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Angular dependence of dissociative electron attachment to polyatomic molecules:

Application to the 2B1 metastable state of the H2O and H2S anions

Daniel J. Haxton,1, 2, ∗ C. William McCurdy,2, 3, † and Thomas N. Rescigno2, ‡

1Department of Chemistry, University of California, Berkeley, California 94720
2Lawrence Berkeley National Laboratory, Chemical Sciences, Berkeley, California 94720

3Departments of Applied Science and Chemistry,

University of California, Davis, California 95616

The angular dependence of dissociative electron attachment (DEA) to polyatomic targets is formu-
lated in the local complex potential model, under the assumption that the axial recoil approximation
describes the dissociation dynamics. An additional approximation, which is found to be valid in the
case of H2O but not in the case of H2S, makes it possible to describe the angular dependence of DEA
solely from an analysis of the fixed-nuclei entrance amplitude, without carrying out nuclear dynam-
ics calculations. For H2S, the final-vibrational-state-specific angular dependence of DEA is obtained
by incorporating the variation of the angular dependence of the entrance amplitude with nuclear
geometry into the nuclear dynamics. Scattering calculations using the complex Kohn method and,
for H2S, full quantum calculations of the nuclear dynamics using the Multi-Configuration Time-
Dependent Hartree method, are performed.

I. INTRODUCTION

The ab initio computation of the cross section for dis-
sociative electron attachment (DEA) to H2O has been
addressed in two previous works [1, 2]. Both H2O [3–
16] and H2S [17] undergo dissociative attachment via
several metastable states of the anion. In particular,
both molecules have a Feshbach resonance of 2B1 sym-
metry which participates in this process. In our previ-
ous work on H2O, we calculated the cross sections for
DEA via this resonance state using complex Kohn scat-
tering calculations [18, 19] and quantum nuclear dynam-
ics calculations employing the Multi-Configuration Time-
Dependent Hartree (MCTDH) method [20–23], and suc-
ceeded in closely reproducing experimentally determined
quantities such as the total cross section and degree of
vibrational excitation of the OH fragment. The present
paper is concerned with the calculation of angular de-
pendences for the production of H− ions from the 2B1

resonance state of either anion, i.e.

H2O+ e− −→ H2O
−(2B1) −→ H− +OH (X 2Π) (1a)

H2S + e− −→ H2S
−(2B1) −→ H− + SH (X 2Π). (1b)

To be precise, what is meant by “angular dependence”
is the dependence of the cross section on the H− scat-
tering angle θ, which is defined by the schematic in Fig.
1. This is the angle between the direction of the inci-
dent beam of electrons and that of the ejected H− ions
produced in the experiment.

The experimental results on DEA to these molecules
via the 2B1 resonance state indicate that in the H2O case
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FIG. 1: Definition of H− scattering angle θ.

the angular dependence of the cross section for different
final vibrational states of OH is relatively similar [9, 10].
In contrast, for DEA to H2S, there is a significantly dif-
ferent angular dependence for production of the ground
and first excited vibrational state of SH [17]. At high
incident electron energies, the second vibrational state is
observed in greater proportion to the first at θ = 45◦,
but in lesser proportions at greater angles.

The calculations presented here reproduce this effect,
which arises from a combination of two factors. The first
is the mixing of different partial waves into the “entrance
amplitude” for production of the resonant state. The en-
trance amplitude for dissociative attachment is analagous
to the dipole matrix element which controls the ampli-
tude for photodissociation. The entrance amplitude de-
pends upon the initial orientation of the molecule with
respect to the incident electron beam and this depen-
dence leads to an angular dependence in the cross sec-
tion, even after it is averaged over the random orienta-
tions of the molecule with respect to the incident electron
direction. In H2S, the dependence of the entrance am-
plitude on molecular orientation changes appreciably as
the internal nuclear geometry varies within the Franck-
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Condon region, whereas for H2O, it does not. As a result,
the nuclear dynamics for the dissociation of H2S

− (2B1)
are different depending on the original orientation of the
H2S molecule relative to the incident electron beam at
the time of attachment.

The second factor is the “axial recoil” [24] nature of the
dissociation. The axial recoil approximation states that
the recoil axis which connects the atom and the diatom
center of mass does not rotate during the dissociation. If
this is the case, then the probability for producing disso-
ciative fragments at a certain orientation is the same as
the probability for attachment at that orientation (if the
survival probability for the dissociative species is unity).
If the approximation does not apply, then the dependence
of the entrance amplitude upon the initial orientation of
the molecule will effectively be spread over a range of final
orientations, and final-state-specific angular dependences
are much less likely.

For each of these 2B1 resonance states, that of H2O
and that of H2S, the corresponding adiabatic potential
energy surface is steeply dissociative but relatively flat
with bend, near the equilibrium geometry of the neutral.
Therefore, the axial recoil approximation may be applied,
which simplifies the calculations considerably. The angu-
lar dependence of the DEA cross section to H2O is found
by simply evaluating the probability for electron attach-
ment at each orientation θ, whereas for H2S, we perform
a separate nuclear dynamics calculation at each orienta-
tion.

The outline of this paper is as follows. In Section II,
we describe the local complex potential (LCP), which in-
troduces concepts such as the entrance amplitude which
are necessary for understanding the DEA process. In
Section III we introduce expressions for the dissociative
attachment T -matrices. In Section IV we describe the
axial recoil approximation, leaving a detailed derivation
of this approximation for the Appendix. In Section V we
describe our method for fitting the S-matrices obtained
from scattering calculations to obtain partial wave am-
plitudes. In Section VI we present results for H2O, and
in Section VII we present results for H2S. We conclude
with a brief summary.

II. LOCAL COMPLEX POTENTIAL MODEL

For resonances such as the 2B1 state of H2O or H2S,
the dissociative attachment process may be treated under
the local complex potential (LCP) model [24–28], which
describes the nuclear dynamics of the resonant state in
terms of the driven Schrödinger equation

(E −Ha) ξνi
( ~Q) = φνi

( ~Q), (2)

in which Ha is the Hamiltonian for the nuclear motion of
the resonant state,

Ha = T~Q + ER( ~qint) −
iΓ( ~qint)

2
. (3)

The nuclear degrees of freedom in the center-of-mass sys-

tem are collectively denoted by ~Q; the nuclear kinetic
energy, by T ~Q. The electronic energy of the resonance

is ER − iΓ/2, where Γ is its width, and ER is the real
part of its energy. These quantities are functions of ~qint,
the internal degrees of freedom of the molecule, which

are a subset of ~Q. The resonance energy has a negative
imaginary component, which leads to its decay.

As described elsewhere [29–31], Eq. (2) can be arrived
at via the formalism of Feshbach [32] partitioning, in
which the electronic Hilbert space of the molecular sys-
tem is divided into resonant and nonresonant parts after
the Born-Oppenheimer approximation is made. The res-
onant part of the Hilbert space (also called “Q-space”)
is the single discrete resonance state ψQ; the remainder
of the Hilbert space is called “P-space,” the members of
which are denoted by ψP .

The driving term, φνi
in Eq. (2), is defined as:

φνi
( ~Q) = Vā( ~Q)χνi

( ~Q), (4)

in which χνi
is the initial rovibrational wave function of

the neutral target with quantum numbers νi, and the
quantity Vā is the “entrance amplitude,” defined as

Vā( ~Q) = [ψP ( ~Q)|Hel|ψQ( ~qint)], (5)

where the brackets denote integration over the electronic
degrees of freedom ~re (which are defined with respect
to the body-fixed frame). The wave function ψP in the
above matrix element is the nonresonant part of the elec-
tron scattering wave function, and therefore incorporates
the boundary conditions which define the dissociative at-
tachment problem, i.e. the energy and angular depen-
dence of the incident electron wave function and the ini-
tial electronic state of the target. The entrance ampli-
tude Vā is therefore dependent upon not only the internal
degrees of freedom of the molecule, which affect the elec-
tronic wave function and electronic Hamiltonian of the
initial and resonant state, but also upon the orientation
of the molecule relative to the incident plane wave.

The latter dependence is often neglected, as it usually
does not affect the calculated total cross sections, by us-
ing Fermi’s golden rule to replace the entrance amplitude
with an averaged quantity:

Vā( ~Q) →
√∫

dΩ̄
∣∣∣Vā( ~Q)

∣∣∣
2

=

√
Γ( ~qint)

2π
. (6)

The integration in Eq. (6) is over the angular variables

that orient the target in the laboratory frame, i.e. ~Q less
the internal variables ~qint. This approximation neglects
the rotational excitation caused by the angular depen-
dence of the entrance amplitude, and destroys all infor-
mation about the angular dependence of the products.

The LCP equation, Eq. (2), may be formally inverted,

ξνi
= Ĝ+(E)φνi

, (7)
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where Ĝ+ is the resolvent operator,

Ĝ+ = (E −Ha + iε)−1. (8)

The coordinate space representation of the resolvent is
the outgoing wave Green’s function G+ and we have

ξνi
( ~Q) =

∫
d ~Q′ G+( ~Q; ~Q′;E)φνi

( ~Q′). (9)

In practice, we represent the Green’s function as the
Fourier transform of the propagator, and thereby obtain
the solution of Eq. (2) as

ξνi
( ~Q) = lim

ε→0
i

∫ ∞

0

ei(E+iε)te−iHatφνi
( ~Q, 0) dt

= lim
ε→0

i

∫ ∞

0

ei(E+iε)tφνi
( ~Q, t) dt,

(10)

where we define the time-dependent nuclear wave func-
tion as

φνi
( ~Q, t) = e−iHatφνi

( ~Q, 0). (11)

We employ the MCTDH package [33] for the propaga-
tion of the driving term φνi

and the subsequent analysis.
Further details can be found in Ref. [2].

III. T-MATRICES FOR DISSOCIATIVE

ATTACHMENT

For the moment, we will follow O’Malley [28] and
not restrict our formalism to a triatomic or diatomic
molecule. Considering a general dissociative attachment
process

e− +AB −→ A− +B, (12)

where A and B may stand for one or more atomic com-
ponents of the molecule AB, we define the dissociative
coordinates as follows. The distance between the cen-
ter of mass of A and the center of mass of B is called R.
The orientation of the corresponding vector ~R (defined as
pointing toward the anion A−) is denoted by the angles
θ and φ, defined relative to the lab-frame z-axis and xz-
plane. We may refer to θ and φ collectively as the solid
angle Ωk. In a scattering problem it is useful to define
the z-axis as parallel to the wavevector of the incident
electron. For a triatomic or greater, we may also spec-
ify ζ, the third Euler angle, which orients the molecule
around the R̂ axis. This setup is generally called an “R-
embedding” coordinate system [34] and is summarized in
Figure 2.

Given a scattering wavefunction Ψ with incoming part
normalized as

Ψ ∼
re→∞

√
k

2π2
ei~k·~reΨAB + outgoing components, (13)

z
e−

θ

R

ζ φ
B

A
FIG. 2: Schematic of Euler angles φ, θ, ζ and dissociative co-
ordinate R for general dissociative attachment problem. “A”
and “B” stand for one or more atomic fragments of molecule
AB and R is the distance between their centers of mass. A is
the anion.

the T -matrix for dissociative attachment is defined as the
coefficient of the outgoing spherical wave [28],

Ψ ∼
R→∞

∑

τυ

T τυ
DEA(θ, φ)

√
µR

2κτυ

eiκτυR

R
(Ψτ

A− × Ψυ
B) .

(14)
In these equations ΨAB is the full wavefunction (elec-

tronic and rovibrational) of the neutral target state, ~k
is the wavevector of the incident electron, and ~re are its
coordinates in the center-of-mass frame. Also, ΨA− and
ΨB are the full wavefunctions of the fragments A− and B
with rovibrational quantum numbers denoted collectively
by τ and υ, and energies Eτ and Eυ, respectively; µR is
the reduced mass in the dissociative coordinate R; and
κτυ is the wavenumber of the recoil in that coordinate,

κτυ =
√

2µR (E − Eτ − Eυ). (15)

We may make the Born-Oppenheimer approximation for
the initial and final states, and thereby define

Ψτ
A− = ψτ

A− × φA−

Ψυ
B = ψυ

B × φB ,
(16)

where the ψ are the rovibronic wavefunctions, and φ the
electronic wavefunctions, of the final states, the latter
of which depend parametrically upon the nuclear coordi-
nates.

In terms of the driving term φνi
of the LCP model we

thereby obtain

T τυ
DEA(θ, φ) = lim

R→∞

√
2κτυ

µR
Re−iκτυR

(
ψτ

A−ψυ
B

∣∣∣∣G
+

∣∣∣∣φνi

)

(17)
in which the curved bracket notation (|) denotes integra-
tion over all degrees of freedom except R and the solid
angle Ωk.
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With the definition of the T -matrix from Eqs.(13) and
(14), the definition of the differential cross section be-
comes [24]

∂σDEA

∂Ωk
=

π

k2
|TDEA(Ωk)|2 (18)

such that

∂στυ
DEA

∂Ωk
= lim

R→∞

2κτυπ

µRk2
R2

∣∣∣∣
(
ψτ

A−ψυ
B

∣∣∣∣G
+

∣∣∣∣φνi

)∣∣∣∣
2

. (19)

IV. AXIAL RECOIL APPROXIMATION

The axial recoil approximation [24] states that the ori-
entation of the molecule in terms of the coordinates θ and
φ does not change as the dissociation occurs. If this is
the case, then the dependence upon orientation of the en-
trance amplitude is preserved in the angular dependence
of the products. The applicability of this approxima-
tion is dependent upon the rotational temperature of the
molecules dissociated in the experiment: if the sample
is hot enough so that the rotational energy is compa-
rable to the dissociation energy of the transient species
involved, then the rotation of the dissociation axis during
the dissociation is unavoidable; the axial recoil approxi-
mation does not apply, and the dissociative attachment
cross section is likely to be isotropic.

From a practical standpoint, the axial recoil approxi-
mation helps to reduce the number of degrees of freedom
which must be explicitly included in the numerical solu-
tion of Eq. (7).

For a diatomic, the axial recoil approximation requires
only that the interatomic potential be steeply dissocia-
tive in R. For a polyatomic, this approximation is more
stringent: not only must the potential be steeply disso-
ciative so that the molecule rotates negligibly during the
dissociation process, but in addition, there must not be
internal dynamics which lead to the rotation of the dis-
sociation axis R̂ relative to the direction of the incident
electron. For a triatomic, this means that the potential
must be relatively flat in the Jacobi coordinate γ, which
for H2O and H2S is almost equivalent to the bond an-
gle θHOH or θHSH . We have found that the portions of
the potential energy surfaces of both 2B1 states which
are sampled by the dissociating wavepackets are indeed
relatively flat in γ.

The axial recoil approximation requires there to be a
Dirac delta-function in the Green’s function:

G+( ~Q; ~Q′;E) × φνi
( ~Q′)

= g+(~q; ~q′;E)δ(Ωk − Ω′
k) × φνi

( ~Q′),
(20)

in which expansion ~q stands for all coordinates contained

in ~Q except for θ and φ. In the Appendix we provide a
standard derivation of this approximation for a diatomic,
and one for polyatomic targets as well.

For certain cases, the axial recoil approximation pro-
vides a means to derive a simple expression for the DEA
angular dependence, which does require nuclear dynam-
ics calculations for its evaluation. In those cases, in
addition to the axial recoil approximation, an assump-
tion about the entrance amplitude Vā, which we will
term the “constant-eigenmode approximation” for rea-
sons that will be made clear below, needs to be made
as well. The entrance amplitude may be expanded in a
complete orthonormal angular basis yµ, such that

Vā( ~Q) =
∞∑

µ=1

Vµ( ~qint)yµ(Ω̄), (21)

where Ω̄ is either the angle θ for a diatomic or the solid
angle {θ, ζ} for a polyatomic, and

∫
dΩ̄ y∗ν(Ω̄)yµ(Ω̄) = δνµ. (22)

(The entrance amplitude Vā does not depend on φ be-
cause of the symmetry of the incoming plane wave.)

We consider first the case of a diatomic target, for
which the internal coordinate ~qint is R, the internuclear
distance, and the initial rovibrational target state can be
written as

χνi
( ~Q) = χjiνi

(R)Yjimi
(θ, φ). (23)

If only one member of the set {yµ}, say yµ0
, contributes

to the sum in Eq. (21), i.e.

Vā( ~Q) = Vµ0
( ~qint)yµ0

(Ω̄)

= Vµ0
(R)yµ0

(θ),
(24)

then the driving term in Eq. (2) is factorable into an
R-dependent part and a Ωk-dependent part:

φνi
( ~Q) = yµ0

(θ)Yjimi
(θ, φ) × Vµ0

(R)χjiνi
(R). (25)

Eq.(24) is the constant-eigenmode approximation. If the
axial recoil approximation, Eq. (20), applies, then the
differential cross section, Eq. (19), may then also be fac-
tored,

∂σDEA

∂Ωk
= lim

R→∞

2κπ

µRk2
R2 |yµ0

(θ)|2 |Yjimi
(θ, φ)|2

×
∣∣∣∣
∫
dR′ g+(R;R′;E)Vµ0

(R)χjiνi
(R)

∣∣∣∣
2

.

(26)

For a diatomic, an average over degenerate initial states
is accomplished by averaging over the mi quantum num-
ber; the |Yjimi

(θ, φ)|2 terms in Eq. (26) average to 1/4π
when this is done, and the cross section becomes pro-
portional to |yµ0

(θ)|2. Thus, we obtain the angular de-
pendence of the dissociative attachment products simply
by evaluating the angular dependence of the entrance
amplitude. We emphasize that this constant-eigenmode
approximation does not mean that the cross section need
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be dominated by a single partial wave, since the angular
function yµ0

(θ) may contain contributions from different
l−values. The only requirement is that the factorization
implied by Eq. (24) hold over the Franck-Condon region
of the initial target state.

For a polyatomic molecule, approximations beyond the
axial recoil approximation of Eq.(20) and the constant-
eigenmode approximation of Eq. (24) are necessary to
derive this result, or more precisely, the result that

∂σDEA

∂Ωk
∝
∫
dζ |yµ0

(θ, ζ)|2 (27)

after summing over inital and final rotational states.
These are described in the Appendix.

Finally, if the constant-eigenmode approximation can-
not be made, i.e., the entrance amplitude Vā within the
Franck-Condon region cannot be factored into an Ω̄-
dependent part and a ~qint-dependent part as per Eq. (24),
then we have

∂σDEA

∂Ωk
= lim

R→∞

2κπ

µRk2
R2 |Yjimi

(θ, φ)|2

×
∣∣∣∣
∫
dR′ g+(R;R′;E)Vā(R, θ)χjiνi

(R)

∣∣∣∣
2

,

(28)

and we may calculate final-state-specific cross sections
by evaluating the dR′ integral for different values of θ.
In subsequent sections, we will develop an analagous ex-
pression for a polyatomic case and use it for calculations
on H2S.

V. CALCULATION OF Vā

To obtain the angular dependence of the entrance am-
plitude Vā, we begin with a result of formal scattering
theory which states that, in the vicinity of a narrow res-
onance, the T -operator can be partitioned into resonant
and non-resonant components

T (E) = T bg + T res(E), (29)

where

T res(E) = −π V |Ψres〉〈Ψ̃res|V
(E − Eres + iΓ/2)

, (30)

and that the (electronically elastic) resonance scattering
amplitude, which is proportional to a matrix element of
T res on the energy shell, is thus

fres
~k→~k′

=
1

k
〈~k′Ψo|T res|~kΨo〉

= −π
k

〈~k′Ψo|V |Ψres〉〈Ψ̃res|V |~kΨo〉
(E − Eres + iΓ/2)

,

(31)

where k is the magnitude of both ~k and ~k′; Ψo is the

target wave function; and 〈~re|~k〉 is an energy normalized

plane-wave:

〈~re|~k〉 =
√
k

1

(2π)3/2
ei~k·~re . (32)

In the present context, we can identify the entrance

amplitude Vā( ~Q) with the matrix element that appears
in Eq. (31),

Vā( ~Q) = 〈Ψ̃res|V |~kΨo〉, (33)

and use the partial-wave expansion of a plane wave

ei~k·~re = 4π
∑

lm

iljl(kre)Ylm(r̂e)Y
∗
lm(k̂) (34)

to obtain

Vā( ~Q) =
1√
2π

∑

l,m

il2
√
k〈Ψ̃res|V |ΨojlYlm〉Y ∗

lm(θ, ζ)

≡ 1√
2π

∑

l,m

ilγlm( ~qint)Y
∗
lm(θ, ζ),

(35)

where the replacement of Ylm(k̂) by Ylm(θ, ζ) follows from

choosing the body-fixed z-axis parallel with ~R, and the

space-fixed axis parallel with k̂.
The usual argument for a narrow resonance [35], cou-

pled with the fact that the scattering matrix must be
unitary, leads to the constraint
∫
dΩ̄ |Vā( ~Q)|2 =

1

2π

∑

l,m

|γlm( ~qint)|2 =
Γ( ~qint)

2π
, (36)

which identifies |γlm( ~qint)|2 as the partial resonance
width associated with the angular momentum channel
lm. In other words, the resonance amplitudes γlm suffice
to completely determine the entrance amplitude Vā for a
narrow resonance.

To obtain the amplitudes γlm at a given geometry, we
carry out a multichannel resonance analysis of the quanti-
ties obtained from complex Kohn scattering calculations.
For this purpose, it is convenient to work with the S-
matrix rather than the T -matrix:

T =
S − 1

2i
. (37)

The S-matrix for multichannel scattering near a reso-
nance pole may be factored into background and resonant
components as [35]

S = Sbg × Sres

= Sbg ×
(

1 − iA

E −ER + iΓ/2

)
,

(38)

where A is an energy-independent matrix. Unitarity of
Sres requires A to be Hermitian. Eq. (38) can also be
written

S = Sbg − iB

E −ER + iΓ/2
, (39)
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where

B = SbgA (40)

or

A = Sbg†B. (41)

It can be shown [35] that if the resonance is nonde-
generate, A and B are rank 1 matrices. Since A is also
Hermitian, we can write

Alm, l′m′ = δlmδ
∗
l′m′ (42)

Blm, l′m′ = γlmδ
∗
l′m′ , (43)

where γlm and δlm satisfy

∑

l,m

|γlm|2 =
∑

l,m

|δlm|2 = Γ. (44)

Since the system is time-reversal invariant, the S-matrix,
as well as its residue at E = ER − iΓ/2, must also be
symmetric. This in turn requires B to be a symmetric
matrix. In that case we can adjust the phases of γlm and
δlm so that

γlm = δ∗lm, (45)

and hence

Blm, l′m′ = γlmγl′m′ . (46)

Since A is a rank 1 matrix, it can have only one non-
zero eigenvalue, λ, and corresponding normalized eigen-
vector or “eigenmode” ~u with components ulm. In view
of Eq. (42) and Eq. (44), it is clear that λ = Γ and that

ulm = δlm/
√

Γ, within an overall phase.
We can summarize these results by observing that the

resonant portion of the T -matrix is described by a single
eigenmode ~u,

T res
lm,l′m′ = −u∗lm

Γ

2(E − ER + iΓ/2)
u∗l′m′ (47)

and that the components of the eigenmode ~u are the com-
plex conjugates of the resonance amplitudes divided by√

Γ:

ulm = γ∗lm/
√

Γ. (48)

In our calculations, we first obtain Γ from a fit to the
Spx,px

matrix element, and then fit every matrix element
of S independently to the linear form given by Eq. (39),
using Γ in the denominator, thereby obtaining the coef-
ficient matrices which we will call Sbg 1 and B1. Then

A1 = Sbg 1†B1. (49)

We then construct the Hermitian part of A1,

AH =
1

2

(
A1† +A1

)
, (50)

and obtain its eigenvalues and eigenvectors. If Eq. (42)
applies then of course there is only one non-zero eigen-
value; in practice, there were usually several eigenvalues
with magnitudes ∼5% that of the largest. We there-
fore took ~u to be the complex conjugate of the eigen-
vector whose eigenvalue is greatest in magnitude and
used Eqs.(38), (42), and (48) to reconstruct the S-matrix.
This procedure usually yielded RMS errors in the matrix
elements of less than 10%.

We note that the coordinate system upon which the
Ylm’s of the scattering calculation were based was dif-
ferent from the one appropriate to the present analysis,
oriented about the dissociative R axis. Therefore we per-
formed a rotation of the amplitudes according to

γlm →
∑

m′

DJ
m′m(α, β, γ)γlm′ , (51)

where DJ
m′m is a Wigner rotation matrix and α, β, γ are

the Euler angles which orient the coordinate system with
R̂ parallel to ẑ with respect to the coordinate system of
our scattering calculation.

In terms of the resonant eigenmode ~u, the entrance
amplitude (see Eq. (35) may be expressed as

Vā( ~Q) =

√
Γ( ~qint)

2π

∑

l,m

ilulm( ~qint)Y
∗
lm(θ, ζ). (52)

Applying the constant-eigenmode assumption of
Eq. (24), but now for a polyatomic, the entrance
amplitude is approximated as

Vā( ~Q) ≈ Vµ0
( ~qint)yµ0

(Ωk) = Vµ0
( ~qint)yµ0

(θ, ζ). (53)

In view of Eq. (52), we see that this approximation fol-
lows from the assumption that the coefficients ulm do
not vary with the internal nuclear coordinates of the tar-
get over the Franck-Condon region. In that case, we can
define

Vµ0
( ~qint) =

√
Γ( ~qint)

2π
(54)

and

yµ0
(θ, ζ) =

∑

l,m

ilulm(~q0)Y
∗
lm(θ, ζ), (55)

where we evaluate ulm at the equilibrium geometry of
the neutral, ~qint = ~q0. The function yµ0

(θ, ζ) then deter-
mines the angular dependence of the DEA cross section
via Eq. (27). If the constant-eigenmode approximation
does not apply, then the entrance amplitude can be evalu-
ated using Eq. (52) and the differential DEA cross section
is obtained by solving the LCP equation.
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FIG. 3: Modulus-squared of the entrance amplitude |Vā|
2

for the H2O
− 2B1 state at geometries (r1, r2, θ) = (1.81,

1.81, 104.5◦) and (1.81, 2.11, 104.5◦), internormalized; bond
lengths, units of a0, where 1 a0 = 5.2917721 × 10−11 m.

VI. ANGULAR DISTRIBUTION OF H− + OH

For the 2B1 state of H2O
−, the value of |Vā(~qint, θ, ζ)|2

at the geometries ~qint = (r1, r2, θHOH) = (1.81 a0, 1.81
a0, 104.5◦) and (1.81 a0, 2.11 a0, 104.5◦) is plotted in Fig.
3 with respect to the second and third Euler angles θ and
ζ. The bond length r1 is the nondissociative bond length.
Although the overall magnitude at these geometries is
different, the shape is clearly similar. The first geometry
is the equilibrium geometry of water while the (1.81 a0,
2.11 a0, 104.5◦) result represents the greatest deviation
from the equilibrium geometry result within the Franck-
Condon region of the neutral.

In Fig. 4 the phase of the entrance amplitude is shown,
defined to be between -π

2 and +π
2 , i.e., modulo π. With

this definition the phase is symmetric under ζ → −ζ,
although due to the B1 symmetry of the state the en-
trance amplitude is antisymmetric with respect to this
operation. In a single-partial-wave approximation, there
would be no variation in phase of the entrance ampli-
tude with respect to the euler angles θ and ζ, because
the entrance amplitude would be proportional to a real
spherical harmonic in θ and ζ times an overall phase.

 0  0.5  1  1.5  2  2.5  3
θ
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ζ

FIG. 4: Phase of the entrance amplitude Vā for the H2O
2B1 state, at geometry (r1, r2, θHOH) = (1.81, 1.81, 104.5),
contours every 0.157 radians. Bond lengths, units of a0.
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FIG. 5: Angular distribution of H− from H− + OH via dis-
sociative attachment to the 2B1 state, assuming axial recoil,
along with the measurements of Belic̀, Landau, and Hall [10]
(squares) and Trajmar and Hall [9] (circles), arbitrary units.

Thus, the deviations from zero apparent in this figure
are due to the mixing of multiple partial waves into the
entrance amplitude, with unequal phases. In particular,
in the present case there is significant d-wave character
mixed with the dominant p-wave.

The relative constancy of the shape of the angular de-
pendence of the entrance amplitude is consistent with
Eq. (24) and with the observation [10] that the angu-
lar distribution for this process does not vary noticeably
with final state.

The angular dependence which we have calculated as
per Eq. (27) is plotted in Fig. 5, along with experimental
data [9, 10]. For this calculation we used complex Kohn
results from the equilibrium geometry of r1 = r2 = 1.81
a0, θHOH = 104.5◦. Continuum basis functions with
l up to 5 were included in this calculation. The total
width was 0.01089eV (from denominator of Eq. (39)) or
0.01255eV (the largest eigenvalue of AH).

This result is different from the value of 0.006eV which
we obtained earlier [1] using a similar calculation. Our
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orbital basis for the present calculation consisted of the
1a1, 2a1, 1b2, 3a1, 1b1 plus a correlating a′ orbital from
a multi-configuration self-consistent field (MCSCF) cal-
culation on the neutral, as well as 4a1, 2b2, 5a1, 2b1 or-
bitals from an MCSCF calculation on the resonance.
Our configuration space consisted of a full configuration-
interaction (CI) in the six neutral orbitals, with the 1a1

and 2a1 orbitals always doubly occupied, plus double ex-
citations into the resonance orbital space. In our earlier
calculations, we omitted the correlating a′ orbital for the
neutral and the 2b1 resonance orbital, and used natural
orbitals from CI calculations on the resonance and neu-
tral for the rest; the configuration space for the target and
scattering calculations was full CI in the eight orbitals,
with the 1 and 2a1 orbitals doubly occupied. We do not
have a simple explanation for the discrepancy in widths,
other than the speculation that in the present case the
width may have been enhanced by coupling through the
2b11 shape resonance configuration to the continuum.

VII. ANGULAR DISTRIBUTION OF H− + SH

For dissociative attachment to H2S via the 2B1 reso-
nance state, the angular dependence of the cross section
is itself dependent upon the final vibrational state of the
SH fragment. As a result, we must perform nuclear dy-
namics calculations to resolve the different vibrational
states produced at each orientation θ, in order to evalu-
ate the angular dependence of Eq. (19) with the help of
the axial recoil approximation.

A. Entrance amplitude

The 2B1 resonance of H2S is even narrower than its
H2O counterpart. From complex Kohn calculations,
we obtain a width of 0.003318eV (from denominator of
Eq. (39)) or 0.003611eV (largest eigenvalue of AH) at the
equilibrium geometry of the neutral.

For these calculations, we treated the electronicN - and
(N + 1)-electron Hamiltonians of H2S + e− in a nonrel-
ativistic fashion with all electrons included. Inclusion
of relativistic corrections is undoubtedly important for a
fully faithful reproduction of the electronic properties of
Sulfur-containing compounds; however, the object of this
study was only to reproduce the qualitative features of
the experiment, and the simple nonrelativistic treatment
was sufficient to do so, albeit imperfectly.

On the sulfur atom, we used the double-zeta s and
p basis set of Dunning [36] along with d functions with
exponents 0.5, 0.0866, and 0.015; p functions with expo-
nents 0.041 and 0.02; and an s function with exponent
0.023. On the hydrogen, we used the basis of Gil et
al. [14] plus an s function with exponent 0.007250, and a
p function with exponent 0.02735, for a total of 69 con-
tracted Gaussian basis functions. We used this basis to
obtain five a1, two b1 , and two b2 orbitals from a self-

 2.2  2.4  2.6  2.8
r1

 2.2

 2.4

 2.6

 2.8

r2

FIG. 6: Total width Γ of 2B1 state of H2S
− at θHSH = 92◦,

contours every 4×10−4 eV, where 1 eV=1.6021765× 10−19 J.

consistent field calculation (SCF) on neutral H2S. We
calculated eight a1, one a2, two b1, and four b2 singlet-
coupled improved virtual orbitals (IVOs) [37] in the field
of the 2B1 grandparent. For the scattering calculation
eight of the nine SCF orbitals were kept doubly occu-
pied; the remaining 2b1 orbital was included with the
15 IVOs, and this set comprised the active space for two-
and three-electron full CI calculations defining the target
and Q-space configurations of the scattering calculation,
respectively. We included l up to 6 for the continua.

We obtained amplitudes γlm at 100 points, compris-
ing the grid of r1, r2 = {2.13, 2.33, 2.53, 2.73, 2.93 a0},
θHSH = {72, 92, 112, 132◦}. It was not necessary to
perform the scattering calculation for both (r1, r2, θ) =
(A,B,C) and (B,A,C); to obtain the entrance amplitude
for the latter, a reflection was performed in addition to
the rotations of Eq. (51). It is important to note that
while the total width and partial width into each l are
independent of the coordinate system and thus equal for
the (A,B,C) and (B,A,C) geometries, the amplitudes will
be different, because we choose the ẑ axis to be parallel
to r2 (“the dissociative bond length”) and not r1 (“the
nondissociative bond length”). To obtain a global rep-
resentation of each ulm(~qint), we fit its value at the 100
calculated points to a polynomial in r1, r2, and cos(θ),
fourth order in the bond lengths and cubic in cos(θ).

We find that the total width is peaked near the equi-
librium geometry of the neutral, which is (r1, r2, θHSH)
= (2.53 a0, 2.53 a0, 92◦), and also increases as both r1
and r2 get smaller. A plot of the total width is shown in
Fig. 6. Some of the irregularity in this figure is due to
the polynomial fit. In Fig. 7 the modulus-squared of the
entrance amplitude is plotted for the equilibrium geom-
etry (top left) and others; it is clearly not factorable as
per Eq. (24), as its shape changes from panel to panel.
At bottom right in Fig. 7 is plotted the phase of the
entrance amplitude at the equilibrium geometry of the
neutral, which varies more than does the phase for the



9

H2O
− state (Fig. 4).

Figures 8 and 9 demonstrate what we believe to be the
main cause of the final-state-specific angular dependences
in H2S. In Figure 8 the symmetric stretch coordinate
r1 + r2 is held constant at 5 a0, the bond angle θHSH is
held at 92◦, and the dependence of

∫
dζ|Vā|2 with respect

to the Euler angle θ and asymmetric stretch distance is
plotted. The coordinate r1 is the nondissociative bond
length (equal to the Jacobi coordinate r).

At large θ, the R̂ axis which points toward the disso-
ciating H− is oriented back toward the incident electron
source. At this orientation, the entrance amplitude is in-
significant for values of r1 < r2, as can be seen in Figure
8, and this behavior will be reflected in the initial nuclear
wavepacket, as is clear in Figure 9. This figure shows the
initial wavepacket for the dominant Λ = 1 component of
the entrance amplitude Vā,

Vā =
∑

Λ

VΛ(r,R, γ, θ)
eiΛζ

√
2π
, (56)

for back-scattering of the H− at θ = 165◦ (oblong) and
forward scattering at θ = 45◦ (more circular). The shape
of the initial wavepacket at θ = 165◦ will lead to less vi-
brational excitation for large kinetic energy in the disso-
ciative direction, relative to the calculation at θ = 45◦.
This is because for the θ = 165◦ calculation, the parts
of the initial wavepacket at small initial r2, which are
higher up on the repulsive wall and thus will correspond
to the components of the wavefunction exiting with large
kinetic energy in the dissociative r2 direction, have a rel-

atively large expectation value 〈r1〉, which means that
these components will experience a smaller impulse in
the vibrational r1 coordinate at the beginning of the dis-
sociation.

B. Potential energy surface

Because the 2B1 resonance of H2S is so narrow, the real
part of its energy is well-represented (though not vari-
ationally) by bound-state computational methods. We
therefore carried out CI calculations for the resonance
state, using an effective core potential on the sulfur atom
to replace the n equals 1 and 2 inner-shell electrons;
we used the potential parameters and the corresponding
primitive basis given by Pacios and Christiansen [38], the
latter augmented with d functions with exponents 0.819,
0.269, 0.101, and 0.03792. On the hydrogen, we used the
basis of Gil et al. [14] plus s functions with exponents
0.007250 and 0.001767, and a p function with exponent
0.02735. We used this primitive basis to obtain MCSCF
orbitals for the resonance state. The MCSCF calculation
included the dominant 2b−1

1 6a2
1 configuration of the res-

onance plus the two correlating excitations 6a2
1 → 7a2

1,
3b22. We then performed a CI calculation with all single
and double excitations out of these configurations, keep-
ing the 2b1 orbital occupancy at 0 or 1. We performed
this calculation at several points and fit the result to
a modified extended LEPS potential [39] plus Gaussian
function:

V =
Qr1

1 − 0.5381
+

Qr2

1 − 0.5381
+

QrHH

1 − 0.1814
−
√

0.5

(
α+ 0.055322 exp

−α
0.055322

)

−10.944195 − 0.004329 cos(θHSH) − 0.001414 cos(2θHSH) − 0.0002454 cos(3θHSH)

+ exp(−0.3011b) (−0.6380 + 0.2041 cos(θHSH) + 0.2296 cos(2θHSH) + 0.1227 cos(3θHSH))

(57a)

b =
(
r7.552
1 + r7.552

2

) 2

7.552 (57b)

α =
(Jr1

− Jr2
)2

(1 − 0.5381)(1 − 0.5381)
+

(Jr2
− JrHH

)2

(1 − 0.5381)(1 − 0.1814)
+

(Jr1
− JrHH

)2

(1 − 0.5381)(1 − 0.1814)
(57c)

Qr1
= 0.1076(0.75M2

r1
− 0.5Mr1

) Jr1
= 0.1076(0.25M2

r1
− 1.5Mr1

) Mr1
= exp−0.8728(r1 − 2.4587)(57d)

Qr2
= 0.1076(0.75M2

r2
− 0.5Mr2

) Jr2
= 0.1076(0.25M2

r2
− 1.5Mr2

) Mr2
= exp−0.8728(r2 − 2.4587)

QrHH
= 0.4147(0.75M2

rHH
− 0.5MrHH

) JrHH
= 0.4147(0.25M2

rHH
− 1.5MrHH

) MrHH
= exp−0.1812(rHH + 8.0119)

This potential is plotted at θHSH = 92◦ in Figure 10. Our previous calculations on the 2B1 state of H2O
−

indicated that only a few percent of the propagating
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FIG. 7: Left to right, top to bottom: Modulus-squared of the entrance amplitude |Vā|
2 for the H2S

− 2B1 state at geometries
(r1, r2, θHSH) = (2.53, 2.53, 92◦), (2.13, 2.93, 92◦), and (2.53, 2.13, 92◦), internormalized. Bond lengths, units of a0. Bottom
right, phase of entrance amplitude Vā at (2.53, 2.53, 92◦), contours every 0.157 radians.
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FIG. 8: Dependence of
R

dζ |Vā|
2 upon asymmetric stretch (in

units of a0) and Euler angle θ, at r1 + r2 = 5 a0, θHSH=92◦,
arbitrary units.

wavepacket was lost to autodetachment. Because the
2B1 state of H2S

− has an even smaller width, and be-
cause the real parts of the potential energy surfaces are
similar for these states, we did not include the imaginary
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FIG. 9: Square of driving term |φνi
|2 for initial wavepacket,

normalized to unity, Λ = 1 calculation, integrated over Ja-
cobi angle γ, for θ = 45◦ (circular) and 165◦ (oblong) calcu-
lations, with potential energy surface at γ = 92◦, contours
every 0.25eV. Distances in units of a0.

component −iΓ
2 in the Hamiltonian when carrying out

the time propagation. We expect this omission in the
present calculation to have a negligible effect.
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H2S 2B1 surface at θ=92
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FIG. 10: Fitted H2S potential surface at θHSH = 92◦, with
contours every 0.25eV. Bond lengths in units of a0.

To obtain the initial H2S vibrational wavepacket χνi
,

a neutral potential energy surface was required. We used
the surface of Senekowitch et al. [40]. We adjusted the
zero of energy to match the result of a single CI calcula-
tion at the equilibrium geometry of the neutral. This CI
calculation used the same primitive basis and pseudopo-
tential as the resonance CI calculation, and was defined
by the SCF configuration plus all single and double ex-
citations.

These two CI calculations yield a vertical excitation
energy of 0.21703 hartrees or 5.906eV for the resonance.

C. Triatomic coordinate system and Hamiltonian

For the nuclear dynamics calculations, the internal co-
ordinates ~qint are defined to be the Jacobi coordinate
system R, r, and γ. Specifically, r is the distance be-
tween one H and the S; R is the distance between the
center of mass of that SH diatomic and the second H;
and γ is the angle between the R and r vectors such that
γ = 0 denotes a linear SHH configuration.

The three remaining degrees of freedom of the center-
of-mass system are the Euler angles which define the ori-
entation of the body-fixed (BF) frame with respect to
the space-fixed (SF) frame. We continue to use the “R-
embedding” [34] coordinate system and thus define φ and
θ to be the polar angles which orient the R vector with
respect to the SF frame, and ζ as the third Euler angle
specifying orientation about the BF z axis (parallel with

R̂), just as in Fig. 2. This coordinate system is shown in
full detail in Figure 11.

We will denote by J the total angular momentum
quantum number and by M the quantum number about
the space-fixed z axis, parallel with the wavevector of the
incident electron. These quantum numbers are conserved
by the Hamiltonian. The six-dimensional rovibrational
wave function for a triatomic with specified J and M

X’

X

Z’ Z

ζ

Y
Y’

r

R

γ

θ

φ

FIG. 11: “R-embedding” coordinate system used in this cal-
culation. The origin is the center of mass. The body-fixed
(BF) frame is labeled by the X ′, Y ′, and Z ′ axes; the space-
fixed (SF), by X, Y , and Z. The BF axes are marked with
thin lines, and the BF X ′Z′ and X ′Y ′ planes are both marked
with a thin line circle. The SF axes are marked with dashed
lines, and the SF XZ and XY planes are marked with dashed
circles. The molecule resides in the BF X ′Z′ plane. The Eu-
ler angles φ, θ, and ζ orient the BF frame with respect to
the SF frame. The line of nodes is also drawn. The ~r vector
connects the nuclei of the diatomic. The ~R vector connects
the center of mass of the diatomic to the third atom and is
collinear with the BF Z ′ axis. R is the length of ~R, r is the
length of ~r, and γ is the angle between the ~R and ~r vectors.

value can be expanded as follows:

χνi
(R, r, γ, φ, θ, ζ) =

∑

K

D̃J
MK(φ, θ, ζ)

χK
νi

(R, r, γ)

Rr
(58)

where the basis of D̃J
MK(φ, θ, ζ) is the set of normalized

Wigner rotation matrices (and BF angular momentum
eigenstates),

D̃J
MK(φ, θ, ζ) =

√
2J + 1

8π2
DJ

MK(φ, θ, ζ)

=

√
2J + 1

8π2
dJ

MK(θ)eiMφeiKζ ,

(59)

such that
∫ 2π

0

dφ

∫ 1

−1

d(cos θ)

∫ 2π

0

dζ

D̃J
MK(φ, θ, ζ)D̃J ′∗

M ′K′(φ, θ, ζ) = δJ,J ′δM,M ′δK,K′ .
(60)

We will also define for convenience a normalized dJ
MK ,

d̃J
MK(θ) =

√
2J + 1

2
dJ

MK(θ). (61)
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In Eqs.(59), (60), and (61) we follow the conventions of
Zhang [41], which for the DJ

MK is the same as that of
Edmonds [42].

In Ref.[2], we employed the standard [43, 44] BF
Hamiltonian for the radial solutions χK

νi
of this expan-

sion,

HJ
KK = − 1

2µR

∂2

∂R2
− 1

2µr

∂2

∂r2
+

ĵ2

2µrr2

+
1

2µRR2
[J(J + 1) − 2K2 + ĵ2]

+ V (R, r, γ)

HJ
K±1,K = − 1

2µRR2

√
J(J + 1) −K(K ± 1)ĵ±

ĵ2 = − (
1

sinγ

∂

∂γ
sinγ

∂

∂γ
− K2

sin2γ
)

ĵ± = ∓ ∂

∂γ
−Kcot(γ),

(62)

where µr and µR are the reduced masses in either di-
rection and V is the Born-Oppenheimer potential energy
surface which we calculate.

D. Implementation

The interested reader is referred to the Appendix for
a complete derivation of the working equations, which
employ the axial recoil approximation.

We expand Vā as per Eq.(56), and calculate cross sec-
tions using the expression

∂σν
DEA exp′t

∂Ωk
= lim

R→∞

2πκν

µRk2
×

∑

Λ

∫
d(cos γ)

∣∣∣∣∣

(
χν

∣∣∣∣∣ĝ
+
00

∣∣∣∣∣VΛ(θ)χνi

)∣∣∣∣∣

2

.

(63)

The Green’s function ĝ+
00 corresponds to the Hamilto-

nian with J = 0, K = 0 in Eq. (62). Thus, at each desired
angle θ, we perform one calculation for each value of Λ,
the number of quanta of K-excitation (excitation of the

projection of angular momentum upon the body-fixed R̂
vector) imparted by the entrance amplitude, and sum the
cross sections produced.

The evaluation of the limit in Eq. (63) is performed
within the MCTDH package [33], and is calculated at
R=9 to 12 a0. Further details can be found in Ref. [2].

In Figure 9 we have shown the initial wavepacket for
calculations at θ = 45◦ and 165◦. The difference between
these wavepackets is readily apparent. The differential
cross sections at these two angles are plotted in Figs.
12 and 13, respectively, as a function of incident elec-
tron energy for different final vibrational states of HS.
These differential cross sections, while given in arbitrary
units, are internormalized. The calculations show that at
energies above 6.25 eV, the cross section for producing
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FIG. 12: Differential cross section for H− + SH (ν) from H2S
at scattering angle θ = 45◦, arbitrary units.
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FIG. 13: Differential cross section for H− + SH (ν) from H2S
at scattering angle θ = 165◦, arbitrary units.

HS in its ground vibrational state clearly dominates at
θ = 165◦, while at the same energies for θ = 45◦, the
cross sections for producing HS in ν = 0 and ν = 1 are
comparable.

Our calculated results are consistent with the findings
of Azria et al. [17], though not quantitatively. These au-
thors found that at large scattering angles θ and within
the high energy tail of the dissociative attachment cross
section, the ground vibrational state dominates. They
found that as the scattering angle is decreased, the
branching ratio between the ground and first excited vi-
brational state decreases until at 45◦, the first excited
vibrational state actually dominates the first. Again, we
are still referring only to the high energy tail of the DEA
cross section. Although our results do not indicate that
the first excited vibrational state is ever clearly domi-
nant, it is apparent that the basic trend observed in the
experiments of Azria et al.[17] is reflected by these cal-
culations.
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VIII. DISCUSSION

A formalism for studying the angular dependence of
dissociative electron attachment, which was originally
given for diatomic targets by O’Malley and Taylor [24],
is extended here to polyatomic targets. A central part
of the treatment is the assumed validity of the axial re-

coil approximation, which states that the vector ~R, the
asymptotic orientation of which defines the scattering an-
gle of the dissociating fragments relative to the incident
electron direction, in fact does not change orientation
at all during the course of the collision. For diatomic
targets, the axial recoil approximation applies whenever
the kinetic energies involved in the dissociation are much
larger than the centrifugal energy terms over the entire
range of populated rotational levels. For polyatomic tar-
gets, the situation is more complicated and the validity
of the axial recoil approximation also depends on the
shape of the anion potential energy surface over the re-
gion sampled in the dissociation. The agreement between
our calculated results and experiment can be taken as
supporting our finding that the potential energy surfaces
of both resonances studied vary weakly with the Jacobi
angle γ in the inner region, at least for the geometries
sampled by the propagating wave packet.

The dissociative attachment cross section is deter-
mined by the asymptotic form of the solution of a inho-
mogeneous nuclear wave equation, which we treat here
in the local complex potential model. The angular de-
pendence of this solution ξνi

depends upon the angular
dependence of its driving term φνi

, which in turn de-
pends upon that of the entrance amplitude Vā. When
the functional dependence of the entrance amplitude on
the internal nuclear target coordinates can be factored
from its dependence on the Euler angles which orient the
target in space - a situation we have termed the constant-
eigenmode approximation - then the angular dependence
of the DEA cross section is independent of the vibrational
level of the final state. If, in addition, the axial recoil
approximation applies, then we have shown that the an-
gular dependence of the cross section can be determined
solely from an analysis of the electronic entrance ampli-
tude for fixed nuclear geometry and a numerical solution
of the nuclear wave equation is not needed.

This was found to be the case for water. The angu-
lar distribution we have obtained for H2O is in excellent
agreement with experiment [9, 10]. Moreover, our analy-
sis shows that the asymmetry in the distribution, which
is peaked near 100 degrees, results from the mixing of
partial waves in the resonant electronic T -matrix and
not, as had been suggested [10], from distortion of the
incident electron plane wave caused by direct scattering.
Whereas a pure p-wave resonance would lead to a sym-
metric, (1 − cos2 θ) angular distribution, the presence of
d-waves mixed in with the dominant p-wave component
weights the entrance amplitude toward the negative end
of the H2O dipole moment (the oxygen side, not the hy-
drogen side). This in turn leads to the dissociative nu-

clear wavepacket being preferentially oriented with the
dissociative hydrogen pointing in the backwards direc-
tion (θ > 90◦). It is interesting to consider that in this
case the angular distribution of dissociative attachment
may be reflecting the underlying shape of the 1b1 orbital,
one electron from which must be excited into the 4a1 or-
bital to achieve the 2B1 Feshbach resonance configuration
[H2O]1b−1

1 4a2
1. The 1b1 orbital is the lone pair orbital in

H2O, and is mostly oxygen 2px, but has some d-wave
character as well.

For the case of H2S, we have shown that the depen-
dence on internal coordinates cannot be factored from the
entrance amplitude, which in turn leads to a dependence
of the angular distribution on the final vibrational state
of HS that is detected. By solving the nuclear wave equa-
tion in full dimensionality for different values of the scat-
tering angle, we have confirmed the experimental find-
ings of Azria et al. [17] that, for incident energies in the
high energy tail of the DEA peak, the ground state of
HS is preferentially produced at large scattering angles,
whereas at 45 degrees the cross sections for production of
HS in its ground and first excited vibrational levels are
comparable.
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APPENDIX: AXIAL RECOIL APPROXIMATION

1. Diatomic case

We assume that the nuclear dynamics of the resonant
state is described by the local complex potential model,
Eq. (2), with an effective Hamiltonian Ha of the form

Ha = T~Q + V ( ~qint). (A.1)

The effective complex potential V is assumed to be local
and to depend only on the internal nuclear degrees of
freedom [24]. In the case of a diatomic, V depends only
of the internuclear distance R, while the Hamiltonian
takes the form:

H = − 1

2µRR2

(
∂

∂R
R2 ∂

∂R
+

1

sin θ

∂

∂θ
sin θ

∂

∂θ

+
1

sin2 θ

∂2

∂φ2

)
+ V (R)

(A.2)

Since the rotational eigenfunctions are the spherical har-
monics Yjm(Ωk), the Green’s function has the represen-
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tation [45]

G+( ~Q; ~Q′;E) =
∑

jm

Yjm(Ωk)g+
j (R;R′;E)Y ∗

jm(Ω′
k)

=
∑

jm

Yjm(Ωk)Ξ0
j (R<)

µR

κRR′
Ξ+

j (R>)Y ∗
jm(Ω′

k)

(A.3)

where the functions Ξ
0/+
j are regular and outgoing solu-

tions, respectively, of the radial Schrödinger equation
(
− 1

2µR

∂2

∂R2
+
j(j + 1)

2µRR2
+ V (R) − κ2/2

)
Ξ

0/+
j (R) = 0

(A.4)
that behave asymptotically as

Ξ0
j (R) ∼

r→∞
eiδj sin(κR− jπ/2 − δj)

Ξ+
j (R) ∼

r→∞
eiκR,

(A.5)

where δj is a phase shift. For an absorptive V with a neg-
ative imaginary component, δj has a negative imaginary
component, and Ξ0 has net incoming wave character at
large R.

The solution of the LCP equation (Eq. (9)) for the case
of a diatomic can thus be written as

ξνi
( ~Q) =

∑

jm

Yjm(Ωk)

×
∫
d3R′ g+

j (R;R′;E)Y ∗
jm(Ω′

k)φνi
(R′,Ω′

k)

=
∑

jm

Yjm(Ωk)
µr

κR

×
∫
d3R′

Ξ0
j (R<)Ξ+

j (R>)

R′
.Y ∗

jm(Ω′
k)φνi

(R′,Ω′
k)

(A.6)

The driving term φνi
will generally include contributions

from a limited range of j values. If the corresponding

radial functions Ξ
0/+
j vary slowly with j over this range,

then Ξ
0/+
j can be replaced by an effective Ξ

0/+
jt

and the

radial portions of integrals in Eq. (A.6) can be taken
outside the sum:

ξνi
( ~Q) ≈

∫
dΩ′

k


∑

jm

Yjm(Ωk)Y ∗
jm(Ω′

k)




× µr

κR

∫
dR′

Ξ0
jt

(R<)Ξ+
jt

(R>)

R′
φνi

(R′,Ω′
k).

(A.7)

This replacement gives an effective delta-function in the
Green’s function G+, when it operates on φνi

:

ξνi
( ~Q) =

∫
d ~Q′ G+( ~Q; ~Q′;E)φνi

( ~Q′)

≈
∫

d3R′ g+
jt

(R;R′;E)δ(Ωk − Ω′
k)φνi

( ~R′).

(A.8)

The delta function above results in the recoil staying
along the original orientation axis. By assuming that

the Ξ
0/+
j do not change much among the relevant values

of j, we are requiring that the kinetic energies involved in
dissociation are much larger than the relevant centrifu-
gal energies, i.e. that the centrifugal term in Eq. (A.4) is
negligible.

2. Polyatomic case

For a polyatomic, the situation is a bit more compli-
cated, and the axial recoil approximation imposes more
constraints upon the dissociation dynamics than it does
for a diatomic. In particular, while for a diatomic target
j and mj are good quantum numbers, any polyatomic
Hamiltonian (e.g., Eq. (62)) imposes coupling among the
values of the quantum numberK. And although one may
write a polyatomic Hamiltonian using different angular
momentum coupling schemes, all such forms introduce
couplings between angular momentum quantum numbers
that are problematic for the axial recoil approximation.
For instance, the Hamiltonian may be written in terms of
the uncoupled spherical harmonics Ylml

× Yjmj
. In this

case (and unlike the diatomic case), there is coupling
among various j and mj values. The physical origin of
the problematic coupling is the γ-dependence of the po-
tential V (r,R, γ) which couples the angular momentum
of the two fragments of the dissociative attachment pro-
cess. As a result of this potential, a polyatomic molecule
may undergo bending motion during dissociation which
changes the orientation of the recoil axis from its original
position in the bound state.

In order to eliminate the problematic coupling among
angular momentum quantum numbers, an appropriate
decoupling scheme or other approximation must be in-
troduced. We use a approximation, alternatively called
the centrifugal sudden or coupled-states (CS) approxima-
tion [46, 47]. However, we stress that the treatment we
invoke to deal with this problem is by no means unique.
In particular, the infinite-order sudden (IOS) approxima-
tion [48] provides an alternate approach to a useful result,
and has been used to calculate angular dependences in
photodissociation. For the current system, however, we
believe that the IOS approximation is not applicable, due
to the long-range ion-dipole interaction of the fragments.

For a polyatomic molecule, the centrifugal sudden ap-
proximation entails the neglect of the off-diagonal cou-
plingHK,K±1. For the triatomic Hamiltonian of Eq. (62),
the centrifugal sudden approximation is

HJK
CS = − 1

2µR

∂2

∂R2
− 1

2µr

∂2

∂r2
+

ĵ2

2µrr2
(A.9)

+
1

2µRR2
[J(J + 1) − 2K2 + ĵ2]

+V (R, r, γ).

Since the coupling term in Eq. (62) is proportional to



15

ĵ±/R
2, its neglect requires that, for small R, the effect

of ĵ± on the propagating wavepacket be small. This in
turn requires that for small R the momentum in the γ
direction be small (ie. ∂

∂γ be small) and that the propa-

gating wavepacket not sample the region around γ = 0 or
γ = 180◦, where cot(γ) is infinite. Therefore, the initial
wavepacket must start at a nonlinear geometry at which
the potential is relatively flat in γ, and only spread to
γ = 0 or γ = 180◦ after the dissociation is well under
way. We have found that this is the case for the 2B1

resonant states in both water and H2S.
The CS approximation allows us to write, in analogy

with Eq. (A.3),

G+ =
∑

J,M,K

D̃J
MK(φ, θ, ζ)D̃J

MK(φ′, θ′, ζ ′)

g+
J,K( ~qint; ~q′int;E)

=
1

(2π)2

∑

J,M,K

eiMφeiKζe−iMφ′

e−iKζ′

d̃J
MK(θ)d̃J

MK(θ′)

g+
J,K( ~qint; ~q′int;E).

(A.10)

Subsequently, we make the same assumption that we
did in deriving the axial approximation for a diatomic
and treat the centrifugal term in the CS Hamiltonian of
Eq. (A.10) in an approximate way, replacing J by an
averaged quantity:

G+ =
1

(2π)2

∑

K

g+
Jt,K

( ~qint; ~q′int;E)eiK(ζ−ζ′)

×
∑

J

d̃J
MK(θ)d̃J

MK(θ′)
∑

M

eiM(φ−φ′)

=
1

2π

∑

K

g+
Jt,K

( ~qint; ~q′int;E)eiK(ζ−ζ′)

× δ(Ωk − Ω′
k).

(A.11)

The second identity in Eq. (A.11) follows from the fact

that the set d̃J
MK for fixed M and K are solutions of a

Sturm-Louisville differential equation in cos(θ),

[
∂

∂ cos θ
sin2 θ

∂

∂ cos θ
+

1

sin2 θ

(
M2 +K2 − 2MK cos θ

)
− J(J + 1)

]
d̃J

MK(θ) = 0, (A.12)

and are therefore complete in θ, meaning complete in the
norm.

3. Axial recoil approximation with

constant-eigenmode approximation for a polyatomic

For a polyatomic molecule, we make use of the
constant-eigenmode approximation of Eq. (53) as follows.
We expand the associated angular function yµ0

as

yµ0
(θ, ζ) =

∑

Λ

yΛ
µ0

(θ)
eiΛζ

√
2π
. (A.13)

The initial rovibrational target state χνi
(Q) is expanded

in a basis of Wigner rotation matrices as per Eq. (58).
With the axial recoil approximation of Eq. (A.11), the
solution of the LCP equation ξνi

can then be written

ξνi
( ~Q) =

∑

Λ

yΛ
µ0

(θ)
∑

K

D̃J
M(K−Λ)(φ, θ, ζ)

eiΛζ

√
2π

∫
d ~q′int g+

JtK
( ~qint; ~q′int;E)Vµ0

( ~q′int)χ
(K−Λ)
νi

( ~q′int).

(A.14)

For a triatomic, the final state of the system is

ψυ
B = χν(r)YjK(γ, ζ) = χν(r)P̃jK(γ)

eiKζ

√
2π
, (A.15)

where χν and YjK are, respectively, the vibrational and
rotational wave functions of the diatomic fragment, and

P̃jK is a normalized associated Legendre function. We
omit the j-dependence of the vibrational states. There-
fore, the differential cross section for producing a final
state with quantum numbers ν, j,K is

∂σνjK
DEA

∂Ωk
= lim

R→∞

2κτυ

µRk2
R2
∑

ΛΛ′

(
χν P̃jK

∣∣∣∣∣ĝ
+
KJr

∣∣∣∣∣Vµ0
χK−Λ

νi

)

×
(
χν P̃jK

∣∣∣∣∣ĝ
+
KJr

∣∣∣∣∣Vµ0
χK−Λ′

νi

)∗

× yΛ
µ0

(θ)yΛ′∗
µ0

(θ)d̃J
MK−Λ(θ)d̃J

MK−Λ′(θ).

(A.16)

To obtain the physically observable cross section, we
average over M and sum over K quantum numbers. We
also make use of the orthonormality relation

2

2J + 1

∑

M

d̃J
MΛ(θ)d̃J

MΛ′(θ) = δΛ,Λ′ (A.17)

to obtain the result
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1

2J + 1

∑

MK

∂σνjK
DEA

∂Ωk
= lim

R→∞

κτυ

µRk2
R2
∑

Λ

∣∣yΛ
µ0

(θ)
∣∣2∑

K

∣∣∣∣∣

(
χνPjK

∣∣∣∣∣ĝ
+
JrK

∣∣∣∣∣Vµ0
χK−Λ

νi

)∣∣∣∣∣

2

. (A.18)

Since individual rotational levels are generally not re-
solved in contemporary experiments, the measured cross
sections average over an emsemble of initial and final
states populated in the experiment. We therefore ar-
gue that the sum over K in Eq. (A.18) may be taken to
be independent of Λ once an average over the initial and
final rotational states populated in the experiment is per-
formed, i.e., that the rotational excitation of the initial
state does not affect the amplitudes for producing final
vibrational states in any coherent way. It then follows
that the angular dependence of the observable differen-
tial cross section factors as

∂σν
DEA exp′t

∂Ωk
≈ σν

DEA

∑

Λ

∣∣yΛ
µ0

(θ)
∣∣2

= σν
DEA

∫
dζ |yµ0

(θ, ζ)|2 .
(A.19)

The result that the angular dependence of the cross
section should be independent of the product state vi-
brational quantum number depends on the constant-
eigenmode factorization Vµ0

( ~qint) × yµ0
(θ, ζ) of the

entrance amplitude. In cases where this constant-
eigenmode approximation does not hold, as we found for
H2S, we may still expand Vā as

Vā =
∑

Λ

VΛ( ~qint, θ)
eiΛζ

√
2π
, (A.20)

in which case we arrive at the expression

1

2J + 1

∑

MK

∂σνjK
DEA

∂Ωk
= lim

R→∞

κτυ

2µRk2
R2
∑

ΛK

∣∣∣∣∣

(
χνPjK

∣∣∣∣∣ĝ
+
JrK

∣∣∣∣∣VΛ(θ)χK−Λ
νi

)∣∣∣∣∣

2

. (A.21)

Thus, the angular dependence of the cross sections for
different final vibrational states then requires explicitly
solving the nuclear local complex potential equation for
different values of θ in the entrance amplitude. For our

calculations on H2S, we evaluated this expression using
an initial state wave function, and a Hamiltonian for the
propagation, with J = 0, K = 0.
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