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Numerical studies of the scattering of light from a two-dimensional randomly rough interface
between two dielectric media

Ø. S. Hetland,1,* A. A. Maradudin,2 T. Nordam,1 and I. Simonsen1

1Department of Physics, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
2Department of Physics and Astronomy, University of California, Irvine California 92697, USA

(Received 16 February 2016; published 12 May 2016)

The scattering of polarized light incident from one dielectric medium on its two-dimensional randomly rough
interface with a second dielectric medium is studied. A reduced Rayleigh equation for the scattering amplitudes
is derived for the case where p- or s-polarized light is incident on this interface, with no assumptions being
made regarding the dielectric functions of the media. Rigorous, purely numerical, nonperturbative solutions of
this equation are obtained. They are used to calculate the reflectivity and reflectance of the interface, the mean
differential reflection coefficient, and the full angular distribution of the intensity of the scattered light. These
results are obtained for both the case where the medium of incidence is the optically less dense medium and
in the case where it is the optically more dense medium. Optical analogs of the Yoneda peaks observed in the
scattering of x rays from metal surfaces are present in the results obtained in the latter case. Brewster scattering
angles for diffuse scattering are investigated, reminiscent of the Brewster angle for flat-interface reflection, but
strongly dependent on the angle of incidence. When the contribution from the transmitted field is added to that
from the scattered field it is found that the results of these calculations satisfy unitarity with an error smaller than
10−4.

DOI: 10.1103/PhysRevA.93.053819

I. INTRODUCTION

In the great majority of the theoretical studies of the
scattering of light from a two-dimensional randomly rough
surface of a dielectric medium, the medium of incidence has
been vacuum. Recent reviews of such studies can be found
in Refs. [1] and [2]. As a result of this restriction, effects
associated with total internal reflection, which requires that
the medium of incidence be optically more dense than the
scattering medium, were not considered in these studies. There
have been exceptions to this general practice, however.

By the use of the stochastic functional approach [3],
Kawanishi et al. [4] studied the coherent and incoherent
scattering of an electromagnetic wave from a two-dimensional
randomly rough interface separating two different dielectric
media. The light could be incident on the interface from
either medium. The theoretical approach used in this work
[4] is perturbative in nature and applicable only to weakly
rough interfaces. Nevertheless, its use yielded interesting
results, including the presence of Yoneda peaks in the angular
dependence of the intensity of the light scattered back into the
medium of incidence when the latter was the optically more
dense medium. These are sharp, asymmetric peaks occurring at
the critical angle for total internal reflection for a fixed angle
of incidence for both p- and s polarization of the incident
light. These peaks were first observed experimentally in the
scattering of x rays incident from air on a metal surface [5] and
have subsequently been studied theoretically in the context of
the scattering of x rays [6–8] and neutrons [7] from rough
surfaces.

In Ref. [4], Kawanishi et al. also observed angles of zero
scattering intensity, to first order in their approach, in the
distributions of the intensity of the incoherently scattered
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light, when the incident light was p polarized. Due to their
resemblance to the Brewster angle in the reflectivity from
a flat interface, they dubbed these angles the “Brewster
scattering angles.” These were observed, in both reflection
and transmission, for light incident from either medium.

Both the Yoneda peaks and the Brewster scattering angles
seem to have had their first appearance in optics in the
paper by Kawanishi et al. [4]. They have yet to be observed
experimentally in this context. It should be mentioned that in
an earlier numerical investigation of light scattering from one-
dimensional dielectric rough surfaces, Nieto-Vesperinas and
Sánchez-Gil [9] observed “sidelobes” in the angular intensity
distributions. However, these authors did not associate these
features with the Yoneda peak phenomenon, even though we
believe doing so would have been correct.

In a subsequent paper Soubret et al. [10] derived a reduced
Rayleigh equation for the scattering amplitudes when an
electromagnetic wave is incident from one dielectric medium
on its two-dimensional randomly rough interface with a second
dielectric medium. The solution of this equation was obtained
in the form of expansions of the scattering amplitudes in
powers of the surface profile function through terms of third
order. However, in obtaining the numerical results presented
in this paper [10], the medium of incidence was assumed to be
vacuum.

In this paper we present a study of this problem free
from some of the restrictive assumptions and approximations
present in the earlier studies of scattering of polarized light
from two-dimensional randomly rough dielectric surfaces. We
first derive a reduced Rayleigh equation for the scattering
amplitudes when p- or s-polarized light is incident from
a dielectric medium whose dielectric constant is ε1 on its
two-dimensional randomly rough interface with a dielectric
medium whose dielectric constant is ε2. The dielectric constant
ε1 can be smaller or larger than ε2. This equation is then solved
by a rigorous, purely numerical, nonperturbative approach.
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FIG. 1. A sketch of the scattering geometry assumed in this work.
The figure also shows the coordinate system used, angles of incidence
(θ0,φ0) and scattering (θs,φs), and the corresponding lateral wave
vectors k‖ and q‖, respectively.

The scattering amplitudes obtained in this way are then used
to calculate the reflectivity and reflectance of the interface
as functions of the angle of incidence and also the effect of
surface roughness on the contribution to the mean differential
reflection coefficient from the light scattered incoherently
(diffusely) and the full angular dependence of the intensity of
the incoherently scattered light. It is hoped that the presentation
of these results will stimulate and motivate experimental
studies of such scattering systems.

II. THE SCATTERING SYSTEM

The system we study in this paper consists of a dielectric
medium (medium 1), whose dielectric constant is ε1, in the
region x3 > ζ (x‖), and a dielectric medium (medium 2), whose
dielectric constant is ε2, in the region x3 < ζ (x‖) (Fig. 1).
Here x‖ = (x1,x2,0) is an arbitrary vector in the plane x3 = 0
and we assume that both ε1 and ε2 are real and positive. The
surface profile function ζ (x‖) is assumed to be a single-valued
function of x‖ that is differentiable with respect to x1 and x2

and constitutes a stationary, zero-mean, isotropic, Gaussian
random process defined by

〈ζ (x‖)ζ (x ′
‖)〉 = δ2W (|x‖ − x′

‖|), (1)

where W (x‖) is the normalized surface height autocorrelation
function, with the property that W (0) = 1. The angle brackets
here and in all that follows denote an average over the ensemble
of realizations of the surface profile function. The root-mean-

square height of the surface is given by

δ = 〈ζ 2(x‖)〉 1
2 . (2)

The power spectrum of the surface roughness g(k‖) is defined
by

g(k‖) =
∫

d2x‖W (x‖) exp(−ik‖ · x‖). (3)

For W (x‖) we assume the Gaussian function W (x‖) =
exp (−x2

‖/a
2), where the characteristic length a is the trans-

verse correlation length of the surface roughness. The corre-
sponding power spectrum is given by

g(k‖) = πa2 exp

(
−a2k2

‖
4

)
. (4)

III. THE REDUCED RAYLEIGH EQUATION

The interface x3 = ζ (x‖) is illuminated from the region
x3 > ζ (x‖) (medium 1) by an electromagnetic wave of fre-
quency ω. The total electric field in this region is the sum of
an incoming incident field and an outgoing scattered field,

E>(x|ω) = E0(k‖) exp[iQ0(k‖) · x]

+
∫

d2q‖
(2π )2

A(q‖) exp[iQ1(q‖) · x], (5)

while the electric field in the region x3 < ζ (x‖) is an outgoing
transmitted field,

E<(x|ω) =
∫

d2q‖
(2π )2

B(q‖) exp[iQ−
2 (q‖) · x]. (6)

In writing these equations we have introduced the functions

Q0(k‖) = k‖ − α1(k‖)x̂3, (7a)

Q1(q‖) = q‖ + α1(q‖)x̂3, (7b)

Q±
2 (q‖) = q‖ ± α2(q‖)x̂3, (7c)

where (i = 1,2)

αi(q‖) =
[
εi

(ω

c

)2
− q2

‖

] 1
2

Re αi(q‖) > 0, Im αi(q‖) > 0.

(8)

Here k‖ = (k1,k2,0), and a caret over a vector indicates that it
is a unit vector. A frequency dependence of the field of the form
exp(−iωt) has been assumed, but not indicated explicitly.

The boundary conditions satisfied by these fields at the
interface x3 = ζ (x‖) are the continuity of the tangential
components of the electric field,

n × E0(k‖) exp[ik‖ · x‖ − iα1(k‖)ζ (x‖)] +
∫

d2q‖
(2π )2

n × A(q‖) exp[iq‖ · x‖ + iα1(q‖)ζ (x‖)]

=
∫

d2q‖
(2π )2

n × B(q‖) exp[iq‖ · x‖ − iα2(q‖)ζ (x‖)], (9)
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the continuity of the tangential components of the magnetic field,

n × [iQ0(k‖) × E0(k‖)] exp[ik‖ · x‖ − iα1(k‖)ζ (x‖)] +
∫

d2q‖
(2π )2

n × [iQ1(q‖) × A(q‖)] exp[iq‖ · x‖ + iα1(q‖)ζ (x‖)]

=
∫

d2q‖
(2π )2

n × [iQ−
2 (q‖) × B(q‖)] exp[iq‖ · x‖ − iα2(q‖)ζ (x‖)], (10)

and the continuity of the normal component of the electric displacement,

ε1n · E0(k‖) exp[ik‖ · x‖ − iα1(k‖)ζ (x‖)] + ε1

∫
d2q‖
(2π )2

n · A(q‖) exp[iq‖ · x‖ + iα1(q‖)ζ (x‖)]

= ε2

∫
d2q‖
(2π )2

n · B(q‖) exp[iq‖ · x‖ − iα2(q‖)ζ (x‖)]. (11)

The vector n ≡ n(x‖) entering these equations is a vector normal to the surface x3 = ζ (x‖) at each point of it, directed into
medium 1:

n(x‖) =
[
−∂ζ (x‖)

∂x1
, − ∂ζ (x‖)

∂x2
,1

]
. (12)

Equation (11) is redundant, but its inclusion simplifies the subsequent analysis. We now proceed to eliminate the transmission
amplitude B(q‖) from this set of equations to obtain an equation that relates the scattering amplitude A(q‖) to the amplitude of
the incident field E0(k‖).

We begin by taking the vector cross product of Eq. (9) with ε2Q+
2 (p‖) exp[−iQ+

2 (p‖) · {x‖ + x̂3ζ (x‖)}]; we next multiply
Eq. (10) by −iε2 exp[−iQ+

2 (p‖) · {x‖ + x̂3ζ (x‖)}]; and finally we multiply Eq. (11) by −Q+
2 (p‖) exp[−iQ+

2 (p‖) · {x‖ + x̂3ζ (x‖)}],
where p‖ = (p1,p2,0) is an arbitrary wave vector in the plane x3 = 0. When we add the three equations obtained in this way, and
integrate the sum over x‖ we obtain an equation that can be written in the form

ε2Q+
2 (p‖) × [VE(p‖|k‖) × E0(k‖)] + ε2VE(p‖|k‖) × [Q0(k‖) × E0(k‖)] − ε1Q+

2 (p‖)[VE(p‖|k‖) · E0(k‖)]

+
∫

d2q‖
(2π )2

{ε2Q+
2 (p‖) × [VA(p‖|q‖) × A(q‖)] + ε2VA(p‖|q‖) × [Q1(q‖) × A(q‖)] − ε1Q+

2 (p‖)[VA(p‖|q‖) · A(q‖)]}

= ε2

∫
d2q‖
(2π )2

{Q+
2 (p‖) × [VB(p‖|q‖) × B(q‖)] + VB(p‖|q‖) × [Q−

2 (q‖) × B(q‖)] − Q+
2 (p‖)[VB(p‖|q‖) · B(q‖)]},

(13)

where

VE(p‖|k‖) =
∫

d2x‖ n(x‖) exp{−i(p‖ − k‖) · x‖ − i[α2(p‖) + α1(k‖)]ζ (x‖)}, (14a)

VA(p‖|q‖) =
∫

d2x‖ n(x‖) exp{−i(p‖ − q‖) · x‖ − i[α2(p‖) − α1(q‖)]ζ (x‖)}, (14b)

VB(p‖|q‖) =
∫

d2x‖ n(x‖) exp{−i(p‖ − q‖) · x‖ − i[α2(p‖) + α2(q‖)]ζ (x‖)}. (14c)

At this point it is convenient to introduce the representation

exp[−iγ ζ (x‖)] =
∫

d2Q‖
(2π )2

I (γ |Q‖) exp(iQ‖ · x‖). (15)

On differentiating both sides of Eq. (15) with respect to xj (j =
1,2) we obtain the result

− ∂ζ (x‖)

∂xj

exp[−iγ ζ (x‖)]

=
∫

d2Q‖
(2π )2

Qj

γ
I (γ |Q‖) exp(iQ‖ · x‖). (16)

Finally, to be able to evaluate the function I (γ |Q‖) we need
the inverse of Eq. (15), namely,

I (γ |Q‖) =
∫

d2x‖ exp(−iQ‖ · x‖) exp[−iγ ζ (x‖)]

=
∞∑

n=0

(−iγ )n

n!
ζ̂ (n)(Q‖), (17)

where

ζ̂ (0)(Q‖) = (2π )2δ(Q‖), (18a)

ζ̂ (n)(Q‖) =
∫

d2x‖ ζ n(x‖) exp(−iQ‖ · x‖), n � 1. (18b)
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On combining Eqs. (14)–(17) with Eqs. (7) and (12) we
obtain the results

VE(p‖|k‖) = [Q+
2 (p‖) − Q0(k‖)]

× I (α2(p‖) + α1(k‖)|p‖ − k‖)

α2(p‖) + α1(k‖)
, (19a)

VA(p‖|q‖) = [Q+
2 (p‖) − Q1(q‖)]

× I (α2(p‖) − α1(q‖)|p‖ − q‖)

α2(p‖) − α1(q‖)
, (19b)

VB(p‖|q‖) = [Q+
2 (p‖) − Q−

2 (q‖)]

× I (α2(p‖) + α2(q‖)|p‖ − q‖)

α2(p‖) + α2(q‖)
. (19c)

When the results given by Eq. (19) are substituted into Eq. (13),
the latter becomes

Q+
2 (p‖) × [Q+

2 (p‖) · E0(k‖)]
I (α2(p‖) + α1(k‖)|p‖ − k‖)

α2(p‖) + α1(k‖)

+
∫

d2q‖
(2π )2

Q+
2 (p‖) × [Q+

2 (p‖) · A(q‖)]

× I ( − α1(q‖) + α2(p‖)|p‖ − q‖)

−α1(q‖) + α2(p‖)
= 0. (20)

Thus, the amplitude of the transmitted field B(q‖) has been
eliminated from the problem and we have obtained an equation
for the scattering amplitude A(q‖) alone.

To transform Eq. (20) into a more useful form,
we first introduce three mutually perpendicular unit
vectors:

â0(p‖) = c√
ε2ω

[p‖ + x̂3α2(p‖)] = c√
ε2ω

Q+
2 (p‖), (21a)

â1(p‖) = c√
ε2ω

[p̂‖α2(p‖) − x̂3p‖], (21b)

â2(p‖) = x̂3 × p̂‖. (21c)

In terms of these vectors Eq. (20) becomes

{[â0(p‖)·E0(k‖)]â0(p‖) − E0(k‖)}I (α2(p‖) + α1(k‖)|p‖−k‖)

α2(p‖) + α1(k‖)

+
∫

d2q‖
(2π )2

{[â0(p‖) · A(q‖)]â0(p‖) − A(q‖)}

× I (α2(p‖) − α1(q‖)|p‖ − q‖)

α2(p‖) − α1(q‖)
= 0. (22)

We now write the vectors E0(k‖) and A(q‖) in the forms

E0(k‖) = ê(i)
p (k‖)E0p(k‖) + ê(i)

s (k‖)E0s(k‖), (23a)

with

ê(i)
p (k‖) = c√

ε1ω
[k̂‖α1(k‖) + x̂3k‖], (23b)

ê(i)
s (k‖) = k̂‖ × x̂3, (23c)

and

A(q‖) = ê(s)
p (q‖)Ap(q‖) + ê(s)

s (q‖)As(q‖), (24a)

with

ê(s)
p (q‖) = c√

ε1ω
[−q̂‖α1(q‖) + x̂3q‖], (24b)

ê(s)
s (q‖) = q̂‖ × x̂3. (24c)

In these expressions E0p(k‖) and E0s(k‖) are the amplitudes
of the p-and s-polarized components of the incident field with
respect to the plane of incidence, defined by the vectors k̂‖ and
x̂3. Similarly, Ap(q‖) and As(q‖) are the amplitudes of the p-
and s-polarized components of the scattered field with respect
to the plane of scattering, defined by the vectors q̂‖ and x̂3.

Equation (22) is a vector equation: It is a set of three coupled
equations. However, there are only two unknowns, namely
Ap(q‖) and As(q‖). Consequently, one of these equations is
redundant. To obtain Ap(q‖) and As(q‖) in terms of E0p(k‖)
and E0s(k‖), we proceed as follows. We take the scalar product
of Eq. (22) with each of the three unit vectors given by Eq. (21)
in turn. The results are

â0(p‖) · [
Eq. (22)

]
: 0 = 0; (25a)

â1(p‖) · [
Eq. (22)

]
:

− â1(p‖) · E0(k‖)
I (α2(p‖) + α1(k‖)|p‖ − k‖)

α2(p‖) + α1(k‖)
=

∫
d2q‖
(2π )2

â1(p‖) · A(q‖)
I (α2(p‖) − α1(q‖)|p‖ − q‖)

α2(p‖) − α1(q‖)
; (25b)

â2(p‖) · [
Eq. (22)

]
:

− â2(p‖) · E0(k‖)
I (α2(p‖) + α1(k‖)|p‖ − k‖)

α2(p‖) + α1(k‖)
=

∫
d2q‖
(2π )2

â2(p‖) · A(q‖)
I (α2(p‖) − α1(q‖)|p‖ − q‖)

α2(p‖) − α1(q‖)
. (25c)

Equations (25b) and (25c) are the two equations we seek.
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With the use of Eqs. (21) and (23)–(24), Eqs. (25b) and (25c) can be rewritten in the form (α = p,s, β = p,s)

Aα(q‖) =
∑

β

Rαβ(q‖|k‖)E0β(k‖). (26)

On combining Eqs. (25b) and (25c) with Eq. (26) we find that the scattering amplitudes {Rαβ(q‖|k‖)} are the solutions of the
equation ∫

d2q‖
(2π )2

I (α2(p‖) − α1(q‖)|p‖ − q‖)

α2(p‖) − α1(q‖)
M+(p‖|q‖)R(q‖|k‖) = −I (α2(p‖) + α1(k‖)|p‖ − k‖)

α2(p‖) + α1(k‖)
M−(p‖|k‖), (27)

where

M±(p‖|q‖) =
(

1√
ε1ε2

[p‖q‖ ± α2(p‖) p̂‖ · q̂‖ α1(q‖)] − 1√
ε2

ω
c
α2(p‖) [p̂‖ × q̂‖]3

± 1√
ε1

ω
c

[p̂‖ × q̂‖]3 α1(q‖) ω2

c2 p̂‖ · q̂‖

)
(28a)

and

R(q‖|k‖) =
(

Rpp(q‖|k‖) Rps(q‖|k‖)
Rsp(q‖|k‖) Rss(q‖|k‖)

)
. (28b)

Equation (27) is the reduced Rayleigh equation for the scattering amplitudes.

IV. THE MEAN DIFFERENTIAL REFLECTION COEFFICIENT

From the knowledge of the scattering amplitudes the mean differential reflection coefficient, the reflectivity, and the reflectance
can be calculated. The differential reflection coefficient ∂R/∂
s is defined such that (∂R/∂
s)d
s is the fraction of the total
time-averaged flux incident on the interface that is scattered into the element of solid angle d
s about the scattering direction
defined by the polar and azimuthal scattering angles (θs,φs). To obtain the mean differential reflection coefficient, we first note
that the magnitude of the total time-averaged flux incident on the interface is given by

Pinc = −Re
c

8π

∫
d2x‖

{
E∗

0(k‖) ×
[ c

ω
Q0(k‖) × E0(k‖)

]}
3

exp{[−iQ∗
0(k‖) + iQ0(k‖)] · x}

= −Re
c2

8πω

∫
d2x‖ {|E0(k‖)|2Q0(k‖) − [E∗

0(k‖) · Q0(k‖)]E0(k‖)}3

= Re
c2

8πω

∫
d2x‖ α1(k‖)|E0(k‖)|2

= S
c2

8πω
α1(k‖)|E0(k‖)|2. (29)

In this result S is the area of the x1x2 plane covered by the randomly rough surface. The minus sign on the right-hand side of
the first equation compensates for the fact that the 3-component of the incident flux is negative, and we have used the fact that
α1(k‖) is real, so that Q0(k‖) is real, and E∗

0(k‖) · Q0(k‖) = 0.
In a similar fashion we note that the total time-averaged scattered flux is given by

Psc = Re
c

8π

∫
d2x‖

∫
d2q‖
(2π )2

∫
d2q ′

‖
(2π )2

{
A∗(q‖) ×

[ c

ω
Q1(q‖) × A(q′

‖)
]}

3
exp[−i{Q∗

1(q‖) − Q1(q′
‖)} · x]

= Re
c2

8πω

∫
d2q‖
(2π )2

{|A(q‖)|2Q1(q‖) − [A∗(q‖) · Q1(q‖)]A(q‖)}3 exp[−2Im α1(q‖)x3]

= Re
c2

8πω

∫
d2q‖
(2π )2

{
α1(q‖)|A(q‖)|2 − c√

ε1ω
q‖[A∗(q‖) · Q1(q‖)]Ap(q‖)

}
exp[−2Im α1(q‖)x3]

= Re
c2

8πω

∫
d2q‖
(2π )2

α1(q‖)|A(q‖)|2 exp[−2Im α1(q‖)x3]

− Re
c2

8πω

∫
d2q‖
(2π )2

[α1(q‖) − α∗
1 (q‖)]

c2

ε1ω2
q2

‖ |Ap(q‖)|2 exp[−2Im α1(q‖)x3]. (30)

The integral in the second term is purely imaginary. Thus, we have

Psc = c2

32π3ω

∫
q‖<

√
ε1

ω
c

d2q‖ α1(q‖)|A(q‖)|2. (31)
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The wave vectors k‖ and q‖ can be expressed in terms of the
polar and azimuthal angles of incidence (θ0,φ0) and scattering
(θs,φs), respectively, by

k‖ = √
ε1

ω

c
sin θ0(cos φ0, sin φ0,0), (32a)

q‖ = √
ε1

ω

c
sin θs(cos φs, sin φs,0). (32b)

From these results it follows that

d2q‖ = ε1

(ω

c

)2
cos θs d
s, (33)

where d
s = sin θsdθsdφs . The total time-averaged scattered
flux therefore becomes

Psc = ε
3/2
1 ω2

32π3c

∫
d
s cos2 θs[|Ap(q‖)|2 + |As(q‖)|2]. (34)

Similarly, the total time-averaged incident flux [Eq. (29)]
becomes

Pinc = S

√
ε1c

8π
cos θ0[|E0p(k‖)|2 + |E0s(k‖)|2]. (35)

Thus, by definition, the differential reflection coefficient is
given by

∂R

∂
s

= 1

S
ε1

( ω

2πc

)2 cos2 θs

cos θ0

|Ap(q‖)|2 + |As(q‖)|2
|E0p(k‖)|2 + |E0s(k‖)|2 . (36)

From this result and Eq. (26) we find that the contribution to
the differential reflection coefficient when an incident plane
wave of polarization β, the projection of whose wave vector

on the mean scattering plane is k‖, is reflected into a plane
wave of polarization α, the projection of whose wave vector
on the mean scattering plane is q‖, is given by

∂Rαβ(q‖|k‖)

∂
s

= 1

S
ε1

( ω

2πc

)2 cos2 θs

cos θ0
|Rαβ(q‖|k‖)|2. (37)

As we are dealing with scattering from a randomly rough
interface, it is the average of this function over the ensemble
of realizations of the surface profile function that we need to
calculate. This is the mean differential reflection coefficient,
which is defined by〈
∂Rαβ(q‖|k‖)

∂
s

〉
= 1

S
ε1

( ω

2πc

)2 cos2 θs

cos θ0
〈|Rαβ(q‖|k‖)|2〉. (38)

If we write the scattering amplitude Rαβ(q‖|k‖) as the sum of
its mean value and the fluctuation from this mean,

Rαβ(q‖|k‖) = 〈Rαβ(q‖|k‖)〉 + [Rαβ(q‖|k‖) − 〈Rαβ(q‖|k‖)〉],
(39)

then each of these two terms contributes separately to the mean
differential reflection coefficient,〈

∂Rαβ(q‖|k‖)

∂
s

〉
=

〈
∂Rαβ(q‖|k‖)

∂
s

〉
coh

+
〈
∂Rαβ(q‖|k‖)

∂
s

〉
incoh

,

(40)

where〈
∂Rαβ(q‖|k‖)

∂
s

〉
coh

= 1

S
ε1

( ω

2πc

)2 cos2 θs

cos θ0
|〈Rαβ(q‖|k‖)〉|2

(41)

and

〈
∂Rαβ(q‖|k‖)

∂
s

〉
incoh

= 1

S
ε1

( ω

2πc

)2 cos2 θs

cos θ0
〈|Rαβ(q‖|k‖) − 〈Rαβ(q‖|k‖)〉|2〉]

= 1

S
ε1

( ω

2πc

)2 cos2 θs

cos θ0
[〈|Rαβ(q‖|k‖)|2〉 − |〈Rαβ(q‖|k‖)〉|2]. (42)

The former contribution describes the coherent (specular)
reflection of the incident field from a randomly rough surface,
while the latter contribution describes the incoherent (diffuse)
component of the scattered light.

Reflectivity and reflectance

Equation (41) is the starting point for obtaining the
reflectivity of the two-dimensional randomly rough interface.
We begin with the result that

〈Rαβ(q‖|k‖)〉 = (2π )2δ(q‖ − k‖)δαβRα(k‖). (43)

The presence of the δ function is due to the stationarity of
the randomly rough surface; the Kronecker symbol δαβ arises
from the conservation of angular momentum in the scattering
process; and the result that Rα(k‖) depends on k‖ only through
its magnitude is due to the isotropy of the random roughness.

With the result given by Eq. (43), the expression for
〈∂Rαβ(q‖|k‖)/∂
s〉coh given by Eq. (41), becomes〈

∂Rαα(q‖|k‖)

∂
s

〉
coh

= ε1

(ω

c

)2 cos2 θs

cos θ0

∣∣Rα(k‖)
∣∣2

δ(q‖ − k‖),

(44)

where we have used the result

[(2π )2δ(q‖ − k‖)]2 = (2π )2δ(0) (2π )2δ(q‖ − k‖)

= S(2π )2δ(q‖ − k‖) (45)

in obtaining this expression. We next use the relation

δ(q‖ − k‖) = 1

k‖
δ(q‖ − k‖) δ(φs − φ0) (46)

together with the relations

k‖ = √
ε1

ω

c
sin θ0, q‖ = √

ε1
ω

c
sin θs, (47)
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to obtain〈
∂Rαα(q‖|k‖)

∂
s

〉
coh

= √
ε1

(ω

c

)cos2 θs

cos θ0

1

k‖
|Rα(k‖)|2

× δ(sin θs − sin θ0)δ(φs − φ0)

= cos2 θs

cos2 θ0

∣∣Rα(k‖)
∣∣2 δ(θs − θ0)δ(φs − φ0)

sin θ0

= |Rα(k‖)|2 δ(θs − θ0)δ(φs − φ0)

sin θ0
. (48)

The reflectivity, Rα(θ0), for light of α polarization is defined
by

Rα(θ0) =
∫ π

2

0
dθs sin θs

∫ π

−π

dφs

〈
∂Rαα(q‖|k‖)

∂
s

〉
coh

= |Rα(k‖)|2. (49)

The function Rα(k‖) is obtained from Eq. (43), with the aid of
the result that (2π )2δ(0) = S, in the form

Rα(k‖) = Rα

(√
ε1

ω

c
sin θ0

)
= 1

S
〈Rαα(k‖|k‖)〉. (50)

In addition to the reflectivity (49) that depends only on the
co-polarized light reflected coherently by the rough interface,
it is also of interest to introduce the reflectance for β-polarized
light defined as

Rβ(θ0) =
∑

α=p,s

Rαβ(θ0), (51a)

where

Rαβ(θ0) =
∫ π

2

0
dθs sin θs

∫ π

−π

dφs

〈
∂Rαβ(q‖|k‖)

∂
s

〉
. (51b)

In short, the reflectance measures the fraction of the power
flux incident on the rough surface that was reflected by
it, taking both specularly and diffusely reflected light into
account: In view of Eq. (40), the reflectance is the sum of a
contribution from light that has been reflected coherently and
a contribution from light that has been reflected incoherently
by the rough interface, Rβ(θ0) = Rβ(θ0)coh + Rβ(θ0)incoh, and
both co- and cross-polarized reflected light contribute. Since
cross-polarized coherently reflected light is not allowed [see
Eq. (43)], the coherent contribution to the reflectance for
β-polarized light equals the reflectivity for β-polarized light;
Rβ(θ0)coh = Rβ(θ0). Equation (51a) can therefore also be
written in the form

Rβ(θ0) = Rβ(θ0) +
∑

α=p,s

Rαβ(θ0)incoh. (52)

If the incident light is not purely p- or s-polarized, the
reflectance and the reflectivity of the rough surface will have to
be calculated on the basis of weighted sums of the expressions
in Eqs. (49) and (52), where the weights reflect the fractions of
the different polarizations contained within the incident light.

V. NUMERICAL SOLUTION OF THE REDUCED
RAYLEIGH EQUATION

The simulation results to be presented in this work were
obtained by a nonperturbative numerical solution of the
reduced Rayleigh equation (27), which was carried out in the

following manner. A realization of the surface profile function
was generated on a grid of Nx × Nx points within a square
region of the x1x2 plane of edges L. This surface profile enters
Eq. (27) through the function I (γ |Q‖), given by Eq. (17).
Utilizing the Taylor expansion detailed in Eq. (17), the Fourier
transform of ζ n(x‖) was calculated by use of the fast Fourier
transform [2], and the Taylor series was truncated at the finite
order NT . In evaluating the q‖ integral in Eq. (27), the infinite
limits of integration were replaced by finite limits |q‖| < Q/2,
and the integration was carried out by a two-dimensional
version of the extended midpoint rule [11, p. 135] applied
to a circular subsection of a grid of Nq × Nq points in the
q1q2 plane, whose size and discretization was determined by
the Nyquist sampling theorem [11, p. 494] and the properties
of the discrete Fourier transform [2]. In momentum space,
these limits lead to discretization intervals of �q = 2π/L

along the orthogonal axes of the q1q2 plane, and upper limits
on the magnitude of resolved wave vectors are given by
Q = �q
Nx/2�, where 
·� denotes the floor function [11,
p. 948]. The resulting linear system of equations was solved
by LU factorization and back substitution.

These calculations were performed simultaneously for
incident light of both p- and s-polarization, and they were
performed for a large number Np of realizations of the
surface profile function ζ (x‖). The resulting scattering am-
plitude Rαβ(q‖|k‖) and its squared modulus |Rαβ(q‖|k‖)|2
were obtained for each realization. An arithmetic average of
the Np results for these quantities yielded the mean values
〈Rαβ(q‖k‖)〉 and 〈|Rαβ(q‖|k‖)|2〉 that enter Eqs. (50), (51),
and (42) for the reflectivity, reflectance, and mean differential
reflection coefficient, respectively. A more detailed description
of the numerical method can be found in Ref. [2].

VI. RESULTS AND DISCUSSIONS

The two-dimensional randomly rough dielectric interfaces
we study in this work were defined by isotropic Gaussian
height distributions of rms heights δ = λ/40 and δ = λ/20,
and an isotropic Gaussian correlation function of transverse
correlation length a = λ/4 [Eq. (4)]. They covered a square
region of the x1x2 plane of edge L = 25λ, giving an area
S = L2 = 25λ × 25λ. The incident light was assumed to be
a p- or s-polarized plane wave of wavelength λ in vacuum.
One of the two media in our configuration was assumed
to be vacuum with a dielectric constant ε = 1.0, and the
other medium was assumed to be a photoresist defined by
the dielectric constant ε = 2.64. Since the dielectric constants
entering the calculations are independent of the wavelength, all
lengths appearing in them can be scaled with respect to λ. The
angles of incidence were (θ0,φ0), where the azimuthal angle
of incidence was set to φ0 = 0◦, without loss of generality. We
remark that this value of φ0 was chosen since it coincided with
one of the two axes of the numerical grid, but that it is, due to the
isotropy of the roughness, an arbitrary choice in the sense that
results for any other value of φ0 can be obtained from the results
presented through a trivial rotation. The surface profiles were
generated by the Fourier filtering method (see Refs. [12] and
[13]) on a grid of Nx × Nx = 321 × 321 points. The values
used for Nx and L correspond to Q = 6.4 ω/c, where Q is the
limit in the I (γ |Q‖) integrals [Eq. (17)], and we used the first
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FIG. 2. The contribution to the incoherent component of the mean differential reflection coefficient from the in-plane, co-polarized
scattering of p- and s-polarized light incident normally [θ0 = 0◦] on (a) a random vacuum-dielectric interface [ε1 = 1.0,ε2 = 2.64] and (b)
a dielectric-vacuum interface [ε1 = 2.64,ε2 = 1.0] as a function of the polar angle of scattering θs . The solid curves were obtained on the
basis of numerically solving the reduced Rayleigh equations [Eq. (27)] for an ensemble of 4500 surface realizations. The dashed curves are
results from small-amplitude perturbation theory [Eq. (53)], included for comparison. The specular direction of reflection is indicated by the
vertical dash-dotted line at θs = 0◦, and in (b) the dotted lines at |θs | = θc = sin−1 √

ε2/ε1 ≈ 38.0◦ indicate the positions of the critical angle
for total internal reflection (as expected for a flat surface system). Results for cross-polarized scattering have not been indicated since they
are generally suppressed in the plane of incidence. The wavelength of the incident light in vacuum was λ. The rough interface was assumed
to have a root-mean-square roughness of δ = λ/40, and it was characterized by an isotropic Gaussian power spectrum [Eq. (4)] of transverse
correlation length a = λ/4. In the numerical calculations it was assumed that the surface covered an area L × L, with L = 25λ, and the surface
was discretized on a grid of 321 × 321 points.

NT = 18 terms of the Taylor expansion in the calculation of
these integrals.

Investigating the energy conservation of our simulation
results can be a useful test of their accuracy. In combining
simulation results from the current work with correspond-
ing results obtained for the mean differential transmission
coefficient 〈∂Tαβ/∂
t 〉 through the use of computationally
similar methods [14,15], we may add the total reflected
and transmitted power for any lossless system. When the
reflectance is added to the transmittance for any of the systems
investigated in the current work, it is found that the results
of these calculations satisfy unitarity [14], a measure of
energy conservation, with an error smaller than 10−4. This
testifies to the accuracy of the approach used, and it is also
a good indicator of satisfactory discretization. It should be
noted, however, that unitarity is a necessary, but not sufficient,
condition for the correctness of the presented results. In a
separate investigation [16], unitarity was found to be satisfied
to a satisfactory degree for surfaces with a root-mean-square
roughness up to about three times larger than the roughness
used in obtaining the results presented in this paper.

A. Normal incidence

In Fig. 2 we display the contribution to the in-plane (q̂‖ ‖
k̂‖) incoherent components of the mean differential reflection

coefficient (DRC) as a function of the polar angle of scattering
when the random surface is illuminated from the vacuum side
at normal incidence by p- and s-polarized light [Fig. 2(a)]
and when it is illuminated from the dielectric medium side
[Fig. 2(b)]. Notice that the unit vectors q̂‖ = q‖/q‖ and
k̂‖ = k‖/k‖ are well defined also for θs = 0◦ and θ0 = 0◦, re-
spectively, as follows from Eqs. (32) and (47). Only results for
in-plane co-polarized scattering are presented, since in-plane
cross-polarized scattering is suppressed due to the absence of
contribution from single-scattering processes. An ensemble of
4500 realizations of the surface profile function was used to
produce the numerical results that this figure is based on. This
ensemble size is more than adequate in terms of the interpre-
tation of the results and their features, but we note that a larger
ensemble size would have reduced the jaggedness that can be
observed in all the (solid line) results presented in this work.

From Fig. 2(a) it is observed that the curves corresponding
to the two polarizations are featureless and are nearly identical.
In contrast, the curves presented in Fig. 2(b) are rather different
for the two polarizations; they display both peaks and dips
in p → p scattering and peaks in s → s scattering. The
origins of these features can be understood through small-
amplitude perturbation theory (SAPT). The contribution to the
mean differential reflection coefficients from light scattered
incoherently can to the lowest nonzero order in the surface
profile function ζ (x‖) be expressed as (see the Appendix for
details)

〈
∂Rpp(q‖|k‖)

∂
s

〉
incoh

= δ2

π2
ε1(ε2 − ε1)2

(ω

c

)2 cos2 θs

cos θ0
g(|q‖ − k‖|) 1

|dp(q‖)|2 |ε2q‖k‖ − ε1α2(q‖)(q̂‖ · k̂‖)α2(k‖)|2 α2
1(k‖)

|dp(k‖)|2 , (53a)
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FIG. 3. Same as Fig. 2, but for the root-mean-square roughness δ = λ/20.

〈
∂Rsp(q‖|k‖)

∂
s

〉
incoh

= δ2

π2
ε2

1(ε2 − ε1)2
(ω

c

)4 cos2 θs

cos θ0
g(|q‖ − k‖|) α2

2(k‖)

|ds(q‖)|2 ([q̂‖ × k̂‖]3)2 α2
1(k‖)

|dp(k‖)|2 , (53b)

〈
∂Rps(q‖|k‖)

∂
s

〉
incoh

= δ2

π2
ε2

1(ε2 − ε1)2
(ω

c

)4 cos2 θs

cos θ0
g(|q‖ − k‖|) α2

2(q‖)

|dp(q‖)|2 ([q̂‖ × k̂‖]3)2 α2
1(k‖)

|ds(k‖)|2 , (53c)

〈
∂Rss(q‖|k‖)

∂
s

〉
incoh

= δ2

π2
ε1(ε2 − ε1)2

(ω

c

)6 cos2 θs

cos θ0
g(|q‖ − k‖|) 1

|ds(q‖)|2 (q̂‖ · k̂‖)2 α2
1(k‖)

|ds(k‖)|2 , (53d)

where the functions dα(q‖) and dα(k‖) for α = p,s are
presented in Eq. (A5) as d+

α (q‖) and d+
α (k‖).

The results of a numerical evaluation of Eq. (53) for normal
incidence and in-plane scattering [q̂‖ ‖ k̂‖] are displayed
as dashed curves in Fig. 2. By comparing the curves ob-
tained from small-amplitude perturbation theory to the results
obtained from a purely numerical solution of the reduced
Rayleigh equation (RRE) [Eq. (27)] we conclude that SAPT
for the considered level of roughness, even to lowest nonzero
order in the surface profile function as in Eq. (53), reproduces
all the important features found in the mean differential
reflection coefficients fairly well, but with a discrepancy in
the amplitudes. This discrepancy decreases with decreasing
surface roughness (results not shown). For example, similar
comparisons for surfaces with an rms roughness of δ = λ/80,
but with the same correlation length a = λ/4, show that the
ability of Eq. (53) to reproduce the results based on the RRE
is excellent for such weakly rough surfaces. However, for
surfaces of rms roughness δ = λ/20 and the same correlation
length, significant discrepancies are observed in both intensity
(or amplitude) and angular dependence between the curves
obtained on the basis of SAPT and the corresponding curves
resulting from a numerical solution of the RRE (Fig. 3).
For instance, from Fig. 3(b) it is observed that the angular
dependence of the s → s scattered intensity around the normal
scattering direction is not correctly reproduced by SAPT;
in this angular interval the numerical simulation results are
almost constant and therefore essentially independent of
θs . These results illustrate the importance and necessity of
going beyond lowest-order SAPT or of performing numerical

simulations. We therefore stress the point that even if we in
the following often turn to SAPT for interpretation of the
nonperturbative solutions to the RRE, any conclusion drawn
on the basis of Eq. (53) is correct only to the lowest nonzero
order in the surface profile function.

Results similar to those presented in Figs. 2 and 3 but for
scattering out-of-plane [q̂‖ · k̂‖ = 0] are not presented, since,
for normal incidence, the results for co-polarized in-plane
scattering are the same as the results for cross-polarized
out-of-plane scattering when the polarization of the scattered
light is the same in the two cases. This symmetry is expected for
isotropic surfaces like the ones we are investigating when the
lateral momentum of the incident light is zero, supported by the
observation that Eq. (53a) evaluated in-plane equals Eq. (53c)
evaluated out of plane, and correspondingly for Eqs. (53d) and
(53b), when k‖ = 0 and θ0 = 0.

In order to simplify the subsequent discussion, we here
express dα(q‖) and dα(k‖) in terms of the polar angles of
incidence and scattering using the relations in Eq. (47):

dp(q‖) = √
ε1

ω

c

{
ε2 cos θs + ε1

[
ε2

ε1
− sin2 θs

] 1
2
}
, (54a)

ds(q‖) = √
ε1

ω

c

{
cos θs +

[
ε2

ε1
− sin2 θs

] 1
2
}
, (54b)

dp(k‖) = √
ε1

ω

c

{
ε2 cos θ0 + ε1

[
ε2

ε1
− sin2 θ0

] 1
2
}
, (54c)

ds(k‖) = √
ε1

ω

c

{
cos θ0 +

[
ε2

ε1
− sin2 θ0

] 1
2
}
. (54d)
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We see from Eq. (54) that when ε2 is greater than ε1, both
dp(q‖) and ds(q‖) are real continuous functions of θs in
the interval 0 < |θs | < π/2, and so therefore are |dp(q‖)|2
and |ds(q‖)|2. Hence, no features are introduced into the
corresponding mean differential reflection coefficients by
these functions. However, when ε1 is greater than ε2, the

function [(ε2/ε1) − sin2 θs]
1
2 present in dp(q‖) and ds(q‖)

vanishes when |θs | equals the critical angle θc = sin−1 √
ε2/ε1

for total internal reflection for the corresponding flat-surface
system, and becomes purely imaginary as |θs | increases
beyond this angle. The functions |dp(q‖)|2 and |ds(q‖)|2,
therefore, both have minima at |θs | = θc. In the case of s → s

in-plane scattering at normal incidence, the minima in the
function |ds(q‖)|2 for ε1 > ε2 lead to sharp peaks at |θs | = θc

in 〈∂Rss(q‖|k‖)/∂
s〉incoh, as displayed in Fig. 2(b). These
same peaks will then also be present for p → s out-of-
plane scattering at normal incidence. However, for p → p

in-plane scattering, while there are still minima in the function
|dp(q‖)|2, we see from Eq. (53a) that 〈∂Rpp(q‖|k‖)/∂
s〉incoh,
to lowest order in the surface profile function, vanishes when
the function

F (q‖|k‖) = |ε2q‖k‖ − ε1α2(q‖)(q̂‖ · k̂‖)α2(k‖)|2 (55)

vanishes. For normal incidence (k‖ = 0) and in-plane
scattering (q̂‖ ‖ k̂‖), we see from this expression that
〈∂Rpp(q‖|k‖)/∂
s〉incoh will vanish when α2(q‖) = 0, which
is when q‖ = √

ε2ω/c [see Eq. (47)]. This will be the case
for θs < 90◦ only when ε1 > ε2, and the expression for
〈∂Rpp(q‖|k‖)/∂
s〉incoh in Eq. (53a) will in this case be zero
for |θs | = θc, explaining the dips shown in Fig. 2(b) for p → p

scattering. We note in passing that the out-of-plane distribution
of 〈∂Rps(q‖|k‖)/∂
s〉incoh also shows dips at the same polar
angles, due to the factor α2(q‖) in Eq. (53c), but these dips will
be present regardless of the angle of incidence.

The peaks observed for θs � θc in Figs. 2 and 3 for
ε1 > ε2 are optical analogs of the Yoneda peaks observed by
Yoneda in the scattering of x-rays from a metal surface [5]
and described as “quasi-anomalous scattering peaks” in the
two-dimensional work by Kawanishi et al. [4]. The Yoneda
peaks were originally observed as sharp peaks for incidence
close to the grazing angle, as the difference in the dielectric
constants of the two scattering media is very small at x-ray
frequencies. In the following, by Yoneda peaks we mean
well-defined maxima in the angular distribution of the intensity
of the scattered light at, or slightly above, the critical polar
angle for total internal reflection, when ε1 > ε2.

Although the mathematical origin of the Yoneda peaks is
clear from Eqs. (53) and (54)—namely, they are associated
with the minimum of the functions |dp,s(q‖)|2 and |dp,s(k‖)|2—
a physical interpretation of them is still under discussion. Thus,
Warren and Clarke [17], in a study of the reflection of x rays
from a polished surface (mirror), proposed that these peaks
arise when the incident beam at a grazing angle of incidence
θ0 that is greater than the grazing critical angle for total internal
reflection θc is scattered through a small angle β by something
just above the mirror surface. The scattered field falls upon
the mirror at a grazing angle α, and strong reflection occurs
when α < θc. This reflection is cut off sharply for α > θc and
less sharply for α < θc by the rapidly decreasing intensity of

small-angle scattering. This produces an asymmetric peak in
the intensity of the scattered field, whose maximum occurs at
the critical angle. It was suggested that the scatterer could be
a projection on an irregular surface.

In a subsequent study of the grazing-angle reflection of x
rays from rough metal surfaces with the use of the distorted-
wave Born approximation [18], Vineyard [6] noted from an
examination of the angular dependence of the magnitude
of the Fresnel coefficient for transmission through a planar
vacuum-metal interface, that it produces a transmitted field
on the surface whose angular dependence has the form of an
asymmetric peak. The peak maximum occurs at the critical
angle and has a magnitude that is twice that of the incident
electric field on the surface, leading to enhanced diffuse
scattering at this angle. This “Vineyard effect” was invoked
by Sinha et al. [7] as the origin of the Yoneda peaks. This
result is mathematically similar to the explanation provided
by Eqs. (53) and (54), but it is not a physical explanation for
these peaks.

Such an interpretation was offered by Kawanishi et al.
[4], who suggested that the Yoneda peaks may be associated
with the presence of lateral waves [19] propagating along
the interface in the optically less dense medium. This wave
satisfies the condition for refraction back into the optically
more dense medium, and it therefore leaks energy at every
position along the interface, along rays whose scattering angle
θs equals θc [20]. This radiation is restricted to the range
θc < θs < π/2. This is an attractive explanation, but it needs
to be explored more through additional calculations.

We have also calculated the full angular intensity distri-
butions of the reflected light. Figures 4 and 5 present such
simulation results for the contribution to the mean differential
reflection coefficient from the light that has been scattered
incoherently by the randomly rough interface. The angles of
incidence were set to (θ0,φ0) = (0◦,0◦); it was cross-sectional
cuts along the plane of incidence of these angular intensity
distributions that resulted in the solid curves presented in
Fig. 2. The parameters assumed in producing the results of
Figs. 2(a) and 4, and Figs. 2(b) and 5 are therefore identical.

Figures 4 and 5 and all following full angular intensity
distributions are organized with a similar layout: They are
arranged in 3 × 3 subfigures where each row and column of the
array correspond to the angular distribution of the incoherent
component of the mean differential reflection coefficient for
a given state of polarization of the scattered and incident
light, respectively. The lower left 2 × 2 corner of such figures
corresponds to the cases where β-polarized incident light
is reflected by the rough interface into α-polarized light,
denoted β → α in the lower left corner of each subfigure,
where α = p,s and the same for β. Moreover, the first row
corresponds to results where the polarization of the reflected
light was not recorded (indicated by �); such results are
obtained by adding the other two results from the same column.
The rightmost column presents results for which the incident
light is unpolarized (indicated by an open circle, ◦); these
results are obtained by taking the arithmetic average of the
other two results present in the same row.

The lower left 2 × 2 corners of Figs. 4 and 5 display
dipole-like patterns oriented along the plane of incidence for
co polarization and perpendicular to it for cross polarization.
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FIG. 4. The incoherent component of the mean differential reflection coefficient, showing the full angular intensity distribution as a function
of the lateral wave vector of the light scattered by a rough interface between vacuum and a dielectric. The light was incident on the surface
from the vacuum, [ε1 = 1.0,ε2 = 2.64]. The angles of incidence were (θ0,φ0) = (0◦,0◦). The position of the specular direction in reflection is
indicated by white dots. The parameters assumed for the scattering geometry and used in performing the numerical simulations had values that
are identical to those assumed in obtaining the results of Fig. 2(a). The in-plane intensity variations in panels (b) and (f) are the curves depicted
in Fig. 2(a). The star notation, e.g., p → �, indicates that the polarization of the scattered light was not recorded; hence, panel (a) is the sum
of panels (b) and (c), and panel (d) is the sum of panels (e) and (f). Furthermore, for the subfigures in the third column the open circle in, e.g.
◦ → � symbolizes that the incident light was unpolarized; these simulation results were obtained by taking the arithmetic average of the other
two subfigures in the same row. The roughness parameters assumed in obtaining these results were δ = λ/40 and a = λ/4.

This is a consequence of the definition used for the polarization
vectors in our system. Moreover, Figs. 4(g)–4(i) and 5(g)–5(i)
show that for unpolarized incident light at normal incidence,
the scattering distributions are independent of the azimuthal
angle of scattering φs . This rotational symmetry is expected
for isotropic surfaces like the ones we are investigating when
the lateral momentum of the unpolarized incident light is
zero. However, for ε1 < ε2 and when the incident light is
linearly polarized but the polarization of the reflected light
is not recorded [Figs. 4(a) and 4(d)], we observe a slight
skew in the distributions. This is similar to results presented in
other, similar work [2,21] and is due to the subtle differences
between the distributions of p → p and s → s scattered light,
as presented for in-plane scattering in Fig. 2.

When ε1 > ε2 the Yoneda peaks form a circle of equal
intensity at the polar angle θs = θc [or q‖ = √

ε2ω/c] in
Fig. 5(i), where unpolarized incident light is scattered by
the surface into s-polarized light. Similarly, a circular groove
of close-to-zero intensity [exactly zero according to SAPT,
Eq. (53)] can be found at θs = θc in Fig. 5(h). The position and
circular symmetry of this groove can be understood through
the previously mentioned factors of α2(q‖) and k‖ present in
Eq. (53a) for p → p polarization and the factor α2(q‖) present
in Eq. (53c) for s → p polarization, since α2(q‖) becomes zero
when q‖ = √

ε2ω/c and k‖ is zero for normal incidence. It can
be of interest to note that we also, as a consequence, observe
a φs-independent peak in Fig. 5(h) at a polar scattering angle
significantly larger than θc: the same peak as seen for p → p
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FIG. 5. The same as Fig. 4, but for light incident from the dielectric side onto the interface with vacuum, [ε1 = 2.64; ε2 = 1.0]. The
in-plane intensity variations in panels (b) and (f) are the curves depicted in Fig. 2(b). Notice the rapid changes in intensity around the polar
angle θs = θc = sin−1 √

ε1/ε2 [or q‖ = √
ε2ω/c].

scattering in Fig. 2(b). However, this peak is not as sharp as the
peak found at θc in Fig. 5(i), and, according to our definition,
it is not a Yoneda peak.

Equations (53) demonstrate that the angular intensity
distributions we are investigating can, to lowest order in the
surface profile function, be explained through different factors
in these equations with good approximation. As an aid in the
interpretation of the results presented here and in the following,
we notice that the power spectrum of the surface, g(|q‖ − k‖|)
is common for all equations in Eq. (53). As such, the mean
DRC in SAPT to lowest order is essentially a distorted
Gaussian on which critical angle effects are superposed.

B. Non-normal incidence

As a starting point for our discussion of results for non-
normal incidence, in Fig. 6(a) we present the angular depen-
dence of the light scattered incoherently for a grazing angle
of incidence from vacuum: θ0 = 66.9◦. The scattering distri-
bution for s → s scattered light can be seen to have retained

its general shape from Fig. 2(a), but for p → p scattering we
now observe a new feature: a local minimum at θs ≈ 50◦. In
the case of small-amplitude perturbation theory, represented
in Fig. 6(a) by dashed curves, 〈∂Rpp(q‖|k‖)/∂
s〉incoh goes to
zero at the position of this minimum.

In order to explain this minimum for p → p scattering
in Fig. 6(a), we again turn to Eq. (53). For non-normal
incidence (k‖ �= 0), the function F (q‖|k‖) in Eq. (55) can
only cause 〈∂Rpp(q‖|k‖)/∂
s〉incoh to vanish when q̂‖ · k̂‖
is positive (forward scattering). Specifically, for in-plane
forward-scattering [q̂‖ · k̂‖ = 1], 〈∂Rpp(q‖|k‖)/∂
s〉incoh will
vanish at a polar angle �B given by

�B(θ0) = sin−1

[√
ε2(ε2 − ε1 sin2 θ0)(

ε2
2 − ε2

1

)
sin2 θ0 + ε1ε2

]
. (56)

The scattering intensity 〈∂Rpp(q‖|k‖)/∂
s〉incoh will therefore,
to lowest nonzero order in SAPT, have a zero when ε1 < ε2

and θ0 is in the interval sin−1[ε2(ε2 − ε1)/(ε2
2 + ε2ε1 − ε2

1)]
1
2
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FIG. 6. (a) Same as Fig. 2(a), but for angles of incidence (θ0,φ0) = (66.9◦,0◦). (b) Same as panel 6(a), but for out-of-plane scattering
[φs = ±90◦]. Results for combinations of the polarizations of the incident and scattered light for which the scattered intensity was everywhere
negligible have been omitted. Parameters: ε1 = 1.0, ε2 = 2.64; δ = λ/40, a = λ/4.

< θ0 < π/2. For θ0 = 66.9◦, as assumed in producing
Fig. 6(a), we therefore expect a local minimum in
〈∂Rpp(q‖|k‖)/∂
s〉incoh at θs = �B(66.9◦) = 51.7◦, which is
in good agreement with the observed value.

The scattering angles defined by �B were first mentioned in
the literature by Kawanishi et al. [4], where the angular values
of �B were explored through a stochastic functional approach
for two-dimensional surfaces. They chose to call the angles at
which the first-order contribution (according to their approach)
to 〈∂Rαp(q‖|k‖)/∂
s〉incoh vanishes the Brewster scattering
angles, as a generalization of the Brewster angle for a flat
surface. In what follows, following Kawanishi et al., we call the
polar angles of scattering in the plane of incidence at which p-
and s-polarized light is scattered diffusely (incoherently) into
light of any polarization with zero, or nearly zero, intensity,
the Brewster scattering angles.

The Brewster angle θB is defined by the zero in the
reflectivity from a flat surface (coherent reflection in the
specular direction) for p-polarization at the angle of incidence
given by θ0 = θB = tan−1(

√
ε2/ε1). For one set of {ε1,ε2},

there is hence only one Brewster angle for incidence in a given
medium. However, in contrast, we would like to stress the
fact that the Brewster scattering angles for p → p scattering
are present for a wide range of angles of incidence, given
by Eq. (56) for in-plane scattering. From Eq. (56) it is also
of interest to note that for light incident at the Brewster
angle (for the corresponding flat-surface system), θ0 = θB ,
we find that �B(θB) = θB ; the scattering intensity for light
scattered incoherently vanishes for a scattering angle equal to
the Brewster angle. This attests to the close relation between
the Brewster angle for coherent reflection and the Brewster
scattering angle �B for diffuse reflection and is consistent
with the findings of Kawanishi et al. [4].

Figure 6(b) presents simulation results for the same
configuration as in Fig. 6(a), but for light scattered out-of-
plane [q̂‖ · k̂‖ = 0]. The dot product q̂‖ · k̂‖ in Eq. (53d)
indicates that, to lowest nonzero order in SAPT, we should
not expect any contribution to the mean DRC from s → s

out-of-plane incoherently scattered light. However, this is
not the case for p → p scattered light, where, even for
q̂‖ · k̂‖ = 0, a closer look at Eq. (53a) indicates that the out-
of-plane scattered intensity is zero only for θs = 0 [q‖ = 0].
This is precisely what we observe for 〈∂Rpp(q‖|k‖)/∂
s〉incoh
in Fig. 6(b).

Figure 7 depicts results similar to those presented in Fig. 6
but for an increased surface rms roughness of δ = λ/20
with the remaining parameters unchanged. As for normal
incidence, it is found, not surprisingly, that small-amplitude
perturbation theory is most accurate for the smallest surface
roughness. However, the most interesting feature to notice
from Fig. 7(a), as compared to Fig. 6(a), is the angular position
and amplitude of the local minimum of the in-plane p → p

intensity distribution. In the former figure [Fig. 7(a)], the
intensity at the position of the minimum is nonzero and it is
located at an angle that is smaller than the Brewster scattering
angle �B(θ0) predicted by Eq. (56). We speculate that this shift
in the Brewster scattering angle is roughness induced in a way
similar to how the “normal” Brewster angle is shifted by the
introduction of surface roughness.

The results presented in Fig. 6 are in-plane and out-of-plane
cuts from Fig. 8, which presents the full angular distribution of
the contributions to the mean DRC from incoherently scattered
light for the angles of incidence (θ0,φ0) = (66.9◦,0◦). Here the
white dots indicate the lateral wave vector of the specular re-
flection, k‖. Compared to the results presented in Fig. 4, Fig. 8
displays many interesting features that are strongly dependent
on both incoming and outgoing polarization, and we are in
Fig. 8 left with symmetry in the distributions only about the
plane of incidence. For p → p polarized reflection [Fig. 8(b)]
we observe that a significant fraction of the incoherently
scattered light has shifted into the backscattering portion of the
q‖ plane as the angle of incidence has increased. The opposite
is true for s → s polarized reflection, Fig. 8(f), where the
majority of the incoherently scattered light is scattered into the
forward portion of the q‖ plane. This can be understood through
small-amplitude perturbation theory: In Eq. (53), the function
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FIG. 7. Same as Fig. 6, but for root-mean-square roughness δ = λ/20.

F (q‖|k‖) [Eq. (55)] constitutes the main difference between
s → s and p → p polarized scattering, and it is easy to see
that this term will enhance the backward scattering and reduce

the forward scattering for p → p polarization. Additionally,
the Brewster scattering angle, which for θ0 = 66.9◦ was given
by Eq. (56) and found to be at θs = 51.7◦ for the parameters

FIG. 8. Same as Fig. 4, but for the angles of incidence (θ0,φ0) = (66.9◦,0◦). Parameters: ε1 = 1.0, ε2 = 2.64; δ = λ/40, a = λ/4.
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FIG. 9. (a) Same as Fig. 2(b), but for angles of incidence (θ0,φ0) = (34.5◦,0◦). (b) Same as panel (a), but for out-of-plane scattering
[φs = ±90◦]. Results for combinations of the polarizations of the incident and scattered light for which the scattered intensity was everywhere
negligible have been omitted. Parameters: ε1 = 2.64, ε2 = 1.0; δ = λ/40, a = λ/4.

assumed, can now be seen to be part of a more general but still
localized minimum in both Fig. 8(a) and Fig. 8(h), i.e., for p →
� and ◦ → p scattering, respectively. Figure 8(b) shows that
the Brewster scattering angle for p → p polarized scattering
can be found to be part of an interestingly shaped minimum
in the q‖ plane. The shape of this minimum can, however, be
extracted in a straightforward manner from Eq. (55).

More interesting still is scattering in the inverse configura-
tion, where light is incident from the dielectric side of the rough
interface [ε1 = 2.64,ε2 = 1.0]: Solutions of the RRE for this
configuration and angles of incidence (θ0,φ0) = (34.5◦,0◦),
but for otherwise identical parameters as in Figs. 6 and 8,
are presented in Fig. 9. Analogous with Fig. 6, Fig. 9(a)
shows the incoherent component of the mean DRC for in-plane
scattering, and Fig. 9(b) shows the corresponding curves for
out-of-plane scattering.

In Fig. 9(a), we now observe that the two dips in
〈∂Rpp(q‖|k‖)/∂
s〉incoh at |θs | = θc observed in Fig. 2(b)
have both turned into Yoneda peaks, albeit with different
peak intensities, and that the sharp dip at the same angle
for forward scattering have turned into a less sharp local
minimum at θs ≈ 27◦. In order to understand these features,
we see from Eq. (56) that, for ε1 > ε2, 〈∂Rpp(q‖|k‖)/∂
s〉incoh
vanishes for θs = �B(θ0) when θ0 is in the interval 0 <

θ0 < sin−1 √
ε2/ε1. This minimum in 〈∂Rpp(q‖|k‖)/∂
s〉incoh

will shift its polar position towards θs = 0◦ for increasing
θ0, eventually “releasing” the Yoneda peaks in the forward-
scattering plane originating in the |dα(q‖)|2 functions also for
p → p scattering. In the backscattering plane, we observe
through the function given in (55) that the negative sign of
(q̂‖ · k̂‖) will lead to a monotonic increase in the contribution
from Eq. (55) to Eq. (53a) as θ0 increases, eventually producing
a Yoneda peak also for q̂‖ · k̂‖ < 0. The overall distribution of
s → s incoherent scattering in Fig. 9(a) also shows a strong
forward shift in its scattering intensities, which, as we look
to Eq. (53d), can be attributed solely to the shifted power
spectrum g(|q‖ − k‖|).

Looking at Fig. 9(b), we observe several features for
out-of-plane scattering that warrant a comment. Overall, we

observe that the scattering distributions are again symmetric
about θs = 0, as is expected for out-of-plane scattering when
the surface roughness is isotropic. Moreover, the distribution
of 〈∂Rps(q‖|k‖)/∂
s〉incoh appears similar in shape to the
distribution of 〈∂Rpp(q‖|k‖)/∂
s〉incoh in Fig. 2(b). Their
similarity can, to lowest nonzero order in SAPT, be attributed
to their shared factor of α2(q‖) in Eqs. (53a) and (53c), which
in both cases vanishes for q‖ = √

ε2ω/c, thereby suppressing
the Yoneda peaks at this polar angle. There are no such
suppressing factors present in Eq. (53b), and the distribution
of 〈∂Rsp(q‖|k‖)/∂
s〉incoh therefore displays Yoneda peaks
at |θs | = θc. Similar to what we observed in Fig. 6(b), we
see that the distribution of 〈∂Rpp(q‖|k‖)/∂
s〉incoh has a local
minimum at θs = 0; both this minimum and the Yoneda peaks
found at |θs | = θc are readily understood through the function
in Eq. (55) and the factor |dα(q‖)|2, respectively.

We now turn to a scattering system for which the rms
roughness of the surface is increased to δ = λ/20, i.e., twice
the roughness assumed in obtaining the results of Fig. 9.
Results for the in-plane and out-of-plane scattered intensity
distributions for different combinations of the polarizations of
the incident and scattered light are presented in Fig. 10. Overall
the results in Fig. 10 are in qualitative agreement with those
of Fig. 9 for the equivalent but less rough scattering system.
In general, the increase in surface roughness is again found to
result in a poorer agreement between the results obtained on
the basis of SAPT and those obtained by a direct numerical
solution of the RRE. However, it is interesting to observe
that for the case of in-plane as well as out-of-plane p → p

scattering, SAPT seems to give a fair representation of the
simulated scattered intensity distributions for both levels of
roughness considered in Figs. 9 and 10. For other combinations
of the polarizations of the incident and scattered light this is
not the case.

The results presented in Fig. 9 are, as for Fig. 6, in-plane
and out-of-plane cuts from Fig. 11, which displays the full
angular distribution of the contribution to the mean DRC
from the incoherently scattered light for the angles of incid-
ence (θ0,φ0) = (34.5◦,0◦). In contrast to what was observed in
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FIG. 10. Same as Fig. 9, but for root-mean-square roughness δ = λ/20.

FIG. 11. Same as Fig. 5, but for the angles of incidence (θ0,φ0) = (34.5◦,0◦). As can be seen from the position of the white dot, this figure
captures the scattering distribution when the polar angle of incidence θ0 is close to the critical angle θc = sin−1 √

ε2/ε1 for a corresponding
flat-interface system. Parameters: ε1 = 2.64; ε2 = 1.0; δ = λ/40, a = λ/4.
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FIG. 12. Same as Fig. 11, but for the angles of incidence (θ0,φ0) = (45.5◦,0◦). Parameters: ε1 = 2.64, ε2 = 1.0; δ = λ/40, a = λ/4.

Fig. 8, all four of the lower left 2 × 2 subfigures in Fig. 11
now have significantly differing appearances. Similar to our
observations in the case of incidence from vacuum, we observe
that the Brewster scattering angle described by Eq. (56) can
be seen to be part of a more general but still localized
minimum in both Fig. 11(a) and Fig. 11(h), for p → � and
◦ → p scattering, respectively. Further, we still, as in Fig. 5,
observe Yoneda peaks for all azimuthal angles of scattering.
The intensities of these peaks are now, however, significantly
stronger in the forward-scattering plane, closer to the direction
of specular reflection.

We now turn to Fig. 12, which is identical to Fig. 11
but for the angles of incidence (θ0,φ0) = (45.5◦,0◦). For
these angles of incidence, the light incident on a flat surface
would exhibit total internal reflection. Incoherent scattering
is, as before, greatly enhanced for q‖ � √

ε2ω/c, the part
of wave-vector-space that is evanescent in the medium of
transmission. The intensity of the light scattered diffusely into
this region is now comparable for s- and p-polarized light, and
we see Yoneda peaks in both forward and backward scattering,
for a fairly wide range of azimuthal angles. This can, as

before, be understood to lowest nonzero order in SAPT through
Eqs. (53) and (54). The factors |dp(k‖)|−2 and |ds(k‖)|−2 will
both have their maxima at θ0 = sin−1 (

√
ε2/ε1), maxima that

coincide with the corresponding maxima for the previously
mentioned factors |dp(q‖)|−2 and |ds(q‖)|−2. The contribution
from these factors will be the same for all φs , but common
for all combinations of polarized scattering in Eq. (53) is that
the multiplicative factor of the power spectrum will have its
principal weight at |q‖ − k‖| = 0; explaining the asymmetry
about q1 = 0 and the consequent shift of scattering to the
forward-scattering portion of the q‖ plane.

While there is no Brewster scattering angle for the angle
of incidence in Fig. 12, we still observe a local minimum in
the backward scattering direction close to the critical angle for
p-polarized incident light, Fig. 12(a).

C. Reflectivity and reflectance

The reflectivities for the two configurations of media are
presented in Fig. 13. Both Fig. 13(a) and Fig. 13(b) show only
small deviations from the Fresnel reflection coefficients for a
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FIG. 13. (a) The reflectivities Rα(θ0) of a two-dimensional randomly rough vacuum-dielectric interface [ε1 = 1.0,ε2 = 2.64] for p- and
s-polarized light as functions of the polar angle of incidence. (b) The same as in panel (a), but for a dielectric-vacuum interface [ε1 = 2.64,ε2 =
1.0]. The quantity RF

α (θ0) indicates the Fresnel reflection coefficient (flat surface reflectivity). The critical angle θ0 = θc = sin−1 √
ε2/ε1 for

total internal reflection for an equivalent flat-interface system is indicated by a vertical dashed line in panel (b). Several simulations were run
with small perturbations in the surface length L in order to obtain reflectivity data with higher angular resolution. The roughness parameters
assumed in obtaining these results were δ = λ/40 and a = λ/4.

corresponding flat-surface system, the only notable difference
being in Fig. 13(b), where the surface roughness prevents
total internal reflection for incoming light with θ0 larger than
θc = sin−1 √

ε2/ε1 ≈ 38.0◦, the critical angle corresponding
to the values of the dielectric constants assumed in these
simulations. The overall reflectivities for both systems are
slightly smaller in all cases than the corresponding Fresnel
coefficients, which is expected for a rough-surface system
since some light is scattered diffusely away from the specular
direction. The rough-surface analogs of the Brewster angles for
corresponding flat-interface systems, called analogs because

the reflectivity does not reach strict zero in the case of
surface roughness, are clearly seen for p-polarized light in both
figures.

The differences between the presented results for the reflec-
tivity and the corresponding Fresnel coefficients can be better
understood through Fig. 14, which presents the contribution
to the reflectance from the light that has been reflected
incoherently by the interface: Rβ(θ0)incoh [see Eq. (52)]. In
both subfigures in Fig. 14 we see that the amount of diffusely
scattered light in general decreases with an increasing angle of
incidence if we ignore the effects of total internal reflection.
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FIG. 14. The θ0 dependence of the contribution to the reflectance from p- and s-polarized incident light that has been scattered incoherently
from a two-dimensional randomly rough surface. This quantity is for β-polarized incident light defined as Rβ (θ0)incoh = Rβ (θ0) − Rβ (θ0). (a)
The reflectances for a vacuum-dielectric interface [ε1 = 1.0,ε2 = 2.64] for p- and s-polarized light as functions of the polar angle of incidence.
(b) Same as panel (a), but for a dielectric-vacuum interface [ε1 = 2.64,ε2 = 1.0]. As in Fig. 13, the critical angle for total internal reflection in a
corresponding flat-interface system, θc, is indicated by a vertical dashed line in Fig. 14(b). Several simulations were run with small perturbations
in the surface length L in order to obtain reflectance data with higher angular resolution. The roughness parameters assumed in obtaining these
results were δ = λ/40 and a = λ/4.
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This is consistent with the general notion that a rough surface
is perceived as less rough for large angles of incidence [14].

Figure 14(a) shows that the incoherent part of the re-
flectance for the vacuum-dielectric configuration is a mono-
tonically decreasing function of θ0 for both polarizations, as
expected by inspection of Eqs. (53) and (54), for ε1 < ε2. The
functions |dp(k‖)|−2 and |ds(k‖)|−2 and the factor 1/cos(θ0)
are all monotonically increasing functions of k‖ (or θ0), but
they do not increase rapidly enough to compensate for the
monotonically decreasing factor of α2

1(k‖). A closer inspection
of the numerical results and a more careful evaluation of
the different factors in Eq. (53) have shown that the more
rapid initial decrease of Rp(θ0)incoh is due to the contribution
from its cross-polarized term, while its copolarized term is
responsible for the eventual less rapid decrease compared to
Rs(θ0)incoh.

The incoherent part of the reflectance for the dielectric-
vacuum configuration is displayed in Fig. 14(b). We can find
here the explanation for why the curve for p-polarization in
Fig. 13(b) showed a stronger peak for θ0 just beyond the
critical angle θc than the curve for s-polarization: less light is
scattered incoherently for these angles when the incident light
is p-polarized than when it is s-polarized. We can also see
that the contribution to the reflectance from the light scattered
incoherently increases more than two-fold at the critical
angle relative to the contribution at normal incidence. This
behavior can, again, be understood in terms of small-amplitude
perturbation theory to lowest order in the surface profile
function [Eqs. (53) and (54)]. The functions |dp(k‖)|−2 and
|ds(k‖)|−2 will each have their maximum at the critical angle
θc, but while Rs(θ0)incoh will get monotonically increasing
contributions from its co- and cross-polarized components for
0 < θ0 < θc, for Rp(θ0)incoh the cross-polarized component
will go to zero due to the α2(k‖) factor present in Eq. (53b).
This dip in 〈∂Rsp(q‖|k‖)/∂
s〉incoh is hence the main reason for
the differences in the incoherent component of the reflectance
for this configuration of media.

VII. CONCLUSIONS

We have presented a derivation of the RRE for the reflec-
tion amplitudes of light scattered from a two-dimensional,
randomly rough, surface. These equations enable a non-
perturbative solution of the scattering problem based on
the Rayleigh hypothesis. As an example of its solution by
purely numerical means, the full angular distributions for
both co- and cross-polarized incoherent components of the
mean differential reflection coefficients were reported for
configurations of vacuum and an absorptionless dielectric
with a Gaussian surface power spectrum and correlation
function.

It was shown that a configuration of reflection within
the optically denser medium leads to Yoneda peaks in
the angular distributions of the diffusely scattered light,
namely peaks at the critical angle for total internal reflection
in the denser medium. The behavior and development of
these peaks for a wide range of angles of incidence and
scattering were investigated, and the lack of such peaks for
light scattered into p-polarization for polar angles of inci-

dence smaller than the critical angle were explained through
SAPT.

Brewster scattering angles, angles where scattering into
p-polarization is suppressed to strict zero in SAPT to lowest
nonzero order in the surface profile function, were found
to explain many of the differences in scattering into s-
and p-polarization for the scattering systems investigated in
the current work. These angles were first mentioned in the
literature by Kawanishi et al. in Ref. [4]. Our results are in
good agreement with their findings.

Small-amplitude perturbation theory, to lowest nonzero
order in the surface profile function, was overall shown
to reproduce our numerical results qualitatively to a fairly
high degree of accuracy through both analytical arguments
and a numerical implementation of that theory. This leads
us to believe that the features presented in the results are
single-scattering effects.

The scattering of light from a transparent dielectric is well
described by solutions obtained by means of small-amplitude
perturbation theory, including the full angular distribution of
the mean DRC for all combinations of the polarizations of the
incident and scattered light. The reduced Rayleigh equation is
a powerful starting point for studies of higher-order scattering
features, such as enhanced backscattering, for example. The
results presented here show that for the degree of surface
roughness and the values of the dielectric constants assumed in
this work no higher-order features are observed. Nevertheless,
the RRE still gives more accurate numerical results for the
mean DRC than does SAPT to lowest nonzero order in
the surface profile function when the surface roughness is
increased.

As an investigation of the quality of the results, energy
conservation (unitarity) was found to be satisfied within 10−4

when the total scattered energies from both reflection and
transmission were added together for the roughness parameters
and configurations used in this paper. An investigation similar
to the present one but for light transmitted through the
dielectric rough interface will be presented in a separate
publication [15].
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APPENDIX: EXPANSION OF R(q‖|k‖) IN POWERS OF THE
SURFACE PROFILE FUNCTION

In this Appendix we outline the derivation of Eq. (53). To
this end, we begin with the expansion

R(q‖|k‖) =
∞∑

n=0

(−i)n

n!
R(n)(q‖|k‖), (A1)
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where the superscript n denotes the order of the corresponding term in powers of ζ (x‖). When Eqs. (17) and (A1) are substituted
into Eq. (27), the latter becomes

∞∑
m=0

m∑
n=0

(−i)m

m!

(
m

n

) ∫
d2q‖
(2π )2

[−α1(q‖) + α2(p‖)]n−1ζ̂ (n)(p‖ − q‖)M+(p‖|q‖) R(m−n)(q‖|k‖)

=
m∑

n=0

− (−i)n

n!
[α1(k‖) + α2(p‖)]n−1ζ̂ (n)(p‖ − k‖)M−(p‖|k‖). (A2)

When we equate terms of zero order in ζ (x‖) on both sides of this equation, we obtain

1

−α1(p‖) + α2(p‖)
M+(p‖|p‖) R(0)(p‖|k‖) = −(2π )2δ(p‖ − k‖)

1

α1(p‖) + α2(p‖)
M−(p‖|p‖), (A3)

which, if we solve for R(0)(q‖|k‖), gives(
R(0)

pp(q‖|k‖) R(0)
ps (q‖|k‖)

R(0)
sp (q‖|k‖) R(0)

ss (q‖|k‖)

)
= (2π )2δ(q‖ − k‖)

⎛
⎝ d−

p (k‖)

d+
p (k‖)

0

0 d−
s (k‖)

d+
s (k‖)

⎞
⎠, (A4)

where

d±
p (k‖) = ε2α1(k‖) ± ε1α2(k‖), (A5a)

d±
s (k‖) = α1(k‖) ± α2(k‖). (A5b)

Equation (A4) essentially represents the Fresnel coefficients for specular reflection from a flat interface.
For m = 1, Eq. (A2) can be simplified to

1

−α1(p‖) + α2(p‖)
M+(p‖|p‖)R(1)(p‖|k‖) +

∫
d2q‖
(2π )2

ζ̂ (1)(p‖ − q‖)M+(p‖|q‖) R(0)(q‖|k‖) = −ζ̂ (1)(p‖ − k‖)M−(p‖|k‖). (A6)

If we now use the result that the matrix M+(p‖|p‖) is diagonal and hence readily inverted and that the matrix R(0)(q‖|k‖) is given
by Eq. (A4), we can simplify Eq. (A6) into

R(1)(q‖|k‖) = − (ε2 − ε1)ζ̂ (1)(q‖ − k‖)

×
⎛
⎝

√
ε1ε2

d+
p (q‖)d+

p (k‖)
[d−

p (k‖)M+
pp(q‖|k‖) + d+

p (k‖)M−
pp(q‖|k‖)]

√
ε1ε2

d+
p (q‖)d+

s (k‖)
M±

ps(q‖|k‖)[d−
s (k‖) + d+

s (k‖)]
1

d+
s (q‖)d+

p (k‖)
[d−

p (k‖)M+
sp(q‖|k‖) + d+

p (k‖)M−
sp(q‖|k‖)] 1

d+
s (q‖)d+

s (k‖)
M±

ss(q‖|k‖)[d−
s (k‖) + d+

s (k‖)]

⎞
⎠. (A7)

where the matrix elements {M±
αβ(q‖|k‖)} are given by Eq. (28a). This ultimately gives

R(1)(q‖|k‖) = − (ε2 − ε1)ζ̂ (1)(q‖ − k‖)

×
⎛
⎝ 1

d+
p (q‖)d+

p (k‖)
[ε2q‖k‖ − ε1α2(q‖)(q̂‖ · k̂‖)α2(k‖)] −

√
ε1

d+
p (q‖)d+

s (k‖)
ω
c
α2(q‖) [q̂‖ × k̂‖]3

−
√

ε1

d+
s (q‖)d+

p (k‖)
ω
c

[q̂‖ × k̂‖]3 α2(k‖) 1
d+

s (q‖)d+
s (k‖)

ω2

c2 (q̂‖ · k̂‖)

⎞
⎠2α1(k‖). (A8)

In view of Eq. (A1) we find that through terms linear in the surface profile function

R(q‖|k‖) = R(0)(q‖|k‖) − iR(1)(q‖|k‖) + O(ζ 2). (A9)

The substitution of these results in Eq. (42) and use of the result that 〈ζ̂ (Q‖)ζ̂ (Q‖)∗〉 = Sδ2g(|Q‖|) yields Eq. (53).
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