, 102408), and anti-mouse-Ter119-

PE (1:200, BioLegend, 116208) were used. To enrich the ASC subpopulation, additional 

anti-mouse-DPP4/CD26-PE antibody (1:50, BioLegend, 137804) was used. To enrich 

CP-A and CP-1 subpopulations, the above 4 antibodies plus anti-mouse-CD9-PE 

(1:200, BioLegend, 124806) antibodies were used. To obtain immune cells from gWAT, 

anti-mouse-CD45-PE (1:200, BioLegend, 103106) was used and isolated by MACS.  

 

Flow cytometry 

For flow cytometry analysis, cells were blocked with anti-mouse-CD16/32 (1:500, 

BioLegend, 101302) or Human Fc Block (1:20, BD, 564219) for 10 min, and then 

stained with anti-mouse-CD45-Pacific Blue (1:400, BioLegend, 103126), anti-mouse-

CD31-Pacific Blue (1:400, BioLegend, 102422), anti-mouse-Ter119-Pacific Blue (1:400, 

BioLegend, 116232), anti-mouse-CD140a-APC (1:200, BioLegend, 135908), anti-

mouse-DPP4/CD26-PE/Cy7 (1:100, BioLegend, 137810), anti-mouse-CD9-PE (1:400, 

BioLegend, 124806), anti-LIFR ( 1:200, Proteintech, 22779-1-AP), and anti-rabbit-488 

(1:200, Invitrogen, A-21206) ; anti-rabbit-BV421 (1:200, BioLegend, 406410), anti-

human-CD45-PE (1:400, BioLegend, 304039), anti-human-CD31-PE (1:400, 

BioLegend, 303106), anti-human-CD235a-PE (1:400, BioLegend, 349106), and anti-
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human-CD140a-APC (1:100, BioLegend, 323512) for individual experiments for 20 min 

on ice. After antibodies incubation, the cells were washed once with 2% FBS/PBS, and 

analyzed by BD Fortessa cytometer. The flow plots were analyzed by FlowJo (V10). 

 

For FACS isolation of ASCs from gWAT, total SVFs were blocked with anti-mouse-

CD16/32 (1:500, BioLegend, 101302) for 10 min, and then stained with anti-mouse-

CD45-PerPC/Cy5.5 (1:400, BioLegend, 103132), anti-mouse-CD31-PerPC/Cy5.5, 

(1:400, BioLegend, 102420), anti-mouse-Ter119- PerPC/Cy5.5, (1:400, BioLegend, 

116228), anti-mouse-CD140a-APC (1:200, BioLegend, 135908), anti-mouse-

DPP4/CD26-PE/Cy7 (1:100, BioLegend, 137810), anti-LIFR ( 1:200, Proteintech, 

22779-1-AP), and anti-rabbit-488 (1:200, Invitrogen, A-21206). DAPI was added to 

distinguish live and dead cells. DAPI- Lin- (CD45- CD31- Ter119-) CD140a+ LIFR- 

DPP4+ cells were sorted using BD FACSAria III sorter as ASCs.Isolation of human 

adipose SVFs 

Peri-pancreatic WAT samples from deceased cadaveric donors were dissected from the 

pancreas (processe time within ~8-12 hours). All of the experiments were immediately 

performed using the fresh tissue samples, without freezing or any preservation. The 

sampling and examination of human tissues have been approved by the Ethics 

Committee of COH. WAT from five donors (male, 44-year-old; male, 21-year-old; 

female, 42-year-old; male, 24-year-old; male, 57-year-old) were used for scRNA-seq, 

and WAT from four donors (all males, 25, 27, 39, 56, 57, and 58-year-old) were used for 

flow cytometry analysis. Adipose tissue was minced and transferred to a 50 mL Falcon 

tube containing 10 mL digestion buffer (1 × PBS, and 10 mg/mL collagenase D, Roche, 
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11088882001). The tissue was incubated in a 37℃ shaking water bath for 45 min. 

Digestion was stopped by adding 35 mL 2% FBS in PBS. The solution was passed 

through a 250 µm mesh (Spectrum, 146487), and then 100 µm and 40 µm strainers, 

and centrifuged at 600 g for 5 min. The supernatant was aspirated, and the SVF pellet 

was collected. To obtain Lin- SVFs, cells were incubated with anti-human-CD45-PE 

(1:200, BioLegend, 304039), anti-human-CD31-PE (1:200, BioLegend, 303106), and 

anti-human-CD235a-PE (1:200, BioLegend, 349106), and isolated by MACS (Stemcell 

Technologies, 17654). To enrich immune cells, anti-human-CD45-PE (1:200, 

BioLegend, 304039) was used and isolated by MACS.  

 

scRNA-seq 

Lin- SVF and CD45+ immune cells from 2.5-month-old or 12-month-old C57BL/6J male 

mice gWAT or Lin- SVFs from human peri-pancreatic adipose tissue (Supplementary 

Supplementary Table 4) were freshly collected and resuspended in PBS containing 

0.04% BSA at a concentration of 800~1000 cells/µl. Cell number and viability were 

measured by trypan blue using a TC20 Automated Cell Counter (BioRad). Single-cell 

RNA libraries were prepared by the City of Hope Integrative Genomics Core facility 

according to the ChromiumTM Single Cell 3’ Reagent Kits v3 User Guide (10x 

Genomics). Approximately 10,000 cells were loaded on a Chromium single cell 

Controller instrument (10x Genomics) to form single cell gel beads in emulsion (GEMs). 

After reverse transcription, GEMs were harvested and the cDNAs were amplified and 

cleaned up with the SPRIselect Reagent Kit (Beckman Coulter). The barcoded 

sequencing libraries were constructed using the Chromium Single-Cell 3’ Library Kit 
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(10x Genomics) for enzymatic fragmentation, end-repair, A tailing, adaptor ligation, 

ligation cleanup, sample index PCR, and PCR cleanup. Libraries were then sequenced 

with a NovaSeq 6000 instrument (Illumina) with a depth of 50-100 k reads per cell.  

 

scRNA-seq data processing and quality control 

The 10X Genomics Cell Ranger version 3.0.2 single-cell software3 was used to perform 

sample demultiplexing sequencing alignment to mouse genome mm10, filtering, and 

unique molecular identifier (UMI) counting to generate gene count matrices. Single cells 

were identified from background noise by filtering on the proportion of mitochondrial 

reads (threshold: < 10%), the number of UMI (thresholds: 700-22,000), and the number 

of detected genes (thresholds: 200-6,000). 

 

Identification of cell clusters 

The Seurat R package version 3.04 was used to determine cell clusters by the Louvain 

algorithm based on similarities in the transcriptome patterns and visualized with t-

Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold 

Approximation and Projection (UMAP). Highly variable genes selected using the 

FindVariableFeatures function with default parameters were used for principal 

component analysis (PCA). The number of Principal Components （n=35 for mouse 

gWAT cells and n=25 for human pWAT cells） used for Louvain clustering and following 

visualization was determined using the Jackstraw permutation approach. Following 

unsupervised clustering, the cell type identities of the clusters were resolved by 

comparing the cell cluster specific marker genes expressed in each cluster in our own 
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dataset, as identified with a Wilcoxon rank sum test, with known cell-type specific 

markers curated from literature, single cell atlases, and previous studies in the SVF. To 

be considered in the cell cluster marker analysis, a gene had to be expressed in at least 

10% of the single cells from the cluster of interest and exhibit at least a 0.25 log fold 

change in the cell cluster of interest than in other cells. Multiple testing was corrected 

using the Benjamini-Hochberg method to estimate false discovery rate (FDR).  

 

Identification of differentially expressed genes (DEGs) and pathways 

To quantitatively determine which genes were affected by aging, we compared the cell 

transcriptome of each cell type between age groups using the Wilcoxon rank sum test. 

To be considered in the analysis, a gene had to be expressed in at least 10% of the 

single cells from at least one of the two groups for that cell type and there had to be at 

least a 1.1-fold change in gene expression between the groups. Multiple testing 

correction was performed using the Benjamini–Hochberg method to estimate FDR. 

 

For ASC, CP-1 and CP-2 populations shared between both the young and aged mice, 

the DEGs were identified by comparing the two age groups and then subjected to 

pathway enrichment analysis. Since CP-A is only present in the aged group, the CP-A 

marker genes in the aged condition were used as DEGs and subject to pathway 

enrichment analysis. Pathways from HALLMARK were assessed for overlap with the 

DEGs using Fisher's exact test and corrected for multiple testing using the Benjamini–

Hochberg method to estimate FDR. Enrichment score is calculated by number of 
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overlapped genes/number of genes in our cell type specific gene set × 20000/number of 

genes in the pathway.  

 

Single-cell trajectory analysis 

To infer cell lineages of complex communities of heterogeneous cells, pseudo-temporal 

reconstruction was performed by two methods. The Slingshot R package6 was used to 

infer multiple branching lineages for pre-existing clusters based on the minimum 

spanning tree followed by simultaneous principal curves with a user-defined root cluster. 

Here we used ASC as the root cluster because of its adipocyte stem cell suggestive 

gene expression pattern. The Cytotrace R package7 was implemented with default 

parameters to estimate the developmental potential of ten cell sets (five APC subtypes 

in “aged” and “young” conditions) based on feature selected gene-count measures of 

the normalized expression matrix with APC subtype annotation and “aged” and “young” 

condition annotation.  

 

Cell-cell communication analysis 

Both the Cellphone DB database8 and the iTALK database9 were used to curate 

ligand-receptor pairs that may mediate intercellular cross-talk between the APC 

subtypes and immune cell types. Pathway enrichment of the ligand-receptor pairs 

between cell types were further analyzed based on the overlap with selected pathways 

from KEGG, Reactome, BIOCARTA, and HALLMARK. Top ligand-receptors were 

ranked based on the formula: the expression value of the ligand gene from the ligand-
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secreting cell type * the expression value of the receptor gene from the receptor cell 

type. 

 

In vivo transplantation of APCs and APC subpopulations 

Lin- SVF from the epididymal white adipose tissue (gWAT) of 12-month-old aged 

Rosa26-loxP-STOP-loxP-mT/mG and 2.5-month-old young CAG-GFP mice were 

isolated and mixed together at a 1:1 ratio. The cells were resuspended in Matrigel 

(Corning, CB-40234C). A total volume of 20 µl Matrigel was injected into the 

subcutaneous adipose depot of recipient mice at a concentration of 10,000 cells/µl. 

After four weeks, the recipient mice were euthanized, and sWAT was collected. The 

Matrigel containing transplant was dissected under a fluorescence microscope 

(Keyence), and the whole transplant was captured under a confocal microscope (Zeiss, 

LSM880).  

 

For single Tomato+ SVF transplant, Lin- SVF from the epididymal white adipose tissue 

(gWAT) of 12-month-old aged and 2.5-month-old young Rosa26-loxP-STOP-loxP-

mT/mG mice were isolated. The cells were resuspended in Matrigel. A total volume of 

20 µl Matrigel was injected to the subcutaneous adipose depot of recipient mice at a 

concentration of 5,000 cells/µl. The comparable aged and young Lin- SVF were injected 

into either side of the subcutaneous adipose depot of the same recipient. After four 

weeks, the recipient mice were euthanized, and subcutaneous adipose tissue was 

collected.  
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For transplantation of ASC, CP-1, and CP-A, each cell population was isolated from 

Rosa26-loxP-STOP-loxP-mT/mG mice and resuspended in Matrigel at a concentration 

of 1,000 cells/µl. Then 20 µl Matrigel of ASC from 12-month-old aged and 2.5-month-old 

young mice, or enriched CP-A from aged mice and CP-1 from young mice were injected 

into either side of sWATs of recipient mice. After two weeks, the recipient mice were 

euthanized, and subcutaneous adipose tissue was collected. 

 

For 3D imaging and quantification of Matrigel transplants, The Matrigel containing 

transplant was dissected under a fluorescence microscope (Keyence), and the whole 

transplant was captured under a confocal microscope (Zeiss, LSM880). Original files 

were imported to Imaris (Bitplane). All the images and videos were made using Imaris. 

Quantification of mature adipocyte number and volume were analyzed by the spot 

function of Imaris. Spots were added to adipocytes manually by a person who is blinded 

to the transplant images. 

 

EdU proliferation assay 

12-month-old or 2.5-month-old male mice were treated with 12.5 mg/kg EdU (5-ehynyl-

2'-deoxyuridine, Invitrogen, A10044) through i.p. injection. SVFs from gWAT tissues 

were harvested 2 hours after EdU injection, and stained with antibodies for flow 

cytometry analysis. Cells were further stained by using Click-iTTM Plus EdU Alexa Fluor 

647 Kit For Imaging (Invitrogen, C10340) with modified procedures. Briefly, cells were 

fixed with 1% PFA (Electron Microscopy Sciences, 15714S) for 15 min at room 

temperature, and then incubated with 0.2% saponin (Sigma, 47036-50G-F). Reaction 
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cocktail was added the cells according to the manufacturer’s instruction. Cells were then 

washed with 0.2% saponin, and counterstained with 10 μg/ml Hoechst 33342. Cells 

were analyzed by BD Fortessa cytometer. The flow plots were analyzed by FlowJo 

(V10). 

 

In vitro 3D differentiation of APCs and APC subpopulations 

Lin- SVF or enriched ASC, CP-1, and CP-A populations were isolated from gWAT of 

Rosa26-loxP-STOP-loxP-mT/mG mice that were 12-month-old or 2.5-month-old. The 

cells were cultured as described previously13. After isolation by MACS, the cells were 

resuspended in complete SVF culture medium (DMEM/F12, Life technologies 

10565018) containing 10% FBS (Sigma, 16H328), 1% penicillin/streptomycin, (Hyclone 

SV30010), and 0.1% gentamicin (Life technologies 1855724) at a concentration of 

2,000 cells/µl. The same volume of Matrigel was added to the suspension, and 10 µl 

mixture was added to the 12-well plate. The plate was incubated in the 37℃ CO2 

incubator for 15 min to induce the formation of the gel. Then complete SVF culture 

medium was added to the wells, and the cells were cultured in the 37℃ CO2 incubator. 

After three days or 16 hours, an adipogenic cocktail containing dexamethasone (1 μM), 

insulin (5 μg/ml), isobutylmethylxanthine (0.5 mM), and rosiglitazone (1 μM) was added 

to induce adipocyte differentiation. After six days of adipogenic induction, the cells were 

then stained with Bodipy (Invitrogen) and imaged under a confocal microscope (Zeiss, 

LSM880). The images were analyzed using Zen blue (Zeiss). 

 

LIFR inhibitor EC359 treatment 
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EC359 (MCE, 50-196-9583) was dissolved in vehicle made with 10% DMSO (Sigma, 

D8418), 40% PEG300 (Sigma, 202371), 5% Tween-80 (Sigma, P4780) and 45% 

Saline. Mice were injected with 5 mg/kg EC359 through i.p. for 10-week-treatment or 

s.c. for in vivo CP-A transplantation. Control groups were injected with equal volume of 

vehicle.  

 

Transfection of APCs with lentiviral particles 

APCs were seeded onto 24-well-plate. After reaching 70-80% confluency, cells were 

treated with 10 µg/ml polybrene (Sigma), and 10 µl per well of LIFR shRNA (m) 

Lentiviral Particles (Santa Cruz, sc-35809-v) or LIFR Lentiviral Activation Particles (m) 

(Santa Cruz, sc-421433-LAC). Control shRNA Lentiviral Particles (Santa Cruz, sc-

108080) or Control Lentiviral Activation Particles (Santa Cruz, sc-437282) were used as 

control, respectively. 12 hours after transfection, medium was replaced with fresh SVF 

complete medium. After reaching confluency, the cells were collected for in vivo 

transplantation or in vitro 3D differentiation assays. 

 

Real-Time PCR analysis 

RNA was extracted using RNAqueousTM-Micro Total RNA Isolation Kit (Invitrogen, 

AM1931), and first-strand cDNATM was synthesized using iScript cDNA Synthesis Kit 

(Bio-Rad, 1708891). Real-Time PCR was performed with the SYBR Green PCR system 

(Applied Biosystems, A25742). Tbp was used as the internal control for normalization. 

Primer sequences were as listed: Tbp, 5'-CAGCCTTCCACCTTATGCTC-3', 5'-

CCGTAAGGCATCATTGGACT-3'; Thbs1, 5'-AGATGGCAAAGGAGATGCCT-3', 5'-
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GCCATCACCATCAGAGTCCT-3'; Lifr, 5'-CTTCGATCCTCAACACAGAGCAG-3', 5'-

CGCTTGCTCTACTGTGATGTCG-3'; Ccl11, 5'-AGAGGCTGAGATCCAAGCAG-3', 5'-

TGGGAGGTGAAGGAAGTGAC-3'; Spry1, 5'-GGAGGCCGAGGATTTCAGAT-3', 5'-

ACAGAATCGTAGCAGGCTGA-3'; Hsd11b1, 5'-CCAGAAGGTAGTGTCTCGCT-3', 5'-

GCTCCGCAAATGTCATGTCT-3; Adipoq, 5'-GTTGCAAGCTCTCCTGTTCC-3', 5'-

ATCCAACCTGCACAAGTTCC-3'; Plin1, 5'-CTCTGGGAAGCATCGAGAAG-3', 5'-

GCATGGTGTGTCGAGAAAGA-3'; Pparg, 5′-TGCACTGCCTATGAGCACTT-3′, 5′-

AACCATTGGGTCAGCTCTTG-3′. 

 

Histological analysis 

10% formalin-fixed tissues were processed with a standard paraffin tissue embedding 

protocol to produce sections for H&E staining by the City of Hope Pathology Core 

facility. For immunofluorescence staining, the sections were dewaxed in xylene and 

rehydrated in a graded series of ethanol to ddH2O. Slides were placed in 10 mM 

sodium citrate buffer and boiled for 30 min for antigen retrieval, then blocked in PBST 

with 5% BSA for 30 min. Primary antibodies used were LIFR (1:200, Proteintech, 

22779-1-AP), CD29 (1:400, BioLegend, 303002), Perilipin (1:500, Novus, NB100-

60554), GFP (1:400, Abcam, ab13970), and mCherry (1:100, Abcam, ab167453) as 

described for individual experiments, and incubated at 4℃ overnight. After three times 

wash with PBS, secondary antibodies used were Alexa Fluor 647 Donkey-anti-Rabbit 

IgG H&L (1:200, Invitrogen, A-31573), Alexa Fluor 488 Donkey-anti-Goat IgG H&L 

(1:200, Invitrogen, A-11055), Alexa Fluor 594 Donkey-anti-Rat IgG H&L (1:200, 

Invitrogen, A-21209), Alexa Fluor 594 Donkey-anti-Mouse IgG H&L (1:200, Invitrogen, 
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A-21203), and Cy3 Donkey-anti-Chicken IgG H&L (1:200, Jackson Immuno, Inc., 703-

165-155), and incubated at room temperature for 2 hours. Slides were then 

counterstained with DAPI and mounted with prolong Anti-Fade mounting medium 

(Invitrogen, P36961) after being washed with PBS three times. Images were acquired 

using a fluorescence microscope (Keyence). Adipocyte number and size were analyzed 

by Image J pluggin Adipocyte Counting Macro. 

 

Western blot analysis 

Proteins were extracted from cells using RIPA Lysis Buffer (Merck Millipore, 20-188) 

supplemented with protease inhibitor (Roche, 11836170001), phosphatase inhibitor 

cocktail (Sigma, P0044, P5726), and 1 mM PMSF (Sigma, P7626), and then separated 

by SDS-PAGE and transferred to PVDF Blotting Membrane (Bio-Rad, 1620177). 

Antibodies against phospho-Stat3 (Tyr705) (Cell Signaling Technology, 9145S) and 

Stat3 (Cell Signaling Technology, 4904S) were used. β-actin (Cell Signaling 

Technology, 3700S) was used as loading control. 

 

Statistical analysis  

GraphPad Prism was used to perform statistical analysis and generate graphs. Data 

values are presented as means ± s.e.m..  
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3.6   Figures 
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Fig 3. 1 APCs in aged mice have a high adipogenic rate in vivo. 
a, Representative GFP and perilipin staining of gWAT samples from the AdipoChaser-

mTmG male mice at the indicated ages. 

b, New adipogenesis rate (percentage of GFP- adipocytes) of gWAT from the male 

mice at the indicated ages. 

c-e, Mean adipocyte size (c), cell size distribution (d), and comparison between mean 

cell size of pre-existing adipocytes (GFP+ adipocytes) and all adipocytes (perilipin+ 

adipocytes) of gWAT from the male mice at the indicated ages. 

a-e, n=3, 3-month-old; n=4, 6-month-old; n=3, 9-month-old; n=5, 12-month-old. 

**p<0.01; ***p<0.005; ****p<0.001; two-way ANOVA. All data represent the mean ± 

s.e.m. 

f, Matrigel plugs of transplant of mixed APCs (Lin-, CD45-CD31-Ter119-) isolated from 

2.5-month-old (young) male CAG-EGFP and 12-month-old (aged) Rosa26-mT/mG mice 

were profiled for 3-dimensional Tomato and GFP signals. 

g, h, Quantification of Tomato+ and GFP+ adipocyte number (g) and mean cell size (h). 

n=3 transplantations. *p<0.05; two-tailed Student’s t-test. All data represent the mean ± 

s.e.m. 

i, Hematoxylin and eosin (HE) staining in the transplanted Matrigel plug within the 

sWAT. 

j, Immunofluorescence staining of GFP, Tomato, and Perilipin in the transplanted 

Matrigel plug. 
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Fig 3. 2 scRNA-seq analysis identifies a novel, age-specific APC population 
a, Progenitor populations from each group (4,337 "young" and 10,757 "aged" cells) 
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were selected for t-distributed stochastic neighbor embedding (t-SNE) plot. K-means 

clustering (k=25) was applied to the t-SNE plot to identify five clusters, ASC, IAP, CP-1, 

CP-2, and CP-A. This data is from a single experiment. n=3 per group.  

b, c, t-SNE plot showing differences between young and aged adipocyte APCs, 

indicating the CP-A cluster uniquely exists in the aged group. 

D, Slingshot trajectory analysis of five clusters shows a new, age-specific trajectory from 

ASC to CP-A.  

e, Box plot showing median and distribution of CytoTRACE values (modified gene count 

measure) per APC subtype in young and aged mice. A Higher CytoTRACE value 

means less differentiated status. 

F, The percentage of each cluster in young and aged APCs. N=3 per group. **p<0.01; 

two-way ANOVA. All data represent the mean ± s.e.m. 

g–k, Individual gene t-SNE and violin plots showing the expression and distribution of 

representative marker genes: general APC marker Pdgfra (g), cluster-specific markers 

Cd55 for ASC (h), Apoe for CP-1 (i), Mfap4 for CP2 (j), and Thbs1 for CP-A (k). 

l, Flow cytometry analysis of CP-A (LIFR+) cell percentage in the gWAT and sWAT from 

male mice at indicated ages. n=3 per group. **p<0.01; ****p<0.001; two-way ANOVA. 

All data represent the mean ± s.e.m. 

m, FACS-isolated ASCs (PDGFRα+ DPP4+ cells) from 2.5-month-old (young) or 12-

month-old (aged) Rosa26-mT/mG male mice were suspended in Matrigel and 

transplanted into the sWAT of 2.5-month-old male WT mice (3×105 per one sWAT). 

After 3 days, SVFs from the sWAT with transplanted Matrigel plug were analyzed for 

differentiated CP-A cells (Tomato+ PDGFRα+ LIFR+). n=3 per group. **p<0.01; two-



 

101 
 

tailed Student’s t-test. All data represent the mean ± s.e.m. 

n, The APC populations from 5 human donors were selected for tSNE plot. 

o, ASC and CP-A score of clusters in human APCs. The scores calculate the top 20 

ASC and CP-A marker genes for each cell. 

p, Flow cytometry analysis shows the percentage of LIFR+ populations within the 

PDGFRα+ population in each peripancreatic WAT sample from men of different ages. 

n=3 per group. *p<0.1; distribution-free one-sided Wilcoxon rank sum test. All data 

represent the mean ± s.e.m. 
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Fig 3. 3 CP-A cells are highly proliferative and adipogenic in vitro and in vivo 
a, Immunofluorescence staining of CD29 and LIFR in peripancreatic WAT sample from 

men of different ages (left: 29-year-old, right: 64-year-old). 
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b, Top upregulated pathways in “aged” ASCs compared to “young” ASCs.  

c, Top pathways in the age-specific CP-A population. 

Enrichment score (b and c): Number of overlapped genes/number of genes in our cell 

type specific gene set × 20000/number of genes in the pathway. Pathway source: 

HALLMARK. Statistic cut off: FDR<0.05 

d, f, Young ASC and CP-1 populations were enriched from the SVFs isolated from the 

gWAT of 2.5-month-old (young) male Rosa26-mT/mG mice; aged ASC and CP-A 

populations were enriched from the SVFs isolated from the gWAT of 12-month-old 

(aged) male Rosa26-mT/mG mice. For each APC population, 1 × 104 cells were 

suspended in Matrigel and seeded in tissue culture dishes. 16 hours later, the 

adipogenic cocktail was added to induce APC differentiation. Cells were imaged 6 days 

later with BODIPY labeling lipid droplets. Representative confocal fluorescent images 

show Tomato+ cells and GFP+ cells (adipocytes are positive for BODIPY staining) from 

the young and aged ASC populations (d), young CP-1 population and aged CP-A 

population (f). 

e, g, Quantification of adipogenesis rate, adipocyte number (GFP+ cells), and total cell 

number (Tomato+ cells). e, n=3 per group; g, young, n=3; aged, n=4. 

h, Flow cytometry analysis of EdU+ proliferating cell percentage in young ASC, aged 

ASC, CP-1, and CP-A populations. 

i, Young DPP4- (none ASC APCs) and CP-1 populations were enriched from the SVFs 

isolated from the gWAT of 2.5-month-old (young) male Rosa26-mT/mG mice. Aged 

DPP4- (none ASC APCs) and CP-A populations were enriched from the SVFs isolated 

from the gWAT of 12-month-old (aged) male Rosa26-mT/mG mice. For each APC 
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population, 2 × 104 cells were enriched. Each enriched APC population was suspended 

in Matrigel and transplanted into the sWAT of 2.5-month-old WT male mice.  Young and 

aged DPP4- populations were transplanted into either side of the sWATof the same 2.5-

month-old male WT mice. Young CP-1 and aged CP-A populations were transplanted 

into either side of the sWATof the same 2.5-month-old male WT mice. 

j, l, Dissected Matrigel plugs were profiled for 3-dimensional Tomato signals. 

k, Quantification of Tomato+ adipocyte number generated from young and aged DPP4- 

cells. n=3 transplantations. 

m, Quantification of Tomato+ adipocyte number generated from young CP-1 and Aged 

CP-A cells. n=4 transplantations. 

*p<0.05; **p<0.01; two-tailed Student’s t-test. All data represent the mean ± s.e.m. 
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Fig 3. 4 The high adipogenic capacity of CP-A cells is dependent on LIFR 
a, CP-A cells were isolated from the gWAT of 12-month-old (aged) male Rosa26-
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mT/mG mice. 1 × 104 cells were suspended in Matrigel and seeded in tissue culture 

dishes. 16 hours later, the adipogenic cocktail was added to induce APC differentiation 

with or without LIFR inhibitor EC359 at indicated concentrations. Cells were imaged 6 

days later with BODIPY labeling lipid droplets. 

b, Quantification of adipogenesis rate, adipocyte number (GFP+ cells), and total cell 

number (Tomato+ cells). n=3 per group. *p<0.05; **p<0.01; two-way ANOVA. All data 

represent the mean ± s.e.m. 

c, CP-A cells were isolated from the gWAT of 12-month-old (aged) male CAG-EGFP 

mice. 2 × 104 cells were suspended in Matrigel and transplanted into the sWAT of 2.5-

month-old WT male mice. Recipient mice were treated with vehicle or LIFR inhibitor 

EC359 at 5mg/kg s.c. 3 times per week. Matrigel plugs were dissected and profiled for 

3-dimensional GFP signal 2 weeks after transplantation. 

d, Quantification of GFP+ adipocyte number generated from EC359-treated CP-A 

transplants. n=3 transplantations. *p<0.05; two-tailed Student’s t-test. All data represent 

the mean ± s.e.m. 

e, Lin- (CD45- CD31- Ter119-) SVFs isolated from the gWAT of 12-month-old (aged) 

male Rosa26-mT/mG mice were transfected with control or LIFR shRNA lentiviral 

particles. 5 × 103 cells were suspended in Matrigel and seeded in tissue culture dishes. 

16 hours later, the adipogenic cocktail was added to induce APC differentiation. Cells 

were imaged 6 days later with BODIPY labeling lipid droplets. 

f, Quantification of adipogenesis rate, adipocyte number (GFP+ cells), and total cell 

number (Tomato+ cells). n=3 per group. **p<0.01; ***p<0.005; ****p<0.001; two-tailed 

Student’s t-test. All data represent the mean ± s.e.m. 
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g, Lin- (CD45- CD31- Ter119-) SVFs isolated from the gWAT of 12-month-old (aged) 

male Rosa26-mT/mG mice were transfected with ctrl or LIFR shRNA lentiviral particles. 

2 × 104 cells were suspended in Matrigel and transplanted into the sWAT of 2.5-month-

old WT male mice. Matrigel plugs were dissected 2 weeks after transplantation and 

profiled for 3-dimensional Tomato signal. 

h, Quantification of Tomato+ adipocyte number generated from LIFR-knockdown 

transplants. n=3 per group. *p<0.05; two-tailed Student’s t-test. All data represent the 

mean ± s.e.m. 

i, Lin- (CD45- CD31- Ter119-) SVFs isolated from the gWAT of 2.5-month-old (young) 

male Rosa26-mT/mG mice were transfected with ctrl or LIFR over-expression lentiviral 

particles. 2 × 104 transfected cells were suspended in Matrigel and seeded in tissue 

culture dishes. 16 hours later, the adipogenic cocktail was added to induce APC 

differentiation. Cells were imaged 6 days later with BODIPY labeling lipid droplets. 

j, Quantification of adipogenesis rate, adipocyte number (GFP+ cells), and total cell 

number (Tomato+ cells). n=3 per group. *p<0.05; two-tailed Student’s t-test. All data 

represent the mean ± s.e.m. 

k, Lin- (CD45- CD31- Ter119-) SVFs isolated from the gWAT of 2.5-month-old (young) 

male CAG-EGFP mice were transfected with control or LIFR over-expression lentiviral 

particles. 2 × 104 transfected cells were suspended in Matrigel and transplanted into the 

sWAT of 2.5-month-old WT male mice. Matrigel plugs were dissected 2 weeks after 

transplantation and profiled for 3-dimensional GFP signal. 

l, Quantification of GFP+ adipocyte number generated from LIFR over-expression 

transplants. n=3 per group. *p<0.05; two-tailed Student’s t-test. All data represent the 
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mean ± s.e.m. 

 

 

Sup Fig 3. 1 Aged mice display substantial fat gain and reduced metabolic rate 
a, b, Body weight curve (a) and body weight gain (b) of male and female C57BL/6J 

mice from 8-week-old to 54-week-old (n=9 male mice; n=8 female mice). 

c, Images of young (2.5-month-old) and aged (12-month-old) male mice.  
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d-f, Magnetic resonance imaging (MRI) was used to measure fat mass (d), lean mass 

(e), and water content (f) (n=8 mice per age group).  

g, h, Tissue weight and whole-tissue pictures of gWAT (e) and sWAT (f). n=9 mice per 

each age group. 

i–m, Metabolic cage studies; oxygen consumption (i), physical activity (j), energy 

expenditure (k), total distance (l), and food intake (m), were determined for young and 

aged mice. n=8 mice per age group.  

n–q, GTT (n, o) and ITT (p, q) were performed on young (2.5-month-old) and aged (12-

month-old) mice. For GTT, n=8 per age group; for ITT, n=7, young; n=8, aged.  

b, d–f, g, h, l, m, o, q, *p<0.05; **p<0.01; two-tailed Student’s t-test. n, p, *p<0.05; 

**p<0.01; Two-way ANOVA. All data represent the mean ± s.e.m. 

 



 

110 
 

 

Sup Fig 3. 2 Aged mice show new adipogenesis in gWAT 
a, Doxycycline-inducible, adipocyte-specific labeling of mature adipocytes by the 
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AdipoChaser mouse model. The doxycycline (dox)-based, tet-responsive, Cre-loxP 

"pulse-chase" labeling system is derived from interbreeding three transgenic strains: 1) 

mice expressing the "tet-on" transcription factor rtTA under the adiponectin promoter 

(Adn-rtTA); 2) mice expressing tet-responsive CRE (TRE-Cre) that is activated by rtTA 

in the presence of dox; and 3) reporter mice expressing membrane located tdTomato or 

GFP reporter gene from the Rosa26 locus in a Cre-dependent manner (Rosa26-l loxP-

mtdTomato-loxP-mGFP, mT/mG). This model allows labeling of pre-existing adipocytes 

as GFP+ cells by dox treatment, tracking the fate of these cells, and identification of 

newly generated adipocytes (GFP- adipocytes) post dox treatment.  

b, Experimental design for Fig. 1a. 3-month-old male AdipoChaser-mTmG mice were 

fed with a doxycycline diet for 1 week to ensure a uniform and permanent labeling of all 

mature adipocytes, followed by a standard chow diet for 3, 6, or 9 months. 

c, Doxycycline-inducible, labeling of Pdgfra+ mural cells by the PdgfraChaser mouse 

model. This model allows tracking the fate of Pdgfra+ cells post dox treatment.  

d, Experimental design: 3-month-old male PdgfrαChaser-mTmG mice were fed with a 

doxycycline diet for 1 week to ensure a uniform and permanent labeling of all PDGFRα+ 

cells, followed by a standard chow diet for 9 months. 

e, GFP (green) and perilipin (red) immunofluorescence staining in gWAT of young (3-

month-old) and aged (12-month-old) PdgfrαChaser-mTmG male mice. These images 

are representative of two independent experiments. 

f, Experimental design for Fig. 1f. APCs (Lin-, CD45- CD31- Ter119-) were enriched 

from isolated SVFs from both 2.5-month-old (young) male CAG-EGFP and 12-month-

old (aged) Rosa26-mT/mG mice. An equal number of GFP+ and Tomato+ cells (1 × 
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105) were mixed together and suspended in Matrigel. The cell mixture was transplanted 

into the sWAT of 2.5-month-old male WT mice. 

 

 

Sup Fig 3. 3 Aged mice exhibit high adipocyte regeneration capacity 
a, Experimental design: young or aged FAT-ATTAC mice were dimerized daily for 

seven days, and gWAT samples were collected before, or 0, 1, 2, 4 weeks after 

dimerization.  
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b, Hematoxylin and eosin (HE) staining in gWAT of young (2.5-month-old) and aged 

(12-month-old) FAT-ATTAC mice before and after dimerization. These images are 

representative of two independent experiments. 

c, Perilipin (green) and DAPI (blue) immunofluorescence staining in gWAT of young 

(2.5-month-old) and aged (12-month-old) FAT-ATTAC mice before and after 

dimerization. These images are representative of two independent experiments. 

d, Whole-tissue images of gWAT from young (2.5-month-old) and aged (12-month-old) 

FAT-ATTAC mice after dimerization. 

e, Magnetic resonance imaging (MRI) was used to measure fat percentage for 9 weeks 

after dimerization. Young, n=6; aged, n=9. 
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Sup Fig 3. 4 Aged microenvironment does not promote adipogenesis of APCs in 
young mice 
a, APCs (Lin-, CD45-CD31-Ter119-) were enriched from isolated SVFs from both 2.5-

month-old (young) or 12-month-old (aged) Rosa26-mT/mG mice. These Tomato+ cells 

(1 × 105) were suspended in Matrigel. The cell mixture was transplanted into either side 

of the sWAT of the same 2.5-month-old male WT mice. 

b, Dissected Matrigel plugs were profiled for 3-dimensional Tomato signal. 

c, Quantification of Tomato+ adipocyte number. n=4 per group. **p<0.01; two-tailed 

Student’s t-test. All data represent the mean ± s.e.m. 

d, e, Immunofluorescence staining of Tomato and Perilipin in the transplanted Matrigel 

plugs of young (d) and aged (e) APCs. 

f, APCs (Lin-, CD45-CD31-Ter119-) were enriched from isolated SVFs from 2.5-month-

old (young) male mT/mG mice. 1×105 cells were suspended in Matrigel and 

transplanted into the sWAT of 2.5-month-old (young) or 12-month-old (aged) male WT 

mice. 

g, Dissected Matrigel plugs were profiled for 3-dimensional Tomato signal.  

h, Quantification of Tomato+ adipocyte number. n=3 per group. two-tailed Student’s t-

test. All data represent the mean ± s.e.m. 

i, Similar experiments were performed using Lin- (CD45-CD31-Ter119-) SVFs isolated 

from 2.5-month-old (young) male CAG-EGFP mice. 

j, Dissected Matrigel plugs were profiled for 3-dimensional GFP signal.  

k, Quantification of GFP+ adipocyte number. n=3 per group. two-tailed Student’s t-test. 

All data represent the mean ± s.e.m. 
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Sup Fig 3. 5 scRNA-seq of Lin- SVFs in gWAT of young and aged male mice. 
a, Lin- (CD45-CD31-Ter119-) SVFs isolated from gWAT of 2.5-month-old (young) and 

12-month-old (age) male WT mice were used for scRNA-seq.  
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b, t-SNE plot of 19534 cells in three major cell clusters: progenitor cells, immune cells, 

and endothelial cells  

c-e, t-SNE plots showing expression and distribution of stem cell marker genes Pdgfrα 

(c), Cd34 (d), and Ly6a (e). 

f, Lin- SVFs from each mouse (2,199 cells from "young 1", 2,394 cells from "young 2", 

2,539 cells from "young 3", 5,150 cells from "aged 1", 4,109 cells from "aged 2", and 

3,072 cells from "aged 3") are illustrated in the t-SNE plot.  

g, h, t-SNE plots showing differences between young and aged Lin- SVFs. Cells were 

labeled with different colors for each individual sample (n=3) (g), or cells were labeled 

with different colors for different age groups (h).  

i, Slingshot trajectory analysis of five APC clusters in each age group, showing an age-

specific trajectory from ASC to CP-A in the aged group.  

j, Bar plot shows the top 10 (less differentiated; red) and bottom 10 (most differentiated; 

blue) genes in this dataset based on their correlation with CytoTRACE values.  

k, Box plot showing the median and distribution of CytoTRACE values (modified gene 

count measure) per APC population in young and aged mice, separately.  

l, Dot plot showing the scaled average expression of the top three marker genes in each 

APC cluster (young and aged combined).  

m, n, Individual gene t-SNE and violin plots, showing the expression and distribution of 

the ASC marker Dpp4 (m), and the CP-A marker Lifr (n). 
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Sup Fig 3. 6 Comparison of ACS, IAP, CP-1, CP-2, and CP-A populations with 
previously identified APC populations 
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a, Representative flow cytometry plots for Fig. 2l of LIFR+ cell percentage in total 

PDGFRα+ APCs in the gWAT and sWAT from male mice at indicated ages. 

b, Real-Time PCR analysis shows mRNA levels of representative CP-A marker genes. 

c, Representative flow cytometry plots for Fig. 2m of LIFR+ cell percentage in total 

transplanted Tomato+ cells. 

d, t-SNE plot showing gene module scores of the top 50 markers of ASC1 and ASC2 as 
reported by Burl et al. in eWAT from 2.5-month-old (young) or 12-month-old (aged) 
male WT mice.  
e, Heatmap of gene module scores by group identities with the 50 top cluster markers 

as reported by Burl et al.  

f, t-SNE plot showing gene module scores of the top 50 markers of FAP1-4 as reported 

by Sárvári et al. in eWAT from 2.5-month-old (young) or 12-month-old (aged) male WT 

mice.  

g, Heatmap of gene module scores by group identities with the 50 top cluster markers 

as reported by Sárvári et al..  

h, t-SNE plot showing gene module scores of the top 50 markers of P1-3 as reported by 

Schwalie et al. in sWAT from 2.5-month-old (young) or 12-month-old (aged) male WT 

mice.  

i, Heatmap of gene module scores by group identities with the 50 top cluster markers as 

reported by Schwalie et al. 
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Sup Fig 3. 7 Single-cell RNA-seq analysis of human APCs 
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a, t-SNE plot of 24794 human pWAT cells in four major cell clusters, progenitor cells, 

immune cells, mesothelial cells and endothelial cells with k-means clustering (k-

means=25).  

b–i, Individual gene t-SNE plots showing the expression levels of the indicated genes: 

adipocyte stem cell/progenitor markers Pdgfra (b) and Pdgfrb (c), ASC markers Cd55 

(d), and Pi16 (e), CP-A marker Lifr (f), and committed preadipocyte markers Pparg (g), 

Fabp4 (h), and Lpl (i).  

j, Flow cytometry strategy for identifying PDGFRα+ cells in Fig. 2p. Single cells were 

selected based on forward and side scatter profiles. Live cells were gated as DAPI-. 

Immune cells, endothelial cells, and erythrocytes were gated out using CD45, CD31, 

and CD235a antibodies. 

k, Flow cytometry plots of LIFR+ cells in each human sample with FMO controls for Fig. 

2p. 
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Sup Fig 3. 8 Enriching APC populations and in vitro 3D culture of APCs 
a, APCs (Lin-, CD45- CD31- Ter119-) were enriched from isolated SVFs from both 2.5-

month-old (young) and 12-month-old (aged) Rosa26-mT/mG male mice. 1 × 104 cells 

were suspended in Matrigel and seeded in tissue culture dishes.  The adipogenic 

cocktail was added 3 days post seeding. Other experimental conditions are the same as 

described in Fig. 3d  

b, Representative confocal fluorescence images of Total APCs (Tomato+ cells) and 

differentiated adipocytes (Bodipy+ cells). 



 

123 
 

c, Quantification of adipogenesis rate, adipocyte number (Bodipy+ cells), and total cell 

number (Tomato+ cells). n=2 per group. All data represent the mean ± s.e.m. 

c, Representative confocal fluorescent images show young and aged Lin- (CD45-CD31-

Ter119-) total APCs (Tomato+ cells) and adipocytes (Bodipy+ cells). The adipogenic 

cocktail was added 16 hours post seeding. Other experimental conditions are the same 

as described in Fig. 3c. 

e, Quantification of adipogenesis rate, adipocyte number (GFP+ cells), and total cell 

number (Tomato+ cells). n=3 per group. *p<0.05; **p<0.01; two-tailed Student’s t-test. 

All data represent the mean ± s.e.m.  

f, Real-Time PCR analysis shows mRNA level of adipogenesis-related genes in CP-A 

cells treated with adipogenic cocktail. 

g, DPP4+ population was enriched by magnetic bead-associated cell sorting (MACS). 

Flow cytometry analysis validates the isolation of DPP4+ and DPP4- populations within 

the Lin- (CD45-CD31-Ter119-) SVF after MACS in 2.5-month-old (young) or 12-month-

old (aged) male WT mice.  

h, CP-1 and CP-A populations were enriched through MACS-based negative selection, 

depleting DPP4+ ASC, CD9+ CP-2 and IAP populations in Lin- SVFs. Flow cytometry 

analysis validates increased LIFR+ cell percentage in enriched CP-A population after 

MACS.  

i, Flow cytometry analysis validates depletion of DPP4+ and CD9+ populations from the 

enriched CP-A population after MACS from 2.5-month-old (young) or 12-month-old 

(aged) male WT mice.  
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j, Flow cytometry analysis shows DPP4+ and CD9+ population percentages in 

PDGFRα+ eWAT SVFs from 2.5-month-old (young) or 12-month-old (aged) male WT 

mice. 

k, Representative flow cytometry plots of EdU+ proliferating cells in ASC, CP-1, and 

CP-A populations from 2.5-month-old (young) or 12-month-old (aged) male WT mice for 

Fig. 3h.  
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Sup Fig 3. 9 CP-A cells have high adipogenic potential in vivo 
a, Immunofluorescence staining of Tomato and Perilipin in the transplanted Matrigel 

plugs of DPP4- APCs in Fig. 3j. 

b, Immunofluorescence staining of Tomato and Perilipin in the transplanted Matrigel 

plugs of CP-1 and CP-A cells in Fig. 3l. 
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Sup Fig 3. 10 LIFR signaling controls CP-A adipogenesis 
a, Western blot analysis of LIFR signaling after LIFR inhibitor, EC359 treatment. 

b, Real-Time PCR analysis of Lifr mRNA level after LIFR knock down in Fig. 4e, g. 

c, Real-Time PCR analysis of Lifr mRNA level after LIFR overexpression in Fig. 4i, k. 

d, e, 9-month-old WT male mice were treated with LIFR inhibitor EC359 or vehicle for 

10 weeks. Tissue weight of gWAT (d) and sWAT (e) after treatment. n=4 per group. 

Two-tailed Student’s t-test. All data represent the mean ± s.e.m. 
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f, Summarization of key findings: APCs in young adult mice are quiescent. These cells 

do not undergo adipogenesis unless triggered by metabolic challenges (such as high fat 

diet feeding or cold exposure). The aging process remodels APCs and generates ASCs 

that are highly proliferative, and CP-As that are both highly proliferative and adipogenic. 

LIFR, as a functional marker, regulates CP-A adipogenesis. The proliferation and 

differentiation of APCs in aged mice are spontaneous, without any external metabolic 

challenges. Illustration created with BioRender.com 

 

Chapter 4.   PPARg- Dependent Remodeling of Translational Machinery in 

Adipose 

4.1   Introduction 

Obesity is a complex and multifactorial chronic medical condition that results from an 

imbalance between energy intake and energy expenditure. This leads to an excessive 

accumulation of body fat, which has significant negative effects on an individual's 

physical, psychological, and social health and well-being, as well as an increased risk of 

developing several chronic diseases, such as cardiovascular disease, type 2 diabetes, 

and certain cancers, among others 128,129. 

 

The adipose tissue plays a crucial role in the pathology of obesity. Its plasticity and 

functional heterogeneity allow it to respond to different stimuli, thereby facilitating the 

regulation of systemic energy balance. Adipose tissues, primarily the epididymal white 

adipose tissue (eWAT) and inguinal white adipose tissue (iWAT), differ in their 
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metabolic profiles and response to external stimuli. eWAT is more associated with 

visceral fat accumulation and is linked to metabolic dysfunction, while iWAT tends to be 

subcutaneous and may offer some protective effects against metabolic disease. 

 

However, during obesity, a maladaptation of adipose tissue ensues, impairing its 

function and contributing to systemic insulin resistance and inflammation130. The 

adipose progenitor cells (APCs) contribute significantly to this maladaptation, although 

their role is not yet fully understood. Single-cell RNA sequencing studies have begun to 

reveal the impressive heterogeneity and plasticity of these cells, yet questions remain 

about their contribution to metabolic homeostasis and potential targeting for therapy131-

143. 

 

Peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor, plays a 

pivotal role in adipocyte differentiation and function, and is a key target of 

thiazolidinediones (TZDs), such as rosiglitazone. These drugs enhance insulin 

sensitivity, modulate inflammatory responses, and can even induce modest reductions 

in weight and adiposity in some individuals with obesity and insulin resistance 144-148. 

Interestingly, whole-body insulin-sensitizing effects of rosiglitazone do not necessarily 

require PPARγ in adipocytes, suggesting that PPARγ-independent targets in adipose 

tissue or PPARγ's roles in other tissues and cell types, such as APCs, could be 

essential for the action of TZDs. 
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In this study we explore the substantial remodeling effects of acute rosiglitazone 

treatment on the white adipose depots of obese subjects. By employing Single-Cell 

RNA Sequencing, we uncover significant shifts in the stromal vascular cell composition 

after PPARγ agonist treatment. We observe a major shift in macrophage 

subpopulations, highlighting the immunomodulatory effects of rosiglitazone. A detailed 

profiling of adipose precursor cells in epididymal white adipose tissue (eWAT) reveals 

rosiglitazone drives a reduction in progenitor cells, induces adipogenesis, and remodels 

gene expression patterns in both progenitor cells and pre-adipocytes. The effects 

extend to the inguinal adipose tissue (iWAT), where rosiglitazone not only replicates its 

effects observed in eWAT, but also promotes enhanced adipocyte differentiation. 

Pathway analysis of differentially expressed genes reveals cell type-specific effects of 

rosiglitazone treatment and highlights its role in attenuating inflammatory responses, 

promoting ATP synthesis, and inducing ribosome biogenesis. Further analysis suggests 

a potential mechanism by which PPARγ drives enhancement in translation efficiency. 

 

4.2   Results 

Acute rosiglitazone treatment confers improvement in glucose tolerance and 

remodeling in the adipose tissue 

To evaluate the impact of an acute PPARg agonist treatment on host physiology we 

treated wild-type (WT) C57BL/6 lean mice and obese Lepob/ Lepob (ob/ob) mice with 

either Rosiglitazone (Rosi) or Vehicle (Veh) by oral gavage for three days (Figure 

4.1A). Despite no changes in body weight (Figure 4.1B), ob/ob mice treated with 
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rosiglitazone (ob/ob-Rosi) presented an outstanding improvement in glucose tolerance, 

comparable to lean mice (Figure 4.1C). As expected, since we did not observe changes 

in total body weight, only a slight increase in brown adipose tissue (BAT) mass was 

observed after rosiglitazone treatment in both lean and obese mice (Figure 4.1D). No 

significant mass differences were observed in the inguinal white adipose tissue (iWAT), 

and epididymal white adipose tissue (eWAT) (Figure 4.1E-F). We next examined 

histological sections from adipose tissue and liver. Remarkably, ob/ob-Rosi mice had a 

decrease in the crown-like structures in the eWAT with no major alterations in the iWAT 

and BAT in both obese and lean conditions (Figure 4.1G). In addition to the remodeling 

in the adipose tissue microenvironment, the liver of WT-Veh mice presented no major 

histological changes but a minor increase in total mass (Supplementary Figure 4.1A-

B). In contrast, the liver of ob/ob-Rosi mice exhibited a decrease in lipid accumulation 

(Supplementary Figure 4.1A) characterized by a reduction in the surface area covered 

by lipid droplets (Supplementary Figure 4.1C). Next, to assess the tissues responsible 

for the improvement in glucose homeostasis, we adapted the conventional glucose 

tolerance test by mixing the glucose bolus with 18F-FDG. After one hour of conscious 

glucose uptake, mice were subjected to PET/CT scans (Supplementary Figure 4.1D). 

ob/ob-Rosi mice exhibited an increase in glucose uptake in the brain, heart, liver, 

muscle, and adipose tissue (axillary) compared to ob/ob-Veh mice (Supplementary 

Figure 4.1E-F). To better visualize the glucose uptake in the fat depots and exclude the 

higher signals (e.g., heart, bladder), we reprocessed and cleared the scans using 

Dragonfly. Strikingly, ob/ob-Rosi mice had much greater glucose uptake in the adipose 

tissues compared to ob/ob-Veh mice (Figure 4.1H). Overall, acute rosiglitazone 
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treatment resulted in a major remodeling of the obese host physiology, especially in the 

adipose depots. 

 

scRNAseq uncovers stromal vascular cell remodeling after PPARg agonist 

treatment 

Next, to investigate how rosiglitazone treatment could be affecting the stromal vascular 

fraction in the adipose tissue, we performed single-cell RNA Sequencing in both eWAT 

and iWAT. Since the most dramatic responses were observed in obese mice, we 

focused our efforts on ob/ob mice, treating them with either vehicle or rosiglitazone for 3 

days. Additionally, we included a WT-Veh group to compare the baseline of a lean mice 

(Figure 4.2A).  Briefly, datasets from both eWAT and iWAT were separately processed 

through the 10X Genomics Cell Ranger version 3.0.2 single-cell software to perform 

sample demultiplexing sequencing alignment to mouse genome mm10, filtering, and 

unique molecular identifier (UMI) counting to generate gene count matrices. Single cells 

were identified from background noise with the default setting of cell ranger.  The 

filtered matrix was further selected with the proportion of mitochondrial reads (threshold: 

< 25%), the number of UMI (thresholds: 700-22,000), and the number of detected genes 

(thresholds: 200-6,000) (Supplementary Figure 4.2A-B). The split view t-SNE graphs 

visualizing expression patterns of the individual mice showed high reproducibility within 

groups (Supplementary Figure 4.2C-D).We were able to identify 10 major cell types 

described to be present in the adipose tissue: Smooth Muscle Cells (SMC), Neutrophils 

(Neu), B Lymphocytes (BC), Endothelial cells (EC), Adipocyte Progenitor Cells (APC), 
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Natural Killer T cells (NKT), Dendric Cells (DC), Perivascular Macrophages (PVM), 

Lipid-Associated Macrophages (LAM), Non-Perivascular-like Macrophages (NPVM), 

and Proliferating-LAM (P-LAM) (Figure 4.2B-E). Interestingly, tissue-specific 

differences between eWAT and iWAT were evident, such as the exclusively presence of 

SMC and PLAM, in the eWAT and DC in the iWAT (Figure 4.2B-C). Remarkably, 

ob/ob-Rosi samples from both eWAT and iWAT presented a significant shift in the 

population’s clusters resembling the expression pattern in the lean WT-Veh mice, 

presenting a major transcriptome remodeling induced by acute rosiglitazone treatment 

(Figure 4.2 B-E).  

 

Rosiglitazone treatment leads to major shifts in macrophage subpopulations  

Despite the presence of crown-like structures in the histology of the ob/ob-Veh (Figure 

4.G), we did not observe the presence of a large population of Lipid-Associated 

Macrophages (LAM) by scRNA-seq in the ob/ob-Veh samples in either iWAT or eWAT 

(Figure 4.2B-C). Therefore, we hypothesized that due to the high lipid content of those 

cells, they may have floated associated with the mature adipocyte layer during 

enzymatic digestion. To test that, we collected the lipid layer after the enzymatic 

digestion, incubated overnight, and then performed confocal imaging (Supplementary 

Figure 4.3 A). We indeed observed a high concentration of F4/80 positive cells in both 

eWAT and iWAT of ob/ob-Veh mice. In addition to that, those cells presented a positive 

signal for Perilipin 1, suggesting a potential role phagocytosing apoptotic adipocytes. 

When compared to ob/ob-Rosi samples though, we observed a decrease in the number 
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of the macrophages as well as a remodeling in the morphology, likely reflecting a 

different state of activation. The effect of rosiglitazone on macrophages has been 

previously described 149,150 and PPARg activation directs an alternative-activation profile 

by the IL4-PPARg-STAT6 pathway. To confirm this remodeling, we performed flow 

cytometry to better characterize the changes in the macrophage subpopulations after 

rosiglitazone treatment (Supplementary Figure 4.3B). Indeed, rosiglitazone treatment 

decreased the number of inflammatory and lipid-associated macrophages in both eWAT 

and iWAT, with a robust response in the eWAT (Supplementary Figure 4.3C-F). 

 

Profiling of adipose precursor cells in Response to PPARg agonist treatment in 

the eWAT 

Rosiglitazone has been described to induce adipogenesis in vivo. During a close 

examination of the histological sections in eWAT, we observed the presence of multi-

locular cells marked with arrowheads that could be indicative of adipogenesis (Figure 

4.3A). As adipose tissue has reduced adipogenesis in the maladaptation process during 

obesity, the results show that rosiglitazone treatment did remodel the cell populations in 

a way that restores adipogenesis similar to the lean mice. 

 

For a more detailed investigation of APCs in the scRNA-seq dataset, and to assess the 

transcriptomic shifts induced by rosiglitazone in APC subtypes, we centered our 

attention on the APC cluster expressing common adipocyte precursor markers such as 

Pdgfra. This APC cluster was further classified into progenitors and preadipocytes, 
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considering the Louvain clustering of the top 25 principal components and subtype-

specific gene expression (Pi16 and Dpp4 for progenitors and Icam1 and Cd36 for 

preadipocytes154) (Figure 4.3 B-C). In comparing the transcriptomic landscapes of WT-

Veh, ob/ob veh, and ob/ob-Rosi, it was apparent that rosiglitazone treatment reshaped 

the gene expression profiles in obese mice to resemble that of lean mice. Rosiglitazone 

also influenced cell proportions in obese mice, with a notable decrease in progenitors 

and an increase in preadipocytes. 

 

To corroborate these findings, flow cytometry was employed (Figure 4.3 D). 

Considering the high expression of Pdgfra in both progenitors and preadipocytes 

(FigS4A and FigS5A), we gated in PDGFRa+ cells post lineage exclusion (CD31-, 

CD45-), and subsequently isolated progenitors (DPP4+) and pre-adipocytes (ICAM1+ 

and ICAM1+/CD36+) (Figure 4.3 E). A significant reduction in both PDGFRA+ cells and 

DPP4+ cells post rosiglitazone treatment was observed, in alignment with the scRNA-

seq data, whereas ICAM1+ and ICAM1+/CD36+ cell numbers remained unaffected. 

This suggests that transcriptomic alterations may not always manifest in surface marker 

expression. Utilizing confocal microscopy to visualize LipidTox-marked lipid droplets 

and quantifying lipid droplet cell area with ImageJ (Figure 4.3 F-G), a significant 

increase in lipid droplet count in both DPP4+ and DPP4- cells was observed, suggesting 

that rosiglitazone could stimulate adipogenesis in progenitor cells. Overall, rosiglitazone 

drives a reduction in progenitor cells, induces adipogenesis and remodels expression 

patterns in both progenitor cells and pre-adipocytes in eWAT. 
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Rosiglitazone drives enhancement of adipocyte differentiation in inguinal adipose 

tissue. 

The effects of rosiglitazone were also analyzed in the context of iWAT. Upon inspection 

of histological sections of iWAT, the occurrence of multi-locular cells, indicative of 

adipogenesis, was also noted (Figure 4.4A), suggesting that rosiglitazone potentially 

induces adipogenesis in iWAT. In the scRNA-seq dataset, APCs are also classified into 

progenitors and preadipocytes with the same method and markers (Figure 4.4 B-C). In 

comparing the gene expression patterns of WT-Veh, ob/ob veh, and ob/ob-Rosi 

conditions, rosiglitazone treatment was also found to remodel the transcriptomic 

landscape in obese mice to more closely resemble lean mice. 

 

Flow cytometry analysis in iWAT demonstrated a significant reduction in PDGFRA+ 

cells and ICAM1+ cells, while a significant increase in ICAM1+/CD36+ cells was 

observed following rosiglitazone treatment (Figure 4.4 D-E). This suggests that 

rosiglitazone could enhance the expression of maturation markers in preadipocytes. 

Observation of LipidTox-marked lipid droplets and assessment of lipid droplet cell area 

unveiled the existence of smaller-sized lipid droplets (Figure 4.4F). However, there was 

no significant alteration in the overall count of lipid droplets. In summary, within the 

iWAT environment, rosiglitazone appears to not only reproduce its adipogenesis-

inducing and gene expression-modulating effects observed in eWAT, but also to 

promote the enhancement of adipocyte differentiation. 
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Comparison of differentially expressed and enriched pathways in response to 

obesity and rosiglitazone treatment 

To discern the genes with distinct expression due to obesity and rosiglitazone 

treatment, Differentially Expressed Genes (DEGs) were identified using the Wilcoxon 

Rank Sum test with an Benjamini-Hochberg corrected p value < 0.05. These DEGs 

were then segmented into four categories: genes with increased expression in obese 

mice compared to lean mice (ob/ob_UP), genes with decreased expression in obese 

mice compared to lean mice (ob/ob_DOWN), genes with increased expression in 

response to Rosiglitazone treatment (Rosi_UP), and genes with decreased expression 

in response to Rosiglitazone treatment (Rosi_DOWN). 

 

To further investigate the distinct and overlapping aspects of these DEG categories, we 

explored the intersections of DEGs across all four categories within both APC subtypes 

and across all cell types (Figure. 4.5, Supplementary Figure.4.4). The effects of 

rosiglitazone treatment, in modifying the transcriptomic profile of obese mice to better 

mirror lean mice, were evident in the DEGs shared between ob/ob_UP and 

Rosi_DOWN, and the DEGs shared between ob/ob_UP and Rosi_DOWN. These 

intersecting DEG sets predominated across all cell types. 

 

In eWAT progenitors and eWAT preadipocytes, the most significant intersecting DEGs 

were those that exhibited an increase in obese mice and a corresponding decrease 
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following rosiglitazone treatment (Figure.4.5 A-B). Conversely, in iWAT progenitors and 

iWAT preadipocytes, the largest intersecting DEGs were those that showed a decrease 

in obese mice and a corresponding increase following rosiglitazone treatment 

(Figure.4.5 C-D), highlighting the tissue-specific nature of rosiglitazone's corrective 

effect. 

 

To comprehend the impact of rosiglitazone's corrective effect on different biological 

pathways, we undertook a pathway enrichment analysis in the reversed set of DEGs. 

We used Fisher's exact test to determine the overlap between the identified DEGs and 

the biological pathways listed in KEGG, REACTOME, BIOCARTA, and HALLMARK 

databases. The Benjamini-Hochberg method was employed to estimate the False 

Discovery Rate (FDR) and correct for multiple testing. We defined the enrichment score 

as the proportion of overlapping genes to total genes within our cell type-specific gene 

set, scaled by 20,000, and then divided by the total genes within the pathway. 

 

Within the pathways enriched from the reversed set of genes in eWAT progenitors, the 

most enriched pathways showing an increase under rosiglitazone treatment were 

angiogenesis, epithelial mesenchymal transition, lysosome, PPAR signaling, and 

extracellular matrix organization. The pathways demonstrating a decrease under 

rosiglitazone treatment in eWAT progenitors were Atf6a chaperone activation, TNFA 

signaling, Ace2 pathway, IL-6 pathway, and Nfkb pathway, signifying that rosiglitazone 

mitigates the inflammatory response in eWAT progenitors (Figure 4.5A). 



 

138 
 

 

In eWAT preadipocytes, the top downregulated pathways under rosiglitazone also 

pertained to the inflammatory response, while the top upregulated pathways under 

rosiglitazone treatment were ribosome, angiogenesis, peptide chain elongation, 

translation, and lipid transport, suggesting that rosiglitazone prompts ribosome 

biogenesis in preadipocytes (Figure 4.5B). These variations in pathway enrichment 

results highlight the cell type-specific influence of rosiglitazone treatment in eWAT 

APCs. 

 

In iWAT, both progenitors and preadipocytes have ribosome, formation of the 43S 

complex, peptide chain elongation, 3’UTR mediated translational regulation, and ATP 

synthesis related pathways in the top upregulated pathways and diverse inflammation-

related pathways in the top downregulated pathways. These findings imply that 

rosiglitazone attenuates the inflammatory response and promotes ATP synthesis and 

ribosome biogenesis in both iWAT progenitors and preadipocytes. 

 

PPARg-driven enhancement in translation efficiency 

As ribosome pathways are among the top upregulated pathways by rosiglitazone 

treatment in APCs, we decided to examine the expression of ribosomal genes in more 

depth in relation to obesity and rosiglitazone treatment. We found that 85 ribosomal 

genes showed altered expression in APCs across both tissues (Figure 4.6). 
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In eWAT progenitors, these ribosomal DEGs demonstrated significant changes in their 

expression level, being largely downregulated due to obesity but upregulated in 

response to rosiglitazone treatment. In contrast, iWAT progenitors had only a few 

ribosomal genes showing differential expression due to obesity and rosiglitazone 

treatment. 

 

For preadipocytes in both eWAT and iWAT, a number of ribosomal DEGs were found to 

be downregulated in response to obesity and upregulated following rosiglitazone 

treatment, with the effect being more pronounced in iWAT preadipocytes. This pattern 

of results suggests that rosiglitazone treatment stimulates ribosome biogenesis in a cell 

type specifc manner. 

 

Considering that rosiglitazone is an activator of PPARγ, we pondered whether PPARγ 

might be binding to the promoter regions of ribosomal genes. According to a previously 

published study involving genome-wide profiling of PPARγ in eWAT, iWAT, and brown 

adipose tissue (BAT) using ChIP-Seq155, PPARγ binding sites were identified in 41 

ribosomal genes in eWAT and 24 ribosomal genes in iWAT (Figure 4.7). There is a 

substantial overlap between genes identified as having PPARγ binding sites in the 

ChIP-Seq study and the DEGs identified in our scRNA-seq analysis (Supplementary 

Figure.4.5). These findings suggest that PPARγ may contribute to enhancing 

translation efficiency. 
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4.3   Discussion 

The pivotal role of peroxisome proliferator-activated receptor gamma (PPARγ) in 

adipogenesis and lipid metabolism has been long established, acting as a key 

molecular switch that regulates adipocyte differentiation, lipid storage, and glucose 

metabolism156. Thiazolidinediones, such as rosiglitazone, as PPARγ agonists, have 

been employed as insulin sensitizers for type 2 diabetes management. They exert their 

effect by enhancing insulin sensitivity in adipose tissue and promoting the differentiation 

of preadipocytes into insulin-sensitive adipocytes157. Adipose tissue plasticity, which 

refers to its capacity to undergo expansion, contraction, and remodeling, is crucial in 

maintaining metabolic homeostasis. In the context of obesity, adipose tissue remodeling 

becomes dysfunctional, often resulting in a state of chronic inflammation and metabolic 

dysregulation. Therefore, the impact of PPARγ agonists on adipose tissue plasticity in 

obesity warrants further exploration. 

 

The present study offers a perspective on how acute rosiglitazone treatment influences 

white adipose tissue remodeling and cellular reprogramming in obesity. Rosiglitazone's 

effect on adipogenesis and the reduction of progenitor cells paints a complex picture of 

adipose tissue remodeling, with potential implications for adipose tissue function and 

metabolic regulation in obese states. Our findings demonstrate that rosiglitazone 

induces substantial transcriptomic alterations in both eWAT and iWAT progenitor cells 

and preadipocytes. This shift in the transcriptional landscape under the influence of 

rosiglitazone offers an intriguing insight into how PPARγ agonists may reprogram 

adipose tissue at the molecular level, promoting a more metabolically beneficial profile. 
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Rosiglitazone's potent immunomodulatory effects, as evidenced by the shift in 

macrophage subpopulations, underscore its potential to alleviate the chronic 

inflammation often associated with obesity. The shift from a pro-inflammatory to an anti-

inflammatory macrophage profile could offer systemic metabolic benefits and contribute 

to improved insulin sensitivity.  

 

Notably, our study also uncovered a potential link between rosiglitazone treatment and 

enhanced ribosome biogenesis. As the regulation of translation, encompassing 

ribosome biogenesis and initiation of translation, holds an essential role in cellular 

function and metabolic processes. Emerging research has suggested that an important 

protein in this context is the eukaryotic initiation factor 4E (eIF4E), a major cap binding 

protein, that has been implicated in the regulation of lipid homeostasis and obesity158. 

Notably, messenger RNAs (mRNAs) that are involved in lipid metabolic processing and 

storage pathways are enhanced at the translational level by eIF4E. It has been 

suggested that an inability to upregulate these mRNAs translationally results in an 

increase in fatty acid oxidation, which in turn enhances energy expenditure. Our scRNA-

seq dataset also identify eIF4E as a differentially expressed gene, thus pointing towards 

its potential involvement in our study's context.  

 

In this regard, several promising experimental approaches are worth considering to 

determine if and how PPARγ contributes to translation regulation. For example, 

polysome profiling provides a snapshot of the transcripts being translated at any given 

time, which can inform us about the effect of PPARγ activation on global protein 
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synthesis. Phospho FACS of eIF4E, on the other hand, can elucidate the 

phosphorylation status of eIF4E, which is crucial in modulating its activity. Another 

intriguing method is Surface Sensing of Translation (SUnSET). This technique utilizes 

puromycin, an analogue of the aminoacyl tRNAs, which is incorporated into the nascent 

peptide chain, causing premature chain termination. By tracking puromycin-incorporated 

proteins, it allows for the quantification of the rate of protein synthesis, offering insights 

into translational regulation under varying conditions, including the influence of PPARγ. 

Through these prospective analyses and experiments, we can delve deeper into the 

intricate mechanisms underlying the role of PPARγ in translation regulation.  

 

4.4   Conclusions 

The present study provides a cell type-specific view of how acute rosiglitazone 

treatment influences white adipose tissue remodeling and cellular reprogramming in the 

context of obesity. Rosiglitazone was found to induce adipogenesis, reduce progenitor 

cells, and significantly alter the transcriptomic landscape of both eWAT and iWAT 

progenitor cells and preadipocytes. Moreover, rosiglitazone demonstrated the capacity 

to alleviate inflammatory responses and enhance ATP synthesis and ribosome 

biogenesis in iWAT cells. The observed shift in macrophage subpopulations further 

illustrates the potent immunomodulatory effects of rosiglitazone. The pathway analysis 

suggest a novel potential role for PPARγ in enhancing translation efficiency, 

underscoring the need for further investigations into its mechanism. This study thus 

opens new avenues for understanding the cellular and molecular mechanisms 
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underpinning adipose tissue remodeling and the therapeutic effects of PPARγ agonists 

in the context of obesity. 

 

4.5   Methods 

Mice 

Adult C57BL/6J (12-week-old) male mice (stock #000664) and Lepob/Lepob (stock 

#000632) were acquired through Jackson Laboratories. All mice were housed at a 

maximum of 5 animals per cage in temperature-controlled rooms under a 12-hour 

light/dark cycle and provided water and chow ad libitum. All mouse procedures were 

performed under animal study proposals approved by the University of California, Los 

Angeles Animal Research Committee (ARC 2019-066). 

 

Rosiglitazone treatment 

To examine the effects of PPARg agonist, C57BL/6J and Lepob/Lepob mice were given 

30 mg/kg rosiglitazone (Sigma R2408), or vehicle [2.6% methylcellulose (StemCell 

Technologies, M3120) diluted 1:5 in Dulbecco’s modified medium (GIBCO)] by oral 

gavage in the morning and evening for three consecutive days.152 

 

Stromal vascular fraction isolation  

Stromal vascular fractions were isolated as previously described 153. Briefly, WAT 

depots were cut into small pieces, suspended in DMEM (GIBCO) + 50 mM HEPES 
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(GIBCO) + 1mg/mL type II collagenase (Sigma), + 1% BSA -low fatty acid (Gemini), and 

digested for 30 minutes at 37°C with agitation (120 rpm). The resulting dissociated 

tissue was passed through 100μm strainers, and adipocytes were removed from the 

supernatant by centrifugation. After a second filtration with 40μm strainers, red blood 

cells were lysed using ACK lysis buffer (GIBCO). The resulting pellets were processed 

further for 10X 3'GEX library preparation and sequencing or flow cytometry. 

 

10X 3'GEX library preparation and sequencing 

The Chromium Single Cell Gene Expression Solution upgrades short read sequencers 

to deliver a scalable microfluidic platform for 3ʹ digital gene expression by profiling 500-

10,000 individual cells per sample. A pool of ~3,500,000 10x Barcodes are sampled 

separately to index each cell’s transcriptome. It is done by partitioning thousands of 

cells into nanoliter-scale Gel Beads-in-emulsion (GEMs), where all generated cDNA 

shares a common 10x Barcode. Libraries are generated and sequenced from the cDNA 

and 10x Barcodes are used to associate individual reads back to the individual 

partitions. In addition to the poly(dT) primer that enables the production of barcoded, 

full-length cDNA from poly-adenylated mRNA, the Single Cell 3ʹ v3.1 Gel Beads also 

include two additional primer sequences (Capture Sequence 1 and Capture Sequence 

2), that enable capture and priming of Feature Barcoding technology compatible targets 

or analytes of interest. Only the poly(dT) primers are used in this protocol for generating 

Single Cell 3ʹ Gene Expression libraries. GEMs are generated by combining barcoded 

Single Cell 3ʹ v3.1 Gel Beads, a Master Mix containing cells, and Partitioning Oil onto 
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Chromium Next GEM Chip G. To achieve single cell resolution, cells are delivered at a 

limiting dilution, such that the majority (~90-99%) of generated GEMs contain no cells, 

while the remainder largely contain a single cell. Immediately following GEM generation, 

the Gel Bead is dissolved, primers are released, and any co-partitioned cell is lysed. 

Primer containing (1) an Illumina TruSeq Read 1 (read 1 sequencing primer), (2) 10x 

Barcode, (3) 12nt unique molecular identifier (UMI), and (3) 30nt poly(dT) sequence are 

mixed with the cell lysate and a Master Mix containing reverse transcription (RT) 

reagents. Incubation of the GEMs produces barcoded, full-length cDNA from poly-

adenylated mRNA. After incubation, GEMs are broken, and pooled fractions are 

recovered. Silane magnetic beads are used to purify the first-strand cDNA from the post 

GEM-RT reaction mixture, which includes leftover biochemical reagents and primers. 

Barcoded, full-length cDNA is amplified via PCR to generate sufficient mass for library 

construction. Enzymatic fragmentation and size selection are used to optimize the 

cDNA amplicon size. TruSeq Read 1 (read 1 primer sequence) is added to the 

molecules during GEM incubation. P5, P7, a sample index, and TruSeq Read 2 (read 2 

primer sequence) are added via End Repair, A-tailing, Adaptor Ligation, and PCR. The 

final libraries contain the P5 and P7 primers used in Illumina bridge amplification. A 

Chromium Single Cell 3’ Gene Expression library comprises standard Illumina paired-

end constructs which begin and end with P5 and P7. The 10x Barcode and 12 bp UMI 

are encoded in Read 1, while Read 2 is used to sequence the cDNA fragment. Sample 

index sequences are incorporated as the sample index read. TruSeq Read 1 and 

TruSeq Read 2 are standard Illumina sequencing primer sites used in paired-end 

sequencing. These libraries were sequenced using Illumina's NovaSeq6000 platform in 
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paired end 2x100bp configuration. Data quality check was done on Illumina SAV, and 

data de-multiplexing was performed with Illumina Bcl2fastq v2.19.1.403 software. 

 

scRNA-seq data processing and quality control 

The 10X Genomics Cell Ranger version 3.0.2 single-cell software[26] was used to 

perform sample demultiplexing sequencing alignment to mouse genome mm10, 

filtering, and unique molecular identifier (UMI) counting to generate gene count 

matrices. Single cells were identified from background noise by filtering on the 

proportion of mitochondrial reads (threshold: < 25%), the number of UMI (thresholds: 

700-22,000), and the number of detected genes (thresholds: 200-6,000). 

 

Cell clustering and cell type identification 

The cell clustering and cell type identification were performed using the Seurat R 

package version 4.0.2. The Louvain algorithm was employed to determine cell clusters 

based on similarities in transcriptome patterns, and the resulting clusters were 

visualized using t-Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform 

Manifold Approximation and Projection (UMAP). Highly variable genes selected using 

the FindVariableFeatures function with default parameters were subjected to principal 

component analysis (PCA). The number of principal components used for Louvain 

clustering and subsequent visualization was determined with the Jackstraw permutation 

approach (n=25 for clustering of all cells and n=15 for APC sub-clustering). Cell type 

identities of the clusters were resolved by comparing the cell cluster-specific marker 
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genes expressed in each cluster in our own dataset, identified with a Wilcoxon rank sum 

test, with known cell-type-specific markers curated from literature, single-cell atlases, 

and previous studies in the white adipose tissue. For a gene to be considered in the cell 

cluster marker analysis, it had to be expressed in at least 10% of the single cells from 

the cluster of interest and exhibit at least a 0.25 log-fold change in the cell cluster of 

interest compared to other cells. Multiple testing was corrected using the Benjamini-

Hochberg method to estimate the false discovery rate (FDR). 

 

Identification of differentially expressed genes (DEGs) and pathways 

To determine which genes were affected by genetic background or rosiglitazone 

treatment, we compared the cell transcriptome of each cell type between age groups 

using a Wilcoxon rank sum test. To be considered in the analysis, a gene had to be 

expressed in at least 10% of the single cells from at least one of the two groups for that 

cell type and there had to be at least 1.1-fold change in gene expression between the 

groups. Multiple testing correction was done using the Benjamini–Hochberg method to 

estimate FDR. To assess pathway enrichment, we performed Fisher's exact test to 

determine the overlap between the DEGs and pathways from KEGG, REACTOME, 

BIOCARTA, and HALLMARK. Multiple testing correction was performed using the 

Benjamini-Hochberg method to estimate FDR. The enrichment score was calculated as 

the number of overlapped genes divided by the number of genes in our cell type-

specific gene set, multiplied by 20,000 and then divided by the total number of genes in 

the pathway. 
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Flow Cytometry and Sorting 

Cells were analyzed for cell-surface markers using fluorophore-conjugated antibodies 

(BioLegend, eBioscience). Cell surface staining was performed in HBSS (GIBCO). Flow 

cytometry was performed using the Attune NxT and data were analyzed with FlowJo 

software (BD). Cell surface and intracellular staining were performed using the following 

fluorophore-conjugated antibodies: (a) macrophages panel: CD45.2 (104), TCRβ (H57-

597), CD3 (17A2), CD19 (6D5), NK1.1 (PK136), Ly6G (1A8), CD11c (N418), CD11b 

(M1/70), CD88 (20/70), CD9 (MZ3), Tim-4 (RMT4-54). (b) progenitors: Lineage 

negative: CD45.2 [104], and CD31 [390], PDGFRα (APA5), DPP4 (H194-112), ICAM-1 

(YN1/1.7.4), CD36 (HM36). For sorting, cell suspensions were stained with: CD45.2 

[104], and CD31 [390], PDGFRα (APA5), DPP4 (H194-112), and DAPI (AAT Bioquest) 

and sorted on FACSAria III (BD). 

 

Confocal  

Sorted cells were plated in a 96-well plate and culture in DMEM (GIBCO), 5mg/mL 

insulin (GIBCO), 10% FBS (Omega FB#11), 1% PenStrep (GIBCO), and 50ng/mL 

Primocin (Invivogen) until confluency. Adipogenic cocktail (0.5mM 3-isobutyl-1-

methylxanthine (Sigma), 1mM Dexamethasone (Sigma), 5mg/mL Insulin (GIBCO) was 

added for two days, and then replaced with minimal media (DMEM, 10% FBS, 5mg/mL 

insulin) until day 4 of differentiation. Cells were fixed with 4% paraformaldehyde, 

permeabilized with 0.1% Triton and stained with LipidTOX Green Neutral Lipid 
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(Invitrogen) and DAPI (AAT Bioquest). Images were acquired using Zeiss LSM900 

microscope.  

 

Histology and Lipid Droplet Quantification 

Tissues were fixed for 48h in 10% buffered formalin (ThermoFisher), after which they 

were washed with 70% ethanol (Thermofisher), sectioned in paraffin (10 µm thickness 

for adipose tissues and 5 µm for liver), and stained with hematoxylin and eosin (H&E). 

The lipid droplet cell area was quantified using ImageJ. 

 

Glucose tolerance test 

For glucose tolerance tests, mice were fasted for 6 hours prior to the challenge with 

glucose (1 g/kg mouse) via intraperitoneal injection. Blood glucose levels were 

assessed by tail vein bleeding using a glucometer (Accu-Chek). AUC was determined 

using Prism software (GraphPad). 

 

Serum metabolomics 

For metabolite extraction 5 μL plasma was mixed with 500 μL methanol: water (80:20) 

solution (-80 °C). Samples were centrifuged for ten minutes at 17,000 g (4 °C) and 450 

μL of each sample was evaporated using a Nitrogen evaporator (Organomation). 

Evaporated metabolite extracts were stored at -80 °C. Dried metabolites were 

reconstituted in 100 µL of a 50% acetonitrile (ACN) 50% dH20 solution. Samples were 
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vortexed and spun down for 10 min at 17,000g. 70 µL of the supernatant was then 

transferred to HPLC glass vials. 10 µL of these metabolite solutions were injected per 

analysis. Samples were run on a Vanquish (Thermo Scientific) UHPLC system with 

mobile phase A (20mM ammonium carbonate, pH 9.7) and mobile phase B (100% 

ACN) at a flow rate of 150 µL/min on a SeQuant ZIC-pHILIC Polymeric column (2.1 × 

150 mm 5 μm, EMD Millipore) at 35°C. Separation was achieved with a linear gradient 

from 20% A to 80% A in 20 min followed by a linear gradient from 80% A to 20% A from 

20 min to 20.5 min. 20% A was then held from 20.5 min to 28 min. The UHPLC was 

coupled to a Q-Exactive (Thermo Scientific) mass analyzer running in polarity switching 

mode with spray-voltage=3.2kV, sheath-gas=40, aux-gas=15, sweep-gas=1, aux-gas-

temp=350°C, and capillary-temp=275°C. For both polarities mass scan settings were 

kept at full-scan-range = (70-1000), ms1-resolution=70,000, max-injection-time=250ms, 

and AGC-target=1E6. MS2 data was also collected from the top three most abundant 

singly charged ions in each scan with normalized-collision-energy=35. Each of the 

resulting “. RAW” files were then centroided and converted into two “.mzXML” files (one 

for positive scans and one for negative scans) using msconvert from ProteoWizard. 

These “.mzXML” files were imported into the MZmine 2 software package. Ion 

chromatograms were generated from MS1 spectra via the built-in Automated Data 

Analysis Pipeline (ADAP) chromatogram module and peaks were detected via the 

ADAP wavelets algorithm. Peaks were aligned across all samples via the Random 

sample consensus aligner module, gap-filled, and assigned identities using an exact 

mass MS1(+/-15ppm) and retention time RT (+/-0.5min) search of our in-house MS1-RT 

database. Peak boundaries and identifications were then further refined by manual 
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curation. Peaks were quantified by area under the curve integration and exported as 

CSV files. If stable isotope tracing was used in the experiment, the peak areas were 

additionally processed via the R package AccuCor 2 to correct for natural isotope 

abundance. Peak areas for each sample were normalized by the measured area of the 

internal standard trifluoromethanesulfonate (present in the extraction buffer) and by the 

number of cells present in the extracted well.  

 

µPET/µCT  

Lepob/Lepob mice (stock #000632) (12 weeks old, male) treated with either vehicle 

(n=6) or rosiglitazone (n=6) were fasted for six hours, prior to intravenous injections via 

tail vein with 85-90 µCi of [18F]-FDG that had been mixed with glucose based on the 

weight of the mouse (1g/Kg). Following a 50-minute conscious uptake of [18F]-FDG, 

mice were anesthetized with 2% vaporized isoflurane, and PET (energy window 350-

650 keV, 10-min static scan) and CT (voltage 80 kVp, current 150 μA, 720 projections, 

200μm resolution, scan time 1 min) images were acquired on a GNEXT PET/CT 

scanner (Sofie Biosciences, Dulles, VA). The PET images were reconstructed using a 

3D-Ordered Subset Expectation Maximization (OSEM) algorithm (24 subsets and 3 

iterations), with random, attenuation, and decay correction. The CT images were 

reconstructed using a Modified Feldkamp Algorithm. Amide software was used to 

analyze co-registered μPET/μCT images, and a full body panel was generated by 

placing ROIs for the brain, blood, liver, left and right kidney, bladder, muscle, left and 

right lung, gastrointestinal tract, and adipose tissues. Visual representation of µPET 
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signal from adipose tissues was generated using ORS Dragonfly software (Object 

Research Systems Inc, Montreal, Canada). 
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4.6   Figures 

 

Fig 4. 1 Adipose tissue remodeling after acute rosiglitazone treatment 
A, Schematic diagram of the experimental design: lean (WT) and obese (ob/ob) mice 

were orally gavaged with either vehicle or rosiglitazone (30mg/Kg) for 3 days.  
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B, Total body weight for the four groups. 

C, Blood glucose curve during intraperitoneal glucose tolerance test and area under the 

curve of blood glucose for four groups.  

D-F, Adipose tissue weight: brown adipose tissue (BAT), epidydimal adipose tissue 

(eWAT), inguinal adipose tissue (iWAT).  

G, Histological analysis of BAT, eWAT, and iWAT (hematoxylin and eosin stain).  

H, Dragonfly visualization of adipose tissue 18F-FDG (100mCi) glucose uptake after 

one-hour conscious uptake. Data represent mean ± SEM (n = 8 mice per group). *P < 

0.05; **P < 0.01; ***P < 0.001 by two-tailed Student’s t test, (C) two-way ANOVA 

followed by Bonferroni post hoc test. 
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Sup Fig 4. 1 Host physiology remodeling after rosiglitazone treatment 
A, Histological analysis of liver after acute rosiglitazone treatment (30mg/Kg).  

B, Liver weight.  

C, Lipid droplet area quantification of ob/ob mice treated either vehicle or rosiglitazone. 

D, Schematic overview of conscious glucose uptake in vivo using a bolus of glucose 

(1g/Kg) and 18F-FDG (100mCi).  

De Siqueira, Li et al. Supplemental Figure 1 
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E, PET/CTs at coronal and sagittal view of ob/ob mice treated either vehicle or 

rosiglitazone.  

F, Quantification of percent injected dose per cubic centimeter in tissue (%ID/cc). Data 

represent mean ± SEM (n = 6-8 mice per group). *P < 0.05; **P < 0.01; ***P < 0.001 by 

two-tailed Student’s t test. 
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Fig 4. 2 Single-Cell RNA Sequencing Uncovers Stromal Vascular Cell Remodeling 
after PPARγ agonist treatment 
A, Single-cell RNA Sequencing was conducted on the stromal vascular fraction 
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extracted from both epididymal white adipose tissue (eWAT) and inguinal white adipose 

tissue (iWAT) in C56BL/6J and Lepob/Lepob mice that had received either a 30 mg/kg 

dose of rosiglitazone or a vehicle control for three consecutive days. 

B, C, Uniform Manifold Approximation and Projection (UMAP) plot illustrates the cell 

clusters among 61,343 eWAT cells and 65,556 iWAT cells. The right three panels 

separately represent cells from WT-Veh, ob/ob-Veh, and ob/ob-Rosi. Each colored dot 

signifies a cell, with distinct colors indicating various cell types. The Louvain algorithm 

was utilized to determine cell clusters. This dataset was gleaned from a single 

experiment, with n=2 per group. 

D, E, Cluster-specific expression of known cell markers: Adipocyte Progenitor Cells 

(APC) — Pdgfra, B Lymphocytes (BC) — Cd79a, Dendric Cells (DC) — Flt3, 

Endothelial cells (EC) — Jam2, Lipid-Associated Macrophages (LAM) — Trem2 and 

Adgre1, Neutrophils (Neu) — S100a8, Natural killer T cells (NKT) — Klrb1c and Cd3e, 

Non-Perivascular-like Macrophages (NPVM) — Ear2 and Adgre1, Proliferating-LAM (P-

LAM) — Kif11, Trem2 and Adgre1, Perivascular Macrophages (PVM) — Lyve1 and 

Adgre1, Smooth Muscle Cells (SMC) — Msln. This analysis confirms that each cluster 

validates a particular cell type. 
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Sup Fig 4. 2 Adipose stromal vascular fraction Single-Cell RNA Sequencing 
quality control 
A, B, Violin plots display the distribution of the number of Unique Molecular Identifiers 

(UMI) (nCount_RNA), the number of detected genes (nFeature_RNA), and the 

proportion of mitochondrial reads (Percent_mitochondria) across each sample in eWAT 
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(A) and iWAT (B). Cells were selected based on the number of UMIs (with a threshold 

range of 700-22,000), the number of detected genes (with a threshold range of 200-

6,000), and the proportion of mitochondrial reads (with a threshold of less than 25%).  

C, D, UMAP plot illustrates the cell clusters among 61,343 eWAT cells (C) and 65,556 

iWAT cells (D) by each sample. The three panels separately represent cells from WT-

Veh, ob/ob-Veh, and ob/ob-Rosi groups. Each colored dot signifies a cell. Data shows a 

single scRNA-Seq experiment (n=2 per group). 
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Sup Fig 4. 3 Adipose-specific macrophage profile remodeling after PPARg 
agonist treatment 
A, Confocal images of macrophages (F4/80+) cultured overnight from the mature-
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adipocyte fraction of either ob/ob-Veh or ob/ob-Rosi:  DAPI (nuclei), LipidTox (neutral 

lipids), F4/80 (macrophages), Plin1 (adipocyte-specific perilipin).  

B, Flow cytometry gate strategy for macrophages: Tim4+: perivascular macrophages 

(PVM), Cd11c+: inflammatory macrophages (IM), Tim4-, Cd11c-: lipid-laden 

macrophages (LAM). 

C-F, Frequency and absolute number of Macrophages (Mac), IM, LAM, and PVM from 

epididymal and inguinal adipose tissue. Data represent mean ± SEM (n = 6 mice per 

group). *P < 0.05; **P < 0.01; ***P < 0.001 by two-tailed Student’s t test. 
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Fig 4. 3 Remodeling of epididymal adipocyte precursor cells in response to 
PPARg agonist 
A, Histological analysis of epididymal adipose tissue (hematoxylin and eosin stain) from 

De Siqueira, Li et al. Figure 3
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either ob/ob-Veh or ob/ob-Rosi mice.  

B, t-distributed stochastic neighbor embedding (t-SNE) plot illustrates two subclusters of 

adipocyte precursor cells in the eWAT: progenitors and preadipocytes. The right three 

panels separately represent cells from WT-Veh, ob/ob-Veh, and ob/ob-Rosi. Each color-

coded dot represents a cell, with progenitors being represented by red and 

preadipocytes by cyan. The Louvain algorithm was utilized to determine cell clusters.  

C, Individual gene t-SNE plots showing the expression and distribution of representative 

marker genes: Pi16 and Dpp4 for progenitors, Icam1 and Cd36 for preadipocytes.  

D, Gate strategy to characterize progenitor cells: Lineage negative (CD45-, CD31-), 

PDGFRa+, DPP4+ (progenitors), and ICAM1+/CD36+ (pre-adipocytes).  

E, Absolute number of progenitor and pre-adipocytes from ob/ob-Veh and ob/ob-Rosi 

mice.  

F-G, Confocal of sorted lineage negative (CD45-, CD31-), PDGFRa+, DPP4+ and 

DPP4- cells differentiated for 4 days on DMI (dexamethasone, IBMX, and insulin) 

media, DAPI (nuclei), LipidTox (neutral lipids). Data represent mean ± SEM (n = 6 mice 

per group). Confocal images: 4 wells per conditions, 2 representative images per well 

were acquired. *P < 0.05; **P < 0.01; ***P < 0.001 by two-tailed Student’s t test. 
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Fig 4. 4 Rosiglitazone-driven enhancement of adipocyte differentiation in inguinal 
adipose tissue 
A, Histological analysis of inguinal adipose tissue (hematoxylin and eosin stain) from 

B iWAT
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either ob/ob-Veh or ob/ob-Rosi mice.  

B, t-distributed stochastic neighbor embedding (t-SNE) plot illustrates two subclusters of 

Adipocyte Precursor Cells in iWAT: Progenitors and Pre-adipocytes. The right three 

panels separately represent cells from WT-Veh, ob/ob-Veh, and ob/ob-Rosi. Each color-

coded dot represents a cell, with Progenitors being represented by red and Pre-

adipocytes by cyan. The Louvain algorithm was utilized to determine cell clusters.   

C, Individual gene t-SNE plots showing the expression and distribution of representative 

marker genes: Pi16 and Dpp4 for progenitors, Icam1 and Cd36 for preadipocytes.  

D, Gate strategy to characterize progenitor cells: Lineage negative (CD45-, CD31-), 

PDGFRa+, DPP4+ (progenitors), and ICAM1+/CD36+ (pre-adipocytes).  

E, Absolute number of progenitor and pre-adipocytes from ob/ob-Veh and ob/ob-Rosi 

mice. 

F-G Confocal of sorted lineage negative (CD45-, CD31-), PDGFRa+, DPP4+ and 

DPP4- cells differentiated for 4 days on DMI (dexamethasone, IBMX, and insulin) 

media, DAPI (nuclei), LipidTox (neutral lipids). Data represent mean ± SEM (n = 6 mice 

per group). Confocal images: 4 wells per conditions, 2 representative images per well 

were acquired. *P < 0.05; **P < 0.01; ***P < 0.001 by two-tailed Student’s t test. 
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Fig 4. 5 Comparison of differentially expressed and enriched pathways in 
response to obesity and rosiglitazone treatment 
A-D, UpSet plot illustrates intersections of differentially expressed genes (DEGs) for the 

4 categories within eWAT progenitors (A), eWAT pre-adipocytes (B), iWAT progenitors 

(C), and iWAT pre-adipocytes (D), all at a Bonferroni-adjusted p-value < 0.05. The 4 

categories include upregulated DEGs in obese mice than in lean mice (ob/ob_UP), 

down-regulated DEGs in obese mice than in lean mice (ob/ob_DOWN), up-regulated 

DEGs in response to Rosiglitazone treatment (Rosi_UP), down-regulated DEGs in 

response to Rosiglitazone treatment (Rosi_DOWN). Horizontal bars (set size) indicate 

De Siqueira, Li et al. Figure 5
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total DEGs for each cluster in each plot. In the UpSet plots, dots point to the specific 

clusters for which the vertical bars for DEG counts are shown, and vertical lines 

between dots represent the intersections between two or more clusters. The blue circle 

signifies the set of DEGs that are upregulated in obese mice and downregulated in 

response to rosiglitazone treatment. Conversely, the red circle represents the DEGs 

that are downregulated in obese mice and upregulated following rosiglitazone 

treatment. Right bar plots illustrate the top enriched pathways in response to 

rosiglitazone treatment, which act to reverse the effects of obesity. Red bars represent 

pathways enriched from DEGs that are downregulated in obese mice and upregulated 

following rosiglitazone treatment. Conversely, the blue bars represent pathways 

enriched from DEGs that are upregulated in obese mice and downregulated following 

rosiglitazone treatment.  All pathways displayed met the cut-off for statistical 

significance at Bonferroni corrected p values < 0.05. The enrichment score is calculated 

using the formula: (Number of overlapping genes / Number of genes in our cell type-

specific gene set) × (20000 / Number of genes in the pathway). 
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Sup Fig 4. 4 Effects of rosiglitazone treatment in the stromal vascular fraction of 
epididymal adipose tissue 
UpSet plot illustrates intersections of DEGs for 4 categories within eWAT  cell types all 

at a Bonferroni-adjusted p-value < 0.05. The 4 categories include upregulated DEGs in 

A
Reversed set of genes
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obese mice than in lean mice (ob/ob_UP), down-regulated DEGs in obese mice than in 

lean mice (ob/ob_DOWN), up-regulated DEGs in response to rosiglitazone treatment 

(Rosi_UP), down-regulated DEGs in response to rosiglitazone treatment (Rosi_DOWN). 

Horizontal bars (set size) indicate total DEGs for each cluster in each plot. In the UpSet 

plots, dots point to the specific clusters for which the vertical bars for DEG counts are 

shown, and vertical lines between dots represent the intersections between two or more 

clusters. The blue circle signifies the set of DEGs that are upregulated in obese mice 

and downregulated in response to rosiglitazone treatment. Conversely, the red circle 

represents the DEGs that are downregulated in obese mice and upregulated following 

rosiglitazone treatment. Right bar plots illustrate the top enriched pathways in response 

to rosiglitazone treatment, which act to reverse the effects of obesity. Red bars 

represent pathways enriched from DEGs that are downregulated in obese mice and 

upregulated following Rosiglitazone treatment. Conversely, the blue bars represent 

pathways enriched from DEGs that are upregulated in obese mice and downregulated 

following rosiglitazone treatment.  All pathways displayed meet the cut-off for statistical 

significance at Bonferroni corrected p values < 0.05. The enrichment score is calculated 

using the formula: (Number of overlapping genes / Number of genes in our cell type-

specific gene set) × (20000 / Number of genes in the pathway). 
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Fig 4. 6 PPARg-driven enhancement in translation efficiency 
Dot plot showing differentially expressed ribosomal genes influenced by the ob/ob effect 

or Rosi effect in eWAT and iWAT progenitors or pre-adipocytes all at a Bonferroni-

adjusted p-value < 0.05. The size of the dots reflect the -log10(FDR) of the DEGs and 

the color of the dots reflect the fold change of the DEGs. 
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Fig 4. 7 PPARg binding sites in ribosomal genes 
A, Visualization of peaks of PPARg binding sites in separate ribosomal genes in eWAT  

B, Visualization of peaks of PPARg binding sites in separate ribosomal genes in iWAT 

 

 

Supplementary Fig.4.5 Overlapping ribosomal genes between PPARg-ChIP Seq 
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Dot plot showing ribosomal DEGs from scRNA-seq that overlap with ribosomal genes 

that contain Pparg binding sites, as inferred from PPARG Chip-seq data. The size of 

each dot is proportional to the -log10(FDR) value of each differentially expressed gene 

(DEG), illustrating the level of statistical significance. The color of each dot corresponds 

to the fold change of each DEG, providing an indicator of the magnitude of gene 

expression changes. 
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