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Abstract

Tumor-specific elucidation of physical and functional oncoprotein interactions could improve 

tumorigenic mechanism characterization and therapeutic response prediction. Current interaction 

models and pathways, however, lack context-specificity and are not oncoprotein-specific. We 

introduce SigMaps as context-specific networks, comprising modulators, effectors and cognate 

binding-partners of a specific oncoprotein. SigMaps are reconstructed de novo by integrating 

diverse evidence sources—including protein structure, gene expression, and mutational profiles—

via the OncoSig Machine Learning framework. We first generated a KRAS-specific SigMap for 

lung adenocarcinoma, which recapitulated published KRAS biology, identified novel synthetic 

lethal proteins that were experimentally validated in 3D spheroid models, and established 

uncharacterized crosstalk with Rab/Rho. To show that OncoSig is generalizable, we first inferred 

SigMaps for the ten most mutated human oncoproteins and then for the full repertoire of 715 

proteins in the COSMIC Cancer Gene Census. Taken together, these SigMaps (interactive analyses 

at http://www.OncoSig.org) show that the cell’s regulatory and signaling architecture is highly 

tissue specific.

Editors summary

Tumor-specific molecular-interaction signaling maps are produced for any oncoprotein using a 

machine learning algorithm.

INTRODUCTION

The explosion of ‘omics data in cancer has fueled numerous efforts to elucidate pathways 

that underlie signaling and regulatory programs. However, these typically fail to provide 

sufficient detail to fully capture the complexity of the regulatory and signaling mechanisms 

responsible for mediating the effect of both genetic and pharmacological perturbations. 

Although networks derived from pairwise-interaction assays or computational inference may 

mitigate the excessive simplicity and linearity of cancer pathways, they generally do not 

account for nor discriminate between cellular contexts1. Recent approaches have started to 

address the challenge of “context-specific interactions” by incorporating cell line-, tumor-, 

or tissue-specific information2-4. However, comprehensive, proteome-wide depiction of 

human interactomes across different tissue contexts remains elusive.

To address these challenges, we developed an integrative Machine Learning (ML) 

framework (OncoSig) for the systematic, de novo reconstruction of tumor-specific 

molecular-interaction Signaling Maps (SigMaps), anchored on any oncoprotein of interest. 

Specifically, as shown in a conceptual diagram (Figure 1a), an oncoprotein-specific SigMap 

recapitulates the molecular architecture necessary to functionally modulate and mediate its 

activity within a specific cellular context, including its physical, cognate binding partners. 

To illustrate the unique information contained in SigMaps and to show their sensitivity and 
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specificity in elucidating novel biology, based on experimental validation, we first focus on 

KRAS and then show that SigMaps can be generalized to virtually any protein.

RESULTS

OncoSig Evidence Sources and Integration

As conceptually depicted (Figure 1b), OncoSig infers context-specific SigMaps by training a 

ML algorithm to integrate complementary evidence from transcriptional and post-

translational interactions inferred from 3D-structural data, as well as from gene expression 

and mutational profiles in large-scale repositories, such as The Cancer Genome Atlas 

(TCGA)5. Nodes in Figure 1b are color-coded, as in Figure 1a, to highlight the functional 

role of OncoSig proteins.

Without loss of generality, we discuss the four complementary evidence sources integrated 

by OncoSig (Figure 1b). Additional evidence is easily incorporated in the framework. We 

first illustrate their use in generating a lung adenocarcinoma-specific (LUAD) SigMap for 

KRAS (SigMapLUAD
KRAS) and then extend to other proteins and contexts.

First, we integrate KRAS-specific structure-based protein-protein interactions (PPIs), as 

inferred by the PrePPI (Predicting Protein-Protein Interactions) algorithm6,7, by combining 

structural homology to protein complexes in structural databases and non-structure-related 

data. PrePPI scores represent the likelihood ratio of any predicted PPI based on a random-

interaction null model. The specific 3D complexes that support each inference provide key 

mechanistic insights on the underlying interaction. To avoid curation bias, we removed 

evidence from Gene Ontology (GO)8 and from other PPI datasets, which were included in 

the original version of the algorithm.

Second, we include transcriptional interactions inferred by ARACNe (Algorithm for the 

Reconstruction of Gene Regulatory Networks)9, a broadly-adopted reverse engineering 

algorithm that uses information theory to identify high-probability, direct transcriptional 

interactions (or least-indirect ones for signaling protein).

Third we use VIPER (Virtual Inference of Protein activity by Enriched Regulon analysis)10 

to associate the mutational state of a candidate upstream modulator protein with differential 

activity of the anchor protein or the mutational state of the latter with differential activity of 

its candidate downstream effectors. VIPER measures a protein’s activity based on the 

expression of its transcriptional targets—akin to a tissue-specific, highly-multiplexed gene 

reporter assay.

Finally, we infer upstream modulators of the anchor-protein using CINDy (Conditional 

Inference of Network Dynamics)11,12—a refinement of the MINDy algorithm11. CINDy 

uses the conditional mutual information to assess changes in the mutual information 

between the anchor-protein and its transcriptional targets as a function of the candidate 

modulator expression or mutational state.
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OncoSig further accounts for tumor-context specificity by leveraging evidence from the 

ARACNe, VIPER, and CINDy algorithms, whose predictions are based on the analysis of 

large-scale, tumor-specific molecular profile data, while PrePPI provides context-

independent, structure-based evidence. For KRAS, for instance, analyses were based on 

sample-matched gene expression and mutational profiles from 488 LUAD samples in The 

Cancer Genome Atlas (TCGA)13, including 326 KRASWT and 134 KRASMut samples, as 

well as 28 samples lacking KRAS mutational information. VIPER assessment of protein 

activity covers ~6,200 proteins annotated as transcription factors (TFs), transcriptional 

cofactors (coTFs), and signaling proteins (SPs), based on Gene Ontology (GO) 

classification8.

To integrate the evidence from these algorithms, we tested two established ML-algorithms: 

Naïve Bayes14 (NB) and Random Forest15 (RF). An advantage of the former is that the 

inference of specific protein-protein relationships can be easily traced back to their 

supporting evidence. In contrast, the latter is better suited to integrate non-statistically-

independent evidence sources. However, tracing back predictions to the specific supporting 

evidence is challenging.

Input to the algorithm is schematically depicted as a matrix (Figure 1c), with ~20K rows—

one for each protein in the human proteome. The Gold Standard Set (GSS) vector in the 2nd 

column describes proteins known to be functionally related (GSSP) or unrelated (GSSN) to 

the anchor protein (e.g., KRAS). To standardize the training process and facilitate extension 

to other proteins, the GSSKRAS
P , comprising 250 proteins, was derived from the mSigDB–C2 

curated gene set collection16 and KEGG17 (Supplementary File 1). The GSSKRAS
P  includes 

established KRAS-related proteins, such as RAF1 and PTPN11, whereas the GSSKRAS
N , 

includes all other proteins (Figure 1c). Remaining columns represent ~36,000 features 

(independent variables) corresponding to PrePPI, ARACNe, CINDy, and VIPER confidence 

scores, respectively, supporting physical or functional interactions between row-specific and 

column-specific proteins (names shown in the second row). For each protein, statistically 

significant algorithms scores are reported in different columns, hence accounting for the 

greater number of columns than rows (Figure 1b), thus producing a very sparse matrix with 

most of its ~720M cells (20K x 36K) empty. For example, consider the LIMD1 row (LIM 

domain containing protein)—an adaptor protein in cytoskeleton organization and cell fate 

determination, not reported as functionally related to KRAS (light green highlight in Figure 

1c). As shown, LIMD1 is predicted to physically interact with CTNNB1 by PrePPI, has 

ARACNe targets that significantly overlap those of SETD2, is predicted by CINDy to be 

post-translationally modulated by UBP1 and SETD2. Consistent with these results, its 

VIPER-inferred activity is significantly affected by SETD2 and CTNNB1 mutations.

The entire matrix, except for the Gold Standard column, is identical for any anchor protein 

of choice. Additionally, evidence sources are not restricted to those of this study and can be 

easily expanded in additional columns. The NB algorithm is trained using only scores 

representing interactions with the anchor protein, while the RF algorithm is trained on the 

entire matrix, thus accounting for the full network architecture.
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When trained and cross-validated on the same GSSKRAS (see methods), there was highly 

significant overlap between NB-based (Extended Data Figure 1) and RF-based (Figure 2) 

predictions (Supplementary File 2) (p < 10−39 for Ingenuity-based GSS; p < 10−103 for 

KEGG/MSigDB-based GSS, by GSEA analysis18) (Supplementary File 3, and see below). 

However, RF slightly outperformed NB (Extended Data Figure 2). As a result, we first 

focused on the RF-based version of the supervised learning algorithm (OncoSigRF) to 

predict the SigMapLUAD
KRAS. The algorithm was trained and tested using random, non-

overlapping subsampling of the rows (Monte Carlo cross-validation, see Methods). For each 

random selection, the RF classifier was trained with 50 forests, each comprising 50 decision 

trees. A score SRF = 0.5 means that 50% of the trees in all forests supported a protein’s 

inclusion in the SigMap. We thus define novel predictions as proteins with SRF ≥ 0.5 that do 

not belong to the GSSKRAS
P  (i.e., not known as KRAS-related in the literature).

The KRAS SigMap

Receiver operating curve (ROC) analysis, by Monte Carlo cross-validation (Figure 2a), 

shows that out of 250 proteins in the GSSKRAS
P , 61 (Recall = 24%) and 140 (Recall = 56%) 

were recovered at highly conservative False-Positive Rates (FPR = 1% and FPR = 5%), 

respectively (red curve). Figure 2b expands the portion of the ROC curve to show only the 

highest-confidence predictions (FPR ≤ 1%, SRF > 0.88)—see Supplementary File 3 for the 

complete ranking of all human proteins. Predictions for established KRAS-related proteins 

(GSSKRAS
P ) are shown as gold circles (N = 61 of 262, True Positive Rate, TPR = 23%). 

These include a wide range of established KRAS-pathway proteins (labeled), such as other 

RAS superfamily members, growth factor receptors, P53, PI3K, and MAPK protein kinases 

(Figure 2b(i), gold circles in upper panel), emphasizing the SigMap concept’s value in 

prioritizing established KRAS-pathway members and delineating crosstalk with other 

canonical pathways. While SOS1 and NF1—the canonical KRAS GEF and GAP—are not 

included in the FPR ≤ 1% set, they were both identified as highly significant, at FPR = 1.1% 

and 2.7%, respectively.

Since ROC statistics assess a classifier’s ability to recover what is known, performance can 

be significantly underestimated, because correct, yet previously unknown predictions would 

be considered false positives (see experimental validation section). Moreover, since these 

predictions are LUAD-specific, whereas the gold standard (PGSSKRAS) is non-context-

specific, a 24% and 56% recall, at FPR = 1% and 5%, respectively, should be considered 

very high, especially when compared to co-expression-based methods (green curve, Figure 

2a) or high-throughput experimental assays—such as Y2H or pull-down followed by tandem 

mass-spec. The latter typically have a 10% – 30% recall19,20. For instance, the KEGG/

MSigDB and Ingenuity datasets used to assemble the PGSSKRAS share only 29 proteins, 

yielding a much lower 12% and 8% recall, when compared against each other, thus 

showcasing the imperfect nature of these resources.

In addition to the 61 True Positive predictions, the SigMapLUAD
KRAS includes 201 novel 

predictions at FDR = 1% (red circles) (Figure 2b(ii)), including 30 proteins predicted as 

KRAS physical interactors (11%, blue and black circles) in BioGRID21, 134 druggable 
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proteins (51%, red and black circles) in the Drug Repurposing Hub22, and 33 proteins 

meeting both criteria (13%, black circles). Furthermore, 190 of 478 (40%) and 136 of 401 

(34%) KRAS interactors in STRING23 and HumanNet24 were recapitulated by the SigMap, 

respectively, while ~1,700 novel predictions at FDR = 10% significantly expand KRAS 

biology knowledge. Taken together, these data strongly suggest that OncoSigRF-inferred 

SigMaps effectively recapitulate known biology and can help prioritize novel functional or 

physical interactors, including many druggable ones, for validation.

Figure 2c shows the SigMapLUAD
KRAS as conceptually described in Figure 1a, (KRAS is the red 

node). To avoid overcrowding, we only include the top 68 predicted proteins (FPR ≤ 1%) 

supported by either VIPER (p ≤ 0.05) or PrePPI evidence. This graph is provided strictly for 

illustrative purposes as it would be impossible to include all 262 proteins without 

compromising legibility. The architecture presentation follows Figure 1b (Supplementary 

File 3) and provides information that would be missing in typical pairwise-interaction 

networks, allowing formulation of mechanistic hypotheses for more effective design of 

experimental assays.

KRAS SigMap Validation in Primary Tumor Organoids

We selected the top 20 novel predictions by OncoSigNB, trained on Ingenuity, i.e., not 

included in the GSSKRAS
P  (see methods) and estimated the False Positive Rate (FPR) based 

on OncoSigRF trained on MSigDB/KEGG. This provides a reproducible methodology to 

estimate realistic experimental FPRs. The validation set comprised APPL1, ARHGAP26, 

ARHGDIA, ARHGEF1, IPO7, MAP3K6, MINK1, RAB13, RAB14, RAB1A, RAB25, 

RAB27A, RAB3D, RAB8A, RHOG, RHOT1, RPS6KA5, TBC1D4, VAV3, YWHAH (see 

Extended Data Figure 1b, Supplementary File 2, and Methods for details).

We performed a pooled, shRNA-based loss-of-function screen in 3D organoid cultures 

derived from a LUAD KRASG12D/+/p53−/− mouse model (Figure 3a).

To identify proteins that are essential for primary KRASMut tumors to grow as organoids, 

primary tumor cells were isolated and separated from non-tumor stroma by lineage-

depletion, prior to lentiviral infection with a lentiviral-mediated shRNA pool targeting each 

novel prediction (Extended Data Figure 1b), with 3 to 5 hairpins/gene. Positive controls 

included TBK125 and NUP20526 (bright green), both established KRASMut synthetic lethal 

partners, and established KRAS effectors MAPK1, AKT1, RALGDS, and RASA1 (purple). 

As negative controls, to estimate the background rate of essential genes, we used 25 

independent shRNAs pools, targeting 515 different genes not expected to participate in 

KRAS signaling (BPS, black). Negative controls were screened in multiple independent 

pools such that all pooled libraries—whether representing OncoSig-inferred genes (red), 

positive controls (green and purple) or negative controls (black)—were of similar size (~100 

individual shRNAs per pool). All shRNA sequences are provided in Supplementary File 4.

Comparison of the ranked log2(FC) (Fold Change) between 6 days and 12 days, for each 

individual gene, is shown in Figure 3b (ranked by average log2(FC) across all targeting 

hairpins) and in Extended Data Figure 3 (ranked by each hairpin). Consistent with previous 
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studies25, growth was significantly inhibited in organoids incorporating shRNAs targeting 

known synthetic lethal and known KRAS signaling genes (green and purple dots). 

Strikingly, however, a majority of shRNAs targeting predicted KRAS SigMap proteins (red 

dots) also inhibited organoid growth, confirming statistically significant enrichment in 

KRASMut dependencies. The average log2(FC) distribution for novel predictions (red) is 

highly skewed toward lower values with >1/3rd of novel predictions showing a four-fold or 

greater decrease (Figure 3c, red curve; mean μ = −0.852, σ = 1.952). In contrast, only 3 of 

the 515 negative controls (black dots) significantly affected organoid viability, thus 

producing an average log2(FC) distribution centered around zero, with most shRNAs 

showing ≤ 2-fold effect (Figure 3c, bold black curve; μ = ‒0.067, σ = 0.539). The difference 

between the two distributions in Figure 3c is highly statistically significant (p ≤ 2.2×10−16, 

Kolmogrov-Smirnoff test), suggesting that predicted KRAS SigMap partners are indeed 

highly enriched in KRASMut dependencies, compared to genes in the BPS negative control 

set.

Of the 20 novel KRAS SigMap genes, 16 (80%) produced statistically significant average 

fold-change reduction in organoid growth (FDR < 0.05). Figure 3d shows the fold-change 

(FC) viability reduction (log2(FC)), averaged after removing up to 2 outlier hairpins, for 

these statistically significant genes, as a function of their significance (log10(FDR-adjusted 

p-values) (Supplementary File 2). Many of the novel KRAS SigMap predictions (e.g. 

RAB1A, TBC1D4, RAB25, ARHGDIA; red) inhibited organoid growth as well as, or better 

than, established members of KRAS signaling pathways (green) and proteins representing 

dependencies of KRASMut cells purple).

We estimated the probability that 16 of the 20 predicted genes would be validated based on 

their individual p-values with an empirical multinomial model and found 95% of the 

simulations produced 2 or fewer false positives. Considering that not all KRAS interactors 

are KRASMut synthetic lethal, this is roughly consistent with a 16/20 validation rate (i.e. 4 

false positives).

Moreover, the difference between OncoSig-predicted (80%) and negative-control genes 

(0.58%) inducing statistically significant viability reduction was highly significant (p = 2.7 x 

10−24; Fisher's Exact Test).

As described in recent reviews, there is a wealth of studies to assess oncogenic KRASMut 

dependencies25,27,28. To further benchmark our predictions, we thus assessed the extent to 

which OncoSigRF may recapitulate these results. Since some of the genes in these studies 

appear in the GSSKRAS
P , we retrained OncoSigRF on a modified, non-overlapping training set 

for each analysis. The modified GSSKRAS
P  used to retrain OncoSigRF and the resulting KRAS 

SigMaps are provided in Supplementary Files 1 and 3 respectively. Our results show that, (a) 

top-scoring OncoSigRF predictions were highly enriched in KRASMut synthetic-lethal 

partners identified by Barbie et al.25 (p = 2.4 x 10−14, Extended Data Figure 4a); (b) the 24 

genes showed by Hayes et al.28 to contribute to ERK-inhibitor resistance in KRASMut cells 

were also highly enriched in SigMap proteins (p = 3.4 x 10−7, Extended Data Figure 4b); 

and (c) genes inducing oxidative stress-mediated lethality in KRASMut cells8,29 were 
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similarly enriched (p = 2.0 x 10−11, Extended Data Figure 4c). These results, along with the 

high rate of experimental validation for KRAS SigMap predictions (Figure 3b), strongly 

support the ability of OncoSigRF to identify effector and modulator proteins representing 

bona fide KRASMut dependencies.

Crosstalk in KRAS and RAB/RHO signaling

KRAS regulation of RAB and RHO GTPase signaling remains poorly understood30,31. As 

shown in Figure 2, OncoSig predicts novel physical and functional interactions between 

KRAS and RAB/RHO family members and regulators. Indeed, among the experimentally 

validated proteins, OncoSig identified RAB-family members/regulators RAB1A, RAB8A, 

RAB14, RAB25, RAB27A, TBC1D4, and APPL1, as well as RHO-family members/

regulators RHOG, RHOT1, ARHGDIA, VAV3 and ARHGAP26 as downstream effectors 

and physical binding partners of KRAS and predicted additional RAB/RHO-family 

members, including RAB1B, RAB8B, and RAB32, and CDC42. Among these, RAB1A has 

emerged as a novel putative oncogene, stimulating tumorigenic growth independent of 

HRAS signal transduction32, TBC1D4 is a putative RAB GTPase activating protein)33, and 

APPL1 is an adapter protein binding to the GTP-bound, active form of RAB530. Similarly, 

ARHGDIA is a RHO GDP-dissociation inhibitor (GDI) and negative regulator of RHO/RAC 

signaling34; VAV3 and ARHGEF16 are guanine nucleotide exchange factors (GEFs) for 

RHO proteins35,36; finally, ARHGAP26 is a CDC42 activator.

Taken together, these results suggest far more extensive crosstalk between KRAS and 

RAB/RHO signaling than previously appreciated37,38. They further suggest that KRAS-

mediated post-translational regulation of other small-GTPases may be dysregulated in 

LUAD.

Validated and predicted OncoSig interactions between KRAS and RAB family members 

also suggest a compelling role of KRAS in the regulation of intracellular trafficking31, 

which is still poorly characterized39. Four RAB-family members validated in the organoid 

assays are predicted as KRAS cognate binding partners by PrePPI (bold lines, Figure 2). 

RAB1A and RAB25 mediate ER-Golgi trafficking and transport through apical recycling 

endosomes, respectively40, while TBC1D4 and APPL1 promote endosomal vesicular 

trafficking30,41. MAP4Ks, such as MINK1 (MAP4K6, downstream) and MAP4K1 

(upstream), are also implicated in vesicular trafficking through their association with Striatin 

family complexes, whose dysregulation leads to cancer42.

KRAS SigMap context specificity

To assess whether OncoSigRF can effectively discriminate KRAS SigMap context-

specificity, we compared LUAD-specific predictions with predictions based on 482 TCGA 

lung squamous cell carcinoma (LUSC) samples, 434 TCGA colon adenocarcinoma (COAD) 

samples, and 176 TCGA pancreatic adenocarcinoma samples (PAAD). These data were used 

to create LUSC, PAAD and COAD-specific ARACNe, CINDy, and VIPER-based molecular 

interaction predictions, which were then used to train the RF classifier (Figure 1b).
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Extended Data Figure 5a shows the ROC curves for SigMapLUAD
KRAS (red), SigMapLUSC

KRAS (gray) 

SigMapCOAD
KRAS(brown), and SigMapPAAD

KRAS (orange) (Supplementary File 5). These show that 

OncoSigRF’s performance was equivalent in LUAD, LUSC and PAAD but weaker in 

COAD: At FPR ≤ 5%, only 12% of the GSSKRAS
P  was recovered in COAD versus 16% for 

LUAD, likely due to a much larger number of KRAS-related studies in LUAD vs. COAD. 

However, the SigMapCOAD
KRAS and SigMapLUAD

KRAS were equally enriched in COAD and LUAD-

specific KRASMut synthetic-lethal partners27, respectively (p = 3.3 x 10−11, Extended Data 

Figure 5b).

Extended Data Figure 5 shows scatterplots of OncoSigRF scores for KRAS SigMap proteins 

in LUSC-vs-LUAD (Figure 4a), COAD-vs-LUAD (Figure 4b), and PAAD-vs-LUAD 

(Extended Data Figure 5c). Gold and gray points represent GSSKRAS
P  proteins and novel 

predictions, respectively. Darker colored points have high scores (SRF ≥ 0.5) in at least one 

context and lighter colored points score poorly in both contexts (SRF ≤ 0.5). The significant 

overlap between these maps (R2
LUSC/LUAD = 0.35, p < 10−267; and R2

COAD/LUAD = 0.10, p 
< 10−165) suggests the existence of a core of context-independent physical/functional KRAS 

interactors (see Supplementary File 5). However, there were also many off-diagonal points, 

representing both established and novel KRAS interactors that are specific to only one of the 

two contexts. Even in two relatively related lung cancer contexts (LUAD and LUSC)—as 

shown by a 100-fold improvement in overlap p-value, compared to COAD—critical 

differences are predicted (Figure 4b). For instance, CSF1 (macrophage colony-stimulating 

factor 1, black) is a LUSC-specific, significant survival marker43, while downregulation of 

RASAL2 (a Ras GTPase-activating protein, green) promotes metastatic progression in 

LUAD44. Similar meaningful context-specific differences are predicted in COAD versus 

LUAD (Figure 4c). For instance, IFITM1 (interferon-induced transmembrane protein 1, 

black) promotes COAD-specific metastatic progression45, while IL22RA1 (interleukin-22 

receptor 1, green) is a LUAD-specific marker of poor survival46,47. For visualization 

purposes, we only show the top 33 proteins (FPR ≤ 1%, VIPER p ≤ 0.05, PrePPI-predicted 

physical interactors, or both) that overlap in the KRAS COAD and LUAD SigMaps 

(Extended Data Figure 5d) according to the conceptual SigMap architecture (Figure 1a). As 

shown, the underlying KRAS signaling architecture is quite different in the two contexts, 

consistent with the different activity of MEK inhibitors in COAD and LUAD48-51.

PAAD to LUAD comparison did not identify substantial context-specificity. While this may 

simply reflect stronger conservation of KRAS biology in these two tumors, PAAD analysis 

is challenging because most samples (>90%) harbor KRAS mutations and virtually all 

present significant KRAS pathway activity. Thus, in this context, using KRASWT samples as 

negative controls is not as effective as in cohorts where mutations occur only in a relatively 

small subset of the samples. This may also account for the failure to identify context-specific 

effectors and modulators.

Generating SigMaps for hyper-mutated oncoproteins

We extended OncoSigRF analysis by generating LUAD-specific SigMaps for the nine 

additional recurrently mutated oncoproteins (CDKN2A, EGFR, MAPK, NTRK3, PI3K, 
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TP53, STK11, YAP1, and CTNNB1). PGSS datasets were derived from mSigDB–C2 sand 

KEGG, for each oncoprotein (Supplementary File 1). We evaluated OncoSigRF’s ability to 

recapitulate the GSSP of each oncoprotein by ROC analysis (Figure 5a, KRAS ROC 

highlighted in red, Supplementary File 6). This confirmed significant improvement over 

random classification and gene-expression-based correlation (p < 10−10 in all cases), see 

black and green curves in Figure 2a. Classifier performance is, however, variable, depending 

on both GSSKRAS quality and LUAD specificity: For instance, at FPR ≤ 1%, 35%-37% of 

established NTRK3-, TP53-, and CDKN2A-pathway members were recovered (dark blue, 

dark gray, and light gray curves), vs. 12%-20% of established STK11-, YAP1-, and PI3K-

pathway members (orange, light blue, and brown curves). Figure 5b shows that 

experimentally validated novel KRAS SigMap proteins (Figure 3), which have high score in 

the KRAS map, are also recapitulated in the other maps, albeit with lower scores, suggesting 

significant cross-talk. Indeed, while there is little overlap among the PGSSs, the overlap 

among SigMaps (at FPR ≤ 1%) is quite substantial (Extended Data Figure 6a). Predictions 

for each of the ten SigMaps are provided in Supplementary File 6.

As a measure of retrospective validation, we assessed the algorithm’s ability to recapitulate 

proteins in a previously published, 600-protein EGFR-specific network52, using a PGSS that 

excluded proteins in that network (Supplementary Files 1 and 3). SigMap predictions were 

highly enriched in EGFR-centric network proteins (p = 2.3 x 10−43, Extended Data Figure 

6b). Furthermore, predictions were also highly enriched in 58 genes whose knockdown was 

shown to sensitize cells to EGFR-targeted inhibitors (p = 1.4 x 10−9). Finally, the EGFR 

SigMap discriminates between genes that sensitize cells to EGFR-targeting drugs versus 

those that do not (p = 2.0 x 10−4, by Welch’s two sample t-test; Extended Data Figure 6c).

OncoSigRF Generalization

Finally, we developed an unsupervised version of the algorithm (OncoSigUN) to extend the 

analysis to arbitrary proteins of interest, without protein-specific training sets. For this 

purpose, the feature matrix (Figure 1c) was reduced to contain only interactions with the 

specific protein of interest, leaving only four of the 36K columns, one for each of the 

algorithms (Figure 1b). Proteins were then scored based on aggregate voting across the ten 

OncoSigRF classifiers described above. The rationale is that once a sufficient number of 

diverse training sets is available, they can be used to assess the generic contribution of each 

evidence source (i.e., its weight) toward classification of a bona fide interaction. For 

comparison purposes, we tested the unsupervised version of algorithm on KRAS. As shown 

by ROC analysis (Figure 6a), the performance of OncoSigUN (blue curve) was similar—and 

even slightly better in the highest precision range—compared to OncoSigRF (red curve). 

Note that GSSKRAS was used only to evaluate OncoSigUN’s performance, but not to train the 

unsupervised algorithm. The KRAS OncoSigRF classifier was excluded from aggregate 

voting (see Methods).

We then applied the procedure to the Cancer Gene Census proteins in COSMIC (715 

proteins, as of December 2018). SigMaps are provided in Supplementary File 7. We also 

provide examples, of the conceptual SigMap architecture (Figure 1a) for SMARCA4 (Figure 

6b), MET (Figure 6c), and BIRC6 (Figure 6d), which are among the most LUAD-specific 
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mutated genes53,54. Their SigMaps are rich in their experimentally observed interactors from 

BioGRID21 (blue node labels), drug targets from the Drug Repurposing Hub22 (red node 

border), and functional partners as described by Gene Ontology8. The maps make a number 

of interesting predictions, further highlighting the utility of the generalized approach.

SMARCA4 is an ATP-dependent chromatin remodeling enzyme and transcriptional 

activator. As shown in Figure 6b, chromatin remodeling complex proteins are predicted both 

upstream (SMARCC2, CHD1) and downstream (ATAD2, TAF1) of SMARCA455-57. Most 

of the proteins in the map (85%) are involved in chromatin organization (gray dashed box, 

GO:0016568) and fall into two Gene Ontology biological process subgroups: Histone 

acetylation (GO:0016573, light green shading) and chromatin remodeling (GO:0006338, 

light blue shading)58. OncoSigUN predicts mechanistic connections between chromatin 

remodeling/histone acetylation and 1) DNA damage signaling through the acetylation reader 

protein, ZMYND859, and 2) RNA splicing through the RNA helicase, DDX23, and the 

nuclear cap-binding protein, NCBP260,61.

The SigMap for the receptor tyrosine kinase (RTK) MET (Figure 6c) contains both 

established and novel interactions. RTKs (EPHA2 and INSR) are correctly predicted as 

upstream regulators, and tyrosine kinases (LCK and PTK2B) are correctly predicted as 

downstream effectors. Co-activation among RTKs and RTK activation of intracellular 

kinases well-established mechanisms62,63. Although Src-family kinases (like LCK) are 

effector proteins of MET as well as regulators of STATs63,64, STAT1 is predicted to regulate 

LCK (green dotted arrow). However, there is ample evidence that STAT1 functions as both a 

tumor suppressor and a tumor promoter65,66, and, recently, LCK was shown to be a critical 

gene for cell proliferation in KRAS-dependent lung cancers67. Thus, the predicted 

regulatory interaction may provide a mechanism for increased activation of LCK in LUAD.

DISCUSSION

The term “pathway,” though widely used, is a quite loosely defined biological concept. 

Here, we propose a fundamentally different representation (SigMap) of the signaling and 

regulatory machinery necessary to modulate and effect the function of a specific protein of 

interest in a specific tissue context, i.e. equivalent to a protein’s “Mechanism of Action” 

(MOA).

Our data suggest that SigMaps provide a more unbiased, compact, and realistic 

representation of a protein’s MoA, compared to available network representations and 

algorithms. Moreover, based on a wealth of experimental assays—both novel and previously 

published—SigMaps effectively recapitulated the complex biology of signal transduction, 

with a high validation rate for novel prediction (16/20, 80%) (Figure 3). Finally, we have 

shown that equally-informative SigMaps can be constructed for arbitrary proteins, whether 

cancer-related or not, thus extending the value of the algorithm well beyond cancer.

SigMaps may also provide critical hypotheses, often missing in related resources, regarding 

autoregulatory interactions (loops) (gray lines, Figure 1a), which are critical to ensure the 
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stability of cellular phenotypes and may be responsible for complex adaptive behavior, such 

as in response to pharmacological perturbations.

Targeting mutation-specific dependencies is an approach for discovering novel KRASMut 

specific therapeutics68. The KRAS SigMap is highly enriched in KRASMut dependencies, 

many of which are druggable (Figures 2 and 3). A number of previous studies25,26,69-71 used 

high-throughput screens to discover KRASMut dependencies, although the overlap in their 

predictions is poor25,68. This is due to the context specificity of KRAS-mediated 

dependencies and synthetic lethality and on reliance on traditional monolayer cell line 

cultures. However, the enrichment of OncoSigRF predictions in KRASMut dependencies 

identified by other studies and the high validation rate achieved here (Figure 3) suggest that 

many additional bona fide and more reproducible modulators and effectors of KRAS 

function may be identified, even among predictions with relatively lower scores in 

experimental assays (Supplementary File 3) and can be defined by their tissue-specific 

context, thus further increasing the repertoire of druggable KRAS signaling partners. Thus, 

SigMaps may provide additional, pharmacologically accessible candidate targets for many 

mutated oncoproteins, including KRAS, thus providing a valuable resource for guiding 

hypothesis-based studies to validate their disease-related relevance.

In summary, OncoSig generates a single integrated score representing the probability that a 

protein belongs to a specific SigMap. Use of PrePPI is instrumental for identifying physical 

protein-protein interactions, whereas ARACNe, VIPER and CINDy provide critical tissue-

specificity and additional evidence supporting both physical and functional interactions. 

Taken together, these individual evidence sources can effectively assign place proteins 

within the conceptual molecular-interaction architecture schematically depicted in Figure 1a.

The code used in these analyses is available from GitHub and a graphical web application 

(http://www.OncoSig.org) allows interactive query and visualization of all SigMaps 

generated by this study.

ONLINE METHODS

Lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), colon 

adenocarcinoma (COAD), and pancreatic adenocarcinoma gene expression datasets (N = 

488, 482, 434, and 176 samples respectively) were retrieved from The Cancer Genome Atlas 

(TCGA) and normalized as previously described10. We collated 1,813 transcription factors 

and transcriptional regulators (TFs), 969 transcriptional cofactors (coTFs), and 3,370 

signaling proteins (SPs) as described10.

Naive Bayes-based OncoSig (OncoSigNB)

To ascertain upstream regulators of KRAS, we inferred the activity of KRAS in LUAD 

samples using VIPER10 and computed two-tailed Normalized Enrichment Score of the 

KRAS activity. aREA10 was used to assess the statistical significance of the co-segregation 

between nonsynonymous (missense) Single Nucleotide Polymorphisms in other genes and 

KRAS activity. To identify downstream effectors of aberrant KRAS signaling, we used 

VIPER to infer the differential activity of TFs, CoTFs, and SPs in KRASMut samples and 
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closest (based on Spearman correlation) matched KRASWT samples. A differential gene 

expression signature ΔEi was computed for each matched KRASMut/KRASWT pair and the 

activity change for each TF/CoTF/SP was calculated. Bonferroni-corrected p-values were 

integrated, using Stouffer’s method producing a p-value for the co-segregation of KRASMut 

and the activity of other proteins.

A variant of the DeMAND algorithm73 was used to discover proteins with dysregulated 

interactions in KRASWT versus KRASMut LUAD samples using a previously developed, 

context-specific LUAD molecular interaction network10. Specifically, instead of considering 

drug-perturbed vs. control samples, as in the original algorithm, we analyzed molecular 

interactions that were dysregulated in KRASMut versus KRASWT samples and then, for each 

network protein, we integrated the p-value of its dysregulated edges using Brown’s method 

as discussed in the original manuscript. The latter accounts for potential statistical 

dependencies between dysregulated edges.

MINDy was used to predict post-translational modifications of TFs by SPs, as previously 

described11,12. A Fisher Exact Test was performed between TFs predicted to be regulated by 

KRAS and TFs predicted to be regulated by SPs. Each SP was thus assigned a p-value 

representing the statistical significance of the overlap between the TFs KRAS is predicted to 

regulate and the TFs other signaling molecules are predicted to regulate.

Predictions of KRAS protein-protein interactions were retrieved from the PrePPI database6. 

Each prediction has an associated Likelihood Ratio (LR) representing the odds above 

random of the protein-protein interaction occurring.

75 samples with KRAS knockdowns (KDs) in A549 cell lines were retrieved from The 

Library of Network-Based Cellular Signatures (LINCS) project74 (http://

www.lincsproject.org/). Averaging over all 75 samples, a single gene expression profile was 

obtained for each gene.

Affinity-purification/mass-spec assays (AP-MS) were used to characterize candidate 

protein-protein interactions for four established KRAS effectors–TBK1, RALGDS, RALA, 

and RALB–in the KRASMut LUAD cell line A549. AP-MS scores correspond to the protein 

peptide count for each effector (Supplementary File 1).

OncoSigNB was trained on a set of 350 proteins annotated as participating in KRAS 

signaling pathways by Ingenuity Pathway Analysis75 (Supplementary File 1). Each clue was 

split into bins, which were populated by the raw evidence values such that an equal number 

of members of the positive gold standard set (PGSS) was distributed across bins as possible. 

Training was performed using two-fold cross validation with holdout, which creates an 

independent training and testing set and produces a final LR for each protein that is 

parameterized on the set to which it does not belong. OncoSigNB results are provided in 

Supplementary File 2.

Random Forest-based OncoSig (OncoSigRF)

The ARACNe, VIPER and CINDY algorithms were applied to LUAD, LUSC, COAD, and 

PAAD gene expression profiles with the same parameters and p-value thresholds as 
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previously described10. Protein-protein interactions from the PrePPI database were 

retrieved7, and the LRGO and LRExp components were removed from LRPrePPI, and 

interactions with modified LRPrePPI scores ≥ 600 were used.

The PGSSs for the 10 pathways used with OncoSigRF were compiled as the union of the 

KEGG, Biocarta, and Reactome databases from the MSigDB–C2 category16 and 

complemented with associated pathway members from the KEGG website17 

(Supplementary File 1). KRAS synthetic lethality and drug-dependency data were compiled 

from Barbie et al.25, Corcoran et al.27, Hayes et al.28, Astsaturov et al.52 and GO:0000302: 

“Response to Reactive Oxygen Species”8,29. CD-HIT76 was used to generate a non-

redundant PGSSKRAS. PGSSKRAS was clustered at an 80% sequence identity threshold and, 

for each cluster, the representative with the longest sequence was selected as per CD-HIT 

protocol.

The features derived from the networks were as follows: Mutual information for ARACNe, 

number of statistically significant triplets for CINDy, negative log p-value for VIPER, and 

LR for PrePPI. We coded each feature symmetrically, so that interactions between protein A 

and protein B were input into the matrix twice, once in the feature vector for A and once in 

the feature vector for B; all other elements in the in the Random Forest feature matrix were 

set to zero. For each of the 10 oncogene-centric interactomes, proteins that are part of the 

PGSS were assigned a “1” within the PGSS vector, while all other proteins were assigned a 

“0” to represent membership in the NGSS. OncoSigRF was trained and tested with each 

pathway’s PGSS and NGSS using Monte Carlo cross-validation77, creating 50 forests each 

with 50 trees. We performed 100 OncoSig runs each with the LUAD, LUSC, COAD and 

PPAD KRAS PGSS networks, and distributions of Pearson correlation coefficients were 

estimated by calculating all pairwise Pearson correlation coefficients. LUAD-specific 

SigMaps for KRAS and the other nine hyper-mutated oncoproteins are provided in 

Supplementary File 3 and Supplementary File 6, respectively. Tissue-specific KRAS 

SigMaps are provided in Supplementary File 5.

General procedure for SigMaps, OncoSig

The feature matrix for a protein of interest consists only of those features that correspond to 

interactions with the protein of interest and, thus, has only four columns, one for each of the 

four interactomes: PrePPI, ARACNe, CINDy, and VIPER. SigMap membership of each 

protein in the human proteome is determined by aggregate voting after querying the ten 

OncoSigRF classifiers described above (KRAS, PI3KCA, TP53, EGFR, BRAF, STK11, 

CDKN2A, NTRK3, YAP1, and CTNNB1). LUAD-specific SigMaps for Cancer Gene 

Census proteins are provided in Supplementary File 7.

Tandem affinity purification

5 mL packed cell volume of RPE-hTERT cells expressing LAP-tagged proteins were 

resuspended with 20 mL of LAP-resuspension buffer, lysed, and then incubated on ice for 10 

min. The lysate was first centrifuged at 14,000 rpm (27,000 g) at 4°C for 10 min, and the 

resulting supernatant was centrifuged at 43,000 rpm (100,000 g) for 1 hr at 4°C to further 

clarify the lysate. High speed supernatant was mixed with 500 μL of GFP-coupled beads78 
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and rotated for 1 hr at 4°C to capture GFP-tagged proteins, and washed five times with 1 mL 

LAP200N. After re-suspending the beads with 1 mL LAP200N buffer lacking DTT and 

protease inhibitors, the GFP-tag was cleaved by adding 5 μg of TEV protease and rotating 

tubes at 4°C overnight. TEV-eluted supernatant was added to 100 μL of S-protein agarose to 

capture S-tagged protein. After washing three times with LAP200N buffer lacking DTT and 

twice with LAP100 buffer, purified protein complexes were eluted with 50 μL of 2X LDS 

buffer and boiled at 95°C for 3 min. Samples were then run on Bolt® Bis-Tris Plus Gels in 

Bolt® MES SDS Running Buffer. Gels were fixed in 100 mL of fixing solution at room 

temperature, and stained with Colloidal Blue Staining Kit. After the buffer was replaced 

with Optima™ water, the bands were cut into eight pieces, followed by washing twice with 

500 μL of 50% acetonitrile in Optima™ water. The gel slices were then reduced and 

alkylated followed by destaining and in-gel digestion using 125 ng Trypsin/LysC as 

previously described79. Tryptic peptides were extracted from the gel bands and dried in a 

speed vac. Prior to LC-MS, each sample was reconstituted in 0.1% formic acid, 2% 

acetonitrile, and water. NanoAcquity (Waters) LC instrument was set at a flow rate of either 

300 nL/min or 450 nL/min where mobile phase A was 0.2% formic acid in water and mobile 

phase B was 0.2% formic acid in acetonitrile. The analytical column was in-house pulled 

and packed using C18 Reprosil Pur 2.4 uM where the I.D. was 100 uM and the column 

length was 20-25 cm. Peptide pools were directly injected onto the analytical column in 

which linear gradients (4-40% B) were of either 80 or 120 min eluting peptides into the 

mass spectrometer. MS/MS was acquired using CID with a collisional energy of 32-35. In a 

typical analysis, RAW files were processed using Byonic (Protein Metrics) using 12 ppm 

mass accuracy limits for precursors and 0.4 Da mass accuracy limits for MS/MS spectra. 

MS/MS data was compared to an NCBI GenBank FASTA database containing all human 

proteomic isoforms with the exception of the tandem affinity bait construct sequence and 

common contaminant proteins. Spectral counts were assumed to have undergone fully 

specific proteolysis and allowing up to two missed cleavages per peptide. Data is included in 

Supplementary File 1.

Primary tumor propagating cell culture and screening methodology

Primary lung tumor cells from KRASG12D/+; p53fl/fl mice were cultured in Matrigel as 

described previously80. Prior to seeding, primary cells were infected with a pool of 100-150 

lentiviral pLKO shRNAs composed of 3-5 shRNAs per gene at a Multiplicity of Infection 

<0.5 to ensure single shRNA integration and selected with 1ug/ml puromycin 24 hours after 

seeding (Supplementary File 4). We screened the top 22 predicted genes from the NB 

classifier in two pools. Pools also included other candidate vulnerabilities identified by 

literature review and other methods. 25 pools consisting of 2,286 shRNAs targeting 515 

genes not anticipated to be involved in KRAS-regulated signaling were used as a 

background comparison. After 7 days of spheroid growth, spheroids were dissociated with 

trypsin into single cells, and half of the 3D culture was re-seeded. The remaining half of 

each sample was retained for gDNA isolation (T0) until secondary spheroids fully formed 7 

days later (T1). The integrated pLKO shRNA was PCR amplified using ExTaq (Clontech), 

barcoded, multiplexed, and sequenced on an Illumina GAIIx (primer sequences available on 

request). Sequencing reads were processed into count files in R (v. 3.1.1) using the edgeR 

package (v. 3.6.8) and analyzed using generalized linear models with edgeR using a time-
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course design to compare the initial (T0) and final (T1) timepoints and perform a likelihood 

ratio test81.

To calculate the statistical significance of the fold change in growth induced by each 

individual shRNA, we fit a density plot of all the background screens. For each shRNA, we 

integrated from the minimum log2FC of the entire BPS to the log2FC observed for that 

shRNA, producing a one-tailed p-value for the observed log2FC. We used Fisher’s method 

to integrate the p-values of all shRNAs that mapped to the same protein.

Multiple hypothesis correction

All p-values reported for all analyses (except where noted otherwise) were corrected using 

the Benjamini & Hochberg False Discovery Rate (FDR).

Enrichment analysis

Enrichment analysis was performed with the aREA (analytic Rank-based Enrichment 

Analysis) algorithm10.

Empirical Multinomial Model

The goal of this analysis was to estimate the probability that N out of the 20 genes 

prioritized by OncoSigNB for validation would emerge as statistically significant KRASMut 

synthetic lethals following RNAi-mediated silencing. We thus used the individual unadjusted 

p-values assessed by OncoSigRF analysis as input probabilities for a 10,000-iteration Monte 

Carlo simulation. The total number of false positives in each Monte Carlo simulation was 

calculated and used to compute an empirical probability distribution for the number of false 

positives in the set of 20 genes. From this empirical distribution, we calculated the expected 

number of false positive genes to be 0.8645 and that 95% of the probability was accounted 

for by ≤ 2 false positives. These predictions were roughly consistent with the results of the 

RNAi screen, where 16/20 genes predicted as significant by OncoSigRF (at FDR = 5%) were 

statistically significantly depleted in the pooled screen. This number was roughly double of 

what would have been expected (4 vs. 2) by the empirical multinomial analysis.

Data Availability Statement

All data are provided in Supplementary Files.

Code Availability Statement

R scripts and code for Naïve Bayes and Random Forest classifiers and input data files to 

reproduce the results described are freely available at https://github.com/califano-lab/

OncoSig.
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Extended Data

Extended Data Figure 1. The top 40 predictions from the OncoSigNB algorithm for the KRAS 
LUAD SigMap were chosen for validation.
(a): Performance of OncoSigNB at recovering the Ingenuity-derived PGSS as a function of 

LRPost. At an LRPost = 53 (probability = 0.50) (vertical gray line), the OncoSigNB LUAD-

specific KRAS SigMap contains 10% of the PGSS (horizontal gray line). The vertical red 

line corresponds to LRPost = 240, the cutoff used to obtain candidates for experimental 

validation.

(b): ROC curve analysis, evaluated as the recovery of the Ingenuity-derived PGSS (FPR ≤ 

0.05), for 1) OncoSigNB (green curve, N = 1028)), 2) Pearson’s correlation between mRNA 

expression of KRAS and mRNA expression of other proteins in LUAD (blue curve), and 3) 

random performance (black curve). Recovery using 2-fold cross-validation (green) is 

essentially indistinguishable from recovery using 100-fold Monte-Carlo Cross-validation 

(not shown). 393 OncoSigNB LUAD-specific KRAS SigMap predictions are made for 
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LRPost ≥ 53, which corresponds to probability ≥ 0.50 and FPR ≤ 0.019 (purple dot). 40 

OncoSigNB LUAD-specific KRAS SigMap predictions are made for LRPost ≥ 240, which 

corresponds to probability ≥ 0.82 and FPR ≤ 0.0018 (yellow dot). The top 40 predictions are 

listed by gene name in (c).
(c): Orange and blue boxes contain, respectively, known upstream regulators and 

downstream effectors that are successfully recovered by OncoSigNB. Italicized text indicates 

proteins known to interact with KRAS via a physical protein-protein interaction. The box 

titled “validated predictions” shows the novel OncoSigNB predictions tested with the RNAi 

negative screen; those that were experimentally found to affect cell growth in a KRAS-

dependent context are highlighted in bold text.

Extended Data Figure 2. The OncoSigRF and OncoSigNB algorithms produce highly similar 
KRAS LUAD SigMaps.
(a) Comparison of ROC curves (FPR ≤ 0.05) for LUAD-specific KRAS SigMaps predicted 

by OncoSigNB (green and blue curves) and OncoSigRF (orange and red curve) trained on the 

Ingenuity PGSS and the MSigDB PGSS, respectively.

(b) Gene Set Enrichment Analysis (GSEA) of the top 100 OncoSigNB LUAD-specific 

KRAS SigMap predictions at the top of the OncoSigRF LUAD-specific KRAS SigMap 

predictions. Ranking is based on OncoSigRF score (SRF). Both the OncoSigNB predictions 

tested in the knockdown experiments (red lines) and the remaining top 100 OncoSigNB 

predictions (blue lines) are highly enriched at the top of the OncoSigRF predictions (p = 5.6 

x 10−8 and p = 1.7 x 10−19, respectively).
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Extended Data Figure 3. The log2FC of shRNA abundance is plotted against the novel proteins 
tested in the KRAS negative selection screen.
The 3-5 points plotted for a given protein are shRNAs that target the mRNA for that protein 

(N = 100). The X-axis is sorted by mean log2FC for all shRNAs targeting each gene. Colors 

change from red to green with mean log2FC.
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Extended Data Figure 4. OncoSigRF predictions are highly enriched in oncogenic KRASMut 

dependencies.
(a): GSEA of KRASMut synthetic lethal partners (25) (blue lines, N =216) and the top 500 

OncoSigRF LUAD-specific KRAS SigMap predictions obtained by training on a modified 

PGSS for which the intersection with the synthetic lethal set was removed. Inset is the 

GSEA using all OncoSigRF predictions obtained in this way, where the ranking is 

OncoSigRF score. Enrichment analysis was performed with the aREA (analytic Rank-based 

Enrichment Analysis) algorithm (10).

(b): Enrichment of the protein resistance-signature to ERK inhibitor SCH772984 (28) (blue 

lines, N = 24) within OncoSigRF LUAD-specific KRAS SigMap predictions.

(c): Enrichment of proteins involved in response to Reactive Oxygen Species (GO:0000302) 

(8, 29) (blue lines, N = 276) within OncoSigRF LUAD-specific KRAS SigMap predictions.
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Extended Data Figure 5. OncoSigRF KRAS SigMaps exhibit tissue context specificity.
(a): ROC curves for the OncoSigRF KRAS SigMaps in LUAD (red), LUSC (gray) COAD 

(brown), and PAAD (orange) for FPR ≤ 0.05. Performance is evaluated as the recovery of 

established KRAS pathway proteins.

(b): Gene set enrichment analysis (GSEA) 32 of KRASMut synthetic lethal partners, as 

determined by Corcoran et al. (27) (N = 48, blue lines). To avoid training and testing on the 

same proteins, OncoSigRF predictions for COAD-specific KRAS SigMap proteins were 

obtained by training on a modified PGSS from which any established KRASMut synthetic 

lethal protein had been previously removed. Enrichment analysis was performed with the 

aREA (analytic Rank-based Enrichment Analysis) algorithm28.

(c): Scatterplot of OncoSigRF scores for KRAS SigMap proteins in PAAD-vs-LUAD (N = 

19,789). Each dot represents the scores for one protein. Darker colored points have high 

scores (SRF ≥ 0.5) in at least one context, and lighter colored points score poorly in both 

contexts (SRF ≤ 0.5). R2
PAAD/LUAD = 0.037.

(d): OncoSigRF COAD-specific KRAS SigMap in the form depicted conceptually in Figure 

1a. To prevent visual cluttering, only the top 33 OncoSigRF predictions (FPR ≤ 0.01) that are 

also VIPER-inferred KRAS interactors (p ≤ 0.01), PrePPI-predicted KRAS physical 

interactors, or both, are depicted. Bold and regular text node labels represent established and 

novel predictions, respectively; orange and blue node colors represent upstream regulators 

and downstream effectors, respectively; red, blue, and black node borders represent 

predictions that are druggable (Drug Repurposing Hub (22)), KRASMut synthetic lethal from 

the literature and validated here (see text), and both, respectively; orange and blue solid lines 

and gray nodes represent PrePPI-predicted physical interactors of KRAS.
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Extended Data Figure 6. OncoSigRF SigMaps for hypermutated oncoproteins are retrospectively 
validated.
(a) Pairwise overlap of established pathway proteins (left) and the OncoSigRF LUAD-

specific SigMaps (FPR ≤ 0.01, right) for the ten hyper-mutated oncoproteins (names of 

columns and rows). Percent overlap is color-coded according to the scale at top.

(b) SigMap predictions are highly enriched in 600 EGFR-centric network proteins (52) (p = 

2.3 x 10−43). Enrichment analysis was performed with the aREA (analytic Rank-based 

Enrichment Analysis) algorithm28.

(c) Box plots of the OncoSigRF LUAD-specific EGFR SigMap scores for two subsets of the 

curated EGFR pathway proteins from Astsaturov et al. (52): those identified as EGFR 

synthetic lethal partners (red, N = 58) and those not identified as synthetic lethal (grey, N = 

542). The p-value (2 x 10−4) was calculated using Welch’s two sample t-test.
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Figure 1: Protein-specific molecular interaction Signaling Map (SigMap) and the OncoSigRF 
algorithm
(a) Graphical representation of a SigMap for an anchor oncoprotein (red node). The SigMap 

comprises: (i) upstream activity modulators (orange nodes), (ii) downstream effectors, 

responsible for mediating its pathophysiologic function (blue nodes), (iii) structural cognate 

binding partners (gray nodes), which may be either modulators (solid orange lines) or 

effectors (solid blue lines), and (iv) auto-regulatory loops connecting downstream effectors 

to upstream modulators (dashed green lines). To avoid unnecessary clutter, implicit arrows 

connecting upstream modulators to the red node and the latter to its downstream effectors 

are omitted. Thus, the only interactions explicitly denoted by an edge are physical protein-

protein interactions and autoregulatory interactions between modulator and effector proteins.

(b) Networks used to train the OncoSigRF algorithm. (i) PrePPI6 predicts interactions 

between a protein (red), and its physical and/or functional interactors (gray). (ii) The 

ARACNe algorithm9 predicts transcription factors or signaling molecules (red) that 

transcriptionally regulate target genes (blue). (iii) CINDy12 predicts signaling molecules 

(orange/red) that post-translationally modify transcription factors (blue boxes), which in turn 

leads to differential expression of a transcription factor’s targets (blue diamonds). (iv) The 

VIPER algorithm10 infers downstream effectors (blue) and upstream regulators (orange) for 

a given protein (red). VIPER associates 1) the protein (red) with a missense mutation (black 

dot) with the activity change of transcription factors (blue) and 2) signaling molecules 

(orange) with missense mutations (black dots) with activity of the protein (red).

(c) Feature matrix for OncoSigRF algorithm. Networks in (b) are encoded as a feature matrix 

(dark green box), where rows correspond to proteins in the human proteome, columns 
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correspond to proteins for which clues exist in PrePPI7, ARACNe9, CINDy11, and VIPER10, 

respectively, and each entry is a scalar proportional to the confidence in the corresponding 

interaction as described in the literature. The latter include likelihood ratios for PrePPI, 

mutual information for ARACNe, number of SP-coF/TF-gene triplets for CINDy, and 

−log10 p-value for VIPER. The gold column corresponds to whether a protein is an 

established member of a particular pathway (PGSS, value of 1) or not (value of 0). Only a 

few components of a small subset of proteins are shown. The feature vector for LIMD1 

(highlighted in light green) is described in the text. The last column provides the OncoSigRF 

score of the subset proteins for the LUAD-specific KRAS SigMap (see Figure 2). SP = 

signaling protein, coF = co-factor, and TF = transcription factor.
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Figure 2: The OncoSigRF LUAD-specific KRAS SigMap
(a): ROC curves are displayed for the performance at recovering established KRAS-pathway 

proteins (FPR ≤ 0.05 (5%)) of OncoSigRF (red curve, N = 1,114), Pearson’s correlation 

between mRNA expression of KRAS and mRNA expression of other proteins in LUAD 

(green curve, N = 957), and random prediction (black curve). The inset shows the full ROC 

curves (red curve, N = 19,548; green curve, N = 18,891).

(b): The ROC curve in (a) for FPR ≤ 0.01 (1%, N = 263) is separated into two according to 

whether predictions correspond to (i) established KRAS-pathway proteins (top panel, yellow 

circles), with best-known KRAS-pathway proteins individually labeled or (ii) novel KRAS 

SigMap proteins (bottom panel, white circles). Circles annotate predictions as either 

druggable (Drug Repurposing Hub22) (red), experimentally-validated KRAS interactors 

(BioGRID21) (blue), or both (black). .

(c): OncoSigRF LUAD-specific KRAS SigMap in the form depicted conceptually in Figure 

1a. To prevent visual cluttering, only the top 68 OncoSigRF predictions that are also VIPER-

inferred KRAS interactors, PrePPI-predicted physical interactors, or both, are depicted. Bold 

and regular text node labels represent established and novel predictions, respectively; orange 

and blue node colors represent upstream regulators and downstream effectors, respectively; 

red, black, and purple node borders represent predictions that are druggable (Drug 
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Repurposing Hub22), KRASMut synthetic lethal partners from the literature72 or validated in 

this study, and both, respectively; solid orange and blue lines and gray nodes represent 

PrePPI-predicted physical KRAS interactors; green dashed lines represent auto-regulatory 

and feed-forward loop interactions.
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Figure 3: Experimental validation of the OncoSigRF LUAD-specific KRAS SigMap
(a): Schematic of the pooled shRNA negative screen experiments performed. An average of 

four shRNAs target each gene in the protocol implemented. KRASG12D/+/p53fl/fl primary 

tumor cells (green patches) are isolated from the mouse and placed in a semi-solid 3D 

matrix (cylinder). A pooled shRNA knockdown is performed (Day 1), and each cell 

stochastically integrates one shRNA into its DNA. Cells that integrate different shRNAs are 

shown as, red (representing shRNAs for novel predictions), green and purple (for positive 

controls), and black (for the background pool). Some cells and their daughter cells form 

spheroids (Day 6). The spheroids are dissociated, reseeded in a new matrix, and reform (Day 

12). Fold Change (FC) of shRNA abundance is measured by deep sequencing the shRNAs at 

days 6 and 12.

(b): Plot of log2FC of shRNAs targeting predicted KRAS functional partners (red, N = 100), 

known members of the KRAS signaling pathways (RALGDS, MAPK1, RASA1 and AKT1) 

(purple, N = 17) and two synthetic lethal positive controls (NUP205 and TBK1) (green, N = 

8). The black dots show log2FC of shRNAs targeting 515 genes within the Background 

Pooled Screens (BPS, N = 2286) not expected to be involved in KRAS regulated signaling. 

The X-axis is the normalized rank, calculated by ranking log2FC of each set of shRNAs and 

dividing by the number of shRNAs in that set. Each gene is represented by several dots, 

which correspond to different shRNAs. See Extended Data Figure 3 for more details.

(c): Density plots of log2FC for predicted KRAS functional partners (red), all individual 

BPS (grey), and the average of all BPS (black).
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(d): Fold change versus significance for genes that significantly reduce organoid growth in 

the pooled shRNA negative screen experiments (FDR < 0.05, gray dotted line). Log2FC of 

shRNAs, averaged after removing one or two outlier hairpins, is plotted against log10-

transformed, FDR-adjusted p-values. shRNAs are colored as described in (b).
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Figure 4: KRAS SigMap tumor context specificity
Scatterplots of OncoSigRF scores for KRAS SigMap proteins in (a) the LUSC-vs-LUAD (N 

= 19,790) and (b) the COAD-vs-LUAD (N = 19,438) tumor contexts (b). Each dot 

represents one protein. Gold and gray points represent established and novel predictions, 

respectively. Darker colored points have high scores (SRF ≥ 0.5) in at least one context, and 

lighter colored points have low scores (SRF < 0.5) in both contexts and should thus not be 

compared. Correlation coefficients are R2
LUSC/LUAD = 0.35 (p < 10−267) and R2

COAD/LUAD 

= 0.10 (p < 10−165), respectively (Welch’s Two Sample t-test). Specific points highlighted in 

black and green are discussed in the text.
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Figure 5: OncoSigRF LUAD-specific SigMap analysis of hyper-mutated oncoproteins
(a): ROC curves showing OncoSigRF’s performance in terms of identifying established 

pathway proteins in LUAD-specific SigMaps for the 10 oncoproteins listed in the legend 

(FPR ≤ 0.05, N ~ 1000). The thick red line represents performance of OncoSigRF for the 

LUAD-specific KRAS SigMap from Figure 2a as a reference.

(b): Number of literature-derived KRASMut synthetic lethal partners72 (predicted by each of 

the ten SigMaps) as a function of OncoSigRF score. OncoSigRF scores are binned, and the 

bins are colored from dark red (highest scores) to white (SRF < 0.50), as depicted in the 

leftmost column. The number of predictions per score bin is color-coded according to the 

legend at the top.
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Figure 6: OncoSig: Generalization of OncoSigRF to Cancer Gene Census proteins
(a): ROC curve analysis of LUAD-specific KRAS SigMaps generated by OncoSig (blue 

curve) versus OncoSigRF (red curve), FPR ≤ 0.10. Established KRAS signaling proteins 

recovered by OncoSig and OncoSigRF are labeled in gray and black, respectively.

(b-d): LUAD-specific OncoSig SigMaps for three Cancer Gene Census proteins in the form 

depicted conceptually in Figure 1a: SMARCA4 (b), MET (c), and BIRC6 (d). Orange and 

blue node colors represent upstream regulators and downstream effectors, respectively; solid 

orange and blue lines and gray nodes represent PrePPI-predicted physical interactors; red 

node borders represent predictions that are druggable (Drug Repurposing Hub22); blue node 

text represents experimentally observed interactions (BioGRID21); and dashed lines 

represent regulatory interactions. In (b), the gray dashed box includes map members 

involved in chromatin organization (GO:0016568); green shading includes map members 

involved in histone acetylation (GO:0016573); and blue shading includes map members 

involved in chromatin remodeling (GO:0006338)58. In (d), blue shading includes the map 

members involved in protein ubiquitination (GO:0016567), and green shading includes map 

members involved in protein sumoylation (GO:0016925)58.
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