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Our subjective sense of time is intertwined with a plethora of perceptual,
cognitive and motor functions, and likewise, the brain is equipped to
expertly filter, weight and combine these signals for seamless interactions
with a dynamic world. Until relatively recently, the literature on time percep-
tion has excluded the influence of simultaneous motor activity, yet it has
been found that motor circuits in the brain are at the core of most timing
functions. Several studies have now identified that concurrent movements
exert robust effects on perceptual timing estimates, but critically have not
assessed how humans consciously judge the duration of their own move-
ments. This creates a gap in our understanding of the mechanisms driving
movement-related effects on sensory timing. We sought to address this
gap by administering a sensorimotor timing task in which we explicitly com-
pared the timing of isolated auditory tones and arm movements, or both
simultaneously. We contextualized our findings within a Bayesian cue com-
bination framework, in which separate sources of temporal information are
weighted by their reliability and integrated into a unitary time estimate that
is more precise than either unisensory estimate. Our results revealed differ-
ences in accuracy between auditory, movement and combined trials,
and (crucially) that combined trials were the most accurately timed. Under
the Bayesian framework, we found that participants’ combined estimates
were more precise than isolated estimates, yet were sub-optimal
when compared with the model’s prediction, on average. These findings elu-
cidate previously unknown qualities of conscious motor timing and propose
computational mechanisms that can describe how movements combine with
perceptual signals to create unified, multimodal experiences of time.
1. Introduction
Motor control functions are critical to our survival in the world and diverse in
nature, spanning multiple time scales and integrating a flood of neural signals
to guide us through various tasks [1–3]. Important to movement is the monitor-
ing of sensory information to update movement plans according to errors or
environmental demands [4]. In addition, individuals often calibrate ongoing
movements to amplify or suppress channels of sensory information according
to their goals via ‘active sensing’ [5], reflecting the continuous and bidirectional
nature of the relationship.

It follows that time perception, a high-level, cumulative evaluation of one or
more sensory channels, is highly malleable in response to movement character-
istics. Although time perception studies have largely excluded concurrent motor
components, recent studies focused on arm movements reveal that the accuracy
and precision of perceptual timing are affected by a number ofmovement charac-
teristics such as direction, speed, distance and movement environment [6–10].
Notably, movement can also improve time perception. In a set of complementary
experiments, auditory intervals were presented either during armmovements or
in the absence of movement. For both temporal categorization and reproduction
tasks, intervals encoded during movement were timed more precisely [11]. In a
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separate temporal discrimination study using auditory inter-
vals, timing precision was enhanced for intervals for which
the stimulus onset was determined by the participant rather
than passively presented [12]. The benefit of movement is
also highlighted in animal behaviour. Rats trained to estimate
a fixed interval to receive a reward learned to use stereotyped
movements to enhance the accuracy and precision of their
estimates [13].

Given the clear temporal benefit of movement, it is
reasonable to ask whether and to what extent it is timed
with different levels of accuracy and precision than the
sensory channels that much of this work focuses on, and
whether these differences can explain how the channels of
information are combined. To address these questions, we
contextualize our study under a framework of Bayesian cue
combination, which posits that multiple channels of timing
information are evaluated by their reliability and optimally
integrated into a more precise estimate than either alone
[14]. Accordingly, the mean of the combined estimates is pre-
dicted to gravitate towards the mean of the more precise (i.e.
more influential) modality. This framework aligns with prin-
ciples of multisensory cue combination [15–17], which places
importance on signal reliability when combining multiple
inputs. Neural data reflect this differential weighting via
population responses in multisensory areas [18,19].

This evidence has offered insights uponwhich to build our
understanding of the intersection of motor and timing pro-
cesses [20]. However, little is known about how self-
movements are timed without an added perceptual event.
We note that motor control studies certainly include timing
components, but the key caveat is that they examine implicit
rather than explicit timing. For example, a task might require
participants to synchronize their movements to a beat [21] or
interact dynamically with a stimulus without probing their
conscious evaluation of the passage of time. To the latter
point, we refer to conscious awareness of time as explicitly
measuring its passage, as distinct from implicit timing
mechanisms [22], which may reflect internalizations of
cause-and-effect relationships or correlated spatiotemporal
measurements [23]. One preliminary study of interest [24]
employed a unique paradigm to test explicit timing of dur-
ations that were implicitly encoded. Participants were trained
on a ‘skittles’ task requiring them to hold and release a virtual
ball to hit a target. Repeated practice led them to internalize an
optimal duration range for which holding and releasing led to
a successful trial. When tested in an explicit timing task, they
exhibited a selective improvement for timing the target inter-
val, while participants who did not play the game showed
no benefit. Combined with the previous studies discussed,
this supports the hypothesis that movements offer highly
reliable temporal measurements that in turn improve timing
of concurrent events and even future timing performance.
This is further evidenced by increased timing acuity in motor
‘experts’ such as athletes and drummers [25,26].

Our goal in the current study was twofold: first, we
sought to understand how duration of self-movement is eval-
uated, given that most movement-timing tasks have either
focused solely on implicit timing or have not isolated move-
ments from a concurrent perceptual event. Second, we sought
to describe differences in motor and auditory timing, and
importantly, how these sources of information are combined
to form a unitary estimate. We found evidence that there are
differences in timing accuracy between motor and auditory
estimates, and that durations are both more accurately and
precisely timed using both sources of information. Finally,
we synthesized these results under a Bayesian cue combi-
nation framework to account for the pronounced benefit
that resulted from combining motor and perceptual sources.
2. Methods
(a) Participants
We tested 20 right-handed participants (13 females, 7 males,
mean age = 25.45 (9.17)). Handedness was confirmed by the
Edinburgh Handedness Inventory [27].
(b) Procedure
Participants performed the experiment using a robotic armmanipu-
landum (KINARM End-Point Lab, BKIN Technologies [28,29]) that
allowed movement along a flat workspace using the right arm.
Direct viewing of the robotic arm was occluded by a flat display
that allowed viewing of targets and cues via a downward-facing
monitormounted above theworkspace.Motor outputwas sampled
at 1000Hz. Participants were free to adjust the chair so that they
could comfortably view the full display.

Trials were divided into encoding and reproduction phases
and were structured as follows (figure 1): first, the robotic arm
guided participants to 1 of 16 locations in a grid-like array.
Then, they experienced one of the three trial conditions. In
‘movement’ trials, subjects began moving until interrupted by
an imposed brake (a 100ms linear increase in resistive force
from 0 to 50 N). In ‘auditory’ trials, the robotic arm was locked
in the random location and the participant heard an auditory
tone. In ‘combined’ trials, subjects were cued to move while
timing a concurrent auditory tone; in this condition, the tone
began as soon as the apparatus detected movement at the vel-
ocity threshold of 5 cm s−1, and the brake was applied
synchronously with the auditory tone offset. After the encoding
phase, they were guided to a central target for the reproduction
phase. When this target turned green, subjects reproduced the
encoded duration by holding and releasing a button attached
to the handle. The tested durations were 1000, 1500, 2000, 2500,
3000, 3500 and 4000ms. Trial conditions were experienced in
blocks of 14 trials (for a total of 210 trials) in a pseudorando-
mized order such that no condition was experienced twice in a
row.
(c) Analysis
Robotic arm manipulandum data were sampled at 1000Hz to
produce vectors for position, velocity, force and other movement
parameters over the course of time for each trial. Trials were
excluded if reproduced times fell outside three deviations from
the mean (,1% of trials excluded). In addition, trials with move-
ment (movement-only and combined) were excluded if the stop
latency after the brake was applied fell outside three scaled
absolute deviations from the median (2.9% of trials excluded).

Our first goal was to investigate the relationship between
duration and reproduced time to determine timing accuracy.
Importantly, movement-only and combined trials were analyzed
with respect to time spent moving rather than the pre-specified
duration. This is because, in general, participants exhibited a
short delay to respond to the movement brake, usually adding
up to a few hundred milliseconds on most trials. We directly
assessed constant error as a measure of accuracy, defined as the
difference between the reproduced duration using the button
press and the actual target duration. To measure performance,
we applied a linearmixedmodel (LMM) design, inwhich response
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Figure 1. Task schematic. (a) Movement-only trial. The robotic arm guided subjects to a random location (dots not visible during task), and the participant moved freely
until interrupted by a ‘brake’. (b) Auditory-only trial. The robot handle was locked in random location, and the participant listened to an auditory tone. (c) Combined
movement-auditory trial. The robotic arm was guided to a random location, and the participant moved freely and listened to the auditory tone until the ‘brake’ was
applied along with the tone offset. (d ) Reproduction phase. The interval was estimated by holding and releasing a button attached to the handle.
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error was the predicted variable, encoded duration and condition
were fixed effects, and subject was treated as a random effect.

In addition, we examined the relationships between move-
ment parameters and timing performance. Previous works
have shown that arm movements covering a greater distance
lead to longer perceived durations [11,30]. Here, we extracted
the movement distance for each trial (defined as the Euclidean
distance travelled between duration onset and offset) and per-
formed a Spearman partial correlation test between movement
distance and reproduced time, controlling for target duration.
Partial correlation values were calculated for each subject separ-
ately for movement and combined trial types; each was assessed
with a one-sample t-test against a baseline of zero. Multiple
comparisons were corrected using the Bonferroni correction.

Statistical analyses were performed using R, JASP (http://
www.jasp-stats.org), and Matlab. For accuracy and coefficient
of variation (CV) analyses, we report results from LMMs with
subject as a random effect. Results are reported at a significance
level of 0.05.

(d) Computational modelling
To determine the sensitivity of each of the unisensory modality
conditions, as well as the multisensory combined one, we
employed a Bayesian observer–actor model (figure 4) previously
described by Remington et al. [31] (see also [32]) and used pre-
viously by our group [30]. In this model, sample durations (ts)
are inferred as draws from noisy measurement distributions (tm)
that scale in width according to the length of the presented inter-
val. These measurements, when perceived, may be offset from
veridical estimates as a result of perceptual bias or other outside
forces (b). Due to the noise in the measurement process, the brain
combines the perceived measurement with the prior distribution
of presented intervals in a statistically optimal manner to produce
a posterior estimate of time (te). The mean of the posterior distri-
bution is then, in turn, used to guide the reproduced interval (tp),
corrupted by production noise (p). The resulting fits to this
model thus produce an estimate of the measurement noise (m),
the production noise (p) and the offset shift in perceived duration
(b). Note that the offset term is also similar to that employed for
other reproduction tasks as a shift parameter [33]. In addition,
the prior used for the model can be either uniform or Gaussian
in shape [26], with implications for how these are combined; uni-
form priors are characterized by the range of intervals presented,
whereas Gaussian priors are centred on the average duration pre-
sented, with a width dependent on their precision. We chose here
to model the prior as a Gaussian, as each individual subject will
have experienced a slightly different set of intervals during the
estimation phase for each of the three conditions. This is because
in the two movement conditions, the offsets were variable from
trial to trial. As such, we modelled the width of individual subject
priors to match the width of encoded intervals for each subject
(σts). Model fits were conducted by minimizing the negative log-
likelihood of subject responses given the sample values using
Matlab’s fminsearch function.

To determine if subjects combined auditory and movement
modalities in an optimal manner, consistent with cue combi-
nation, we used outputs of the Bayesian model to compare
between unisensory and multisensory conditions. Specifically,
cue combination predictions that the multisensory combination
σC of two unisensory estimates (auditory σA and movement
σM) when modelled as Gaussians should equal:

sc ¼ sAsM

sA þ sM
:

That is, the combined width is the product of the unisensory
widths divided by their sum. Since the measurement widths
were modelled as Gaussians in our Bayesian model, the unisen-
sory widths from model fits can be used in the aforementioned
equation to produce an estimate of the predicted width. Further,
as the model also provides a width for the multisensory, com-
bined condition, we can compare the width observed with that
predicted by cue combination [17,34]. If the predicted and
observed widths are not statistically different, then subjects com-
bined unisensory estimates optimally, whereas larger observed
widths than predicted indicate sub-optimal combination [35].
3. Results
The temporal reproduction group data are illustrated in
figure 2. As described earlier, movement-only and combined
trials were analyzed with respect to time spent moving,
which we defined as the predetermined interval (1000, 1500,
2000, 2500, 3000, 3500 and 4000 ms) plus the ‘stop latency’
(figure 2d ), defined as the time it took participants to stop
movement after the brake was applied. We used a linear
mixed effects model with trial type (movement and combined
levels only) and duration as fixed effects and subject as a
random effect to test for stop latency differences related to
trial type or duration. There were no significant main effects
of trial type [F(1, 2650.03) = 0.056, p = 0.812] or duration
[F(1, 2650.36) = 0.014, p = 0.906], and no significant interaction
[F(1, 2650.01) = 1.622, p = 0.203]. In the rest of the figures, the
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Figure 2. Temporal reproduction results. (a) Reproduction performance plotted as a function of target duration and trial type. Shaded vertical error bars represent
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target durations for movement and combined trials include
these stop latencies, which are shown with horizontal error
bars to denote the standard error (figure 2a–c).

We next employed a linear mixed effects model with trial
type and duration as fixed effects and subject as a random
effect to characterize how these variables affected reproduced
duration. We did this analysis using constant error values
(reproduced duration – target duration) rather than raw
reproduction values as the dependent variable, as they rep-
resent the same underlying data but provide information
about the direction and magnitude of errors (figure 2b).
Model terms were nested using the Satterthwaite method.
The model revealed a significant interaction of duration and
trial type [F(2, 4045.04) = 30.577, p < 0.001], and main effects
of trial type [F(2, 4045.05) = 5.512, p = 00.004] and duration
[F(1, 4045.15) = 821.134, p < 0.001]. We examined the esti-
mated marginal means and contrasts of trial types with
Holm-adjusted p-values, which revealed a significant
difference between auditory (EMM = 180.185, CI[− 25.003,
385.374]) and movement (EMM =−51.534, CI[− 256.860,
153.791]) trials (contrast = 231.720, SE = 20.915, p < 0.001),
combined (EMM = 81.551, CI[− 123.649, 286.751]) and audi-
tory trials (contrast =−98.635, SE = 20.592, p < 0.001), and
finally, between combined and movement trials (contrast =
133.085, SE = 20.940, p < 0.001). We also compared the esti-
mated marginal means to zero and did not find a
significant result for any of the trial types (pauditory = 0.085,
pmovement = 0.623, pcombined = 0.436).

Our next analysis focused on the error slopes produced
by the different trial types. This analysis reveals the degree
of central tendency (i.e. attraction of estimates towards the
mean). A significant slope difference was found between all
trial types pairs (auditory – movement = 0.161, SE = 0.021,
p < 0.001; combined – auditory =−0.061, SE = 0.021, p =
0.003; combined – movement = 0.101, SE = 0.021, p < 0.001).
Movement trials exhibited the lowest slope, and auditory
trials exhibited the highest slope.

Next, we examined the CV as a measure of reproduction
precision across durations and trial types. We employed a
LMM with trial type and duration as fixed effects and subject
as a random effect and found that the CV varied as a function
of duration [F(1, 395.18) = 64.227, p < 0.001] but not the trial
type [F(2, 395.05) = 2.575, p = 0.077]. The interaction of the trial
type and duration was not significant [F(2, 395.05) = 0.893,
p = 0.410].

We were additionally interested in the relationship
between movement parameters and reproduced time, par-
ticularly for the combined trial type. We assessed this effect
by performing subject-level partial correlations between
Euclidean movement distance during duration encoding
and the subsequent reproduced duration, controlling for
target duration. The distribution of individual correlation
coefficients is displayed in figure 3. By using a one-sample
t-test, we found that the values were distributed significantly
above zero for both motor [t(19) = 2.974, p = 0.008, Cohen0s
D = 0.665] and combined [t(19) = 4.278, p < 0.001, D = 0.957]
conditions, indicating a positive relationship between move-
ment distance and reproduced duration, and replicating
prior work that movement distances are associated with
longer estimated durations [11,30].
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(a) Cue combination
To examine the impact of modality on time estimates, we
further fit reproduced durations with a Bayesian observer–
actor model. The results of our model fits provided estimates
of the measurement noise (m), production noise ( p), and
offset (b) for each modality. Repeated-measure analyses of
variance for each parameter revealed only a main effect of
condition for measurement noise [F(2, 38) = 2.133, p = 0.039],
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with all other parameters being non-significant (all p < 0.05).
For the noise parameter, measurement noise scores were sig-
nificantly lower for the combined condition compared to
movement [t(19) =−2.118, p = 0.048], but not auditory inter-
vals [t(19) =−1.682, p = 0.109] (figure 4). Due to our a priori
hypothesis that the combined multisensory estimates would
be better than both unisensory estimates, we averaged
auditory and movement measurement widths and compa-
red them to the combined measurement noise, where a
significant difference was observed [t(19) =−2.15, p = 0.045].

To compare with the predictions of the cue combination
model, we used the unisensory measurement noise widths
to generate a predicted width for their optimal combination.
That is, the product of the unisensory widths divided by their
sum. Here, we observed that the predicted widths were on
average lower than the observed widths from the combined
multisensory condition [t(19) = 6.111, p < 0.001] (figure 4). In
addition, we observed a strong correlation between observed
and predicted widths [r(18) = 0.654, p = 0.002], indicating that
the cue combination equation provided a good prediction
of multisensory noise, even if the observed estimates were
sub-optimal. As a further observation, we noted that subjects
with lower multisensory noise estimates were closer to the
optimal prediction, a finding we confirmed quantitatively
through the correlation of multisensory widths with the
difference between those widths and the predicted estimate
[r(18) =−0.883, p < 0.001]. As a final check, we compared
subjects who exhibited smaller unisensory widths for one
modality (e.g. auditory) over the other (e.g. movement). No
differences were observed between subjects with greater
precision in either modality, for either the multisensory
combined estimates [t(18) = 0.765, p = 0.454] or the difference
from optimality [t(18) =−0.528, p = 0.604], indicating
that improved estimates for neither unisensory modality
conveyed a special benefit in cue combination.
4. Discussion
Weadministered a temporal reproduction experiment inwhich
we tested timing performance for auditory and motor timing,
and both simultaneously. Measuring these two sources of
information allowed us to assess how self-movements are
judged in comparison to auditory tones and shed light on
the computational mechanisms that drive movement-related
improvements previously observed during perceptual timing
tasks [9,11]. We found that modality significantly impacted
reproduction performance, such that motor trials resulted in
shorter estimates than auditory trials. Critically, combined
trials were estimated most accurately, suggesting that the natu-
ral biases introduced by auditory and motor intervals oppose
each other, but ‘work together’ to form the most veridical
estimate based on the information available. In addition, our
results fit into a framework of Bayesian cue combination in
which multimodal interval measurements are more precise
than unisensory measurements [14]. We also found that the
reproduction slope was lowest for the movement condition,
indicating a greater degree of central tendency compared to
the other conditions. An unanswered question is the extent
to which this reflects intrinsic properties of movement
interval timing, such as a greater reliance on an internalized
prior distribution [26] or a general susceptibility towards
underestimation as target durations increase.
These results corroborate precious accounts of movement
enhancing cross-modal timing [11–13,36,37]. However, it is of
interest whether this is accomplished in an optimal fashion.
According to the Bayesian cue combination framework, we
predicted that the measurement noise (i.e. distribution
width) of the combined condition would be lower than for
unimodal conditions. The model results indicated that the
measurement noise of the combined condition was signifi-
cantly lower than for movement and auditory conditions
together. While we did not observe meaningful differences
in coefficient of variation (an index of variability that is
often tied to precision [38,39]) between trial types, we suggest
that the measurement noise parameter is a more useful indi-
cator of precision in our experiment given that the target
durations were not fixed for trials that involved movement,
and further that this measure attempts to remove motor pro-
duction noise. We next compared the observed measurement
noise to the model prediction that would indicate optimally
combined estimates. The observed and predicted values
were significantly positively correlated, although we note
that participants generally combined sub-optimally. This
pattern was not dependent on which unimodal condition
was more precise for individual participants. The model
also predicts that during optimal multimodal timing, the
mean reproduction estimate should gravitate towards the
more precise modality; however, given that we did not find
overall differences in unimodal timing precision across par-
ticipants and performance was generally sub-optimal, this
prediction was challenging to test in the current paradigm.
However, we note that sub-optimality in human perception
is a commonly observed feature, which may depend on mul-
tiple other factors beyond movement [35]. Remarkably, this
lack of difference highlights that movement timing is at
least as precise as auditory timing, which until now has
been documented as the most precisely timed modality
[40–42]. Future work may assess this prediction more closely
where larger differences between unimodal conditions exist
(e.g. visual timing).

We have described some computational principles by
which motor and sensory information may be combined for
a more precise multimodal estimate. These perspectives are
strengthened by discussing their relation to neural mechan-
isms. There is a great degree of functional overlap between
motor and timing activity in brain regions considered vital to
motor control, with greater representation of supra-second
intervals in cortical regions and sub-second intervals in subcor-
tical regions like the cerebellum [43,44]. The supplementary
motor area (SMA) stands out as a region of interest, as it is acti-
vated across a wide range of timing tasks and encodes time
intervals in neurons organized along a rostrocaudal ‘chronoto-
pic’ gradient [45]. In addition, the SMA exists within a larger
cortico-thalamic-basal ganglia timing circuit [20] that encodes
intervals, integrates multiple sensory inputs [46], and sends
predictive signals to sensory areas.

By using these insights, we have outlined two possibilities
to describe the neural implementation of movement-related
timing effects [14]. The first possibility, feedforward enhance-
ment, posits that these effects are instantiated in motor
circuits and sharpen duration measurements via corollary
feedback to motor regions like the SMA, thereby sharpening
the tuning of duration-selective neurons. The SMA is equipped
to respond to these signals via white matter connections with
the primary motor cortex, basal ganglia and spinal cord [47],
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all of which require a high degree of temporal coordination
during movement control. In addition, deep reinforcement
learning agents with feedforwardmodules (and no recurrence)
successfully learn to produce temporal intervals by generating
stereotyped trajectories in their environments [48].

The second possibility, active sensing [5], proposes that
motor activity acts on earlier sensory regions to enhance
cross-modal temporal measurements. Outside of the timing
domain, this is a well-established process. For example, audi-
tory perception is enhanced when a sound is triggered by an
action [49], and accordingly, motor preparation has been
found to elicit responses in the auditory cortex [50]. There are
also several examples tying motor activity to changes in
visual processing [51–55]. The active sensing hypothesis is
compatible with prior research on multisensory integration,
as it essentially describes the convergence of multiple signals
to shape neural computations. A classic example is the superior
colliculus, which integrates visual, auditory, and sensorimotor
signals (among others) to guide eye and head movements
[56,57]. These signals are not localized to dedicated hubs, but
rather occur throughout the neocortex [58], and have been pro-
posed to reflect generalizable ‘canonical operations’ (e.g.
divisive normalization and oscillatory phase resets) when inte-
grating a diverse range of inputs—including from motor
circuits [59]. For example, saccade onsets elicit time-locked
local field potential changes in primary visual cortex [60].
The active sensing hypothesis has empirical support from sev-
eral lines of research and can build upon known neural
integration mechanisms—more generalizable than previously
thought—to shed light on howmovement can improve timing.

We have primarily discussed our results with a focus on
the ability of motor activity to shape auditory timing. How-
ever, it can also be said that the enhancement is
bidirectional (i.e. movement timing improves with added
auditory information). In a related fashion, one study found
that auditory intervals trained in a temporal discrimination
task selectively improved timing precision for the same inter-
vals in a subsequent motor task [61]. These behavioural
effects are paralleled by brain circuitry, particularly in the
dorsal auditory stream with bidirectional connections
between hubs in the auditory cortex, inferior parietal
lobule, and premotor cortex [62]. This pathway has been
highlighted as essential to speech and music perception
and production, especially for auditory predictive processes
[62–64]. Further, the dorsal auditory pathway uses predictive
mechanisms to support beat perception as described in the
action simulation for auditory prediction (ASAP) hypothesis
[65,66]. Although our study’s focus was on interval timing
rather than beat timing, the dorsal pathway’s important
role in auditory perception may have implications for our
observed results [67].

Beyond basic neuroscience, this work has implications in
clinical disorders associated with motor and timing deficits
such as Parkinson’s disease and Huntington’s disease
[68–71]. These parallel deficits are not restricted to movement
disorders, but occur in psychiatric or neurodevelopmental
conditions such as schizophrenia and attention deficit hyper-
activity disorder [72,73]. Motor training has shown some
usefulness in rehabilitation and symptom management;
Parkinson’s patients have been found to reduce their gait
variability when exposed to rhythmic auditory stimuli that
can adaptively synchronize with their steps [74]. Critically,
this improvement may depend on the optimality with
which patients incorporate these two sources of temporal
information, and so by adopting a baseline measurement,
one could track improvement over time. In stroke patients,
fine motor skills are re-learned more effectively with musical
motor training than functional motor training [75]. Thus,
many benefits of movement training rely strongly on integrat-
ing relevant sensory information, and based on this evidence,
interactions between motor and auditory interval timing
may be a promising avenue to explore in the treatment and
diagnosis of movement disorders.

In conclusion, while converging evidence suggests a
powerful role of movement in shaping time perception
[14,76], studies have focused primarily on perceptual timing
with movement as an added component without isolating
how movements are consciously timed on their own (i.e.
how movements are incorporated when subjects are explicitly
engaged in estimating time [22]). Our experiment provided
the distinct advantage of isolating and comparing timing in
movement and auditory modalities, in addition to testing
predictions about their integration under a Bayesian cue com-
bination framework. We found that multisensory timing was
superior to unisensory timing as reflected in the higher accu-
racy of combined estimates, and in addition, measurement
noise of combined estimates reflected at least some degree
of optimal cue combination (with the caveat that participants
often perform sub-optimally compared to computational
models). This study thus addresses a prior gap in knowledge
where consciously timed self-movement were not well under-
stood, especially in relation to timing in other modalities.
We also expanded on a growing body of research on
movement-timing effects, first by describing potential com-
putational mechanisms that drive them, and ways they may
be instantiated in neural circuits.
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