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Abstract

In this work we discuss the complexity surrounding the origins
of human language. We focus on the debate between gesture-
first and vocalization-first theories. While some evidence sup-
ports the idea that gestures played a primary role in early com-
munication, others argue that vocalizations are equally expres-
sive. We think that methodological differences and biases in
the choice of concepts may contribute to the challenge of com-
paring these modalities directly. For example, to what extent
does selecting a certain concept from a semantic category mat-
ter to reproduce an effect? This and similar questions are ex-
plored in a data-driven way. First, we provide ratings on imagi-
ned expressibility of 207 concepts from an online experiment
showing that people tend to rate gesture modality as better in
expressing meaning compared to vocal modality. Second, we
use the Bayesian posterior predictive distribution of these ra-
tings to simulate new experiments where we vary the number
of participants, number of concepts, and semantic categories
to investigate how robust is the difference between gesture and
vocal modality. Our results show that gesture modality is re-
liably different (i.e., affords higher expressibility) than vocal
modality. However, the difference between the two is limited
in terms of effect size (medium sizes by common standards)
so one may question whether this difference is meaningful for
bigger claims about early language evolution. This study fur-
ther provides valuable information for further research on how
to select stimuli and how to set up one’s design in a balanced
way.

Keywords: Expressibility, Gesture, Vocalization, Language
Evolution, Simulation, Effect sizes

Introduction
Language evolution is one of the ‘hardest problems in sci-
ence’ (Cooperrider, 2020). Explaining how gestures and/or
vocalizations contributed to first meaningful exchanges, and
tracing the continuity from our closest living relatives to com-
munication today remains a complex challenge. A signifi-
cant body of literature assumes that language originated from
gestures, referred to as ‘gesture-first theories’ (Hewes, 1976;
Tomasello, 2010). Among a range of arguments, gesture-
first views are motivated by case studies showing that some
human-reared big apes can learn up to 350 signs (Gardner &
Gardner, 1969). This supposedly supports the theory as there

is no evidence that great apes are able to acquire and com-
municate with a comparable repertoire using speech. In addi-
tion, research on non-conventionalized signaling (Fay et al.,
2022) reported that human adults can better express selected
concepts using silent gestures in comparison to novel voca-
lizations. Finally, children can easily and rapidly (in 30 min)
create and communicate novel gesture language during social
interaction (Bohn, Kachel, & Tomasello, 2019). Whether the
same applies to vocalization is left unknown.

Conversely, some argue that vocalizations are not expres-
sively limited and can convey certain concepts as effectively
as gestures (Perlman & Cain, 2014). Human adults from
diverse cultural and linguistic backgrounds can comprehend
novel vocalizations above chance levels (Ćwiek et al., 2021).
Additionally, although non-human animals may possess a
limited vocal repertoire compared to humans, they can also
devise and learn new vocalizations, such as when perceiving
a novel flying object as a potential predator (Wegdell, Ham-
merschmidt, & Fischer, 2019).

Comparisons favoring one perspective over the other can
be somewhat problematic due to methodological differences
and the potential biases of research perspectives (Slocombe,
Waller, & Liebal, 2011; Liebal, Slocombe, & Waller, 2022;
Hoeschele, Wagner, & Mann, 2023). Slocombe et al. (2011)
carried out a systematic search of the literature published
between 1960–2008 on spontaneous primate communication
and reported that gesturing in primates was historically often
investigated in social play situations in captivity while vocali-
zations were frequently recorded in the wild in the context of
predator defense. Moreover, most researchers focus on one
modality, and only 5 percent of the studies investigated two
modalities, making a direct comparison between the gesture
and vocal domain almost impossible. In a follow-up review
10 years later (Liebal et al., 2022), the same authors found
that not much has changed regarding the focus on unimodal
signals. The published studies on multimodal communication
in primates even decreased slightly.
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Our impression of human communication science is simi-
lar in that direct comparisons between novel vocalizations
and gestures are rather rare (Fay, Lister, Ellison, & Goldin-
Meadow, 2014; Macuch Silva, Holler, Ozyurek, & Roberts,
2020) and may not be without biases. Note that a bias can oc-
cur without malintent and can have a variety of sources. One
of the possible biases we identify here is the choice and the
number of concepts that could be potentially better expressed
in one or the other modality. This bias is especially likely to
arise because of the time constraints of an experiment, i.e., a
handful of concepts might be produced in a given modality.

The literature on novel vocalizations and gestures reminds
us of each modality’s different affordances for various con-
cepts. Nölle (2021) discusses that gestures are to some degree
shaped by environmental factors, such as the visibility of the
referent. Fuchs and Ćwiek (2022) argue that visual concepts
work best with gestures while auditory concepts, like ‘clock’,
may be better exploited in the auditory domain. More distant
communication or communication at night in the dark may
require the vocal modality while closer communication may
work successfully with gestures. Perlman and Cain (2014)
suggest that vocalization could be as good, if not better, in
conveying sounds, emotions, and other physiologically corre-
lated acoustics. These semantic categories often relate to sex
and size, which can further inform about other social-cultural
correlatives such as politeness, confidence, and authority. In
a recent cross-linguistic study by Ćwiek et al. (2021), it was
shown that some semantic categories are better than others
(actions > entities > properties > demonstratives). Lievers
and Winter (2018) discuss how different parts of speech (i.e.,
lexical categories) in English relate to certain semantic con-
cepts, e.g., concepts of sounds are frequently expressed as
verbs. Finally, Zhou, van der Ham, de Boer, Bogaerts, and
Raviv (2024) show that sight and sound exhibit differences
in distributed statistical learning – for instance, duration in-
formation was better learned in the auditory modality, while
visual modality served better for learning spatial information.

All in all, we can assume that the choice of concepts –
based, for instance, on their semantic category – may inhe-
rently favor expressibility in a certain modality. Importantly,
this directly raises a question about the reported effect sizes of
experimental studies and the inferences we draw from them.
What does it mean when a researcher claims, for instance,
that ‘gesture is more expressive than vocalization’? Do we
take such claims to be true even when there is a very low
effect size? A specification is thus needed in what effect size
constitutes a meaningful difference. Further, we need to spe-
cify how important concepts are in obtaining supposed diffe-
rences, which also informs about how much room there is for
potential bias.

The current work has two aims: First, we provide empirical
insights about the imagined expressibility of participants in
the vocal, gesture, and multimodal domains for a comprehen-
sive set of 207 concepts. While most of the aforementioned
studies investigate expressibility in terms of guessing accu-

racy, we operationalize it here as a self-reported imagined
expressibility of meaning in a certain modality. This allows
us to increase the amount of data we can collect in terms of
sample size and amount/diversity of concepts. These expres-
sibility ratings may be a valuable resource for the community
when selecting concepts for an experiment.

The second aim of our work is to use these gesture and
vocal expressibility ratings to simulate new experiments and
test the robustness of the primacy of one modality over the
other. In other words, we want to quantify the magnitude
of the difference between the two modalities. Additionally,
we investigate potential biases that could occur due to limi-
ted resources in recruitment, time, or simply due to selection
criteria applied when picking stimuli.

Part I: Obtaining and Analyzing the
Expressibility Ratings

Methods
Material We used a list of concepts initially developed for
a cross-cultural study, encompassing 200 items. This list
included 100 items from the Leipzig-Jakarta list (Tadmor,
2009) and an additional list of 100 items. We chose the
Leipzig-Jakarta list because it contains concepts found in al-
most all human cultures. The authors selected concepts that
were least likely borrowed from other languages and had a
preference for older than younger concepts. The additional
list was added based on various criteria such as sensory ra-
tings, iconicity, abstractness, and valence ratings of English
words, spanning a wide range of semantic categories and
parts of speech (Winter, Lupyan, Perry, Dingemanse, & Perl-
man, 2023). For our purposes, we separated concatenated
concepts found in the Leipzig-Jakarta list (e.g., ‘he/she/it’,
‘leg/foot’) into individual concepts to avoid colexification is-
sues (François, 2022), resulting in a total amount of 207 con-
cepts. All concepts were then translated from English into
German by a native speaker and checked for clarity by ano-
ther native speaker.

Online experiment In an online experiment built with Psy-
choPy2 (Peirce et al., 2019) and deployed by Pavlovia.org,
we engaged native German speakers to assess their imagined
ability to express a concept without using language. They
were instructed to rate on a continuous scale, how well they
think they could express the meaning of a concept using: (a)
only vocalizations, (b) only gestures, or (c) a combination of
both. The scale was banded and only two extreme points were
indicated, ranging from ‘very bad’ to ‘very good’, to prevent
biases and allow for high precision (Matejka, Glueck, Gross-
man, & Fitzmaurice, 2016). Each participant evaluated 20
randomly selected concepts for each modality, resulting in 60
ratings in total. They were recruited through Clickworker.de
and received monetary compensation.

Dataset and statistical analyses All statistical analyses
were carried out in R (R Core Team, 2023) using the following
libraries tidyverse (Wickham & Wickham, 2017), broom

2309



(Robinson, 2014), brms (Bürkner, 2017), cmdstanr (Gabry,
2021), HDI Interval (Dezeure, Bühlmann, Meier, & Mein-
shausen, 2015), tidybayes (Kay, 2020), loo (Vehtari,
Gelman, Gabry, & Yao, 2021) and BayesFactor (Morey,
Rouder, Jamil, & Morey, 2023).

We excluded ratings that were more than 3 standard de-
viations from the mean response time (0.6% of the data) and
removed data from one participant who kept responding with
almost identical rating values. After these exclusions, the par-
ticipant pool consisted of 248 individuals (1 diverse, 3 not
specified, 141 males, 103 females; average age 40, range 18–
70) with 12,854 data points, and between 18–24 ratings per
concept on average.

The ratings on a scale from −1 to 1 were transformed to
a 0 to 1 scale for modeling purposes. For the analysis, we
employed four Bayesian hierarchical zero-one inflated beta
models. Each model, consisting of four chains, was run for a
total of 8,000 samples post-warmup. All models converged,
indicated by R̂ values of 1.00. We selected the best-fit model
from the four models using leave-one-out cross-validation.
This model considered expressibility ratings as a function of
modality (on three levels, with the combined modality as the
baseline). It incorporated by-concept intercepts and slopes
for modality and applied the same structure for the phi, zoi,
and coi components.1

Results

The model results, displayed in Table 1, indicate that the con-
cepts generally received the highest ratings in combined (i.e.,
multimodal) condition. Ratings in both gesture and vocal
modality are reliably lower.2

Table 1: Statistical output of the Bayesian hierarchical zero-
one inflated beta model: Intercept = multimodal.

parameter estimate s.e. CrI p(β < 0)
Intercept 0.35 0.3 (0.29, 0.42) 1.00
gesture −0.11 0.03 (−0.17,−0.04) 1.00
vocal −0.81 0.04 (−0.89,−0.73) 1.00

The modeling script and complete list of 207 concepts, in-
cluding translations, are available at the OSF repository.

Additionally, we sampled posterior predictive distributions
for each concept per modality, using rstanarm R-package
(Goodrich, Gabry, Ali, & Brilleman, 2024). The resulting
matrix was used to simulate the experiments outlined in the
next section.

1zoi defines the proportion of data that belong to a modeled clus-
ter, coi defines the proportion of data that belong to a modeled noise,
and phi defines the precision of distinguishing between modeled
cluster and noise.

2Note that we report on all three modalities despite excluding
multimodality from our further analysis. This is mainly to stay con-
sistent with our modeling procedure.

Part II: Simulating the Effect of Concept
Choice

Motivation
Natural experiments assessing expressibility require elabo-
rate designs as they need to include productions and percep-
tions of gestural/vocal utterances. They are therefore natu-
rally limited by the number of participants that can be re-
cruited, and critically, are naturally limited by the number of
possible concepts that can be incorporated into the experi-
ment. These resource limitations prevent assessing a com-
prehensive number of diverse concepts that would allow for
conclusions about a supposed expressive superiority of one
modality over another or an entire conceptual space. Most
experiments incorporate about 16 to 36 concepts per partici-
pant (using both within- and between-subject designs). Since
both the number of participants and the number of stimuli are
assumed to be sources of random variation (Westfall, Kenny,
& Judd, 2014), they directly relate to the statistical power of
the subsequent analysis.

The expressibility ratings in Part I provide us with an
opportunity to simulate different experiments with different
sample sizes and different concept selections, to quantify the
likelihood of whether a difference between gesture and vocal
communication is observed, and more importantly, to quan-
tify the likely magnitude of the effect. Importantly, we can
also assess whether selecting concepts from particular cate-
gories that are popular in previous research may have inadver-
tently biased results as compared to experiments that include
concepts from another set of categories. As seen in Figure 1,
categories differ in terms of the distribution overlap between
the gesture and vocal modality. While simulations are cer-
tainly not the final arbiter on these questions, they do provide
information that can guide our expectations over and above
lab experimentation.

Methods
Based on the reasoning sketched above, the following para-
meters are varied in our simulations: participants (NP = 10,
15, 20), number of concepts (Nc = 12, 18, 24), and category
choice (no, determined, random).

Simulations In Simulation1, we do not constrain the selec-
tion of concepts by any categorical criterion. A certain num-
ber of concepts C is randomly selected from the list. For each
concept, the number of data points representing the number
of participants P, is drawn from the posterior predictive dis-
tribution matrix for the vocal and gesture modality.

In Simulation2, the selection of concepts is limited to the
three categories used previously, i.e., action, object, and emo-
tion. The number of concepts C is randomly selected from
each of the categories.3 For each concept, the number of data

3For the simulations with 24 concepts, i.e., 8 concepts per cat-
egory, we did not have enough items in the category emotion. For
that purpose, we created a quasi-item ‘x’ to which we assigned two –
gesture and vocal – distributions with a mean and standard deviation
of expressibility in the respective modality within the category.
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Figure 1: Distributions of gesture and vocal expressibility,
stratified by semantic categories.

points P is drawn from the posterior predictive distribution
matrix for both vocal and gesture modality.

In Simulation3, the selection of concepts is limited by se-
mantic categories, but the categories themselves are picked
randomly. The categories are the following: sensory, environ-
ment, abstract, body, thing, action, emotion, spatial, plant,
size, qualities, cognitive, time, temperature, social, animal,
and question. Then, the number of concepts C is randomly
selected from each of three categories.4 For each concept, the
number of data points P is drawn from the posterior predictive
distribution matrix for both vocal and gesture modality.

In Simulation4, the selection of concepts is constrained
by three morphological categories – nouns, adjectives, and
verbs. The number of concepts C is randomly selected from
each category. For each concept, the number of data points P
is drawn from the posterior predictive distribution matrix for
both vocal and gesture modality.

All simulations were run for each combination of the num-
ber of concepts and number of participants, resulting in 36
simulations in total. Simulations were iterated for 100,000
experiments whereby each experiment consisted of a list of
concepts and two lists of gesture and vocal expressibility
samples for each concept. The simulations were run with
a custom-made Python script (that is available at the OSF
repository).

4Note that a category can only be selected for an experiment if
there are enough items available.

Statistical analysis Subsequently, for each experiment
within a simulation, we performed an independent Student’s
t-test to determine whether there is a reliable difference be-
tween the two modalities. For this purpose, we used the
Pingouin package (Vallat, 2018) in Python which additio-
nally provides the scaled Jeffrey-Zellner-Siow (JZS) Bayes
Factor of the alternative hypotheses (i.e., that gesture moda-
lity is reliably different from vocal modality). The Cauchy
scale factor for computing the Bayes factor was set to 0.5.

For each simulation, we assess the mean and standard de-
viation of the t-value, p-value, Bayes Factor, and Cohen’s d
(i.e., the effect size). To assess the robustness of the effect, we
additionally calculate the proportions of experiments with in-
conclusive results, i.e., where p-value > 0.05 and Bayes Fac-
tor < 3. Additionally, we use the calculated confidence inter-
val of the difference to assess the mean midpoint of differen-
ce for each simulation, together with its standard deviation.
Complementary to that, we computed the contrast distribu-
tion (i.e., distributiongesture - distributionvocal) for one sample
experiment in each simulation. This information about con-
fidence interval and distribution contrast will help gauge the
actual differences between the distributions of the two moda-
lities.

Results
The extensive descriptive summary of all inferential indica-
tors is displayed in Table 2.

The overall results of the t-tests for all performed simu-
lations show that in the vast number of experiments, we
find reliable evidence for accepting the alternative hypothe-
sis, namely that gesture expressibility is different from vocal
expressibility. Moreover, since the mean t-value is consis-
tently negative, the concepts have on average lower expres-
sibility in vocalizations than in gestures. The minor propor-
tions of p-values being above the standard threshold of 0.05
(i.e., non-significant) and the minor proportions of the Bayes
Factor being below 3 (i.e., anecdotal evidence) further con-
firm the robustness of the results.

The percentage of inconclusive results differs depending
on all varying parameters, as displayed in Figure 25. De-
spite minor jumps in proportions of anecdotal or no evidence
for claiming a difference between gesture and vocal expres-
sibility, we do not find convincing evidence that some types
of simulated experiments induce a bias for favoring gesture
modality over vocal. We see, for instance, that the pro-
portions of inconclusive results in Simulations3 (random ca-
tegory pick) are double the size of inconclusive results in
Simulation2 (categories action–object–emotion) – suggesting
that for the random category picking there is a higher chance
for vocal expressibility being equal (if not better) to ges-
ture expressibility. However, all the proportions of inconclu-
sive evidence are so low that it does not constitute a mea-
ningful difference. Moreover, if the number of concepts is

5All figures were made using following Python-packages:
matplotlib (Hunter, 2007), seaborn (Waskom, 2021), and joypy
(see Github for documentation)
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parametrized at 24, the differences between simulations are
further minimized. Similarly, simulations with 12 concepts
only have almost identical proportions of results with insuffi-
cient evidence for claiming a difference.

Both contrast distributions (see Figure 2) and mean mid-
point of a difference (in Table 2) show that on average, the
concepts in vocal modality are approximately 0.166 less ex-
pressible than in gesture modality (on a scale from 0 to 1).
The effect size remains stable across all simulations, with a
mean value of 0.56. The mean standard deviation of the ef-
fect size is 0.154, but this value does become higher for fewer
concepts and fewer participants (suggesting increased uncer-
tainty about the effect size).

Discussion
Summary The contribution of our work is twofold. First,
we provide a set of ratings for 207 concepts, assessed for
imagined expressibility by German native speakers in three
modalities – multimodal, gesture, and vocal. The results
show reliable evidence that ratings are generally highest in
the multimodal condition, followed by gesture modality, with
vocal modality having the lowest expressibility. This data can
be of value to any researcher who wishes to make an informed
decision on concept selection guided by people’s judgment of
expressibility.

In Part II, we focused on whether constraints applied to
the selection of concepts, together with a number of concepts
and a number of participants, can induce bias in finding one
modality being better than the other. Firstly, across all si-
mulations, we find evidence of a difference between gesture
and vocal modality, with gestures affording higher expres-
sibility than vocalizations. Given the large average values of
the Bayes factor, well above a commonly held threshold of
BF>3 for evidence of H1, the likelihood of observing the
difference is deemed very robust. The percentage of p-values
> .05 shows a similar picture (though it is less conservative,
showing more ‘conclusive evidence’ for low sample size ex-
periments as compared to the Bayes Factor thresholded crite-
rion).

It is, however, necessary to take into account the magnitude
of the gesture vs. vocal differences observed in our simula-
tions. The mean estimated effect is stable around a medium
size of Cohen’s d = 0.56. We also observe high variability
(SD) of this estimate for different simulations. Across the
board, our simulations are more conservative than previously
observed ‘large’ effect sizes (Fay et al., 2014). In this respect,
our simulations would thus temper the support for a primacy
of one modality over the other, and more critically, the theo-
retical inferences for language evolution (assuming that such
inferences are justified or not).

The simulations also allowed us to test how different con-
cept selections can induce bias in the results. Taking into
account the differences in proportions of anecdotal or no evi-
dence for alternative models claiming a difference between
two modalities, we do not find convincing evidence of in-

duced bias by picking concepts from particular categories as
used in previous research (Fay et al., 2014, 2022).

We acknowledge that there is room for expanding the si-
mulations to further assess potential biases. For instance, we
ran a sanity check simulation with only one category that
we assumed would have the highest overlap in distribution
– emotion. We found the proportion of anecdotal or no evi-
dence for a difference rising to 68.761%. This suggests that
selecting the ‘right’ categories may be enough to turn the evi-
dence in the opposite direction. Potentially, one could also
tune the simulation in such a way that all semantic categories
are used, and from each category, one concept is randomly
picked. This would ensure the semantic variance within one
stimuli list, and reduce the accumulation of concepts from
categories that favor one modality over the other.

Figure 2: Visualization of output parameters for each simu-
lation type. A: Contrast distribution (yellow line: 0, i.e., no
difference). Each distribution represents one sample of a si-
mulation. B: Cohen’s d (yellow line = medium-effect size).
B: Bayes Factor (yellow line = threshold 3 for anecdotal or
no evidence). Note that the values are log-transformed (natu-
ral logarithm). For both B and C, each distribution represents
one simulation averaged over all 100,000 experiments. All
three plots have the same order as displayed in plot A.

Limitations While we believe that the simulations can
serve as an insightful (meta)analysis, our approach has
methodological and theoretical limitations that should be
taken into account.

Methodologically, we address the question of the robust-
ness of expressibility differences in self-reported ratings
based on imagined expressibility. We thereby assume that
a producer of a concept has a good intuition of not only how
well she can express a meaning, but also how likely it is that
the guesser perceives the meaning. This does not have to be
necessarily the case, as the rater of an online experiment can
be oblivious to the feedback from a guesser. Nevertheless,
since we introduced the experiment with ‘imagine that you
have to communicate a meaning to someone else’, we be-

2312



Table 2: Summary of the statistical parameters of the Student’s t-test.
Simulation (C, P) t-value p-value difference Cohen’s d Bayes factor Note

mean sd mean sd > 0.05 (in %) mean sd mean sd mean (log) sd (log) < 3 (in %)
1 (12, 10) -4.307 1.473 0.013 0.065 5.213 -0.165 0.053 0.556 0.190 14.853 17.171 10.254
1 (12, 15) -5.276 1.694 0.006 0.044 2.247 -0.165 0.050 0.556 0.178 24.986 27.484 4.857
1 (12, 20) -6.087 1.883 0.003 0.034 1.266 -0.165 0.048 0.556 0.172 30.352 32.615 2.769
1 (18, 10) -5.235 1.448 0.002 0.023 0.978 -0.165 0.043 0.552 0.153 19.878 22.255 2.605 random pick, no constraint
1 (18, 15) -6.415 1.660 0.001 0.012 0.287 -0.165 0.040 0.552 0.143 30.535 33.030 0.848
1 (18, 20) -7.412 1.844 0.000 0.008 0.110 -0.166 0.038 0.552 0.137 41.440 43.919 0.348
1 (24, 10) -6.026 1.432 0.000 0.007 0.137 -0.165 0.037 0.550 0.131 23.857 26.323 0.585
1 (24, 15) -7.379 1.628 0.000 0.003 0.025 -0.165 0.034 0.550 0.121 35.769 38.269 0.122
1 (24, 20) -8.510 1.824 0.000 0.002 0.010 -0.165 0.033 0.549 0.118 49.440 51.930 0.050
2 (12, 10) -4.177 1.303 0.010 0.051 4.251 -0.161 0.047 0.539 0.168 12.802 15.161 9.330
2 (12, 15) -5.114 1.470 0.004 0.031 1.481 -0.161 0.043 0.539 0.155 17.326 19.412 3.692
2 (12, 20) -5.893 1.619 0.002 0.021 0.714 -0.160 0.041 0.538 0.148 23.069 25.490 1.880
2 (18, 10) -5.090 1.229 0.001 0.012 0.481 -0.161 0.037 0.536 0.130 18.012 20.512 1.742 random pick from
2 (18, 15) -6.214 1.368 0.000 0.005 0.089 -0.160 0.033 0.535 0.118 21.925 24.391 0.355 three determined semantic categories
2 (18, 20) -7.191 1.497 0.000 0.002 0.010 -0.161 0.031 0.536 0.112 29.107 31.549 0.106 action–object–emotion
2 (24, 10) -5.942 1.175 0.000 0.002 0.025 -0.161 0.030 0.542 0.107 17.440 19.511 0.139
2 (24, 15) -7.273 1.299 0.000 0.000 0.001 -0.161 0.027 0.542 0.097 24.939 27.190 0.011
2 (24, 20) -8.391 1.421 0.000 0.000 0.000 -0.160 0.025 0.542 0.092 36.022 38.374 0.001
3 (12, 10) -4.450 1.681 0.017 0.078 6.539 -0.166 0.059 0.575 0.216 18.201 20.669 11.712
3 (12, 15) -5.452 1.960 0.009 0.058 3.216 -0.166 0.056 0.575 0.206 28.787 31.063 6.273
3 (12, 20) -6.294 2.207 0.005 0.045 1.984 -0.166 0.055 0.575 0.201 42.222 44.688 3.954
3 (18, 10) -5.626 1.881 0.005 0.039 1.998 -0.173 0.054 0.593 0.198 25.442 27.928 4.260 random pick from three random categories
3 (18, 15) -6.903 2.219 0.002 0.026 0.806 -0.174 0.052 0.594 0.191 41.785 44.284 1.944
3 (18, 20) -7.964 2.496 0.001 0.019 0.417 -0.173 0.050 0.594 0.186 52.464 54.724 1.103
3 (24, 10) -6.875 1.955 0.001 0.013 0.328 -0.183 0.048 0.628 0.179 32.830 35.280 0.971
3 (24, 15) -8.407 2.318 0.000 0.007 0.110 -0.183 0.046 0.627 0.173 45.313 47.810 0.347
3 (24, 20) -9.736 2.623 0.000 0.006 0.051 -0.183 0.045 0.628 0.169 61.387 63.760 0.148
4 (12, 10) -4.279 1.482 0.014 0.065 5.524 -0.165 0.053 0.553 0.191 16.485 18.767 10.774
4 (12, 15) -5.243 1.720 0.006 0.047 2.501 -0.165 0.050 0.553 0.181 28.700 31.200 5.258
4 (12, 20) -6.057 1.911 0.004 0.036 1.326 -0.165 0.048 0.553 0.174 31.862 34.308 2.984
4 (18, 10) -5.196 1.461 0.003 0.026 1.129 -0.165 0.043 0.548 0.154 25.245 27.745 2.971 random pick from
4 (18, 15) -6.387 1.678 0.001 0.013 0.351 -0.165 0.040 0.550 0.144 32.770 35.251 0.967 three determined morphological categories
4 (18, 20) -7.363 1.872 0.000 0.009 0.130 -0.165 0.039 0.549 0.140 36.975 39.402 0.448 noun–adjective–verb
4 (24, 10) -5.983 1.441 0.000 0.009 0.172 -0.165 0.037 0.546 0.132 24.942 27.299 0.631
4 (24, 15) -7.333 1.650 0.000 0.005 0.035 -0.165 0.035 0.547 0.123 32.783 35.151 0.152
4 (24, 20) -8.464 1.836 0.000 0.003 0.017 -0.165 0.033 0.546 0.118 45.639 48.018 0.057

lieve that there is a good chance that the rater might indeed
imagine herself in the guessing role, and rate the expressibi-
lity based on: a) how transparent does it feel for her, but also
b) how transparent this might look/sound for others. Even if
participants might have been overconfident without any ex-
ternal feedback, the data would be inflated uniformly. More-
over, note that we do not operate with raw means but with
modeled posterior estimates that can partially cover poten-
tial inflation in the data. Nevertheless, we are currently run-
ning an experiment to validate these ratings and to address
the precise relationship between self-reported expressibility
and transparency assessed via production and perception ac-
curacy.

Secondly, there are other ways to statistically analyze the
simulations with different assumptions. We draw based on
the posterior predictive distribution of the rating data that are
not necessarily or optimally Gaussian distributed but perform
a test that assumes Gaussian distribution. A case could be
made to produce inferential statistics that take into account a
possible non-normal distribution (e.g., non-parametric tests).
To overcome a possible oversight having to do with non-
normal distributions, we also provide the contrastive distribu-
tions (together with the mean midpoint of difference) which
show that the increase in expressibility from gesture to vocal
modality tends to be around 0.166.

Thirdly, the definition of the semantic category is some-
what arbitrary. The top-down approach could be substituted
by more data-driven ways of finding clusters of concepts that
group together based on some other parameters (e.g., con-
creteness ratings).

Finally, note that by focusing on some aspects of vocal-

gesture differences, such as expressibility, we sidetrack other
relevant aspects (e.g., required motor or cognitive ener-
gy/effort) that could make the difference between these two
modalities more or less important for understanding language
evolution.

Theoretical implications At last, we also suggest some
theoretical caveats to this type of research that warn against
drawing strong inferences from supposed differences without
further theoretical specification when and why such a diffe-
rence would matter for some larger research questions such
as how language evolved in humans. For example, we should
wonder how much difference in expressibility makes a diffe-
rence, such that one modality is favored in early communica-
tion over another – if both modalities were to some extent use-
ful and allowed for flexible exploitation of affordances, the
differences in expressibility are rather marginal. Critically,
then, the theoretical import for language evolution of which
modality is more expressive is itself a matter of discussion.
The question of how different modalities offer different af-
fordances can inform many other overarching research ques-
tions (e.g., why and when humans combine modalities, and
what concepts solicit expression in one modality rather than
another).

Conclusion Our simulations indicate that gestures tend to
afford more expressibility (as judged by participants) than
vocalizations, regardless of the chosen parameters for a sti-
muli list. However, vocalizations share a lot of expressibili-
ty with gestures, and the difference in expressibility between
gesture and vocal modality might be relatively marginal to
draw meaningful inferences about early language evolution.
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