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This paper studies effects of q-profile structure on turbulence spreading. It reports results of numer-
ical experiments using global gyrokinetic simulations. We examine propagation of turbulence, trig-
gered by an identical linear instability in a source region, into an adjacent, linearly stable region
with variable q-profile. The numerical experiments are designed so as to separate the physics of tur-
bulence spreading from that of linear stability. The strength of turbulence spreading is measured by
the penetration depth of turbulence. Dynamics of spreading are elucidated by fluctuation intensity
balance analysis, using a model intensity evolution equation which retains nonlinear diffusion and
damping, and linear growth. It is found that turbulence spreading is strongly affected by magnetic
shear s, but is hardly altered by the safety factor q itself. There is an optimal range of modest mag-
netic shear which maximizes turbulence spreading. For high to modest shear values, the spreading
is enhanced by the increase of the mode correlation length with decreasing magnetic shear.
However, the efficiency of spreading drops for sufficiently low magnetic shear even though the
mode correlation length is comparable to that for the case of optimal magnetic shear. The reduction
of spreading is attributed to the increase in time required for the requisite nonlinear mode-mode
interactions. The effect of increased interaction time dominates that of increased mode correlation
length. Our findings of the reduction of spreading and the increase in interaction time at weak mag-
netic shear are consistent with the well-known benefit of weak or reversed magnetic shear for core
confinement enhancement. Weak shear is shown to promote locality, as well as stability. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896059]

I. INTRODUCTION

Understanding and prediction of turbulent plasma transport
are crucial to achieve and sustain improved confinement states
for steady state tokamaks such as ITER. Present day under-
standing and modeling of turbulent transport are based primar-
ily on the following local paradigm: fluxes of physical
quantities are described by diffusive or convective transport
coefficients, which are determined by competition between the
linear growth driven by local gradients of profiles and the
E!B nonlinearity. For micro-turbulence, local, mixing-length-
type models predict that the resulting transport is consistent
with gyro-Bohm scaling, i.e., the diffusion coefficient is propor-
tional to the normalized ion gyro-radius q" # qi=a, where a is
the minor radius. However, many observations in actual experi-
ments disagree with the prediction of local models.1 In addition
to the breaking of the gyro-Bohm scaling, there is mounting
evidence for the breakdown of the local transport model, e.g.,
the observation of transient transport events which occur faster
than the typical global confinement time scale,2,3 the surge of
fluctuation level at the innermost radius of the radial electric
field (Er) shear layer during the H-L back-transition,4 etc.
These deviations of transport dynamics from local models are
usually classified as non-local transport phenomena.

One mechanism potentially responsible for non-local
phenomena is turbulence spreading, i.e., the propagation of
fluctuation energy itself into a different regions by nonlinear

spectral transfer.5–11 Turbulence spreading can decouple
local turbulence intensity, and thus turbulent diffusivity,
from the local gradient. Such an outcome causes deviation
from local transport models. In the literature, turbulence
spreading is invoked to explain various non-local transport
phenomena.6,7,12–15 Spreading can reduce the turbulence in-
tensity in the linearly unstable region and introduce addi-
tional dependence on q" to the turbulence intensity.6,7 The
additional q" dependence causes the resulting transport to
deviate from gyro-Bohm scaling, especially for smaller devi-
ces (a=qi < 200). Also, theoretical models employing turbu-
lence spreading may explain the challenging experimental
observations of non-locality. The fast increase of core elec-
tron temperature by peripheral perturbations2,3 can be cap-
tured by a simple two-field model with the temperature and
turbulence intensity evolution.13,14 A meso-scale model with
turbulence spreading15 shows that a H-L back transition can
be triggered by the spreading of turbulence from the core
region into a Er shear layer, which is consistent with the ob-
servation from recent experiments.4 It is worth recalling ava-
lanches as another, closely related, non-local mechanism.
Avalanches occur in the dynamics of a marginally stable sys-
tem and can play a role in non-local transport events.16

While spreading results from spatial scattering by triads, ava-
lanches lead to scattering via temperature gradient perturba-
tions. In a marginally stable system, avalanches can impact
the evolution of the turbulence intensity profile.
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Upon recognizing the practical importance of turbulence
spreading in transport processes, a subsequent question is in
which conditions of plasma equilibria, turbulence spreading
plays a significant role. However, the standard theoretical
models of turbulence spreading have difficulty in answering
this question. This is because of the following. The radial
flux of turbulence energy is caused by numerous nonlinear
mode-mode interactions, and determined by integrals over
the turbulence spectrum, with a resonance condition in two-
dimensional spectral space of poloidal and toroidal wave
number. It is thus very difficult to compute analytically the
radial flux of turbulence energy for cases of realistic toroidal
plasmas. So, many theoretical models of turbulence spread-
ing employ an alternative approach in which the spreading is
thought of as a random walk process. In such models, turbu-
lence spreading is usually described by a nonlinear diffusion
equation of the form

@I

@t
$ @

@r
D0I

@I

@r

! "
¼ local growth=damping terms;

which involves a prescribed coefficient D0 which, in princi-
ple, depends on the detailed plasma conditions, such as mag-
netic geometry and profile of mean (and zonal) flow shear.
Due to this simplification, detailed studies of the dependence
of turbulence spreading upon experimental conditions are
formidable task and there were only a few numerical simula-
tion studies reporting the effects of plasma conditions.9,17,18

In order to study the inward spreading of edge turbulence to-
ward the core plasma, Hahm et al. utilized a two-step struc-
ture for the ion temperature gradient where the temperature
gradient value at the edge is double of that in the core.9 They
found a proportionality of the spreading speed to the ion tem-
perature gradient, which implied that the dominant mecha-
nism responsible for spreading is nonlinear coupling rather
than the linear toroidal coupling. Wang et al. applied a fixed
equilibrium Er shear, and then compared the spreading
extent for variable Er shear.

18 They found that a E!B shear
layer can significantly reduce turbulence spreading. In addi-
tion, they compared the turbulence propagation velocity in
the cases with, and without, self-generated zonal flows, and
found that the propagation velocity is significantly reduced
in the presence of zonal flows.

There are many experimental results indicating the im-
portance of equilibrium magnetic geometry for plasma
transport. Magnetic shear is a critical parameter in the
bifurcation of turbulent transport.19–22 Also, magnetic shear
affects the stiffness of ion temperature profile.23,24 The
magnetic shear is likely to impact turbulence spreading
because it affects the radial structure of modes, and also
thus the nonlinear interactions among them. In this work,
motivated by the lack of previous critical studies, we sys-
tematically investigate the effects of magnetic geometry on
turbulence spreading. To this end, we use a global gyroki-
netic model which self-consistently handles numerous non-
linear mode-mode interactions in realistic toroidal plasmas.
This work is the first systematic study of effects of the q-pro-
file structure on spreading. We compare spreading length rela-
tive to radial correlation length and quantitatively evaluate the

strength of spreading by performing a fluctuation intensity
balance analysis.

A brief overview of the basics of turbulence spreading
will help us to understand the forthcoming simulations and
analyses. The dynamics of turbulence spreading, i.e., the
spatio-temporal scattering of local turbulence intensity I is
determined by the following model equation:6,10,25,26

@I

@t
þ @CI

@r
¼ c rT½ (I $ cNLI

2 þ 2VZF
@

@r
hvrvhi þ ) ) );

CI ¼ $
ð
dr0K r; r0ð Þ @I r

0ð Þ
@r

; (1)

where flux of turbulence intensity CI is expressed by a gener-
alized turbulence intensity transfer integral, to capture non-
diffusive components of the flux and/or non-local dynamics
of turbulence spreading.27 But, we assume locality in time,
i.e., no memory in the nonlinear dynamics. If the width of
kernel K is comparable to a typical radial correlation length
of turbulence, the intensity flux can be reduced to local diffu-
sion, i.e., CI ¼ $D0I@I=@r, where the diffusivity of turbu-
lence energy transfer is proportional to I. The first two terms
in the right hand side correspond to the local linear growth/
damping and nonlinear decay, respectively. The local nonlin-
ear damping represents the coupling of fluctuation energy to
damped scales, which causes the local saturation of fluctua-
tion levels. The third term in the right hand side of Eq. (1)
describes the drain on fluctuation energy by Reynolds work
which drives the zonal flow VZF. Since turbulence is self-
regulated through the zonal flow, the evolution of turbulence
intensity is affected by zonal flow, whose evolution is deter-
mined by26

@VZF

@t
¼ $ @

@r
hvrvhi $ lVZF;

where l is the drag damping of zonal flow. The saturation
level of zonal flow is given by

VZF;0 ¼ $ 1

l
@hvrvhi
@r

, 1

l
@

@r

X

k

krkh/
2
k , I;

which is proportional to the level of turbulence.
Conservation of fluctuation and flow energy implies that the
zonal flow saturation level necessarily impacts the saturated
turbulence intensity via

@I

@t

$$$$
ZF

- $2lV2
ZF;0 , $I2: (2)

Furthermore, the evolution of turbulence intensity is linked
to temperature evolution because turbulence drive depends
on the temperature gradient. Thus, turbulence spreading and
avalanching in heat transport can affect each other.

Varying q-profile structure affects not only turbulence
spreading but also local growth and damping processes. The
evolution of turbulence intensity is determined by the inter-
play between the local and spreading processes. To separate
the effects of q-profile structure on spreading from contribu-
tions due local processes, the simulation conditions are
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carefully designed, as follows. The radial domain is divided
into two regions, linearly unstable and stable zone. The unsta-
ble region is set to support identical linear instabilities and its
q-profile structure does not change. In the stable region, dif-
ferent q-profiles are chosen to investigate their effects on tur-
bulence spreading triggered by the same instability. Zonal
flow evolution is retained, so its contribution to spreading is
included in results self-consistently. A definite contribution
of zonal flow is the reduction of the turbulence level in the
linearly unstable region. In addition, we estimate the effects
of the local damping, and extract strength of spreading by
fluctuation intensity balance analysis, similar to the process
of thermal diffusivity estimation from steady state energy bal-
ance in transport experiments. A comparison between the
analyses of fluctuation intensity transport and usual turbulent
transport is presented in Table I. (See Sec. II B for the
details.)

The remainder of this paper is organized as follows: In
Sec. II, we explain the numerical experiments performed
using the gyrokinetic model and details of fluctuation inten-
sity transport analysis. In Sec. III, we present results on the
effects of q-profile structure on turbulence spreading.
Finally, conclusions and discussion are given in Sec. IV.

II. SIMULATION MODEL AND ANALYSIS METHOD

A. Setup of numerical experiments

In this study, we use a global df gyrokinetic particle in
cell code gKPSP.28 gKPSP solves the electrostatic gyroki-
netic Vlasov-Poisson equations in toroidal geometry29 with
adiabatic electrons. More details of the simulation model can
be found in Ref. 28.

In this work, the separation of local and spreading proc-
esses is essential to study the effects of q-profile structure on
turbulence spreading. To facilitate the analysis, we use the
following setup for gyrokinetic simulations. The radial do-
main is divided into two regions, an inner core and the outer
region with linearly unstable and stable ion temperature (Ti)
profiles of R0=LTi ¼ 7:14 and R0=LTi ¼ 3:57, respectively.
The gradient of the density profile is nearly constant
with R0=Ln - 2:22. Then, we have gi ¼ Ln=LTi ¼ 3:22 in
the unstable core region and gi ¼ 1:61 in the stable outer
region. Here, R0 is the major radius, L$1

Ti ¼ ðdTi=drÞ=Ti and
L$1
n ¼ ðdn=drÞ=n are the inverse of the ion temperature and

density gradient scale length, respectively. Electron tempera-
ture profile is set as the same as the ion temperature profile.
Figure 1(a) shows the initial profiles of temperature and den-
sity gradients, and gi. The profile of the ion temperature

gradient is given by R0=LTi ¼ 7:14½expð$x4Þ þ 1(=2, where
x ¼ ðr=a$ 0:35Þ=0:12. A typical profile of the linear
growth/damping rate is shown in Fig. 1(b). The linear damp-
ing rate changes as q-profile varies. Ion temperature gradient
(ITG) driven turbulence is excited in the unstable core region
with 0:22 < r=a < 0:48, where the onset condition is satis-
fied (i.e., gi > 2:0),30 and spills over into the stable outer
region with r=a > 0:48.

We consider monotonically increasing q-profiles with a
polynomial form qðrÞ ¼ q0 þ q1r þ q2r2 þ q3r3. Figure 2
shows the profiles used in our simulations. These q-profiles
can be categorized into two sets, one set for the magnetic shear
s # ðr=qÞðdq=drÞ scan and the other set for the safety factor q
scan. The former set is designed to provide different magnetic
shear values in the stable outer region for the study of magnetic
shear effects on turbulence spreading. The variation of mag-
netic shear entails an unavoidable variation of the q-profile,
and both the q and s values will cause the changes in turbu-
lence spreading. The latter set will be used to complement the
studies with the first set by providing cases with fixed magnetic
shear varying safety factor. We denote the cases in the s-scan

TABLE I. Analogy between the analyses of fluctuation intensity transport and usual turbulent transport. Note that cd < 0.

Estimation of spreading Estimation of turbulent diffusion

Transportee Fluctuation intensity I ¼ hd/2i Temperature T, density n, toroidal flow Vu

Steady state balance Transfer by spreading vs. local
damping, $@r½D0I@rI( ¼ cdI $ cNLI

2

Turbulent transport vs. local effective source, $@r ½v@rT( ¼ S

Measured quantities Linear damping rate cd,
turbulence saturation level I0, and penetration depth x0

Flux C ¼
Ð rSðr0Þdr0 and profile gradient @rT

Diffusivity D0I0 , jcd jx20=2 using approximation of @rI , $I0=x0 and
Ð
Idr , I0x0=2 v ¼ $C=@rT

FIG. 1. (a) Initial profiles of ion temperature and density gradients, and gi.
(b) Profile of linear growth and damping rate of the case of s¼ 0.7.
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(q-scan) with the values of magnetic shear (safety factor) at a
reference position r=a ¼ 0:6 in the stable region.

In the s-scan, the q-profiles in the linearly unstable region
are set to provide conditions for identical linear instabilities.
All q-profiles have the same safety factor q¼ 1.7 and mag-
netic shear s¼ 0.43 at the center of the unstable region
(r=a ¼ 0:35). In the unstable region, the q-profiles are nearly
the same with some small variations due to the method of our
q-profile generation. However, the difference in linear growth
rate is about 10% of the average at the maximum, and is neg-
ligible. Thus, the unstable core region provides a source of
virtually identical fluctuation pulses. The q-profiles show dif-
ferences in the linearly stable region. Using this setup, we
can study the changes of turbulence spreading caused by the
variation of magnetic shear. The q-profiles in the safety factor
scan have the same s-profile with the case of s¼ 1.0 in the
s-scan [the black curve in Fig. 2(b)] and cover the range of
variation of q-values in the s-scan.

It should be noted that there is no profile control during
the simulations. ITG Turbulence is excited by ion temperature
gradient, produces heat transport, and ultimately decays as
free energy in the gradient is exhausted. However, the turbu-
lence spreading processes occur faster than the turbulence
decays. Quantitatively speaking, the ratio of the spreading
time to the decay time is cdecayDtspread ¼ 0:1$ 0:5, where
cdecay # I$1@I=@t. The penetration of turbulence into the sta-
ble region stops before the turbulence in the unstable region
decays away. We do observe clear effects of q-profile on tur-
bulence spreading.

Other simulation parameters are set as follows: A con-
centric circular equilibrium is used with R0 ¼ 220 cm and

a¼ 70 cm. Velocities are normalized by vT0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
T0=mi

p
¼

3:8! 107 cm/s and time by ss # R0=vT0 ¼ 5:8ls, where vT0
and T0 ¼ 3 keV are the ion thermal velocity and ion temper-
ature in the center, respectively. A deuterium plasma is
assumed. The normalized value of the ion Lamor radius in
the center is qi0=a ¼ 1=167. The fluctuating potential is nor-
malized as / ¼ edU=T0. The number of radial grid points is
set as Nw ¼ 256. The range of toroidal mode number is cho-
sen as ½$48; 48(, for which jkhqij . 0:7 at the center of the
unstable region (r=a ¼ 0:35). We use a medium number of
simulation particles (77! 106 total) corresponding to 100
particles per grid.

B. Analysis of fluctuation intensity transport

To estimate the strength of spreading, we perform fluc-
tuation intensity balance analysis. We adopt a minimal
model describing turbulence spreading dynamics by a single
evolution equation for local turbulence intensity I as6,10

@I

@t
¼ @

@r
D0I

@I

@r

! "
þ cI $ cNLI

2: (3)

In the linearly stable region of the present setup, the time
evolution of dTi=dr is limited due to absence of a heat
source, and the zonal flow shear is small as compared to the
linear growth rate. Because of these features, the simplified
1-field model is very likely to be applicable to interpreting
our observations. A steady state in the linearly stable region
is attained by the balance between fluctuation energy transfer
and local linear damping as

$ @

@r
D0IS rð Þ

@IS rð Þ
@r

' (
¼ cdIS rð Þ; (4)

where the nonlinear damping is neglected, as compared to
the linear damping cd < 0. After measuring information
about the turbulence intensity profile in a steady state IS and
cd, we can evaluate strength of spreading, i.e., D0I. If we
consider an idealized situation in Fig. 3 for purpose of illus-
tration, the diffusivity of spreading is determined as

D0I0 ¼ jcdjx20=2; (5)

FIG. 2. Radial profiles of (a) safety factor q and (b) magnetic shear s. The
q-profiles in s-scan (the solid lines) have the same values of q¼ 1.7 and
s¼ 0.43 at r=a ¼ 0:35.

FIG. 3. Idealized profiles of turbulence intensity (solid) in a steady state and
linear growth rate (broken).
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from the balance condition in Eq. (4). Here, the intensity of
the saturated turbulence I0 is determined from the interplay
among linear excitation, nonlinear damping, and suppression
by zonal flow in the linearly unstable region. In fact, this
method is very similar to usual transport analysis of thermal
diffusivity by measuring heat flux from sources and tempera-
ture gradient. Table I draws an analogy between this analysis
and usual turbulent transport analysis. In our actual simula-
tions, however, the turbulence intensity profile in the state of
saturated spreading is not stationary in time and the intensity
gradient has large variation in radius. These features of
actual simulations induce a large error bar in the evaluated
diffusivity of spreading. In the practical analysis, we use a
more sophisticated method to eliminate the effects of the
large spatio-temporal variations in the turbulence intensity
gradient. The details of the method of spreading estimation
are presented in the Appendix.

III. EFFECTS OF Q-PROFILE STRUCTURE ON
TURBULENCE SPREADING

A. Effects of magnetic shear

We examine turbulence spreading for varying s-profiles
in Fig. 2. In what follows, we will consider that the results of
this s-scan primarily originate from the variation in magnetic
shear, although results include some effects of q-variation in
the linearly damping region. The effects of safety factor
alone are elucidated in Sec. III B. The time evolution of tur-
bulence intensity profiles is displayed in Fig. 4(a). At each
time, we record the radius at which the front of the turbu-
lence envelope pulse of a specified intensity passes through
that point. The specific intensity value of the turbulence
front, denoted by the dotted line, is about 5% of the nonlin-
ear saturation level, that is, /2 ¼ 3! 10$6. Figure 4(b)

shows the position of the turbulence front in time for differ-
ent s-profiles. Turbulence penetrates into the linearly stable
region until the intensity profile evolves so that the rate of
fluctuation energy transfer balances the local linear damping.
As s-profile varies, dynamics of spreading shows clear
differences.

We measure the penetration depth x0 from the boundary
of the linearly unstable and stable regions at r=a ¼ 0:48.
Thus, x0 corresponds to the maximum radius at which the
front invades. The penetration depth for the different s-pro-
files is presented in Fig. 5(a). Turbulence penetration is
maximized in the range of modest magnetic shear around
s , 0:5. In the optimal case of s¼ 0.7, a large amount of
fluctuation intensity (about 30% of the saturation level)
spreads into the stable region. As the magnetic shear deviates
from the optimal range, penetration is degraded. The pene-
tration depth sharply decreases for the weak shear regime
(s< 0.3). A radial correlation length of fluctuation is a proper
criterion for the size of the penetration length. We compare
the penetration depth with the averaged correlation length of
fluctuation, defined as

hrci ¼
ð
dVrcðh;uÞ/2ðr; h;uÞ=

ð
dV/2ðr; h;uÞ; (6)

where the average is taken in both poloidal and toroidal
directions ðh;uÞ. At every poloidal and toroidal angels,
rcðh;uÞ is estimated from the width of the dominant peak in
the kr power spectrum. We calculate the correlation length
hrci of the fluctuations scattered into the linearly stable
region in r > 0:55a. The correlation length is averaged over
a time period of Dt ¼ 30$ 60ss, during which the fluctua-
tion front sweeps into the stable region. The correlation
length, which is represented by the blue line in Fig. 5(a),
shows similar magnetic shear dependence to that of the

FIG. 4. (a) Time evolution of turbu-
lence intensity profiles and (b) position
of the front of turbulence intensity pro-
file in time for different s-profiles. The
dotted, horizontal line indicates the
specific value of turbulence intensity
(/2 ¼ 3! 10$6), which is used to
identify the turbulence front.

FIG. 5. (a) Penetration depth and radial
correlation length as a function of
magnetic shear s. (b) The penetration
depth x0 normalized by the correlation
length hrci in Fig. 5(a).
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penetration depth. The penetration depth normalized by the
correlation length is displayed in Fig. 5(b) for a direct com-
parison. The penetration length is much larger than the
correlation length, and so corresponds to a meso-scale.
Furthermore, we find an additional weak magnetic shear de-
pendence of the normalized penetration depth. As mentioned
before, the penetration depth includes the effect of variation
of local damping. In what follows, we separate the effect of
local damping from penetration depth and estimate strength
of spreading for the different s-profiles.

To evaluate the linear damping rates, we compute the
profiles of parallel wave number hkjjðrÞi of the modes
located in the stable region with r , 0:6a, which satisfy the
condition of qð0:56aÞ . m=n . qð0:60aÞ. The parallel wave
number decreases for the lower shear cases, as shown in Fig.
6. We note that there are two competing factors determining
the parallel wave number as the magnetic shear varies in this
study. The lower shear cases have lower q-values, which
increase parallel wave numbers. On the other hand, the
decrease of the magnetic shear is expected to lower parallel
wave numbers. The result in Fig. 6 indicates that the effect
of the magnetic shear dominates the direct effect of the

q-value in the range of q-profiles used in our s-scan. So, the
linear damping rate decreases with decreasing magnetic
shear. In this estimation of the linear damping rates, we use
the value of hkjjirms averaged over a time period of about
20–40ss when the turbulence front passes the radial location
of the measurement. The smaller linear damping rates in the
lower s cases help the penetration of turbulence.

After separation of the linear damping effect from the
penetration depth, we show spreading [i.e., the effective diffu-
sion coefficient D # D0I in Eq. (3)] and the square of the tur-
bulence correlation length hrci2 as a function of magnetic
shear s in Fig. 7. We use the intensity of the saturated turbu-
lence in the linearly unstable region for D - D0I0. The de-
pendency of spreading on s is similar to that of the penetration
depth. The maximum diffusivity of spreading is significantly
larger than the gyro-Bohm diffusivity vGB # q"q

2
i0xc. This

indicates that spreading is a process faster than local diffusion
in micro-scales. Recalling the mixing-length rule D , ‘2c=sc,
we expect a relation between D and ‘2c . Here, ‘c and sc are the
characteristic length and time scales of turbulence spreading,
respectively. A characteristic time, which is obtained by
s # hrci2=D, shows a constant value over the range of mag-
netic shear s, as shown in Fig. 8 by the blue line. This implies
that turbulence spreading is directly linked to the correlation
length of the fluctuations scattered into the stable region. And
the penetration of more correlation lengths in the lower mag-
netic shear in Fig. 5(b) originates from the help of smaller lin-
ear damping rate.

We investigate underlying physical mechanisms of the
dependency of spreading on magnetic shear s. In the picture
of nonlinear mode-mode interactions, the correlation length
of modes having a single helicity can give us a clue. We
compute the average correlation lengths of single (m, n)
mode, defined as

hrmodei ¼
X

m;n;x>0

ð
dVrmode;mn/

2
mnx

) X

m;n;x>0

ð
dV/2

mnx; (7)

where the /mnx is the Fourier component of fluctuating
potential in poloidal and toroidal direction ðh;uÞ and time,
respectively. The fluctuation data analyzed for hrci are

FIG. 6. Radial profiles of the parallel wave number of modes in the linearly
stable region of r=a , 0:6 and at t , 100R0=vT0 for different s-profiles.

FIG. 7. Diffusion coefficient (black) in the units of gyro-Bohm diffusivity
vGB # q"q

2
i0xc and square of radial correlation lengths as a function of mag-

netic shear s. The correlation lengths of turbulence eddies hrci2 (blue) and
single spectral mode hrmodei2 (red) are averaged in poloidal and toroidal
positions and spectral space, respectively.

FIG. 8. Characteristic times as a function of magnetic shear, s, estimated by
using a mixing-length rule with correlation lengths of eddy (blue) and mode
(red). Here, hrmodei is the typical correlation length of each spectral compo-
nents of the total fluctuation, whose correlation length is hrci.
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decomposed into poloidal and toroidal modes and radial cor-
relation lengths of the each mode are estimated. We can
interpret hrmodei as the typical correlation length of spectral
components of the total fluctuation whose correlation length
is hrci. The red line in Fig. 7 shows the variation of hrmodei2.
We observe an overall increase in hrmodei with decreasing
magnetic shear, whereas D and hrci2 rapidly decrease for
low s (s . 0:3). This suggests that, for the low magnetic
shear values, the strength of nonlinear interactions becomes
weak even for the longer correlation lengths of modes
involved in the interactions. We can introduce a time scale
required for nonlinear interactions as sN , hrmodei2=D,
which is shown in Fig. 8 by the red curve. The divergent
behavior of sN in low magnetic shear again indicates that the
nonlinear interaction slow down. For high shear (s> 0.7),
the nonlinear interaction time saturates at a lower level and
the degradation of the spreading results from the shortening
of the mode correlation lengths.

B. Effects of safety factor

We investigate the effects of varying q-values on turbu-
lence spreading with the fixed s-profile of s¼ 1.0. For the
q-value scan in Fig. 2, the levels of turbulence and zonal
flow in the linearly unstable region show large difference
because of the variation of safety factor. The difference of
the turbulence source causes the estimation of q-effects diffi-
cult. To focus on direct effect of safety factor on spreading,
we hold down the variation of the turbulence source by
switching off self-generated zonal flow. One of the effects of
high q-value is the decrease of linear damping rate due to the
dependence kjjR0 , 1=q. The analysis of simulation data
does indicate this trend as presented in Table II, while the
linear growth rate and nonlinear damping rate show rela-
tively small changes. Figure 9 shows the penetration depth
as a function of the ratio of the linear growth to the damping
rate. We find a trend of deeper penetration for higher q-val-
ues, i.e., for smaller linear damping rate. The change of the
penetration depth is well described by the average value of
the estimated D0’s. This indicates that the increased penetra-
tion depth for higher q-values results from the changes in
local physical processes, i.e., mainly the decrease of linear
damping rate. The value of safety factor itself does not affect
the efficiency of turbulence spreading much.

In the cases retaining zonal flow, larger zonal flow is
driven in the linearly unstable region for the lower safety
factor. Thus, turbulence level in the unstable region and pen-
etration depth decrease as safety factor decreases. When we
compare the cases with, and without, zonal flow, the penetra-
tion depth decreases significantly when zonal flow is

retained, for all different q-profiles. This effect of zonal flow
in retarding spreading is consistent with the previous result
of numerical simulation study in Ref. 18.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we have presented the results of numerical
experiments to elucidate the effect of q-profile structure on
turbulence spreading. We have examined the propagation of
turbulence into a linearly stable region, for different q-profile
structures. Turbulence spreading was triggered by an identi-
cal instability source in the driving, linearly unstable region.
The strength of turbulence spreading was measured by the
penetration depth of the turbulence front. We have evaluated
the strength of spreading by performing fluctuation intensity
balance analysis, using a model intensity evolution equation.
This model takes into account the effects of local linear
growth/damping, nonlinear damping, and non-local spatial
transfer of fluctuation energy by nonlinear interactions. The
principal findings of this work are as follows:

1. Turbulence spreading, i.e., the flux of fluctuation energy
by nonlinear mode-mode couplings, is strongly affected
by magnetic shear s, but is hardly altered by the safety
factor q itself, as shown in Figs. 5, 7, and 9.

2. Spreading is maximal in a range of magnetic shear around
s , 0:5, as demonstrated in Figs. 5 and 7. As magnetic
shear decreases from a high shear value to this modest
value, the spreading is enhanced by the increased mode
correlation length.

3. For low magnetic shears (s< 0.3), the mode correlation
length is large, similar to that of the optimal magnetic
shear case, as shown in Fig. 7. However, the time required
for the nonlinear interactions to transfer energy increases,
as illustrated in Fig. 8. This increase in the characteristic
interaction time has a stronger impact on spreading, as
compared to the increase of the mode correlation length.
Consequently, the overall spreading efficiency drops for
low magnetic shear.

TABLE II. Coefficients for the expression of the penetration depth in
Eq. (A1), which is estimated from the simulation set for the scan of safety

factor.

jcdssj cgss cNLss jcg=cd j

q2.0 0.25 0.39 2:24! 103 1.6

q2.5 0.18 0.43 1:89! 103 2.4

q4.0 0.11 0.47 1:61! 103 4.3

FIG. 9. Penetration depth of turbulence as a function of cg=cd , the ratio of
the linear growth to the damping rate, in the scan of safety factor. The bro-
ken line corresponds to an extrapolation of the penetration depth by using
Eq. (A1) with the values of diffusion coefficient D0I0 ¼ 83vGB and nonlin-
ear damping rate cNL ¼ 1:91! 103s$1

s , which are the average of the three
cases.
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These findings have implications for the interpretation
of experiments on ion internal transport barriers (ITBs).
ITBs have been produced by tailoring the magnetic shear
profile. Weak or negative magnetic shear facilitates
enhanced confinement in ITBs.19–24 The decreased instabil-
ity drive in weak or negative magnetic shear31 and the
threshold upshift by E!B flow shear32 have been recog-
nized to contribute to the enhanced confinement. These are
not the only factors relevant to enhanced confinement experi-
ments, however. A dedicated ion transport experiment
reveals that the enhanced confinement in weak magnetic
shear regime results from mitigated stiffness of the Ti profile
rather than increase in the instability threshold.24 This leads
to a significantly higher Ti gradient, well above the levels
expected by the threshold upshift. Previous studies based on
local, quasi-linear models showed discrepancies in the
behavior of stiffness between various experiments. Our
novel findings suggest a new mechanism for profile de-
stiffening which incorporates turbulence spreading as an im-
portant contributor to the ion heat transport dynamics.
Turbulence spreading smooths turbulence intensity—and
thus turbulent heat diffusivity—across the boundary between
a strongly driven region and a marginally stable region. Such
smoothing in the turbulent diffusivity profile degrades con-
finement in the heating region. The suppression of spreading
for weak magnetic shear cause a gap in the turbulence inten-
sity profile across the boundary, and so promotes enhance-
ment of confinement. In other words, the non-local response
of plasma profiles to external sources, mediated by turbu-
lence spreading, is diminished by weak magnetic shear. We
note that in the experiments of Ref. 24, externally induced
toroidal rotation shear V0

u is shown to be critical to control-
ling ion heat transport. Although role of externally induced
rotation shear is not examined in our work, we expect further
fluctuation decorrelation and suppression of spreading by V0

u
for weak magnetic shear due to the increase in the mode cor-
relation length and the interaction time. So, weak shear
(s< 0.3) promotes locality and fluctuation decorrelation, as
well as stability. The synergy between external rotation shear
and the magnetic shear dependency of spreading will be
clarified in future works.

Future works will aim to address roles of spreading in
turbulent transport in various q-profiles including reversed
shear q-profiles (the minimum q value at off axis), especially
focusing on the following aspects: (1) A quantitative assess-
ment of effects of the interplay of magnetic shear and exter-
nally induced toroidal rotation shear on turbulence spreading
and transport. (2) Elucidation of effects of zonal flow on
nonlinear interactions which induce spreading, and a scan of
the effect of zonal flow damping on spreading. (3) A study
of the weakening of coupling between flux and local gradient
due to spreading in a state of steady, flux-driven turbulence.
(4) Investigation of role of spreading in physics of intrinsic
rotation through redistribution of residual stress.
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APPENDIX: ESTIMATION OF TURBULENCE
SPREADING

The essential constituent in the dynamics of turbulence
spreading is fluctuation energy diffusion represented by the
diffusion coefficient D0I. We deduce the coefficient D0 from
the balance between fluctuation energy transfer and local lin-
ear damping in the saturation of turbulence spreading as fol-
lows. In the present simulation setup, the penetration depth
is a representative of the saturated intensity profile in the sta-
ble region. An expression for the penetration depth x0 can be
obtained from the steady state solution of Eq. (3) as10

x0 ¼

ffiffiffiffiffiffiffiffi
2D0

cNL

s

F

$$$$
cg
cd

$$$$

 !

; (A1)

with

F xð Þ # cosh$1 3

2

x

4 1þ xð Þ½ (1=3
þ 1

 !
: (A2)

Here, cg > 0 and cd < 0 are linear growth and damping rates
in the unstable and stable regions, respectively. If we know
the local growth and damping rates, the coefficient D0 can be
estimated using the measured x0 as

D0 ¼
cNLx

2
0

2F jcg=cdj
* +2 : (A3)

We note that by taking I0 ¼ cg=cNL in Eq. (5), the diffusion
coefficient in the ideal situation becomes

D0 ¼
cNLx

2
0

2jcg=cdj
;

which is quite identical to the precise one. We estimate the
local growth and damping rates by the following.

• The linear growth rate in the unstable region can be easily
obtained from linear simulations.

• We estimate the linear damping rate in the stable region
by employing a fluid model for Landau damping, in which
the damping rate of ITG mode is given by33

cd ¼ $
ffiffiffiffiffiffi
2p

p

4
jkjjjvTi 2$ gið Þ; (A4)

for a subcritical gi < 2. For the absolute value of kjj in
Eq. (A4), we take the root-mean-squared value of a
hkjjðrÞi profile
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hkjjirms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
dVhkjjðrÞi2=

ð
dV

s

; (A5)

where dV is the volume of toroidal shells. The profile of
the parallel wave number of turbulence spectrum is
obtained by

hkjj rð Þi ¼
X

m;n;x>0

m$ nq

qR0
/2
mnx rð Þ

) X

m;n;x>0

/2
mnx rð Þ: (A6)

For the calculation of kjj of damped modes, we count only
modes having their own rational surfaces within the stable
region.

• Finally, the nonlinear damping rate is estimated from the sat-
uration level of turbulence in the unstable region as
cNL ¼ cg=I0ðV2

ZFÞ, because the local nonlinear damping is
the saturation mechanism for linear instability in this model.
Note that the saturation level of turbulence is also affected
by the level of zonal flow, as discussed in Eq. (2). So, the
effect of local turbulence suppression by zonal flow is
included in cNL

It is necessary to examine the applicability of the simple
1D model for the analysis of complex gyrokinetic simulation
data in 3D toroidal geometry. Our primary concern is
whether the functional form of the penetration depth in Eq.
(A1) derived from the 1D model can capture the observed
trend of turbulence penetration. Let us suppose we selec-
tively change the linear damping rate only in the stable
region while keeping the other parameters as the same. If we
analyze the simulation data, it should yield an identical D0

for varying fluctuation levels and penetration depths.
We did perform such a test by imposing ion temperature

gradients lower than the linear threshold to change the linear
damping rates in the stable region. The q-profile was fixed
with the case of s¼ 0.7. Naturally, turbulence penetrates
deeper, as the linear damping rate decreases, i.e., as the
R0=LTi value approaches the threshold of R0=LTijcrit ¼ 4:4.
Table III presents the estimated coefficients for the expres-
sion of x0 in Eq. (A1). Only the linear damping rate varies,
while the other coefficients show very slight variations as we
intended. Figure 10 shows the penetration depth of turbu-
lence as a function of the ratio of the linear growth to the
damping rate. The estimated D0’s for the three cases have
very similar values as D0I0 , 75vGB (see Table III), which
supports the validity of applying the 1D model to explain the
behavior of turbulence spreading within our work scope. The
analytic expression of the penetration depth and our estima-
tion method of local coefficients are suitable for the evalua-
tion of turbulence spreading from the simulation data.
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