
Lawrence Berkeley National Laboratory
LBL Publications

Title
Improving the efficiencies of small molecule solar cells by solvent vapor annealing to 
enhance J-aggregation

Permalink
https://escholarship.org/uc/item/2mk1m9fc

Journal
Journal of Materials Chemistry C, 7(31)

ISSN
2050-7526

Authors
Xiao, Liangang
Li, Zhengdong
Hu, Qin
et al.

Publication Date
2019-08-08

DOI
10.1039/c9tc02630d
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2mk1m9fc
https://escholarship.org/uc/item/2mk1m9fc#author
https://escholarship.org
http://www.cdlib.org/


Improving the efficiencies of small molecule solar cells by 

solvent vapor annealing to enhance the J-aggregation  

Liangang Xiao
abc

, Zhengdong Li
a
, Qin Hu

de
, Yawei Liu

c
, Wenkai Zhong

b
, Xueli Mei

f
, 

Thomas P. Russell
de

, Yi Liu*
c
, Yong Min

a
, Xiaobin Peng*

b
 and Yong Cao

b
  

 

a. School of Materials and Energy, Guangdong University of Technology, Guangzhou 

510006, China 

b. State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer 

Optoelectronic Materials and Devices, South China University of Technology, 381 

Wushan Road, Guangzhou 510640, China 

c. The Molecular Foundry, Lawrence Berkeley National Lab, Berkeley, CA, 94720, 

United States 

d. Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 

94720, United States  

e. Polymer Science and Engineering Department, University of Massachusetts, 

Amherst, MA 01003, United States 

f. College of Chemistry, Chemical Engineering and Material Science of Soochow 

University, Suzhou, Jiangsu, 215123, China 

 

Abstract: We report highly efficient small molecule organic solar cells (SM-OSCs) 

based on a porphyrin derivative electron donor of ZnP2-DPP and an electron acceptor 

of [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) by using solvent vapor 

annealing (SVA) method with a series of low boiling solvents. Absorption spectra 

study indicate that carbon disulfide (CS2) SVA induce J-aggregation in blend films 

accompanied with expanded and enhanced absorptions which contribute largely to 

fabricate broader light response and larger short-circuit current (JSC) solar cell devices. 

In addition, we systematically analyze the relationship between film morphology and 

device performance. Finally, the electronic study shows that the CS2 SVA-treated 

device obtained higher exciton generation rate and carrier collection efficiency. And 

the morphology study indicates that the blend film treated by CS2 SVA exhibits tighter 



molecular packing, better crystallization and appropriate phase separation length scale. 

In a word, these collective electronic and morphological features correlate well with 

the champion JSC, fill factor (FF) and power conversion efficiency (PCE) for the CS2 

treated devices. 

 

Keywords: J-aggregation, morphological features, solvent vapor annealing, small 

molecule solar cells 

 

Introduction 

Advances in material science have contributed to the development of clean 

energy production and energy storage technologies, as well as to the improvement of 

the ecological environment.
1-4

 Bulk-heterojunction (BHJ) organic solar cells (OSCs) 

are very promising alternative to inorganic devices in generating low-cost renewable 

energy.
5-8

 Small molecule photovoltaic donor materials have attracted much attention 

due to their many advantages of easier purification, well-defined molecular structures 

and less batch-to-batch variation compared to their polymer donor counterparts.
9-12

 

Recent progresses in material design, the optimization of device structures and 

enhanced morphology control have made the power conversion efficiency (PCE) of 

solution processed BHJ small molecules organic solar cells (SM-OSCs) more than 

10%.
13-17

 However, The PCEs of most SM-OSCs are still lower than those of polymer 

cells because of the limited understanding of the morphology control and 

manipulating on the fabrication of active layers. As we know, the exciton generation 

and separation, and carrier transportation and collection taken place inside the active 

layer are largely responsible for the device performance. Some fabrication processing 

such as additive processing, thermal annealing (TA) and solvent vapor annealing 

(SVA) are effective in changing the molecular crystallization and orientation and 

controlling the phase separation, domain size and domain purity of active layers. For 

examples, Heeger et al., reported SM-OSCs based on a small molecule 

5,5’-bis((4-(7-hexylthiophen-2-yl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine)-3,



3’-di-2-ethylhexylsilylene-2,2’-bithiophene (DTS(PTTh2)2). The PCE was enhanced 

from 4.5% to 6.7% and the nano-morphology of the domains of the blend films 

decreased from 20-30 nm dimensions to 15-20 nm in size when using 

1,8-diiodooctane (DIO) as the additive.
18

 Wang et al., reported multifluorine 

substituted oligomer BIT6F-based SM-OSCs with a PCE of 9.09% when the active 

layer was treated by TA+SVA. The performance enhancement was because the 

crystalline content and phase separation increased after SVA or TA + SVA treatment 

which allowed the molecules to move and order.
19

 

Of all optimization methods known to influence the morphology of an active 

layer, SVA treatments are regarded as being especially efficient to SM-OSCs. In SVA 

treatment, active layer is exposed in a container saturated with solvent vapor. And the 

solvent vapor can diffuse into the blends and drastically lower the glass transition 

temperatures of the materials, and thus the molecules in the blends gain high mobility 

to reorganize into lower energy states.
20, 21

 As a result, it could change the molecular 

crystallization and orientation, promote the aggregation of both donor and acceptor 

molecules. The improved phase purity and the increased phase separation length scale 

to a suitable state are beneficial to better device performance.
22, 23

 

For organic conjugated molecules, the expansion of π-conjugation could enhance 

self-aggregation through intermolecular π-π interactions. Inter-chain Coulombic 

interactions of molecule assemblies always lead to H-aggregates, whereas intra-chain 

through-bond interactions lead to J-aggregates.
24, 25

 Compared with the absorption in 

solution, the blue-shift of a film’s absorption indicates that the molecule prefers 

H-aggregation. And a J-aggregation always refers an ordered molecule packing in one 

dimension and results in significant red-shift absorption with increased intensity.
26-28

 

And the expanded and enhanced absorptions in J-aggregation-based films provide the 

potential chance to fabricate broader light response and larger short-circuit current 

(JSC) solar cell devices.  



 

Figure 1. Chemical structures of ZnP2-DPP, PC61BM and PFN-Br. 

 

Some of porphyrin derivatives are near-infrared (NIR) organic semiconductors 

with optical bandgap less than 1.5 eV which have attracted much attention due to their 

great contribution to the field of NIR photodetector,
29, 30

 SM-OSCs,
31-41

 ternary solar 

cells
42-46

 and tandem solar cells.
47, 48

 In this contribution, we report dimer porphyrin 

molecule ZnP2-DPP 
49

 (Figure 1) based SM-OSCs and use SVA treatment with 

chloroform (CF), dichloromethane (CH2Cl2), carbon disulfide (CS2) or 

tetrahydrofuran (THF) to control the thin film morphology and the optimize charge 

transport. The optimized devices show a high power conversion efficiency of 9.47% 

with an open-circuit voltage (VOC) of 0.64 V, a fill factor (FF) of 69.14% and an 

impressively high JSC of 21.40 mA cm
-2

 due to the strong absorption beyond 1000 nm 

of J-aggregation features induced by CS2 SVA. The electronic study shows that the 

CS2 SVA-treated device obtained higher exciton generation rate and carrier collection 

efficiency. And the morphology study indicates that the blend film treated by CS2 

SVA exhibits tighter molecular packing, better crystallization and appropriate phase 

separation length scale. 

 

Results and discussion 



 

Figure 2. a) The J-V curves of the solar cells; b) the absorption spectra of the blend 

films); c) the EQE curves of the solar cells; d) the photocurrent density versus 

effective voltage curves of the solar cells based on ZnP2-DPP:PC61BM under 

different solvent vapor annealing processing conditions. 

 

The SM-OSCs were fabricated with a conventional structure of 

ITO/PEDOT:PSS/ZnP2-DPP:PC61BM/PFN-Br/Al. (PFN-Br: 

poly[(9,9-bis(3′-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-di

octylfluorene)]dibromide).
50

 The fabricating process is shown in supporting 

information. Figure 2a shows the J-V curve of the solar cell devices with or without 

SVA and the corresponding photovoltaic parameters are shown in Table 1 and S1-S4. 

For the device based on the as-cast film, the JSC and FF are extremely low, leading to 

an inferior efficiency of only 1.70%. Surprisingly, the JSC and FF are obviously 

improved for all the SVA treated devices. Due to the low JSC of 9.47 mA cm
-2

, THF 

treated devices show a moderate PCE of 4.42% despite of its high FF of 66.20% and 

VOC of 0.705 V. And for the devices treated with CH2Cl2, the JSC is dramatically 

enhanced to 18.20 mA cm
-2

. Unfortunately, the FF of the device is still less than 60%, 

which limited the improvement of PCE. For the devices treated with CF or CS2, the 



FF and PCE of the both devices exceed 67% and 8%, respectively. Especially, the 

champion PCE of 9.47% is obtained with an impressive JSC of 21.40 mA cm
-2

, a high 

FF of 69.14% and a VOC of 0.64 V. 

 

Table 1. Photovoltaic parameters for ZnP2-DPP:PC61BM-based solar cells with different 

solvent vapor annealing processing conditions. 

SVA JSC (mA cm
-2

) VOC (V) FF (%) PCE(%) 

CAST 6.88 (6.58)
a
 0.805 31.02 1.70

b
 (1.60)

c
 

CF 19.85 (19.23)
a
 0.640 67.04 8.52

b
 (8.36)

c
 

CH2Cl2 18.20 (17.72)
a
 0.635 57.36 6.63

b
 (6.50)

c
 

CS2 21.40 (20.52)
a
 0.640 69.14 9.47

b
 (9.22)

c
 

THF 9.47 (9.11)
a
 0.705 66.20 4.42

b
 (4.32)

c
 

a) JSC calculated from EQE curve; b) the best PCE; c) average PCE from ten devices. 

 

In order to understand the big differences of JSC and PCE of these devices, we 

measured the absorption spectra and external quantum efficiency (EQE) spectra. The 

absorption of this molecule in solution shows a narrow peak in 789 nm and the 

absorption in as-cast film show a peak at 844 nm with an obvious red-shift of 55 nm, 

indicating good stacking and self-assembly properties of ZnP2-DPP (Figure S1). We 

used ZnP2-DPP and PC61BM at the weight ratio of 1:1 to make active layer of solar 

cells. When preparing the blend films under different solvent vapor annealing process, 

there are big differences in the films’ color which can be easily recognized by naked 

eyes, indicating that the absorption of these films change significantly after treated by 

different solvents. Indeed, as shown in Figure 2b, while the CH2Cl2 SVA treated film 

shows an absorption peak at the same position of 844 nm as that of the as-cast film, an 

apparent shoulder peak can be seen at 795 nm. For the blend film treated by CS2 SVA, 

the maximum absorption peak dramatically red-shifts to 896 nm and the absorption 

shoulder in the 795 nm become more obvious. Such a broad absorption is beneficial 

for the solar cell devices to absorb more sunlight, resulting in a larger photocurrent. 



Compared with that of the as-cast film, the absorption of THF SVA treated film only 

exhibits a moderate red-shift of 11 nm to 855nm. On the contrary, for the film treated 

with CF SVA, this absorption peak blue-shifts to 768 nm, which is even blue-shifted 

compared with the absorption in the solution (Figure S2). Such a blue-shift is 

generally considered as H-aggregation, which shall be attributed to the parallel 

alignment of the molecular dipole moments.
51, 52

  

The EQE curves of the solar cells based on different solvent treatment are shown 

in Figure 2c. Obviously, the as-cast device and the THF-treated device show weak 

light response in the whole region possibly because of the well-mix of the donor and 

the acceptor and the severe phase separation length scale (vide infra). The EQE values 

of other three devices enhanced significantly and the shapes of the EQE curves are 

similar to their corresponding films absorption. The EQE curve of the CS2-treated 

device show significant red shift when compared to the curve of CF-treated device. 

The integrated current density from the EQE curve is 20.52 mA/cm
2
, which is similar 

with the measured value. 

Single carrier devices were fabricated with the structure of ITO/PEDOT:PSS/ 

ZnP2-DPP:PC60BM/MoO3/Al. And the dark J-V curves of the devices under different 

SVA treatment were measured to evaluate the hole mobility using the space-charge 

limited current (SCLC) method, which are shown in Figure S3 and Table S5. While 

the as-cast device shows a low hole mobility of 1.65×10
−5

 cm
2
 V

−1
 s

−1
,THF and 

CH2Cl2 SVA treatments improve the hole mobilities of the devices to 3.01×10
−5

 and 

8.07×10
−5

 cm
2
 V

−1
 s

−1
 , respectively. Especially, CF and CS2 treated devices exhibited 

the higher mobilities of 1.50×10
−4

 cm
2
 V

−1
 s

−1
 and 1.76×10

−4
 cm

2
 V

−1
 s

−1
, respectively, 

which can contribute to the high JSC and FF of devices.  

Photocurrent density (Jph) is plotted against the effective voltage (Veff) to 

investigate the exciton dissociation and charge collection efficiency of the cells.
53, 54

 

As showed in Figure 2d, CS2 treated device shows the highest Jph in low Veff, 

indicating the best carrier collection efficiency. Jph will be saturated (Jsat) when the 

Veff is large enough. The maximum exciton generation rate (Gmax) of the solar cells 

can be calculated according to the equation Jsat=qLGmax, where q is elementary charge, 



L is the thickness of the active layer. The Gmax values for the CF and CS2 treated 

devices are 1.33×10
28

 m
–3

 s
–1

 and 1.46×10
28

 m
–3

 s
–1

, respectively. Higher Gmax derived 

from forming J-aggregation to enhance and broaden absorption induced by CS2 SVA. 

The surface morphology of the pristine and different solvent vapor annealing 

ZnP2-DPP:PC61BM blend thin films is investigated by tapping-mode atomic force 

microscopy (AFM), and the images are shown in Figure S4. The root-mean-square 

(RMS) roughness values of the blend films with CF, CH2Cl2, CS2 and THF SVA are 

1.13, 0.41, 3.74 and 2.01 nm, respectively. In contrast, the as-cast film shows very 

smooth surface with a RMS of only 0.28 nm, indicating the extremely well mix of the 

porphyrin donor and the acceptor, which can lead to severe charge recombination and 

therefore a low FF because effective carrier transportation channel doesn’t form. For 

the film treated with CF SVA, the surface roughness is obviously increased to 1.13 

nm. And there were obvious aggregations with RMS of 2.01 nm in THF SVA 

treatment film. In particular, CS2 vapor treated film shows a rougher surface and 

characteristic fiber-like structures can be seen clearly in height image, which might 

due to favorable crystalline of porphyrin molecules.  

 

 

Figure 3. TEM images of ZnP2-DPP:PC61BM blend films under different solvent 



vapor annealing. 

 

In order to obtain more information on the nanoscale phase separation, 

transmission electron microscopy (TEM) of ZnP2-DPP:PC61BM blend thin films 

spin-coated on ITO/PEDOT:PSS substrates with different solvent vapor annealing 

processing conditions is performed and the corresponding images are shown in Figure 

3. The bright domains are ZnP2-DPP rich and the dark domains are PC61BM rich. A 

homogeneous morphology with unapparent nano-scale phase separation is seen for 

the as-cast film. Upon solvent vapor annealing, both the uniform mixture morphology 

and the length scale of phase separation are totally changed and the films display quite 

different surface morphology. Worm-like structures can be seen in the CF vapor 

annealing treated films, which is beneficial for exciton diffusion to the donor-acceptor 

interface and the concomitant exciton dissociation. For CH2Cl2 vapor treated film, 

length scale of phase separation is slightly enlarged and there are no well-defined 

domains. In particular, CS2 SVA treated film shows obvious fiber-like structures in 

the TEM image. Apparently, the formation of fiber-like structures is in line with the 

absorption investigation that J-aggregation is enhanced in the blends upon CS2 

treatment, Well-defined morphology and suitable phase separation forming superior 

interpenetrating networks can contribute to the high charge transportation and 

therefore photovoltaic performance. It is no doubt that the solar cells treated by CS2 

vapor annealing display the highest FF of 69.14% and the largest PCE of 9.47%. 

However, obvious PC61BM dark domains larger than 100 nm appear in the THF SVA 

treatment films. The lack of D/A interfaces for separating excitons leads to a low 

current density of 9.47 mA cm
-2

 for the corresponding devices. 

 



 

 

 

Figure 4. a) Diffraction patterns, b) in plane and c) out of plane of GIWAXS; d) 

RSoXS of blend films under different solvent vapor annealing processing conditions. 

 

Furthermore, we used the Grazing incidence wide-angle X-ray scattering 

(GIWAXS) to investigate crystallinity and molecular packing of the films. Figure 4a 

are the diffraction patterns of the blend films under different SVA treatments. Also, 

the corresponding profiles of in plane and out of plane line-cut are summarized in 

Figure 4b and 4c. Broad diffraction rings at 1.3-1.5 Å
−1

 are seen in the diffraction 

patterns, which come from the combination of ZnP2-DPP intermolecular π-π stacking 

and PC61BM diffraction. However, it is difficult to further analyze due to the obvious 

overlaps of these two features. For the as-cast film, there is no obvious peaks in the q 



region from 0.2 to 0.4 Å
−1

, indicating the poor crystallinity and structure order in the 

(100) direction. After SVA treatments, the molecules become ordered in the (100) 

direction, And good crystal order for both CF and CS2 treated films is seen in this 

direction, which is also evidenced by the sharp peaks in the out of plane direction (Fig. 

4c). There is also a subtle shift in the position of (100) peak from 0.31 Å
−1

 in the CS2 

treated film to 0.25 Å
−1

 in the CF treated film, indicating a smaller d-spacing of 2 nm 

in the CS2 treated films. The crystal coherence length (CCL) in the (100) direction for 

CS2 treated film is 10.8 nm, which is slightly larger than that in the CF treated film 

according to the Scherrer analysis.
55

 Therefore, the CS2 treated films exhibit a higher 

degree of molecular order, as proved by a tighter molecular packing, larger crystal 

coherence length and even the appeared (200) reflection peak. However, for the 

CH2Cl2 treated film, a broad peak in blend spectrum indicated that the ZnP2-DPP 

crystals are smaller than those in CF and CS2 treated film. 

And the phase separation of these blend films were investigated by using 

resonant soft X-ray scattering (RSoXS). Shown in Figure 4d are the scattering profiles 

of the five blend films under the different processing conditions. No obvious peak and 

very low scattering intensities for the as-cast film suggest the lack of phase separation 

due to the well-mix of ZnP2-DPP with PC61BM mediated by pyridine leading to 

severe bimolecular combination and therefore an extremely low FF for the 

corresponding solar cell devices. For the CH2Cl2 treated film, a broad hump in the 

regions from 0.01 to 0.06 Å
−1

 is seen, indicating that there is a continuous length scale 

of phase separation from 10 nm to 60 nm in this film. However, the low scattering 

intensity suggests the weak degree of phase separation, and as results, the 

corresponding devices exhibit moderate FF and JSC values. For the THF treated film, 

the peak is at 0.005 Å
−1

, and the corresponding length scale of phase separation is 

about 125 nm, which is consistent with the TEM image that serious PC61BM 

aggregations exist in the film. A large number of excitons are recombined before 

diffusion to the interfaces, which is responsible for the low JSC of 9.47 mA cm
-2

. On 

the other hand, the separation length scales are 40 and 50 nm for the CS2 and the CF 

treated films, respectively. Appropriate phase separation scale is beneficial for the 



solar cell devices obtain high JSC. Furthermore, the CS2 treated film shows a higher 

scattering intensity and a better phase purity. These collective morphological features 

correlate well with the champion JSC, FF and PCE for the CS2 treated devices. 

 

Conclusion 

In conclusion, we fabricated the solar cells based on ZnP2-DPP:PC61BM blend 

films treated by a series of low boiling solvents and tested their photovoltaic 

efficiencies. Notably, a remarkable PCE of 9.47% with a high FF of 69.14% for CS2 

treated device was achieved because CS2 vapor reorganized ZnP2-DPP molecules and 

enhanced the J-aggregations of ZnP2-DPP, thereby increasing the crystallinity of the 

small molecules and forming favorable film morphology with fiber-like structure. 

Meanwhile, the enhanced J-aggregation of ZnP2-DPP molecule lead to enhanced 

absorption, photoelectric response and carrier transportation, which contributed to the 

very high JSC of 21.40 mA/cm
2
 of the solar cell device. The as-cast film shows a lack 

of phase separation due to the well-mixed blend of ZnP2-DPP and PC61BM. Severe 

recombination and limited carrier transport resulted in low JSC and FF, and thus an 

extremely low PCE of 1.70%. This result verified that suitable SVA process is very 

important toward achieving high PCEs of small molecule solar cells. 
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