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Field validation of deep learning 
based Point‑of‑Care device for early 
detection of oral malignant 
and potentially malignant disorders
Praveen Birur N.1,2,3,10, Bofan Song4,10, Sumsum P. Sunny2,5,10, Keerthi G.1, 
Pramila Mendonca5, Nirza Mukhia1, Shaobai Li4, Sanjana Patrick3, Shubha G.1, 
Subhashini A.R.1, Tsusennaro Imchen6, Shirley T. Leivon6, Trupti Kolur5, Vivek Shetty5, 
Vidya Bhushan R.5, Daksha Vaibhavi1, Surya Rajeev1, Sneha Pednekar1, Ankita Dutta Banik1, 
Rohan Michael Ramesh6, Vijay Pillai5, Kathryn O.S.7, Petra Wilder Smith7, Alben Sigamani8, 
Amritha Suresh2*, Rongguang Liang4* & Moni A. Kuriakose2,5,9*

Early detection of oral cancer in low‑resource settings necessitates a Point‑of‑Care screening tool 
that empowers Frontline‑Health‑Workers (FHW). This study was conducted to validate the accuracy 
of Convolutional‑Neural‑Network (CNN) enabled m(mobile)‑Health device deployed with FHWs for 
delineation of suspicious oral lesions (malignant/potentially‑malignant disorders). The effectiveness of 
the device was tested in tertiary‑care hospitals and low‑resource settings in India. The subjects were 
screened independently, either by FHWs alone or along with specialists. All the subjects were also 
remotely evaluated by oral cancer specialist/s. The program screened 5025 subjects (Images: 32,128) 
with 95% (n = 4728) having telediagnosis. Among the 16% (n = 752) assessed by onsite specialists, 
20% (n = 102) underwent biopsy. Simple and complex CNN were integrated into the mobile phone and 
cloud respectively. The onsite specialist diagnosis showed a high sensitivity (94%), when compared to 
histology, while telediagnosis showed high accuracy in comparison with onsite specialists (sensitivity: 
95%; specificity: 84%). FHWs, however, when compared with telediagnosis, identified suspicious 
lesions with less sensitivity (60%). Phone integrated, CNN (MobileNet) accurately delineated lesions 
(n = 1416; sensitivity: 82%) and Cloud‑based CNN (VGG19) had higher accuracy (sensitivity: 87%) with 
tele‑diagnosis as reference standard. The results of the study suggest that an automated mHealth‑
enabled, dual‑image system is a useful triaging tool and empowers FHWs for oral cancer screening in 
low‑resource settings.

Oral cancer is a rising global health problem, with the highest incidence being reported in the Indian sub-conti-
nent1,2. Stage at diagnosis is the primary determinant of its oncologic  outcome1. Eighty percentage of oral cavity 
cancers in a high-prevalent population are preceded by asymptomatic, clinically evident lesions, referred to as 
oral potentially malignant disorders (OPMD)3. Early detection and management at this stage can significantly 
decrease the mortality  rate4. However, despite well-defined clinical diagnostic features and easy accessibility, 
over 70% of oral cancers are diagnosed at advanced  stages5. This delay is attributed to the late presentation by 
the patients and the inability of the primary health care providers to identify suspicious  OPMD6. The current 
diagnostic pathway, which includes visual examination-based detection of suspicious lesions by the primary 
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health care providers, followed by incisional  biopsy7,8, is not feasible for the large-scale screening of high-risk 
 populations9.

Diagnostic adjuncts are known to improve the efficacy of oral lesion detection in the primary health care set-
tings. Vital dyes, auto-fluorescence, chemiluminescence, Raman spectroscopy, optical-coherence-tomography, 
and biomarker-based imaging have been explored for early detection of oral  cancer10–12. However, they are often 
limited by poor efficacy in discrimination of benign lesions from  OPMD10,12. In addition, affordability and the 
need for specialist interpretation lower its  adoption11,13. An effective oral cancer screening necessitates robust, 
simple, automated, Point-of-Care (PoC) tools that empower Frontline-Health-Workers (FHW) to effectively 
triage large-volume, high-risk  populations14–16.

Previous  studies17, including those from our group, have demonstrated the immense potential of digital, PoC 
imaging systems, enabling access to remote specialists, in the detection of oral  cancer15,18. Auto-fluorescence 
Imaging (AFI) in combination with automated diagnosis and specialist interpretation of the images, have shown 
promising results in oral cancer  screening19–21.Our team has previously reported the feasibility of a dual-mode 
imaging device, combining AFI and White Light Imaging (WLI) for oral cancer  diagnosis16. The primary aim 
of this study was to evaluate the clinical efficacy of the artificial intelligence (AI) enabled, dual-mode imaging 
device for oral cancer screening as  in low-resource-settings. The device was assessed for its efficacy as a PoC 
system to improve the accuracy of FHW-based screening, as a telediagnosis tool and to detect OPMD and oral 
cancer in the community.

Results
Demographics and clinical information. A total of 5025 subjects (images: n = 32,128) were accrued 
in the study (September 2019 to March 2020). Among the subjects, 297 (6%) cases were not interpretable by 
remote specialists and hence excluded from the study (Fig. 1). The gender (M: 52%; F: 48%) and age distribution 
(median age: 53 years) were matched across the different study centers. Tobacco and/or areca nut chewers con-
stituted 62% (n = 2919) of the subjects, while 18% (n = 860) were tobacco smokers. Among the subjects accrued 
from the Christian Institute of Health Sciences and Research (CIHSR), majority were either unemployed (37%) 

Figure 1.  Study consort chart. A total of 5025 subjects were recruited for study according to inclusion and 
exclusion criteria. From 5025 subjects, a total of 32,128 images were captured using the phone with wide FOV 
(WLI and AFI = 7576 pairs) and probe with the focused view (WLI and AFI = 8488 pairs). More images were 
recorded of the same lesions using the probe. Among the subjects, 297 cases were not interpretable (WLI) by 
remote specialists and hence excluded from further analysis. All the subjects (n = 4728) were directly visualized 
by FHW and assessed by the remote specialist. The probe images were used for training/cross-validation 
(n = 5329 pairs) and testing (n = 1416 pairs). Out of 4728, 16% (n = 752) cases were seen directly by the onsite 
specialist. Onsite specialists identified 515 cases as suspicious and 20% (n = 102) underwent incisional biopsy 
and histology evaluation. Remote specialists and FHWs identified a suspicious lesion in 2004 and 1807 subjects 
respectively. FOV field of view, FHW Front-Line-Health Worker, WLI White Light Imaging, AFI Auto-
fluorescence Imaging.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14283  | https://doi.org/10.1038/s41598-022-18249-x

www.nature.com/scientificreports/

or from the student community (20%), while in the clusters from Karnataka Lingayat Education Institute of 
Dental Sciences (KLE) majority were self-employed or home-makers (68%) (Supplementary Fig. S1a–h).

All the subjects included in the study (n = 4728) were directly evaluated by FHWs and telediagnosis by remote 
specialists. Sixteen percent (n = 752) of the subjects were assessed by onsite specialists. FHWs predominantly 
detected white (n = 1286/4728) or white-red patches (326/4728). Remote specialists and FHWs diagnosed 42% 
(2004/4728) and 38% (1807/4728) respectively as suspicious lesions. Out of the 2004 subjects deemed suspicious 
and referred for further evaluation by remote specialists, 752 subjects were evaluated by the onsite specialists. 
The onsite specialist identified 69% (515/752) as suspicious lesions or indicated for biopsy and referred to tertiary 
care facilities. Twenty percent (102/515) underwent the biopsy procedure (Fig. 1).

Comparison of onsite specialists’ diagnosis to histology. The efficacy of the onsite specialists was 
assessed in comparison with histology (n = 102). The lesions detected in this cohort were diagnosed as oral squa-
mous cell carcinoma or carcinoma-in-situ (n = 61), dysplasia (n = 27), and non-dysplasia (n = 14). The onsite spe-
cialists showed a high sensitivity of 94% (CI 86.76–97.65) and specificity of 72% (CI 29.04–96.33) for diagnosis 
of OPMD and oral cancer with histology as the gold standard (Table 1).

Efficacy of dual‑modality imaging device as a telediagnosis tool. The tele-diagnostic efficacy of 
the device was assessed in two ways (i) image quality assessment for remote interpretation and (ii) accuracy of 
the remote specialist. Natural Image Quality Evaluator (NIQE) based assessment of the WLI on the wide field 
of view (FOV) used for remote diagnosis (Supplementary Fig. S2), demonstrated that both the phone (aver-
age score: 4.45; CI 4.44–4.46) and probe (Score: 8.09; CI 8.17–8.23) images were of good quality. The NIQE 
image quality score (Supplementary Fig. S2c) showed significant (p < 0.001) improvement in the second quad-
rant (7.97 ± 0.02) of the study compared to the first (8.51 ± 0.03) indicating the benefits of regular training of the 
FHWs.

The remote specialists showed a sensitivity and specificity of 95% (CI 92.69–96.68) and 84% (CI 78.2–88.03) 
in diagnosis of OPMD and oral cancer respectively, when compared to the onsite specialist (n = 752) with an 
agreement of 0.79 (CI 0.75–0.844) (Table 1).

Diagnostic efficacy of FHW in comparison with onsite and remote specialist. The accuracy of 
FHWs was assessed in terms of the benefits of training (comparison to onsite specialist) and tele-diagnosis 
(comparison with remote specialist). Analysis of the accuracy of FHW in the two clusters (with and without 
onsite specialist) separately indicated that FHWs in the team with an onsite specialist showed a high sensitivity 
of 98% (CI 92.08–95.84) and low specificity of 52.41% (CI 46.70–58.08). However, the FHWs in the team with-
out an onsite specialist showed a comparatively low sensitivity (43.61%; CI 41–46.22) and high specificity of 81% 
(CI 79.45–82.61), emphasizing the need for regular training of FHWs to improve sensitivity. Multi-variate analy-
sis also showed that the FHWs with onsite specialists (NH1, NH2, and KLE1, 2) showed a better performance 
(highest F1 score) (Supplementary Fig. S3a) as compared to those in the team without specialists.

Direct visualization by FHWs demonstrated a moderate sensitivity of 60% (CI 57.85–62.18) and a specific-
ity of 78% (76.22–79.37) in delineating suspicious lesions (Table 1), when compared with the telediagnosis. 

Table 1.  Comparison of the different tests according to the reference standard. The table depicts the number 
of true positives, true negatives, false positives, false negatives, and total cases. The sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value (NPV), and accuracy were calculated according 
to the reference standard. The kappa statistics, to find the agreement, was performed between the reference 
standard and test. OPMD Oral Potentially Malignant Disorders, FHW Front line health worker.

Onsite visual 
examination by 
specialist vs histology 
diagnosis

Remote diagnosis 
vs onsite visual 
examination by 
specialist

Onsite visual 
examination by FHW 
vs remote diagnosis by 
specialist

Onsite visual 
examination by FHW 
vs onsite diagnosis by 
specialist

Diagnosis by by 
MobileNET (in mobile 
phone) vs remote 
diagnosis by specialist

Diagnosis VGG19 
(in cloud, BDL 
uncertainty < 0.15) 
vs remote diagnosis 
(specialist)

True positive 89 489 1203 507 493 420

True negative 5 198 2120 124 622 591

False positive 2 39 604 113 191 94

False negative 6 26 801 8 110 62

Total 102 752 4728 752 1416 1167

Sensitivity 94% 95% 60% 98% 82% 87%

Specificity 72% 84% 78% 52% 77% 86%

PPV 98% 93% 67% 82% 72% 82%

NPV 46% 88% 73% 94% 85% 90%

Accuracy 93% 92% 70% 84% 79% 87%

Prevalence of OPMD/
oral cancer (reference 
standard)

93% (95/102) 69% (515/752) 42% (2004/4728) 69% (515/752) 43% (603/1416) 41% (482/1167)

Weighted Kappa 0.52 (0.22–0.81) 0.79 (0.75–0.84) 0.38 (0.36–0.41) 0.58 (0.5151–0.64) 0.57 (0.53–0.62) 0.76 (0.72–0.80)
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Further, multivariate analysis (Supplementary Fig. S3, Table S1) to identify parameters contributing towards 
FHW diagnosis (F1 score calculated due to an imbalance in subject recruitment), indicated a dependence on 
experience in the current project. This factor showed a high positive correlation with the F1 Score (r = 0.80; 
0.54–0.92; p = 0.028) (Supplementary Fig. S3b, Table S1). These results indicated the need for skilled expertise 
and adjuncts for improving accuracy of FHW diagnosis.

Effectiveness of CNN‑integrated dual mode imaging device as a Point‑of‑Care (POC) diagnos‑
tic tool. The image dataset (probe images = 5329) was randomly split into training (75%) and cross-validation 
(25%) with an additional standalone test dataset (n = 1416). We trained two different versions of deep learning 
models (Fig. 2, Supplementary Fig. S4); one deployed on the smartphone, and the BDL model deployed on the 
cloud server. The MobileNet integrated with the mobile phone detected suspicious lesions in real-time with 82% 
(CI 78.44–84.76) sensitivity and 77% (CI 73.44–79.38) specificity, when compared to remote diagnosis. Fur-
ther classification of the lesions indicated that MobileNet could delineate OSCC (Sensitivity: 94%; CI 73–98.97) 
and OPMD (Sensitivity: 81%; CI 73.54–81.87) from benign lesions and normal mucosa. A comparison of the 
performance of MobileNet with InceptionV3 and VGG19 CNN models (Supplementary Table S2), indicated a 
significant reduction in the number of parameters and the model size with minimal compromise in accuracy.

The BDL, with a more complex neural network, achieved 85% (CI 81.44–87.37) sensitivity and 82% (CI 
79.62–84.97) specificity on the standalone dataset. An uncertainty threshold of 0.15 improved the accuracy (85% 
to 87%) with 18% of the patients needing reference, this was hence chosen as the cut-off (Table 1, Supplementary 
Figs. S4, S5). In case of uncertainty (> 0.15), a remote diagnosis of the images could be carried out. The final model 
including the BDL model in comparison with remote diagnosis achieved a sensitivity of 87% (CI 83.82–89.99) 
and specificity of 86% (83.47–88.77).

Discussion
Population-based screening of oral cancer through visual examination by trained FHWs is established as a 
cost-effective approach, reducing the mortality rate by 34%7. Studies have demonstrated the feasibility of trained 
FHWs in identifying oral  lesions7,14,18,22, however, scalability was a concern, due to the inability to consistently 
train manpower. This study, to the best of our knowledge, is a first of its kind that deployed a PoC diagnostic tool 
to empower FHWs in a community-based screening program, for early detection of oral cancer. The findings of 
the study suggest that this portable imaging device empowered the FHWs for accurate screening and surveil-
lance of oral cancer in a resource-constrained setting (Table 1). The sensitivity of the device in tele-diagnosis 
(95%) and in PoC diagnosis (82%), were comparable to the direct examination by onsite specialists, indicating 

Figure 2.  Pipeline of artificial intelligence-based image classification. The feature extraction of probe WLI and 
AFI was performed using green and red channels of WLI and the normalized ratio of AFI-red/green channels 
(a). These images were fused to feed the neural networks for real-time analysis in phones and also for cloud 
systems. The efficient version of Convolutional Neural Network (CNN) was built which runs on a smartphone 
device (b) classified images as suspicious or non-suspicious. Another more complex CNN based on Bayesian 
deep learning framework was built (c) for predicting uncertainty along with diagnosis in a cloud system. CNN 
Convolution Neural Network, WLI White Light Imaging, AFI Auto-fluorescence Imaging). 
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the feasibility of the approach as a potential oral cancer screening strategy in resource-constrained, high-risk 
populations (Fig. 3).

Visual examination-based detection of suspicious lesions by onsite specialist followed by incisional biopsy 
forms the current oral cancer/OPMD diagnostic pathway. Tele-diagnosis is a valuable approach to provide spe-
cialist expertise to low resource settings. A previous study from our group compared remote specialist diagnosis 
(using a mobile phone) with onsite diagnosis; remote diagnosis achieved the sensitivity and specificity of 96.2% 
and 97.6% respectively in delineation of suspicious lesion when compared to onsite  diagnosis14. In the current 
study, visual examination by onsite specialists was comparable to histology diagnosis in the detection of OPMD/
oral cancer. The dual-mode device, evaluated in the study, was also effective in telediagnosis, with remote diag-
nosis being comparable to the onsite diagnosis for identification of suspicious lesions [Table 1; Kappa 0.79 CI 
(0.75–0.84)]. However, direct FHW diagnosis achieved only a moderate sensitivity (60%), indicating that while 
onsite, remote diagnosis and histology are comparable (Table 1; Kappa 0.52–0.78), an independent FHW-based, 
large-scale screening in low-resource settings, necessitates diagnostic adjuncts for improving accuracy.

The current PoC devices although aid clinicians, albeit with low sensitivity, in identifying early mucosal 
changes, require trained physicians and dentists to infer the  results11,13,23. Integration of AI has led to an improve-
ment in accuracy of these devices. AI-based analysis of AFI improved detection accuracy (sensitivity: 80–100%; 
specificity: 80–91%)19–21, while studies have reported that CNN-based diagnosis improves detection of oral 
cancer using  WLI24,25. In our study, wherein the dual-mode imaging (AFI and WLI) was integrated with cloud-
based CNN, a high sensitivity (87%) and specificity (86%) was achieved, indicating it to be a reliable screening 
tool. The integrated imaging device allows for automation at three levels with increasing accuracy (Fig. 3). The 
phone-based neural network (MobileNet), allows a real-time diagnosis of OPMDs/oral cancer (Sensitivity: 79%; 
Specificity: 82%) and can aid in improving early cancer detection during screening and surveillance. Secondly, 
enabling the cloud-based Bayesian method further increased the sensitivity of the device to 87%. Finally, a remote 
telediagnosis by specialists in cases with uncertainty, will ensure accurate triaging of the subject and appropriate 
referral to a tertiary cancer centre.

In this study, 84% of the patients were evaluated independently by FHWs empowered with dual-mode imag-
ing device, emphasizing the utility of the device in primary health centers lacking specialist expertise. The con-
stant monitoring of the FHWs in terms of imaging and usage of the system enhanced their skills and efficiency. 
In contrast to the present study, previous studies reported diagnostic adjuncts/devices or assays tested by trained 
clinicians in hospital  settings13. Field testing of the device in our study reports significant empowerment of the 
FHWs in detecting suspicious lesions and an improvement in the overall efficiency of screening (r = 0.8) in low-
resource settings. It is to be noted that though the device with an automated algorithm could reliably detect oral 
neoplastic lesions, trained onsite FHWs are essential to counsel and refer high-risk individuals and to ensure 
compliance. The findings from this study hence suggests a pipeline that can be adopted at a community level 

Figure 3.  Diagnostic model in Low resource setting. The study depicted that a dual-mode imaging system 
deployed with Front Line Health workers (FHW) improved the diagnostic efficacy in delineating suspicious oral 
potentially malignant and malignant lesions. In low resource settings with poor internet connectivity, the mobile 
phone-based neural network, MobileNet, which had an accuracy of 79%, can be used. If connectivity is good 
(++), a more accurate cloud-based neural network (VGG19-BDL, accuracy = 87%), should be used and difficult 
cases with high uncertainty value should be referred to remote specialists (accuracy = 92%) for interpretation. 
NN Neural Network, FHW Front-Line-Health-Workers, VGG19-BDL: VGG19 Convolution Neural Network 
with Bayesian prediction. Images Primary health care systems, FHW,Remote specialist were created with 
“BioRender.com” (https:// biore nder. com) and Cloud based neural network with Microsoft Paint Windows.

https://biorender.com
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for oral cancer screening/diagnosis; employing FHWs for primary screening and engaging remote specialists 
in cases of uncertainty (Fig. 3).

The key limitation of the study was the availability of onsite specialist diagnosis only in 16% of the patients. 
Nevertheless, this cohort of 752 subjects, revealed a good consensus between both the onsite and remote specialist 
diagnosis (kappa = 0.79). Further, comparison with histology diagnosis showed high sensitivity but low specific-
ity, primarily attributed to the lesser number of patients with non-suspicious lesions who underwent biopsy. The 
low compliance of the OPMD subjects to undergo biopsy is a significant challenge that needs to be addressed 
in large-scale screening studies. Histology is the gold standard for the detection and diagnosis of OPMD, how-
ever, for practical reasons, WHO has defined Oral Leukoplakia, the primary OPMD, as “a predominantly white 
patch or plaque that cannot be characterized clinically or pathologically as any other disorder...” To improve 
the clinical diagnostic accuracy of the definition, several authors have proposed Certainty (C)  factors26, which 
defines the parameters for clinical and pathological diagnosis. These factors include, evidence from a single 
clinical examination (C1; provisional clinical diagnosis), evidence obtained by a negative result of elimination 
of suspected etiologic factors such as mechanical irritation during follow-up period of 6 weeks (C2; definitive 
clinical diagnosis), supplement C2 with incisional biopsy (C3; histopathologic diagnosis) and evidence follow-
ing surgical excision and pathologic evaluation of the excised specimen (C4). In our study, given the objective 
of establishing a tool to empower FHWs for large scale screening in the field, onsite or remote clinical diagnosis 
was considered as the gold standard.

This study validated a simple, easy-to-use, economical, and portable PoC diagnostic tool that enables auto-
mated diagnosis in low-resource settings. Although continuous monitoring and constant knowledge retention 
of FHWs improves the efficacy of the screening program, the accuracy of FHW to independently detect lesion 
was still low, emphasising the need for a diagnostic adjunct. The most significant component of this study is the 
device being amenable to use by FHWs in low-resource settings for screening and surveillance of oral cancer. 
With the widespread application of the integrated imaging system validated in this study, it will mitigate the need 
for an onsite specialist during screening and increase compliance in FHW-led oral cancer screening programs. 
Adaptation of the results in population-wide cancer screening and early detection programs would enable opti-
mal utilization of human resources in low-resource settings and help in achieving the goal of down-staging oral 
cancer at diagnosis.

Methods
Study design and population. This is a prospective multi-centre, observational study with a dual-modal-
ity imaging device deployed by FHWs in hospital, community, and workplace screening. The study followed the 
International Conference of Harmonization recommendation on Good Clinical Practice and all methods were 
carried out in accordance with relevant guidelines and regulations. The study protocol was registered in the Clini-
cal Trial Registry of the Indian Council of Medical Research (CTRI/2019/11/022167, Registered on: 27/11/2019). 
The subjects were recruited at the study sub-centers, which were monitored by nodal centers in a hub-and-spoke 
model (Figs. 4, 5). Institutional Ethics Committee approvals were obtained from the three nodal centers- The 
Karnataka Lingayat Education (KLE) Society’s Institute of Dental Sciences (KLE; ECR/887/Inst/KA/2016), Ben-
galuru, India, Christian Institute of Health Sciences and Research (CIHSR; EC/NEW/INST/2020/782), Dima-
pur, Nagaland, India, and Mazumdar Shaw Medical Center (MSMC; NNH/MEC-CL-2016-394), Bengaluru, 
India prior to the initiation of the clinical trial. The participants who were above 18 years of age, with a history 
of tobacco smoking and/or chewing or with any oral lesion were included and written informed consent was 
obtained from all the participants. The individuals currently undergoing treatment for malignancy, pregnancy, 
tuberculosis, or suffering from any acute illness were excluded.

Dual mode imaging device. The oral cancer diagnostic device used in the study was equipped with dual 
imaging modalities, comprising WLI and AFI, (405 nm) for both the wide field of view (FOV) based capture 
of the lesion and surrounding tissues and the intra-oral probe enabling a focused view of the lesion (Fig. 6, 
Supplementary Figs. S6, S7)27.The image capture protocol was carried out as previously  reported16. Briefly, the 
smartphone (Moto G5) has a built-in camera, an application for image capture and analysis. The adaptable 
probe consisted of intra-oral imaging optics for the capture of high-resolution images. The LEDs and drivers for 
illumination, filters for reflectance and fluorescence imaging, light sensors were incorporated in the mechanical 
case. The device attached to the Wi-Fi enabled android smartphone was capable of real-time or near real-time 
synchronization with the server and offline image recording (Fig. 5).

Training and monitoring of FHWs. The study personnel consisted of FHWs (n = 18), remote specialists 
(n = 4), onsite specialists (n = 3) and research coordinators (n = 3) (Fig. 5). Specialists provided periodic train-
ing (once in three months) to the FHWs on usage of the device and clinical examination of the oral cavity and 
diagnosis of OPMD, early and advanced oral cancer. In patients with a tobacco-chewing history, wherein visible 
oral lesions were absent, the FHWs were trained to image the quid-placing site along with the normal appearing 
buccal mucosa and tongue.

The FHWs worked as a pair and each team were allotted a unique username that was used throughout 
the study (Fig. 5a). FHWs provided the diagnosis as suspicious (OPMD and/or malignant lesions) or as non-
suspicious (other oral lesions) after the direct visual examination. The educational background of the FHWs 
(non-medical, nursing, dentist, technicians) was recorded (Supplementary Fig. S8). A multivariate analysis was 
performed on FHW’s experience in the medical field/health programs/current projects, age, and the number of 
patients recruited to find significant covariates related to the efficiency of FHWs in the detection of suspicious 
lesions.
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Diagnostic workflow and data flow of the study. All subjects were screened and recruited by the 
FHWs based on the inclusion and exclusion criteria. The demographic details were collected (Supplementary 
Fig. S9). The subjects were imaged using the screening device (Fig. 4, Supplementary Fig. S6), and image qual-
ity was assessed in real-time by an inbuilt algorithm, which uses an image gradient to measure sharper edges. 
In subjects with multiple oral lesions, the most suspicious lesion was considered as the index lesion. The FHWs 
were requested to re-capture if the images appear blurred. The FHWs opined each subject as either suspicious or 
non-suspicious by direct visualization.

The screened population consists of two clusters based on the involvement of the onsite specialist. One cluster 
was screened by a team of FHWs with an onsite specialist and the other without an onsite specialist. The subjects 
in the cluster with the onsite specialist were re-examined by direct visual examination by the onsite specialist, 
who provided an independent clinical diagnosis.

The data captured (Supplementary Table S3) was blinded and uploaded to a secure server for remote specialist 
interpretation (suspicious, non-suspicious, or not interpretable) (Fig. 5) based on the wide FOV (both WLI and 
AFI). The AFI images were interpreted as a gain, loss, or normal fluorescence. The data was encrypted in the 
phone and the cloud using the AES-256 algorithm without any data loss or compression, using NoSQL-based 
MongoDB database in Microsoft Azure Cloud (Fig. 5). The recommendation by a remote specialist for further 
evaluation was communicated to the respective devices. These subjects were evaluated by onsite specialists. 
Those who are indicated for biopsy by the onsite specialists were referred to tertiary care facilities for biopsy. The 
research coordinators monitored the quality of clinical workflow, which included number of cases uploaded, data 
loss, while the image quality was assessed by the specialists from nodal centres. The feedback regarding image 

Figure 4.  Study design. The study participants were recruited from the tertiary cancer center, dental hospitals, 
low resource settings like primary health centers, and community camps by Front-Line-Health-Workers 
(FHWs) (a, b). The clinical history and images were recorded using the dual-mode imaging device (c). FHWs 
have undergone training for using the dual-mode imaging device and also for identifying Oral potentially 
malignant (OPMD) and malignant lesions. FHWs diagnosed oral lesions as suspicious if it is OPMD or 
malignant lesions by direct visual examination. The subjects in dental and tertiary hospitals were re-examined 
by an onsite specialist by direct visual examination (d) and recommended for biopsy (e) when required. The 
onsite specialist diagnosis was compared with histology (reference standard). The images captured by FHWs 
were uploaded to Microsoft Azure cloud (f) and interpreted by a remote specialist (g). The tele-diagnosis of 
remote specialists was compared with the onsite specialist diagnosis (reference standard). The probe images 
were used for the development of multiple deep learning neural networks (f) compared with remote specialist’s 
diagnosis as the reference standard (g). The neural network was integrated with mobile phones (h) for testing 
artificial intelligence-based (AI) diagnosis. The FHW’s and AI diagnosis were compared with the remote 
specialist (reference standard). (FHW Front-Line-Health-Worker, AI artificial intelligence). Images (a, b, d, 
g) were created with “BioRender.com” (https:// biore nder. com), Image (c), “The 3D model of the device” was 
created by solidworks 2020. Image (f) was created with Microsoft Paint Windows, along with the original images 
(e, h) of the study.

https://biorender.com
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quality was given to FHWs and training was repeated whenever required (Fig. 5). The quality of images was also 
evaluated using Natural Image Quality Evaluator (NIQE)28.

The analytical pipeline aimed at comparing the diagnoses obtained in the study to evaluate the efficacy of 
the personnel and device at different levels. As an initial step, in a sub-cohort wherein onsite diagnosis by the 
specialist and referral biopsies were carried out to determine the efficacy of the onsite specialist in the delinea-
tion of OPMD or oral cancer. Herein histology was used as reference standard. As a next step, to establish the 
efficacy of the device as a telediagnosis tool, the remote specialist diagnosis was evaluated with onsite specialist 
diagnosis as the reference standard. Finally, the efficacy of FHW interpretation was compared to the onsite and 
remote specialist diagnosis.

Image analysis and pre‑processing. We created a combinatorial three-channel data set that combines 
the information of AFI and WLI of the probe images for  analysis16. An adaptive histogram equalization method 
was used to improve the brightness and contrast. The blue channel of the WLI was excluded due to the pres-
ence of a long-pass filter in front of the CMOS sensor that blocks the 405 nm excitation  light16. The green and 
red channels of WLI and its normalized ratio of AFI were fused to feed to the different pre-trained Convolution 
Neural Network (CNN) (Fig. 2a)16.

Integration of the convolution neural network (CNN) with the device. The intraoral image dataset 
used was unbalanced in terms of clinical parameters (site and diagnosis) (Supplementary Table S4). We, hence 

Figure 5.  Hub-and-spoke model for data collection. The study nodal centers enrolled FHWs from different 
study populations (a) and participants were recruited according to inclusion and exclusion criteria. The 
demographics, clinical history of habits/lesions, and images were recorded using a dual-mode imaging device. 
Intraoral images were captured in the WLI and AFI dual-mode, a large view of the lesion was captured by 
phone camera, and a more focused image using probe camera by FHW (a). The case report form and images 
were uploaded by trained FHWs to Microsoft Azure Cloud (b). The data was stored in a NoSQL database 
(MongoDB) and was assessed by the study coordinator and remote specialist using the graphic user interface. 
The interpretation of the remote specialist was sent back to the phone operated by FHW (blue line showing 
reverse data flow). The study coordinator checked the completeness of data and a specialist checked the quality 
of images and feedback was sent to respective nodal centers bi-weekly. The data was recorded offline and an 
AES-256 data encryption algorithm was used to store the data in offline (b). FHW Front-Line-Health Worker, 
WLI White Light Imaging, AFI Auto-fluorescence Imaging, KLE, CIHSR, and MSMC: nodal centers. Images of 
FHW, Study monitoring were created with “BioRender.com” (https:// biore nder. com).

https://biorender.com


9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14283  | https://doi.org/10.1038/s41598-022-18249-x

www.nature.com/scientificreports/

applied both data and algorithm-level approaches to reduce the influence of the unbalanced dataset by data 
augmentation and adopted focal loss. First, we built a  MobileNet29 model (pre-trained with Imagenet dataset, 
learning rate = 0.0001, batch-size = 32, and epochs = 300), which can be implemented on a smartphone device in 
real-time (Fig. 2b). We used Nvidia 1080Ti GPU to train the model, which was then converted to TensorFlow 
Lite format using filter converter (reduces the file size, 16.3 MB). The customized android smartphone applica-
tion to control the screening device was also implemented with MobileNet based classification approach. The 
user could employ the android application to analyze the captured images using the proposed CNN model with-
out an internet connection. The moto G5 android smartphone (with octa-core 1.4 GHz CPU, Adreno 505 GPU, 
and 2 GB RAM) took either 306 ms (CPU) or 288 ms (GPU) to process image pairs.

We developed another CNN based on the Bayesian deep learning (BDL)30 framework (Fig. 2c), which pro-
vided a prediction and an uncertainty value (implemented on the cloud server). We used the Monte Carlo Drop-
out Network (MCDN)31 to obtain the model uncertainty, which can be interpreted as a Bayesian approximation 
of a Gaussian process. We trained the BDL with the dual-modal intraoral images using VGG19 (epochs = 300, 
learning rate = 0.0001, decay 5 times by every 20 epochs, batch size = 32). Two dropout layers with 0.5 rate were 
applied to the last two fully connected layers to implement the MCDN. The Bayesian deep network model was 
implemented on the cloud server, which could produce predictions as well as correlated uncertainty value.

Statistical analysis. The sample size for validation was calculated with 80% power to detect a non-inferior-
ity difference of 0.10 using a one-sided binomial test with a significance level of 0.05 (sensitivity with the mobile 
intra-oral screening device is > 86.5%). The sensitivity, specificity, Negative Predictive Value (NPV), and Positive 
Predictive Value (PPV) of different screening methods were calculated. The agreement between diagnoses was 
examined using Kappa statistics. F1 score was calculated to compare the diagnostic efficiency of FHW. Multi-
variate analysis was performed using linear regression to assess the effect of categorical and numerical covariates 
on the relevant outcome. P-value less than 0.05 was considered. The F1 score was calculated as below:

Figure 6.  Dual-mode images and diagnosis. The dual-mode imaging device recorded WLI/AFI of the wide 
field of view (FOV) using a phone camera and focused probe image. The figures depict the diagnosis of FHWs, 
onsite specialists, remote specialists, CNN (MobileNet), and histology diagnosis of cases. WLI White Light 
Imaging, AFI Auto-fluorescence Imaging, FHW Front-Line-Health Worker, WDSCC Well-differentiated 
Squamous Cell Carcinoma, MDSCC moderately differentiated squamous cell carcinoma, CNN Convolutional 
Neural Network.
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Data availability
All data generated in this study is provided in the manuscript is available at https:// www. msctr. org/ wp- conte nt/ 
uploa ds/ 2021/ 09/ Field- valid ation- of- ANN- based- PoC- device. zip. The code is available at https:// github. com/ 
ocsco de/ ocs_ proje ct. Additional, de-identified image data can be made available to other researchers in the field 
upon request proposals and approval by the study management committee. Requests should be directed to the 
corresponding author/s.
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