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ABSTRACT OF THE DISSERTATION

Supporting Fault Tolerance in the Internet of Things

By

Sen Zhou

DOCTOR OF PHILOSOPHY in Electrical Engineering and Computer Science

University of California, Irvine, 2015

Professor Kwei-Jay Lin, Chair

This thesis addresses the issue of fault tolerance in the Internet of Things(IoT). The

goal of fault tolerance in IoT is to better adapt to changing environments and build up

trustworthy redundancy. However, in real IoT deployment scenarios like smart homes

or offices, heterogeneity and constant evolution of IoT systems pose a big challenge to

building up redundancies and adapting to changing environment. Firstly, heteroge-

neous devices are deployed in the environment with limited duplications. This brings

challenges to find redundant devices in the first place. Secondly, with a changing en-

vironment, there comes the need for devices, though deployed with different purposes

and capabilities, to collaborate with one another and to be sharable among different

applications with QoS requirements. This brings challenges to management of IoT

applications and IoT devices. Thirdly, in order to achieve failure-resilience on hetero-

geneous devices, an evolving yet lightweight dynamic binding mechanism should be

designed. This is the basis for supporting both previous points.

In this dissertation, we propose to address this above issues from a service-oriented

point of view. Service-Oriented Architecture(SOA) provides IoT with a abstraction

of integratable and manageable services. We have designed an IoT middleware to

facilitate the cooperation of different devices to achieve this cross-modality fault tol-

xii



erance. When a fault happens to a device, the middleware can reconfigure the system

by using devices of other modalities to cover the fault. The three above problems are

addressed in three different stages of service management: service discovery, service

mapping, service execution.

For service discovery, this thesis presents a sensing device adaptation scheme for

composing more available services. In IoT, sensors of different modalities may be

used to enhance the system fault tolerance. We propose the concept of virtual services

which use data from other sensor devices to replace an actual service on some faulty

device. We do regression analysis to identify and generate virtual services using

available sensors. Depending on the sensor correlation types, we can use with recursive

least squares (RLS) or multivariate adaptive regression splines (MARS) for virtual

service generation. These virtual services provide more choices of backup services

without deployment of duplicate backup sensors.

For service mapping, we separate it into two steps: phase 1 pre-runtime mapping for

functionality of the application and phase 2 run-time mapping for fault-tolerance. For

pre-runtime mapping, we model it into a quadratic integer programming problem.

Location policies are used to specify user preference during this mapping, and to

limit the size of the QLP problem. For phase 2 mapping, with abundant provision

of virtual services, we model it into a multiobjective optimization problem and use

a multiobjective genetic algorithm, NSGA-ii, to solve it. With more sensor data

from the network, virtual services are updated, and phase 2 mapping is triggered

periodically in order to adapt to the changed environment.

For service execution, we set up hierarchical monitoring for monitoring service status.

We investigate the issue of device clustering for fault monitoring in IoT systems. We

model the new monitoring clustering problem as a multiple traveling salesman with-

out depot problem. In order to detect device faults quickly, fault monitoring must be

xiii



conducted regularly and frequently. Therefore, it is desirable to reduce the commu-

nication cost for fault monitoring. We define the problem by extending the multiple

traveling salesman problem (mTSP) in an integer programming (IP) formulation. We

also present heuristic algorithms for constructing both monitoring clusters and also

the monitoring route within each cluster. Simulation results show that our heuristic

algorithms can deliver near optimal solutions on reducing the communication cost,

with a low complexity.

Finally, we provide detailed design of the fault tolerance framework, which incorporate

above stages and support from our fault recovery mechanism.

xiv



Chapter 1

Introduction

1.1 Service-Oriented Internet of Things

The Internet of Things (IoT) systems deploy sensors in the environment for data

collection and device control purposes in order to build smart applications such as

smart home, smart care, and smart industry[5]. Built on the foundation of wireless

sensor network (WSN) [29], each IoT device can facilitate a set of sensors and actu-

ators to connect with the physical environments. Emerging IoT systems often have

heterogeneous sensors and can run multi-purpose applications, so that different ap-

plications may use a different subset of sensing devices according to their locations,

capabilities and availability. Indigenous heterogeneity and constant evolution of IoT

systems present new challenges on device management for functional flexibility and

service quality [61]. Firstly, heterogeneous devices are deployed in the environment

with limited duplications. This brings challenges to find redundant devices in the

first place. Secondly, with a changing environment, there comes the need for devices,

though deployed with different purposes and capabilities, to collaborate with one an-
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other and to be sharable among different applications with quality of services(QoS)

requirements. There will be tradeoffs between various kinds of QoS such as accuracy,

energy, latency. These bring challenges to the management of IoT applications and

IoT devices. Thirdly, in order to achieve failure-resilience on heterogeneous devices,

an evolving yet lightweight dynamic binding mechanism should be used. This is the

basis for supporting both previous points.

Designed for the integration and management of diverse services, service-oriented ar-

chitecture (SOA) provides a promising paradigm for the IoT management problem

[40][55][63][19][1][56]. Using the SOA paradigm, a light weight middleware can be

constructed upon IoT devices to provide the abstraction of integratable and manage-

able IoT services. The developers and users of sensor devices are thus freed of the

details on what and how sensors are used and connected. An important benefit of

SOA is its composition and adaptation flexibility. As time changes, locations, users,

service parameters or composition of an IoT workflow may also need to be changed.

The potential for composing and adapting applications using IoT services makes SOA

a very attractive paradigm for future IoT applications.

In our study, we define service-oriented IoT in three layers, i.e. Application, Service

and Resource, as shown in Fig. 1.1.

• The application layer defines each application as a flow of components. Each

component of an application needs to be mapped to actual services in order to

be run. A deployment requirement specifies required service types of compo-

nents and their invocation orders. The application layer also defines policies

for applications. Policies help govern how an application should behave. There

are applicatoin level and component level policies. Application level policies

manage the application behaviour from an end to end execution point of view.
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Figure 1.1: Three Layers in Service-Oriented IoT

Component level policies care about preferences from a component’s local point

of view. For example, different parameters such as energy could be given a

high priority in an application policy as an important end-to-end measure of

QoS[66][32]. At the same time, different component of the application, de-

pending whether they have energy sources, can have different preferences on

energy[48].

• The service layer provides an abstract interface, sevices, for the application

layer to access resources(Discovery). While exposing some of the resource’s

properties to the application layer, it also adds in properties regarding to how

to access the resources. This is useful when a resource could be shared and

accessed simultaneously by more than one services. Examples of service layer

properties include threshold for updating value change, valid data range etc..

As shown in Fig. 1.1, services may be provided by one resource, or may be

3



provided by the cooperation of multiple resources. One component from the

application layer is able to be mapped to both kinds of services, as long as they

can provide similar functionalities.

• The resource layer provides specifications for individual sensors, actuators or

computing devices to upper layers. Each attribute in a specification is called

a property. While some properties come from factory specifications, others are

attained only when sensors are properly attuned and may change with time.

Example of resource layer properties include sensor values, location, precision,

response time etc..

1.2 Fault Tolerance in Service-Oriented IoT

Fault tolerance is important for many IoT applications since system failures may

disrupt users’ everyday activities or even endanger their lives. Different from those

more fragile and homogeneous WSN sensors, in IoT systems, devices are usually

individually deployed with different capabilities and may not be disposable. The lack

of redundancy during deployment makes fault tolerance in IoT an important issue.

How to provide fault tolerence using a limited set of devices is therefore a big challenge

for IoT system design.

Service-oriented architecture is prone to all the faults related to distributed systems,

during service publishing discovery, binding, and execution[13]. In a similar way,

service-oriented IoT also may face faults from service generation, mapping, deploy-

ment and execution processes. In traditional SOA, ways like admission control and

runtime migration are used for reducing and handling faults[69][49][68][50]. How-

ever, when we bring SOA to IoT, the lack of available services brings new issues. In

service-oriented IoT, services are hosted by many different physical devices. It’s not

4



common to have many copies of the same type of services. For example, two light

sensors , though of the same type and are close to each other, may still have very

different sensed values if there is a directional light source (like a flashlight or a mirror

) nearby. This puts the flexibility and reliability of the service-oriented paradigm in

danger in service-oriented IoT.

One common fault tolerance solution is to use replicated resources and deploy them

in the same environment for services, as assumed in related works[19] [63][60]. For

IoT, this requires a complete set of redundant resources, including sensors, devices,

energy sources, and may not be practical due to cost reasons. To reduce the cost of

a simple replication solution, we propose to combine data from sensing resources of

different modalities, and use their combined readings to project the actual reading of

actual sensors for backup purposes. This can help solve the availability issue when

limited devices are present in the environment. (Chapter 3)

In addition to the availability issue, IoT devices, when compared to web services, are

also frequently prone to many types of faults. Devices can be faulty due to hardware

failure, power failure, or communication failure. It can affect multiple services on a

single device simultaneously.

To achieve service fault tolerance, both fault detection and fault recovery need to be

supported[46]. Service fault detection can be supported using either self-diagnosis or

cooperative-diagnosis:

• In self-diagnosis, device nodes are supposed to send beacon messages to other

nodes. A node can detect if one of its neighbors is at fault when it fails to

receive any message from the neighbor for a predetermined time interval. This

self-diagnosis method can be used to detect failures which are caused by the de-

pletion of energy, malfunction in the device itself, or interference in the medium.

5



Self-diagnosis requires no consensus among multiple devices.

• Cooperative-diagnosis, on the other hand, is used more frequently for data fault,

or for event tracking. Generally, both spatial correlation among different geo-

graphically close sensors, and temporal correlation from the same sensor could

be exploited for this kind of detection[58]. Methods like least squared estima-

tion (LSE), maximum likelihood (ML) could be used for spatial correlation, and

methods like histograms, autoregressive integrated moving average (ARIMA)

could be used for the latter. Cooperative diagnosis requires data from a group

of multiple nodes, and a single decision maker, in order to decide the status

of the monitored node. How to select the group is usually subject to different

applications and different contexts.

We will show in Chapter 5 how we form clusters, and use a monitoring loop to

detect single device or single service failures. The system also requires some kind

of layered propagation mechanism for the propagation of news about faults. We

introduce in Chapter 6 about how heads of different monitoring clusters can be used

for propagation and triggering of faulty recovery process.

In order to incorporate the idea of virtual service and fault monitoring into SOA IoT,

different processes of service discovery, mapping and execution needs to be taken.

Depending on the frequency and effort required in the process of fault detection and

recovery, we can divide it into two categories.

Passive fault detection and recovery is the default fall-back plan for all services. It

uses resource discovery for fault detection. Resource discovery is done periodically

to catch the update from devices. Every resource discovery requires polling every

device in the network. It makes discovery expensive in terms of energy and time cost.

Therefore, the frequency of rediscovery is not that often due to the cost. Whenever

6



some executing services of an application fails, the failure will eventually be caught

up. If it is a communication failure problem, it will be picked up by the next resource

discovery; if it is from persistent wrong sensing data, it will be detected during the

analysis of collected data. Both will trigger a system to update available services,

remap, redeploy and restart affected applications, possibly using new devices and

services.

Proactive fault detection and recovery will try to actively monitor and prepare backups

for potentially faulty services. For many applications, especially for security ones, it

is unacceptable to fail for a long time. Passive detection and recovery is slow in

discovering faults. Beside that, it also faces the problem of interrupting not only the

applications with faulty services, but also those sharing a common device with the

affected applications during the restarting process. This interrupt may last several

seconds per device for getting reprogramming from a central device, and it could

easily accumulate to a long time if there are more devices. In order to lower the time

to recovery, applications should prepare backups before fault happens.

Backups, along with monitoring services and backup management services, will be

mapped and deployed together with active applications. This brings additional pa-

rameters to the service mapping problem which may contradict with the original QoS

preference for mapping. Different than the traditional SOA service selection problem

[63][67], we model this problem into a multiobjective problem and use the evolution-

ary method and different decision makers to help solve this conflict. (Chapter 4)

During execution, when a fault is detected by a monitor, the backup management

will redirect the faulty service related communication to one of the backup services.

This action only requires a rewrite of the message receiver ID in the device’s ROM,

and is a lot faster than the redeployment of a passive recovery. (Chapter 6)
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1.3 Contributions

The contribution of the research reported in this dissertation can be summarized as

follows:

• For sensors with different modalities and capabilities, this dissertation shows

how to use regression methods to identify their compatibility and composability

for fault tolerance. In order to incorporate this idea into SOA IoT, we introduce

the concept of virtual services. (Chapter 3)

• This dissertation introduces the mapping problem in IoT and solves it as an in-

teger linear programming problem. The geographical location-based tree model

and location-related policies are used to bring down the complexity of the ILP

formulation. In order to incorporate virtual services into mapping, an additional

phase of fault-tolerant mapping is added for finding backup services. The fault-

tolerant mapping problem with virtual services is then modeled as a multiob-

jective optimization problem and solved using the evolutionary algorithm.[70]

(Chapter 4)

• This dissertation proposes a hierarchical structure of monitoring clusters in

IoT system, which helps find efficient communication paths and reduce the

communication interference among nodes in the same network. It models the

monitor clustering as a new multiple travelling salesman with no depot problem.

It gives the integer programming formulation to the problem of finding optimal

clustering solution. It also proposes heuristic algorithms which achieve quick

and close to optimal results. [71](Chapter 5)

• This dissertation proposes a two-phase system deployment methodology for

building fault-tolerant IoT systems. The Wukong middleware design is extended

8



by incorporating fault monitoring, fault-tolerant mapping, and fault recovery.

(Chapter 6)

1.4 Dissertation Organization

The dissertation is organized as follow. Chapter 2 surveys related works. Chapter 3

introduces the concept of virtual services and presents methods for virtual service

generation. In Chapter 4, we present the concept of mapping and introduce location

policies, which are used to help define and map services from geographical point of

view. We also introduce how we incorporate virtual services into mapping. Chapter 5

shows the monitor clustering problem and solves it using both optimal and heuristic

approaches. Chapter 6 incorporates the fault monitoring, virtual service generation,

fault-tolerant mapping, and fault recovery into the WuKong system and introduces

how they work through an example. Finally, Chapter 7 concludes the dissertation and

points out possible future research directions for mapping and fault-tolerant mapping

in IoT.

9



Chapter 2

Related Work

2.1 Modeling IoT Systems

In order to handle differences among devices, there are projects building middlewares

for IoT systems. LooCI[33] is the closest to our project by building a reconfigurable

component infrastructure. The LooCI component model supports interoperability

and dynamic binding. However, it considers the component selection to be higher-

level services outside of its core functionality. ADAE[14] can dynamically reconfigure

data acquisition in the network according to a policy regarding the desired data

quality. However, ADAE focuses more on the smaller data acquisition problem.

There have been several projects targeting on developing virtual machines for resource

constrained devices, either using general purpose languages like Java(Darjeeling[12],

Takatuka[7]), or specialized for WSN (Maté[45], Müller et al. citemuller07). These

technologies allow IoT devices to be developed with a higher level language to han-

dle heterogeneous networks. However, applications are still written as commands

from the devices’ perspective. There are also works approach the virtualization of

10



IoT systems from applications’ point of view. In Agilla[23], applications consist of

agents. Each agent can move autonomously around different devices. This allows ap-

plications to be flexibly distributed and deployed on multiple devices. However, the

assembly-like instruction set in Agilla makes it hard to use. MagnetOS [47] proposes

a novel programming model which allows the user to write the application as a single

Java application, which is then automatically partitioned and deployed to minimize

energy consumption. However, the system requires significant computing power on

all devices.

2.2 Fault Tolerant Resource Management in IoT

In Service-Oriented IoT, heterogeneity of resources adds more issues to resource man-

agement. From the angle of sensors and devices, resource management is about how

a network could be organized for fault monitoring and recovery. The most important

parameters considered here are the metrics related to the wireless network, like en-

ergy, communication, duty cycle etc. From the angle of applications and services, it

is about which services should be used in composing an application. End-to-end QoS

such as response time, low error rate, or low cost may become important parameters

in finding good solutions.

From the angle of sensors and devices, organizing resources for the fault tolerance

purpose in wireless sensor network is one widely studied topic[11][43]. However, most

of the works focus on networks composed of similar sensors, and used by one ap-

plication. Clustering is a widely used way for handling the fault tolerance problem

in wireless sensor network. For heterogeneous netoworks, the problem is studied as

the resource allocation problem[42] or the role assignment problem[25]. Based on the

purposes of different applications, different roles can be assigned to a set of nodes
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in the network. For duty cycle scheduling, roles of ON and OFF can be assigned;

for in-network aggregation, roles of SOURCE, SINK and AGGREGATOR can be

assigned; for clustering, roles of CLUSTERHEAD, SLAVE, GATEWAY can be as-

signed; for fault tolerance, roles of ACTIVE, BACKUP can be assigned. [25] presents

a role specification language and heuristic distributed algorithms for the role assign-

ment according to such specifications. They show that generic role assignment is

practically feasible for wireless sensor networks while previous works may focus on

specific applications. In [42], the authors try to bring fault tolerance to their resource

allocation problem. In order to achieve fault tolerance in tracking the location of

objects, four kinds of sensors are used. The sensors are redundantly deployed, and

multiple models using different sensors are set up, so that even if some sensors are at

fault, the application still works fine. While both this work and our work use sensors

of different modalities to cover one another, this work is different because it uses

some application knowledge for setting up the multiple models. This is like they are

setting up several applications simultaneously for the one purpose: one application

may use RSSI-based distance discovery for tracking, one may use speedometer and

accelerometer for tracking, one may use a mix of the sensors for tracking. We try to

prepare our backup sensors only with sensor data and can do it automatically.

SenseWeb[40] is a project which focuses on the improvement on the QoS of multimedia

data collection from different sensors for different applications. sMAP[19]tries to

profile physical devices and make it fit into the RESTful paradigm. [63] looks into the

service composition problem considering the overall cost of the application. However,

it treats IoT services as if they were web services which could be easily replaced by

one another, while the reality is not. However, these works build IoT middleware

without the fault tolerance support.

Only a few projects have considered the fault-tolerant support for multi-modality of
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sensors in IoT from the angle of applications and services. [52] tries to find backups

by using the error rate of each device. This work assumes each node knows its own

probability of errors through a moving average filter . However, errors may be caused

by either hardware/software or medium/communication reasons. This may make the

chance for a device to go erroneous different from time to time, thus making one stable

expression of the error rate to cover all possible errors a challenging problem to solve.

[60] looks into the problem of fault recovery in IoT using backups. It assumes the

installation of multiple replicated services are already in the system. Another work on

fault tolerant health monitoring is reported in [27] which also uses redundant devices

and implements an enhanced gateway for fault tolerance. However the reality is that

replicated services are very limited in IoT. Even though they are of the same modality,

sensors deployed at different places could provide totally different services. Our work

tries to avoid using redundant IoT resources to achieve fault tolerance.

2.3 Data Fusion in IoT Systems

Multisensor data fusion is widely used for increasing authenticity and availability

of data. However, there are limited works on using data fusion for increasing the

availability of IoT services, or in automatic fusion[41].

Our goal of increasing the availability of IoT services and data fusion’s goal of in-

creasing data availability results in different preferences in choosing proper algorithms.

The correlation among sensors of different modality may result in a common noise

observed multiple times on different sensors. This results in a biased observation,

and is undesirable for the purpose of increasing data availability in times of noise.

However, when we use probabilistic methods for finding potential sensor backups,

we are exploiting the correlation among different sensor data for finding unknown
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relationships among different sensors, so the correlation is what we are looking for in

increasing the IoT service availability.

Though the purpose is different, many data fusion works use different methods for

projecting missing or vague data from sensors, similar state estimation methods could

be used for data estimation. Some common probabilistic methods that could be used

for state estimation in data fusion includes Bayes estimators like maximum likelihood,

Kalman filter related methods[51][39] and Monte Carlo simulation-based techniques

like particle filter[18]. Monte Carlo simulation-based techniques generally have high

computation complexities due to the large population of particles in the simulation.

Considering there could be many potential pairs of sensors for testing of correlations,

Bayes estimators are chosen for both linear and non-linear estimators in Chapter 3

for the reason of complexity.

2.4 Fault-Tolerant Clustering in IoT Systems

Clustering is widely used in sensor network to deal with the inherently lack of structure

in mesh networks, for fault-tolerance as well as other purposes like energy efficiency,

communication efficiency[11]. One widely used model to solve fault-tolerant clustering

problem is the dominate set clustering [62][43][65]. This technique tries to find a

dominate set within the network thus every node in the network is within k hops to

the nodes in the dominating set. One famous work based on this model is LEACH[30].

LEACH proposes a distributed algorithm in which a cluster head is elected based on

their energy level among neighbors, and nodes join different clusters according to

their communication cost to those cluster heads. Cluster heads could be rotated as

energy changes in order to help with load balance and fault tolerance of the network.

All these works care more about clustering, but not the organization of nodes within
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a cluster, thus a star topology is assumed, resulting in extra burdens in the cluster

head during run time.

Most of the works we surveyed comply with a distributed pattern. The benefit of

distributed algorithms mainly resides on that it could better adapt to the mobility

of nodes in wireless ad hoc networks, and a better scalability[43][6]. However, for

smart home or office scenarios, only limited mobility for devices is required. Once

we deploy sensor nodes, we rarely move them. Location tracking may have moving

objects, but in most cases, the sensors detecting human badges or moving objects

are set at fixed locations. The benefit of a centralized algorithm is that it can get

more information and be more powerful. Among the limited centralized algorithms,

G. Gupta et al.[28] tries to achieve fault tolerance on clustering by assigning nodes

to some existing gateway nodes through heuristic algorithm. This aims more at

partitioning the devices. E.I. Oyman et al.[53] uses k-means to set the sinks in

multiple-sink networks considering energy. They try to find the minimum number

of sinks while maximizing the network lifetime. This work aims more at finding the

sinks or CHs of a cluster. We formulate a centralized clustering problem, which is to

solve both the CH location problem and the node assignment problem at the same

time.

2.5 Overview of the Wukong Middleware

Our work is based on the Wukong middleware[56]. Wukong is designed to perform

automatic sensor identification, node configuration, application upgrade, and system

re-configuration. It allows system developers to specify the application behavior at a

higher level, instead of telling each sensor node what to do.
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The overall flow of Wukong project is shown in Fig. 2.1. There are three parts in the

figure.
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Figure 2.1: Wukong System Flow

• Flow-Based Programming (FBP): On the top right of Fig. 2.1 is a box

named flow-based programming IDE. This is the component for users to develop

applications in Wukong. Flow-based programming models IoT applications as

a flow of information among components. FBP users will select components

from a library to construct an IoT application. Each component describes

a requirement which could be fulfilled by a physical sensor/actuator or some

software running on a device. Every component exposes their external interface

through one or more properties. Links are used to connect different properties

of components. FBP allows the user to focus on abstract information flow of the
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program while the middleware handles the details of communication between

components.

One example of a simple FBP program is shown in Fig. 2.2. Fig. 2.2 defines a

simple heater control application which turns on the heater when the tempera-

ture in an area is below a certain threshold set by the thermostat controller. In

this example, the whole application is divided into 4 components, a tempera-

ture sensor, a thermostat controller, a threshold and a heater. The temperature

sensor will send its latest sensed temperature value to the threshold at a default

sampling rate. The thermostat controller will also send the desired temperature

to the threshold. Once the threshold finds out that the actual temperature from

temperature sensor is below the desired temperature, it will output ”True” to

the heater to turn it on; Otherwise, ”False” will be sent to turn the heater off.

The result of this flow-based application is saved in a .xml file shown in Fig. 2.3.

Figure 2.2: A simple heater control IoT application design using FBP.

• Wukong Master: Wukong master is shown at the lower right of Fig. 2.1.

After an application is designed, it is taken into a centralized control device

called Wukong master for deployment. Beside the application flow from FBP

GUI, there are also policies for instructing the mapping process. Policies can

be defined for the entire application, or just for one component. If it is for an

17



Figure 2.3: Heater control application in XML format

entire application, a policy can be used to define the preferable behavior and

goals (e.g. energy saving, fault-tolerance) for mapping process; if it is for a

single component, a policy can be used to define the preferable QoS(e.g. device

location, service accuracy) for the component. In master, according to the FBP

and policies, each component is mapped to and then deployed on a real device.

• NanoKong Virtual Machine (NanoKongVM): The left part of Fig. 2.1

shows the process of compiling and deploying the Nanokong VM on sensor

nodes. The NanoKong virtual machine is an embedded Java virtual machine

which runs in C code but support a simplified version of Java code. It also

knows about each device’s capability, and supports remote reprogramming on

the device. There exists a file called ComponentLibrary.xml which describes all

possible kinds of components the master supports. Each kind of components

here is called a WuClass. All WuClasses a device supports are saved in the

device’s local WuClass library.

Depending on the implementation language, WuClasses can be divided into two

categories: those implemented in C(Native WuClasses) and those implemented

in Java(Virtual WuClasses). Virtual WuClasses runs on the virtual machine,

so they can be deployed onto devices remotely and conveniently without touch-
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ing the NanoKongVM. Native WuClasses is quicker in terms of the execution

speed, but they need to be compiled together with NanoKongVM and are thus

not flexible. The differences make native WuClasses more suitable for resources

requiring the hardware access function, while make virtual WuClasses more

suitable for processing functions which may change over time, especially appli-

cation specific ones. The comparison between virtual and native WuClasses is

shown in Table. 2.1. There is also a NodeInfo WuClass shown in Fig. 2.1. It

is a special native WuClass which saves general information about the device,

such as device ID, network address and location.

Similar to the class and object definitions in object-oriented programming, there

is also a WuObject defined for NanoKongVM execution. While WuClasses

defines interfaces of components in the VM, WuObjects are used like handlers

to load and execute WuClasses. WuObjects are scheduled in the NanoKongVM

in a round robin fashion. Every round, the scheduler in the VM will go through

each of the WuObjects and check if the WuObject has jobs for execution. If

there are, the jobs are executed; otherwise, the turn is skipped for the WuObject.

A job could be reading from a certain property, computation, or writing to

a property. For property writing, because data usually change much slower

than property checking frequency for IoT, only changes need to be written in

NanoKongVM to conserve communication.

Table 2.1: Types of WuClasses
Name Language Main Usage

Native WuClasses C Hardware access, fast processing functions
Virtual WuClasses Java processing functions
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Chapter 3

Improving the Availability of

Services in IoT

Because of limitation on hardware deployment, resources are not always available for

providing services for IoT applications. The lack of replaceable services reduces the

flexibility of service-oriented IoT. In order to tackle this problem, relationship among

different resources need to be exploited to make the most use of existing deployed

hardware.

For example, passive infrared sensors (PIR) are often used to detect human presence.

However, human presence can also be inferred by other types of sensors such as

graphical monitors, infrared sensors (IR), and sound sensors. Integrating several

sensors of different modalities can be used to provide the virtual service for a PIR.
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3.1 Concept of Virtual Services

We expand the concept of IoT services from simple actual services to include virtual

services. In our definition, an actual service is directly implemented on a device with

native resources, but a virtual service may use non-native resources to provide the

functionality compatible with the actual service. An actual service usually uses only

one resource in the resource layer, but a virtual service may rely on one or more

sensing resources.

The relationship among components, virtual services and resources is shown in Fig. 3.1.

 Sensors, Actuators, 
Computation, Web

ComponentApplication Layer

Service Layer
Virtual Services, 
Actual Services

Resource Layer

Figure 3.1: Concepts in Service-Oriented IoT

We now investigate how to identify virtual services through historical data collection.

One simple idea is to include all sensor resources within the vicinity of a sensor as can-

didates for identifying its virtual services. This takes advantage of the geographical

proximity to indicate potential data correlation. However, the significance of correla-

tions among data may come from causal relationships from the deployed application

itself. Such correlations should be used with caution.

For example, Fig. 3.2 shows a light control FBP application which turns on the light

when both light sensor and presence sensor in an area are above some thresholds. A
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Figure 3.2: FBP using presence and light sensors to control light

detected human presence will trigger the light actuator in a dark room, which will

then affect the light sensor. Sensor data collected from this room may indicate a

relationship between the presence and light sensors. This may suggest the possibil-

ity of using light sensors as a backup for the presence sensor. However, the light

level change is due to the application operation, and cannot replace the presence sen-

sor. To avoid such situations, manually defined relationships among different sensor

modalities would be very useful.

3.2 Vitual Service Generation

We identify virtual services through regression. Methods of regression can be divided

into two categories, linear models and non-linear models. Both models have their

merits. In general, linear models are faster and require relatively less data, non-linear

models are more flexible yet more complex and thus require more data to converge.

Depending on the situations, both models can be useful.
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3.2.1 Linear Models

A linear model is very common for correlation among real world sensor data. For

example, there is usually a linear relationship among light sensors deployed at various

locations in a room with sensing values linearly related to their distances to the light

source. Suppose there are M − 1 sensors that are linearly related. We can express

the relationship among these data through the following linear expression:

yi =
M−1∑
k=1

xk,i ∗ hk,i + xM,i (3.1)

In Eq. 3.1, xk,i is the correlation factor for sensor k at time instance i. xM,i is the

correlation factor for the constant term. For ease of expression, we can model it as a

pseudo sensor M with hM,i = 1 at all time i. Therefore the equation can be expressed

as a simple matrix multiplication:

yi = HT
i Xi (3.2)

where Hi = [h1,i, h2,i, ..., hM,i], Xi = [x1,i, x2,i, ...., xM,i]. Assuming correlation factors

Xi have little change in the small time window before time i, our goal is to identify

Xi using the values in Y and all relevant sensors hk up to time i.

We propose to use the Recursive Least Squares (RLS) algorithm [59] for finding X’s

estimated expected value, X̄, and its variance Φ.

Φ = E((X − X̄)(X − X̄)T ) (3.3)

RLS is a commonly used algorithm for estimation. It recursively finds the correlation
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factors that minimize the weighted sum of error squares relating to the input data.

As a recursive algorithm, it only requires the newest data and the last estimation of

X̄ and Φ to generate the next estimate. For a cold start when there is no historical

data, we can set X̄0 = [1, 1, ..., 1], Φ0 = ∞ ∗ I. After that, X̄ and Φ are updated at

each time interval according to the following RLS formula:

X̄i = X̄i−1 +Kiei (3.4)

where ei is the error between the observed value and the estimated value at time i.

Ki is a gain vector calculated using Φi−1, X̄i−1, new data Hi and a forgetting factor

λ:

Ki =
Pi−1X̄i−1

λ+HT
i Pi−1Hi

(3.5)

Pi = Φ−1i = λ−1(Pi−1 −KiX̄i
T
Pi−1) (3.6)

One benefit of RLS is that it doesn’t require much memory for processing and can be

done very fast. Although it actually uses all data for regression, only the newest data

is required every time for updating the result. Another benefit of RLS is that we can

use a forgetting parameter λ to discount older historical data. As scenarios progress

with time, older data may not be as useful as newer data. The forgetting parameter

λ between 0 and 1 can be used: 1 means old data are of the same importance as new

data, and 0 means old data is not useful at all for estimating new correlation factors.

A practical λ value ranges from 0.95 to 1 depending on the scenario and data interval.
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3.2.2 Non-Linear Models

In many systems, the relationships among sensors are not linear. This is especially

common when we use virtual services across modalities. For example, using a sound

sensor to predict the presence requires the translation from a numerical value of sound

wave amplitude to a binary presence result. This conversion is more of a categorical

relationship than a linear one, making non-linear models better suited.

Multivariate adaptive regression splines (MARS) [26] is one of the well-studied non-

linear models. The benefit of MARS is that it can efficiently approximate the relation-

ships between active sensors and potential backup sensors in a piece-wise regression.

As a non-parametric regression approach, MARS divides data into subregions, and

use different model functions for regression in each subregion. MARS model shares a

similar form to linear regressions, as shown in the equation below. However, the b in

the equation is different from the raw data h in linear progression.

yi = sumM
k=1xk ∗ bk,i (3.7)

In MARS, b is either a constant or a product of hinge functions. It is through hinge

functions the original data can be divided into subregions. A hinge function can be

expressed as either b∗k,i = max(0, bk,i − c) or b∗k,i = max(0, c − bk,i), where c is a

constant called a knot, representing the borders of each subregion. To protect against

over fitting, MARS also prunes unnecessary hinge functions. Because of its good

performance in simulating categorical relationships, we use MARS as a non-linear

model in our study. In many systems, the relationships among sensors are non-linear.

This is especially true when we use virtual services across different modalities. For

example, using a sound sensor to predict human presence requires the translation from

a numerical value of sound amplitude to a binary presence result. This conversion is
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more of a categorical relationship than a linear one, making non-linear models better

suited.

Multivariate adaptive regression splines (MARS) [26] is one of the well-known non-

linear models. The benefit of MARS is that it can efficiently approximate the relation-

ships between active sensors and potential backup sensors in a piece-wise regression.

As a non-parametric regression approach, MARS divides data into subregions, and

uses different model functions for regression in each subregion. The MARS model

shares a similar form to linear regression, as shown below.

yi =
N∑
j=1

xj ∗ bj,i (3.8)

However, the b value in Eq. 3.8 is different from the raw data h in linear progression.

In MARS, b is either a constant or a product of hinge functions. A hinge function

can be expressed as either bj1,i = max(0, hk,i − c) or b1j2,i = max(0, c− hk,i), where c

is a constant, called a knot, representing the border for each subregion. Using hinge

functions we can divide the data from a sensor into subregions based on their values,

and have different correlation factors for different subregions. This enable MARS to

catch non-linear categorical relationships. To protect against overfitting, MARS also

prunes unnecessary hinge functions.

Many relationships among sensor values may be categorical. For example, in order

to compose a binary virtual sensor using numerical actual sensors, numerical sensor

values need to be truncated into at least two categories. Because MARS has a good

performance in simulating categorical relationships, we use MARS as a non-linear

model in our study.
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3.2.3 Practical Issues

In general, a linear model runs faster and requires relatively less data, and a non-linear

model is more flexible yet more complex and thus requires more data to converge.

Depending on the system characteristics, both models can be useful. In Sec. 3.3, we

will show actual examples and compare their performances.

One practical issue, however, is the correlation among data may come from some

causal actions due to the application itself. Such correlations should be excluded

carefully. For example, in Fig. 3.2, a detected human presence will turn on the light

in a dark room, which in turn affects the readings of the light sensor. Therefore,

the sensor data history from the room may indicate a strong correlation between

the presence sensor and the light sensor and suggest the possibility of using light

sensors as a backup for the presence sensor. However, the light level change is in

fact the result of the application’s response to the PIR sensing, and should not be

used as a presence sensor. To avoid such confusions, pre-defined causal relationships

among sensors should be identified for excluding their replacement for each other in

the virtual service generation.

3.3 Experimental Study

To verify the effectiveness of building virtual services, we build and deploy the appli-

cation in Fig. 3.2 in an office area, collect sensor data, analyze the data using RLS

and MARS.

27



3.3.1 Experiment Setup

We deploy the light control application from Fig. 3.2 for our experiment. As shown

in Fig. 3.3(a), a meeting room scenario is used with a row of desks in the center of the

room, and 6 seats along the desk. There are 6 ceiling lights in the room corresponding

to the 6 seats. We deploy the application so that when a person is in an area, the

light for the area is turned on.

10 devices are deployed in the testing area (Fig. 3.3(b)). Devices D3, D8, D4 are

deployed at higher positions on the left part of the room, devices D5, D6, D7 at lower

positions, and devices D9, D10, D11 on the right side. There is also device D12, a

Kinect to monitor the whole area. The Kinect is able to identify the area where a

person is and is used as a presence sensor.
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(b) Actual Device Deployment

Figure 3.3: Scenario Layout

As can be seen in Fig. 3.4, every device at lower positions is equipped with a light

sensor(LS), a passive infrared sensor(PIR), a sound sensor(MICRO), and a pair of

ultrasound sensors(DIST). Every device at higher positions is deployed with a light

sensor, a PIR and an ultrasound sensor. We’ll name resources after their device ID.

A light sensor on device D4, for example, is called LS4. Ultrasound sensors are used
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to detect distances, and will be abbreviated as DIST .
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Figure 3.4: Sensor Deployment on Devices

For initial deployment, we study an instance of Fig. 3.2 application deployed in area

2. Kinect (D12) is selected as the presence sensor, and LS6 from area 2 is chosen as

the light sensor. They send data to trigger the light in area 2 LA2. After the initial

deployment, data from all devices are collected for analysis. A person will randomly

move and stand in the test area, holding a video player to simulate talking. This

process lasts for 40 minutes for data collection. We record the status of every sensor

in every second of the 40 minutes. The data are analyzed using RLS and MARS.

For RLS, we set the forgetting factor λ to be 1, which means there is no need for

forgetting.

3.3.2 Generating Light Sensing Virtual Services

Given the system has 8 backup LS resources for the original LS6, there can be a total

of 255 combinations to create virtual services. In order to show the effectiveness of
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both regression methods, we repeat the experiments for LS5 as a comparison. We

show the results in Table 3.1 and Table 3.2 respectively. We apply a 5-fold cross

validation (CV) on a selection of virtual services in both cases. CV can help better

show the compatibility of RLS and MARS models for prediction, limiting problems

like overfitting. However, since CV requires all data to be saved in memory for

calculation, it will harm the performance of online calculation, especially for the RLS

calculation. Therefore, for virtual service generation, we use the simpler correlation

coefficients.

Table 3.1: Correlation and Cross Validation(CV) for simulating LS6

Sensors RLS MARS RLS CV MARS CV Sensors RLS MARS RLS CV MARS CV
LS3 0.6366 0.7654 0.5543 0.6828 LS5, LS7 0.9312 0.8957 0.9019 0.8764
LS4 0.4578 0.8997 0.5571 0.8801 LS3, LS4 0.6562 0.8911 0.7200 0.8795
LS5 0.9059 0.8490 0.8319 0.7862 LS5, LS8 0.9510 0.9578 0.8922 0.8935
LS7 0.6723 0.6838 0.8125 0.8274 LS8, LS10 0.9021 0.9592 0.8892 0.9135
LS8 0.5037 0.9145 0.6397 0.8712 LS3,4,9 0.9173 0.9558 0.8837 0.9278
LS9 0.6186 0.8435 0.4717 0.7540 LS5,8,10 0.9670 0.9736 0.9191 0.9309
LS10 0.7355 0.9245 0.5810 0.8317 LS3,5,7,8,10 0.9657 0.9615 0.9216 0.9330
LS11 0.7393 0.9160 0.6129 0.8495 All 8 LSs 0.9656 0.9596 0.9189 0.9298

Table 3.2: Correlation and Cross Validation(CV) for simulating LS5

Sensors RLS MARS RLS CV MARS CV Sensors RLS MARS RLS CV MARS CV
LS3 0.5538 0.5648 0.5904 0.5443 LS6, LS7 0.9130 0.8820 0.8273 0.8647
LS4 0.1811 0.8362 0.2754 0.8375 LS3, LS4 0.5208 0.8462 0.6171 0.7335
LS6 0.9036 0.9275 0.8317 0.8412 LS6, LS8 0.9169 0.9502 0.8399 0.8833
LS7 0.4696 0.5005 0.6603 0.7457 LS8, LS10 0.7902 0.9123 0.7910 0.8832
LS8 0.2442 0.8868 0.4112 0.8688 LS3,4,9 0.8919 0.9489 0.8672 0.9065
LS9 0.7464 0.9297 0.5953 0.8139 LS6,8,10 0.9203 0.9444 0.8483 0.8851
LS10 0.7875 0.8698 0.6509 0.7784 LS3,5,7,8,10 0.9336 0.9289 0.8715 0.8624
LS11 0.7307 0.8793 0.6216 0.8031 All 8 LSs 0.9326 0.9495 0.8809 0.8209

In Table 3.1, LS6 is deployed at center of the room, backup sensors are relatively more

helpful in this case. MARS usually shows a slight better performance than RLS, but

not always. RLS has a good performance largely because LS’s are numerical sensors

and we are using the same modality of sensors for generating LS virtual services. This

means the relationships could actually fit into linear models. Though less complex,
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RLS still outperforms MARS in some situations (e.g. using LS5 in Table 3.1). This

may be due to that MARS has more coefficients to be set, and MARS has the process

of pruning unnecessary hedge functions while RLS doesn’t. As a comparison, in

Table 3.3, because LS5 is deployed at one corner of the room, backup sensors are

relatively less helpful. We can see both the correlation coefficients and CV of virtual

services, though follow a similar pattern to LS6 cases, are lower compared to LS6

cases.

In Table 3.1, LS5, (LS5 + 7), (LS5 + 8 + 10), (LS3 + 5 + 7 + 8 + 10) are the best

virtual services with 1, 2, 3, and 5 sensors respectively under RLS cross validation.

The results are all quite good, ranging from 0.83 to 0.92. Using LS5 + 7 can achieve

0.90, 0.88 under RLS and MARS respectively, as shown in Fig. 3.5(a). From the table,

we can also see that starting from 2 sensor virtual services, adding more sensors won’t

help much to improve the correlation coefficient. One interesting thing is for virtual

services using LS4 or LS8, MARS has a much better results than RLS, suggesting

the relationships between LS4, LS8 and LS5, LS6 are more categorical than linear.

Fig. 3.5(b) shows the results of using LS4 for predicting LS6. It suggests that this

may be caused by LS4 and LS8 are deployed too close to light sources LA3 and LA2

respectively. Those light sources therefore have far more significant impacts on those

two sensors compared to other light sources. This leads it to be two different cases

when these close light sources are on or off. Another interesting case is (LS3 + 4 +

9). These sensors are farther from LS6 than other sensors, and perform badly by

themselves individually. But by working together as a virtual service, these sensors

achieve a result quite close to the best ones. This suggests the inclusion of virtual

services indeed brings real benefits for backup plans.
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Figure 3.5: Sensor Deployment on Devices

3.3.3 Composing Presence Sensing Virtual Services

The presence sensor has one important difference from the light sensor. Since the

presence sensor is to produce a binary output, the output of its virtual services should

be a binary value as well. We need to use a threshold to decide if the output value is

1 or 0. A simple fixed threshold of 0.5 is used for binarization in our experiments.

Table. 3.3 shows the correlation results in the first two columns, and cross validation

(CV) results in the last two columns. In this study, MARS is much better than

linear regressions in most cases. This is because the underlying relationships between

collected data and the desired presence result is not a linear one.

Table 3.3: Correlation and Cross Validation(CV) for PIR
Sensors RLS MARS RLS CV MARS CV

MICRO6 0.3547 0.4889 0.2504 0.4898
all MICROs 0.3547 0.4692 0.2607 0.4823

DIST6 0.9547 0.9547 0.6098 0.7859
all DISTs 0.9547 0.9661 0.6872 0.7862

MICRO6,DIST6 0.5425 0.9431 0.5020 0.7845
all PIRs 0.2994 0.3297 0.1427 0.1606

One interesting result is that with all PIR sensors, although they are widely used for
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presence and motion detection in many real world systems, we can only achieve 0.16

for the MARS CV result. This is because PIR has a big detection range of several

meters but the study area is a small rectangular area. So the intended detection

range is not a good fit. In comparison, the ultrasound DIST sensor can easily scale

to rectangular areas and DIST6 from area 2 alone achieves a high cross validation

value of 0.79 under MARS. Unfortunately, since an ultrasound sensor only has a

narrow line of detection, more DISTs won’t help much to improve the result. The

comparison between the DIST6 virtual service results and the original Kinect results

before binary conversion is shown in Fig. 3.6(a). We also show the 0.5 line used for

binarization in this graph. We can see that RLS often produces a very borderline

result (values only slightly above 0.5) compared to the detection by the presence

sensor. But the binarization step makes it a good virtual service.

The results from cross validation reveal that there is a drop from row 3 (DIST6) RLS

to row 5 (MICRO6, DIST6) RLS even when more sensors are used. It is because the

additional MICRO6 data provided often lower the RLS sensor values to be slightly

below 0.5, and cause the binary output to switch from 1 to 0. This big difference sug-

gests that the correlation result before and after binarization may be quite different,

and we cannot use the correlation results before binarization to reflect the goodness

of simulated binary sensors.

Another interesting result can be found for microphones. Using MICRO6 for human

presence in area 2 before binary conversion is shown in Fig. 3.6(b). Although it has

only a cross validation result of 0.49 using MARS according to Table. 3.3, the results

in Fig. 3.6 actually show that MICRO6 has very low false positive results, (0.02,

0) respectively for (RLS, MARS). Looking further into the data, we find that the

microphone sensing remains zero most of the time even though people are walking

in the area. If we have microphones with a better sensibility, they can make good
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substitutions for the presence detection.

(a) Using ultrasound sensors before binariza-
tion

(b) Using microphone before binarization

Figure 3.6: Detecting presence using ultrasound sensor or microphone

In general, when considering numerical sensors for virtual services, especially when

sensors have the same modality, it is more likely there is a linear relationship among

those sensed values. RLS may be a better choice since it doesn’t need old data for

update and requires less time and memory for execution. It can also adopt a time

discounting factor which makes it better for adapting to some changing environment.

However for most cases, we may not know whether the relationship among sensors is

linear. In fact, whenever data conversion is required from numerical sensing values to

binary results, the relationship is not linear. Under those cases, we should use MARS

or other non-linear algorithms for detecting the relationships.
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Chapter 4

Mapping in IoT

In IoT, if we map a service onto a device, two types of QoS parameters will be

generated: device parameters and inter-device ones. Device parameters are the ones

defining capabilities of the device. Depending on which is more limited, device context

information like device energy, device location, memory, disk space and prices could

all be considered as the device cost. Inter-device parameters are the ones related to

sending and receiving messages to other devices. This cost as well could be consisted

by many things. Examples include sending energy consumption, receiving energy

consumption, bandwidth consumption, etc.

4.1 Using Communication Cost for Inter-Device

Cost

For the inter-device cost, we’d like to consider the link communication cost as the

main QoS. The motivation for approaching the mapping problem through inter-device

communication comes from our experience in deploying IoT applications in Wukong.

35



When we conduct experiments in an indoor lab, it always looks fine if we deploy a rel-

ative small IoT application with 3 or 4 Arduino device boards. However, if we deploy

several applications at the same time, each application with its own set of boards, or

if we deploy a large application, sometimes, the execution of the application simply

would stuck. By further looking into the problem, we found that if the device is

densely deployed and if communication messages are sent too frequently in applica-

tions, there would be severe interference in communication. We have deployed two

applications in the same room. One application is a light control application which

uses three devices(light controller, threshold, light actuator) and a linear structure.

The other application is a data collection application which uses a totally different

set of devices and has them sending their data to a common gateway device. The

frequency of the sending is 1s. All the communication is done through Z-Wave with

CSMA/CA exponential backoffs. An ack is required for every successful sending of

message. We switched the controller and recorded how much time it needs until the

light actuator is turned on or off. Fig. 4.1 shows the result. With no device sending

data to gateway, the light control application takes about 1.16s with a standard de-

viation of nearly 0 on 10 runs. However, if we have 5 devices sending their data, it

takes on average 4.37s with a 3.76s standard deviation.
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Figure 4.1: More communication in the space will inversely affect execution time of the
same application

Thus, we’d like to consider the communication cost as the parameter to be optimized.
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Minimizing the communication cost not only reduces the time spent on sending and

receiving messages, it could also help reduce the number of devices used for the

application. Since in Wukong, both system control messages and data messages have

a small payload of no more than 20 bytes, differences in the message length will

not make a big difference in communication. For reason of simplicity, we also fix

the sending signal strength for different devices. Therefore, only the frequency of

messages and the number of hops between components will be used as an indicator

of the communication cost along a communication link. We have:

linkCost = f ∗ h (4.1)

In Eq. 4.1,linkCost is the cost along a certain link in an IoT application, f is the

frequency of message sending along the link, and h is the number of hops between

two ends of the link.

The number of hops h is a parameter determined by the network topology and devices

mapped. In Wukong, the network topology is created during discovery/rediscovery

of devices, so it is easy for master to calculate/update how many hops it requires to

send messages from devices to devices.
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Figure 4.2: A simple heater control application designed through FBP.
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Frequencies of messages through links f , on the other hand, are irrelevant to how

applications are mapped and they can be deduced by using the frequency of the head

components. A head component is a component in an application that doesn’t have

any inward links. There can be two kinds of head components. If it is a component for

some actuator(e.g. a switch or a timer), the frequency of communication is the same

as the expected frequency of triggered actuation. If it is a component for a sensor,

the frequency of communication would depend on the sensor output data type. For

a numerical sensor, the data reading frequency would be used as the communication

frequency; however for a binary sensor, the data reading frequency divided by 2 should

be used as the communication frequency. This is because only changes are sent by

Wukong for output, and for binary sensors, the values are expected to be changed

half of the times. Output link frequencies for other components in the application

would be decided by their inputs. Normally, the frequency of a component being

executed is the same as the component getting a new input, which is the summation

of frequencies from all inputs. Again, the output frequency is different based on

the output type in this case. If a component has a numerical output, the message

frequency would be the same as the execution frequency; if a component has a binary

output, the message frequency is only half of the execution frequency.

Fig. 4.2 shows an example of a heater control application. In the example, the ”Tem-

perature Sensor” is a numerical sensor with the sample rate set to 60s(1Hz). So the

link from ”Temperature Sensor” to ”Threshold” sends messages at a frequency of 1Hz.

The ”Thermostat Controller” is an actuator triggered by human which changes about

twice per day(0.001Hz). So the link from ”Thermostat Controller” to ”Threshold”

sends messages at 0.001Hz. The ”Threshold” is an component with binary output. So

the link from ”Threshold” to ”Heater” sends messages at half of the input frequencies

which is 0.5005Hz.
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4.2 Using Location Policy for Device Cost

Component policies are used by mapper to help define the device cost. Whenever a

policy is given by a user for one component, a score can be produced according to

this policy. Based on the scores from different policies, services from different devices

are evaluated. Depending on the resource scarcity, there could be many kinds of

important component policies. Energy, device location, sensing accuracy, availability,

and memory usage can all make good QoS in ranking the services. Among these, we

select device location as our QoS parameter.

Geographical location information is an important dimension for the context of de-

vices. Different than many other QoS parameters, location is also a unique QoS

information for IoT systems. Most of the times, users of IoT applications are not

the ones who install devices and sensors, and they are not clear about the capabili-

ties and properties of each individual device. However, they may be able to describe

the locations of desired services. For example, for a user of the heater application

in Fig. 4.2, he may not know which temperature sensors are available. However, he

knows he wants to use the temperature sensor in the same room as the thermostat

controller and the heater.

Thus it would be helpful to have location models and policies to support this kind of

queries. Such location policies could be the fundamental ones in deciding the usability

of different devices and their services. One component mapped to a service at a wrong

location may greatly affect the correctness of the whole application. Thus, in this

section, we’ll define location policies which are used to describe the best locations for

mapping components.
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4.2.1 Geographical Modeling

The purpose of location policies is to support location-aware queries for services.

We intend to support the most common ones, range queries and k-nearest neighbor

(closest, farthest) queries for location policies. They are ”the major focus of attention”

in literatures concerning queries[34].

The first step towards location queries is to adopt a location model to express the

spatial relationships among different devices the services are hosted on, and the en-

vironment. Generally, there are two kinds of approaches for spatial modeling, the

geometric-based approaches and the symbolic-based approaches[4]. The geometric-

based approaches mainly use coordinates to express spatial relationships. Examples

of geometric-based approaches include quadtree[57], grid-based expressions[22], ex-

pression using irregular spaces like through triangulations[21]. The geometric-based

approaches can provide precise locations, direction and distance information. How-

ever, it suffers from the lack of flexibility in dynamic environments, which is important

for tracking and localization in many IoT applications. Some extra effort are also re-

quired for achieving queries in geometric-based models, since the models are not set

up directly for query purposes. The symbolic-based approaches try to summarize

spatial relationships into some abstract ones such as ”contain”, ”near”, ”on top of”.

Examples of symbolic-based approaches can virtualize the space according to sensor

ranges[10], voronoi paths[16], and space separations (e.g. rooms and floors)[31][8].

This simplification makes symbolic-based approaches less accurate when compared

to geographic approaches. Symbolic-based approaches also lack geometric connect-

edness information among places. However, symbolic approaches, by extracting and

maintaining only partial geometrical information, have a good level of efficiency for

queries and good flexibility for dynamic environment.
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In order to take advantage of both the convenience of symbolic hierarchical location

expression and the explicity of coordinate based location, we adopt and extend the

hybrid location model[37] . We can explain the model through an example floor plan

shown in Fig. 4.3. This floor plan can be expressed in a tree structure shown in

Fig. 4.4(a). In order to make use of the coarse grained hierarchical expression,

multiple coordinate systems coexist in the tree. For a coarser level like ”2F”, there

is only the symbolic model, while for finer levels like ”204” and below, both symbolic

(containment relationships) and geometric model (sizes and coordinates of spaces)

coexist. The tree structure is like an index for devices, and is updated periodically

from location queries to all devices inside of it.

In order to overcome the lack of connectedness problem in the hybrid model, we

also incoporate the accessibility graph[36] into the hybrid tree to bring in more space

context information. Entrances , defined as distances from one point in one coordinate

system to one point in another coordinate system, are defined to connect different

coordinate systems in the tree. For example, in Fig. 4.4(b), there is an entrance from

coordinate (0,0) of Room 204 to coordinate (1,3) of South Corridor. The distance is 0

because they are actually the same location. If all rooms and places are defined under

the same coordinate system, it falls back to the geometric location model which is

more complex but has more information.

One coordinate system can be used by one floor, one room, or even just one region

of a room. In Fig. 4.4(b), each room has its own coordinate system. When a room

could be further divided into subregions, the subregions inherit the coordinate system

of their parent regions. For a valid location tree, every leaf node in it must be in one

coordinate system.

There are devices(”LS3”, ”LS4” in the example) and landmarks(”Desk” in the exam-

ple) defined under coordinate systems in the location tree. Devices may hold several
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Figure 4.3: Example Floor Plan

actual services. An actual service uses the location of its device for the service lo-

cation, while a virtual service uses the location of its output service holder as its

location. This is because virtual services always have only one output device, and it

is this device that defines where the virtual service affects other services.

Locations can be expressed in a URL-like format for the hybrid model. For example

in Fig. 4.4(b), the location of LS3 can be expressed as:

”/Office/2F/South/204@(0, 8)”
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Figure 4.4: Example showing a floorplan and its corresponding location tree and accessi-
bility graph. Different coordinate systems are shown in different colors.

The strings before ”@” is used for expressing the hierarchical location in the tree,

and the one after ”@” is used for expressing the local coordinate. We assume device

and sensor locations can be assigned manually by some device installers, or could be

acquired by some localization methods (e.g. anchor-based triangulation[54]). Loca-

tions are stored in ROMs of these devices. On device discovery, the master will query

all registered devices; the devices who are still alive will respond with their locations

along with other device information. These devices will then be inserted into the
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location tree. If a device is discovered at a new location, this location will be created

in the location tree as well. For example in Fig. 4.4(b), if a new device is discovered

with a location indicating /Office/2F/South/205@(0, 1), then a new node ”205”

will be inserted under the ”South” node in the location tree. It is through the device

location information that an initial location tree can be set up.

This initial location tree can already perform queries, but in order to make use of

landmarks, entrances, human installers also need to add more information after the

initial set up. Beside the landmarks and the entrance information, properties about

spaces can also be set to describe the location tree nodes. These detailed properties

include height, width and length. For example in Fig. 4.4(b), properties could be set

to ”204”, ”Private Room”, ”LS3”, etc. Basically any node under a coordinate system

can be given some properties. This helps to support more accurate location policies.

As a benefit of the hybrid model, only important spaces with devices need to provide

the geometric model for building the tree. Thus geometric information could be

expressed by different granularities of precision, saving the effort in covering the

entire place. When needs arise, it’s also easier to adjust the model by adding more

spaces.

4.2.2 Distance Calculation

Distance in location tree is defined as the attainability between different points in

space. It is achieved by calculating the Euclidean distance within one coordinate

system, plus the shortest path in the accessibility graph among different coordinate

systems. For example, the distance from LS3 of room 204 to coordinate (0,1) of 206

would the distance from LS3 to the entrance of 204, to the corresponding entrance of

South Corridor is, to the 206 related entrance in South Corridor, to the 206 entrance,
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and finally to (0,1) coordinate. This distance definition will skirt around walls which

divide spaces. Therefore, it makes a better representation of distance when a user

sets the policy and when sensors sense.

4.2.3 Location Policy Design

Table 4.1: Location Policy Functions
Name Input Action

InRange coordinate, distance unqualified device filtered
CloserTo coordinate distance to the device
FartherTo coordinate max(CloserTo) - distance to the device
Outside coordinate and shape unqualified device filtered
Inside coordinate and shape unqualified device filtered
Above coordinate and shape unqualified device filtered
Below coordinate and shape unqualified device filtered

Table. 4.1 shows a list of location policy functions we currently support. We adopt a

simplified rectangular model for describing objects, so only height, length and width

are required. Among all the policies, ”InRange”, ”Inside”, ”Outside”, ”Above”, ”Be-

low” belong to range queries, while ”CloserTo” and ”FartherTo” belong to nearest

neighbor queries. Range queries will filter unqualified devices. Nearest neighbor

queries will try to calculate the cost for different devices. For ”CloserTo”, the cost

is achieved by calculating the distances to a device. For ”FartherTo”, the cost is

the maximum of ”CloserTo” subtracted by the distance to a device. A lower cost

indicates a better fitness to location policy.

All individual location policy functions are combined together using disjunctive nor-

mal form(DNF) for expressing users’ preferences. Costs will be evaluated upon every

qualified candidate service using the DNF for decision making.
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An example of expression of location policies using DNF is shown below:

”/Office/2F/South/204

#InRange(Desk, 2m)|CloserTo(Desk)&InRange(Desk, 5m)”

There are two parts separated by the ’#’ sign in this location policy string. The

first part is used to express the containment relationships within the hybrid location

model. It also defines the range of search for devices in the location tree. The second

half connect all policies through the DNF. In DNF, the priorities of operators are:

NOT(¬) > AND(&) > OR(|).

So the example DNF is requesting to find a device within 2 meters to the desk or

a closer device within 5 meters to the desk . An importance weight of 0–10 can be

added to each policy by the user (through input as an extra parameter in the policy

function). This weight is used to reflect how much the user values each policy setting.

Different conjunctive clauses in DNF will perform their own calculations: firstly, all

filtering actions are performed for each conjunctive clauses; then, the weighted sums

of scaled individual policy costs are calculated as the cost of the entire conjunctive

clause. The cost for the ith conjunctive clause costi is:

costi =
1

K

∑
k

sk,i −minj sk,j
maxj sk,j −minj sk,j

∗ wk

In the formula, there are K policies used in the conjunctive clause. Each policy has

an importance of wk, and will give out a score sk,i for the ith candidate. For one

candidate service, the minimum of all the conjunctive clause costs will be taken as
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the final location cost.

cost = mini(costi)

If we don’t add in other costs, this cost is also the device cost for mapping. A

candidate with a lower device cost will have a higher chance during mapping.

The following is the details of BackusNaur Form (BNF) definition for our location

policies and location definition. The BNF form defines and can be used to parse

the location policy. Scores are calculated along the parsing. After the parsing, all

candidate services to a component will get a score. The service with the highest score

will be more likely to be chosen as a component.

〈locationPolicy〉 ::= 〈path〉 | 〈path〉 ’#’ 〈opOr〉

〈locationDef 〉 ::= 〈path〉〈coordinate〉

〈coordinate〉 ::= ’ @(’ 〈real〉 ’,’ 〈real〉 ’)’

〈opOr〉 ::= 〈opAnd〉 ’|’ 〈opOr〉 | 〈opAnd〉

〈opAnd〉 ::= 〈opNegate〉 ’&’ 〈opAnd〉 | 〈opNegate〉

〈opNegate〉 ::= ’∼’ 〈opNegate〉 | 〈function〉

〈function〉 ::= 〈functionName〉 ’(’ 〈paramList〉 ’)’

〈paramList〉 ::= 〈param〉 | 〈param〉 ’,’ 〈paramList〉

〈param〉 ::= 〈word〉 | 〈real〉

〈word〉 ::= 〈word〉 ’[a-zA-Z0-9 ]’

〈real〉 ::= 〈number〉 | 〈number〉 ’.’ 〈number〉

〈number〉 ::= [0-9] | [0-9]〈number〉
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4.3 Mapping Problem Formulation

For mapper, because device location costs and inter-device communication costs are

different metrics, it’s not very meaningful to combine them together. Since location

costs are generated for individual services while inter-device communication cost are

generated for the entire application flow, we’d like to divide the mapper into two

phases: filter and mapping. In the first phase, services on different devices are ranked

by the location policy, only the service candidates with lower costs go into the second

phase. Then in the second phase, the candidates with lower device costs are considered

for the real mapping process using the inter-device cost.

We now formulate our problem. Let’s say we have a system with a set of m devices:

D = {d1, d2, ..., di, ..., dm}

An application with n components:

S = {s1, s2, ..., sj, ..., sn}

needs to be deployed in the system. Frequencies of communications among compo-

nents are expressed through fj1,j2 . We know about which services are supported on

each device from the device discovery, and let’s use a variable y to denote this:

availi,j =


1, if componentsjcan be deployed on devicedi

0, otherwise

(4.2)

We also know the number of hops from device di1 to di2 is hi1,i2 . We want to have

a solution so that every component in S is mapped onto a feasible device from D

while the total communication cost is minimized. This problem , being similar to the

general mapping problem, is NP-Complete [42]. It could actually be mapped to an

integer programming (IP) problem.
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Let’s use xi,j to denote if sj is mapped onto di.

xi,j =


1, ifsjis deployed on devicedi

0, otherwise

(4.3)

Thus the mapping problem can be formulated like the following:

min
∑

j1=1,...n

∑
i1=1,...m

∑
j2=1,...n

∑
i2=1,...m

xi1,j1 ∗ fj1,j2 ∗ hi1,i2 ∗ xi2,j2 (4.4)

s.t.
∑

i=1,2...,n

xi,j = 1, ∀j (4.5)

xi,j ≤ availi,j, ∀i, j (4.6)

xi,j ∈ {0, 1}, ∀i, j (4.7)

Eq. 4.5 ensures every component is mapped to one device. Eq. 4.6 maps components

only to devices that support them. Eq. 4.7 ensures it is an integer programming. This

formulation makes the mapping problem a pseudo-quadratic problem. To solve it, we

need to further change it into its linear form. So let’s add in a set of new variables:

yi1,i2,j1,j2 = xi1,j1 ∗ xi2,j2 (4.8)
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Then our problem could be rewritten as:

min
∑

j1=1,...n

∑
i1=1,...m

∑
j2=1,...n

∑
i2=1,...m

yi1,i2,j1,j2 ∗ fj1,j2 ∗ hi1,i2 (4.9)

s.t.
∑

i=1,2...,n

xi,j = 1, ∀j (4.10)

xi,j ≤ availi,j, ∀i, j (4.11)

xi,j ∈ {0, 1}, ∀i, j (4.12)

yi1,i2,j1,j2 ≤ xi1,j1 , ∀i1, i2, j1, j2 (4.13)

yi1,i2,j1,j2 ≤ xi2,j2 , ∀i1, i2, j1, j2 (4.14)

1 + yi1,i2,j1,j2 − xi1,j1 − xi1,j1 ≥ 0, ∀i1, i2, j1, j2 (4.15)

yi1,i2,j1,j2 ∈ {0, 1}, ∀i1, i2, j1, j2 (4.16)

Eq.4.10– 4.12 are the ones inherited from the quadratic form. Eq.4.13– 4.15 make sure

y is the product of two xs. From the problem formulation, we can see the problem

search space is 2m2n2
, where m is the number of devices and n is the length of the

application.

The solver to the IP problem is implemented in Python. To test its speed, a simu-

lation is done on a PC with an 2.3GHz Intel core i5 and 4GB memory. During the

simulation setup, devices are deployed in a square matrix. Every device is only able

to communicate with devices at its 4 neighboring positions. The routing hop count

is set up based on shortest path between devices.

For each run, every kind of services is deployed randomly on 20% of the devices.

A linear application with varying sizes will be deployed onto the matrix of devices.

For simplicity of the simulation, communication frequencies among components of

the application are set to be the same. We calculate the average time of 10 runs for

each setting of parameters and show the result running time in Fig. 4.5. This result
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shows the running time of the IP solver increases exponentially to both the number

of devices and the size of the application.

The simulation stops at a deployment with 64 devices and 108 related services because

it is about a similar size to the large deployments in a real world smart home. For

example, PlaceLab[35] at MIT, as an experimental environment with dense sensors,

deploys 125 sensor devices in a 1000 sq. ft. apartment. However, because these 125

devices each hold only one sensing services and there are 7 kinds of services in the

system, the number of devices really considered for mapping problems in the system

is much smaller. We can see from Fig. 4.5, mapping an application with 9 components

onto the 64 device deployment takes about 8 minutes. This is an acceptable speed

for an offline algorithm with infrequent use. Thus we can use this solver directly in

the mapper.

Application 
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Execution Time(s) 
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200	
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400	
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3	
   4	
   5	
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25	
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36	
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49	
  devices	
  

64	
  devices	
  

Figure 4.5: Running time for mapper using an IP solver.
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4.4 Mapping for Fault-Tolerant Backups

The mapper in Section 4.3 finds appropriate services for each component. Without

considering fault tolerance, the mapping process is modeled as a service selection prob-

lem considering end-to-end quality of services. However for the mapping of backup

services, there is no guarantee which service may be broken first and what the overall

application flow will be like after some faults happen. So it is really difficult to plan

backups according to end-to-end QoS’s as presented in the original mapping pro-

cess. Additionally, the generation of virtual services requires data from active service

mapping result. Thus, mappings for fault-tolerant backups with the help of virtual

services should happen after the mapping of actual services for components is done.

In other words, there should be two phases for fault-tolerant mapping. In the first

phase, components only use actual services for mapping. Virtual service generation

begins after the first phase. Redundant services from the first phase mapping are used

to generate the first batch of virtual services. These virtual services are composed of

only one device and have default fidelity. With more data collected, these virtual ser-

vices may have various qualities, more virtual service may also be generated. When

there are enough qualified candidates for backup mapping, a second phase mapping

will happen.

For phase 2 mapping, inclusion of backups and virtual services brings about new

parameters and goals to consider. The fidelity of a virtual service is crucial to the

correctness of the application. Meanwhile, the number of devices used for virtual

services is also an important decision factor. Therefore, we model the fault-tolerant

mapping problem as a multiobjective optimization problem with two goals.

The first goal is to maximize the combined fidelity of all backup services. Because

any badly mapped component will result in a significant performance degradation of
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the whole application, an application composed of average performance components

is preferable to the one with mixed good and bad performance components. Thus,

the fidelities of backups from different active services in an application are multiplied

together to get the score of the application. If an component requires two backups,

the average of the two backups is put into the multiplication.

The second goal is to minimize the number of devices used for candidate services

under the premise of meeting fault-tolerance requirements. To minimize the number

of devices, we prefer backup plans of different components to share devices as much

as possible. This has two benefits. Firstly, this means a smaller number of devices

inflicted by fault monitoring. Fault monitoring requires sending messages periodically

among devices which is a big burden for the network. Reducing devices used for back-

ups means less system messages occupying the wireless communication bandwidth.

Secondly, encouraging service instances of different components to share devices also

implies there may be more intra-device communications and less inter-device commu-

nications. Communications among components on the same device are fast and light

weight, and don’t require bandwidth. This will reduce both the communication cost

and running time of the application.

In order to handle device failures, during mapping, chosen backup services of the same

component must share no common device. Therefore, on device or actual service

failure, there is always a backup ready to fill in. There are also other restrictions.

Components may choose to have more than one backups. Also, some important

components may require only services with certain scores to qualify. Our formulation

of fault-tolerant mapping problem brings together all these restrictions.

To formalize the fault tolerant mapping problem, suppose we have a set of N com-

ponents {C1, C2, ..., Ci, ..., CN} for the application. For each component Ci, there is

a set of candidate services: {si,1, si,2, ..., si,j, ..., si,Ki
}. Every component Ci requires
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bi backups. Every service si,j has a score of pi,j and requires the cooperation of a set

of Di,j devices . The minimum score for component i is pmini
. We’d like to find out

which backup services will maximize the overall application fidelity while minimize

the number of devices used.

We’ll use a binary selection variable xi,j to express if a service is selected during

mapping. Please note i starts from 1, but j is from 0.

xi,j =


1, ifsi,jis selected

0, otherwise

(4.17)

The multiobjective optimal problem is expressed as:

max
∏
i

1

bi

∑
j

pi,jxi,j (4.18)

min | ∪i,j {Di,j|xi,j = 1}| (4.19)

s.t.
∑
j

xi,j = bi + 1,∀j (4.20)

xi,j ≤ pi,j − pmini
+ 1, ∀i, j (4.21)

Di,j1 ∩Di,j2 = ∅,∀i, j1 6= j2,wherexi,j1 = xi,j2 = 1 (4.22)

In the definition, the first goal is to maximize the product of all selected backup

services, and the second goal tries to minimize the total devices used. Eq. 4.20

defines the number of backups. Eq. 4.21 enforces the minimal score. Eq. 4.22 means

no two backup of the same component share the same devices.

Sometimes due to the lack of resources, some device may be required by all possible

candidate services of the same component. The above multiobjective optimal problem

won’t be able to find a solution under this circumstance. This means there is no
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possible solution to guarantee fault recovery on one device failure. However, we may

still want a solution that at least provides fault tolerance for some of the devices. To

adapt this, condition Eq. 4.22 can be relaxed to only requiring services to vary by

some of the devices. Then Eq. 4.22 could be written as :

Di,j1 ∪Di,j2 6= Di,j2 ,∀i, j1 6= j2,wherexi,j1 = xi,j2 = 1 (4.23)

Di,j1 ∪Di,j2 6= Di,j1 , ∀i, j1 6= j2,wherexi,j1 = xi,j2 = 1 (4.24)

This change will make it easier to have feasible solutions. However, Eq. 4.23 and

Eq. 4.24 won’t be able to guarantee there is always a backup ready when the shared

backup device fails.

4.5 Solving Fault-Tolerant Mapping Problem

The multiobjective optimization problem is not an integer linear programming prob-

lem since the fidelity has the multiplication term. So we have to rely on some heuristic

algorithms for solving it. Since there are two objectives, there may exist several best

solutions. Utility functions could be used to solve the problem, but utility func-

tions only give us one fixed solution while there exist multiple ways in balancing the

tradeoffs between the score(gain) and the device number(cost). Moreover, it is hard

to decide weights a priori for utility functions. Thus evolutionary methods better

suite our interest. Evolutionary methods can yield a Pareto frontier, which is a set

of Pareto optimal solutions, rather than only one solution. This results in a better

flexibility. Among evolutionary methods, we adopt non-dominated sorting genetic

algorithm II (NSGA-ii)[20], a fast elitist multiobjective genetic algorithm. It has a

low computational complexity, good spread of solutions, and a convergence close to

the real Pareto frontier.
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In NSGA-ii, each active service makes up a gene in the genome. All the available

backup service candidates for this active service are modeled to be bases for that

particular gene. The rationale of this setting is that backups with a higher fidelity

and a lower device count tend to make good genes and should be preserved through

generations.

After a Pareto frontier is generated by NSGA-ii, another decision is required in de-

ciding the final solution. While users can choose to make their own decisions, some a

posteriori utility functions can be defined to be the decision maker (DM). There are

already many good methods proposed for deciding the preferred solution [72]. But

because our solution space is small due to the limited possibilities of device count,

we’ll only use two simple DM for the final decision.

The first decision maker is the Least Devices First. This method will sort the final

Pareto optimal results according to their devices and choose the ones with the least

devices. The argument behind this is that as long as the minimum fidelities are met,

the system may care more about the increased cost for maintaining fault tolerance.

The second decision maker is the Efficiency First. This method tries to make a

decision based on how much marginal fidelity gain could be earned for each extra

device used. The marginal fidelity gain is the difference between the application

fidelity and unacceptable fidelity threshold. For virtual services corresponding to

actual service i, suppose the minimum fidelity is pmini, then the unacceptable fidelity

threshold for the whole application would be
∏

i pmini. For each solution in Pareto

front, suppose the result of its first objective about fidelity is p and its second objective

regarding device count is d. Then its efficiency can be defined as:

Efficiency =
p−

∏
i pmini

d
(4.25)
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A higher efficiency means this solution uses its devices better in improving the fidelity

from the minimum required. These two methods are provided as policies for fault

tolerance before deployment of application.
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Chapter 5

Fault Detection for IoT

In previous chapters, we have discussed about how we make use of service-oriented

architecture to make backups for fault tolerant IoT. However, in order to support

recovery through backups for fault tolerance, an efficient fault monitoring mechanism

is necessary.

5.1 Motivation

As a motivation example, consider a smart home that supports many IoT applications,

from human location monitoring to automatic light controls. Sensors and actuators

are deployed on devices with wireless communication capabilities such as Zigbee,

Zwave, and Wifi. Each component of an application must be deployed on some

hardware devices and run as IoT services. Communications are then established to

facilitate the application flow.

The goal of monitoring in IoT is for locating faults or anomaly on devices, and iden-

tifying affected services so that these services can be replaced during fault recovery.
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The most straightforward way for fault monitoring is to use a central controller. This

controller would send polls to periodically to ask devices to report status. If any

abnormal behavior is found, or if someone doesn’t reply, there may be a fault on the

device. This central controller will then consider which services may be at fault based

on what services are deployed on that device.

This simple mechanism has the scalability issue. Firstly, as more devices join the net-

work, the controller has to take care of more fault tolerance combinations. Secondly,

with the increasing number of devices, the time for sending and receiving polls also

increases. Lastly, all monitoring related messages going to the controller will create

bottlenecks at the controller device and devices around it. This will not only waste

the communication resource and energy, but also affect the performance of active

applications running on these devices.

Therefore, instead of only one controller, we propose to divide the IoT devices in

a system into several clusters for monitoring. Monitoring happens only internaly in

clusters. Each cluster is managed by a coordinator, a Cluster Head (CH) , to enhance

efficiency. A CH is used to keep the backup information for each device in the cluster.

When a fault happens, some device in the cluster will detect the fault and will report

to the CH. The CH will then replace the faulty service with backup ones. The problem

here is how we can detect the fault.

In IoT, instead of the simple time-triggered communication pattern, event-triggered

communication is widely used in many IoT systems to save the communication cost.

Event-triggered communication means a message is sent only when a significant

change in the sensed value is detected. However, this also means that if no mes-

sage is received, a receiving device cannot tell whether nothing has happened or the

sender has failed. For fault detection using event-triggered communication, periodic

beacons are often used to let beacon receivers know that senders are still healthy.

59



CH 
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(b) Mixed Topology

CH 

(c) Loop Topology

Figure 5.1: Loop topology has less communication cost than star and mixed topolo-
gies.

To save the communication cost and to divide the load of a CH, we propose to use a

loop topology for sending beacon messages. We compare the differences between the

loop topology and the commonly used star topology in Fig. 5.1. The star topology

would expect the CH to send and receive all beacon or ack messages. However for a

loop topology, the work is divided by all devices in the cluster. As long as the beacon

can be passed down through the loop, there is also no need for reporting back. This

greatly reduces the number of packets used for monitoring in a loop topology cluster

than other types of clusters. Considering the CH may need more than one hops to

reach other devices in a cluster, the loop topology saves more hops than the star

topology.
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However, one main challenge of the loop topology is that any fault in it may interrupt

the beacon message propagation. To handle this, two timers are used to measure the

beacon period for each device: one for controlling the pace of beacon message sending,

one for message receiving time out. Depending on different application requirements,

different devices could have different sending and receiving periods. The CH is needed

to be the one in charge of initializing the timers. One node will send a beacon message

only when its sending timer times out. With the CH staggering the sending timers of

the nodes in a cluster, this will also prevent monitoring beacon message burst within

a cluster. With the help of receiving timers, even if no beacon message is received

from a previous node, the next beacon message will be be sent. This helps make

loop structure more robust. For CH, if it finds a node constantly to be faulty, it will

check what services are affected on the faulty node, make requests to backup nodes

for replacement of these faulty services. After all replacements are in place, it safely

removes the faulty node from the monitoring loop by letting the faulty node’s parent

directly monitors its child. Whether or not all these changes are successful, the CH

reports to the master about the situation and updates, and the master updates the

status of devices accordingly.

Another challenge of the loop topology is that a big cluster may result in hardship in

management and scalability concerns, while a small cluster may limit the capability

of CH to coordinate the message sending among nodes. Thus, for scalability and

load-balancing reasons, we decide to have a lower bound (LB) and an upper bound

(UB) on the number of nodes in a cluster. The lower bound depends on the fault

tolerance requirement of all applications in the system. If there could be two node

faults happening simultaneously, the size of a cluster should be at least 3, and there

should be 2 backups for CH. The upper bound is chosen based on the maximum

number of nodes in a space(eg. a room). Placing nodes from different spaces into one

cluster will bring extra monitoring cost and is undesirable. Setting an upper bound
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can also help to greatly limit the search space for the monitoring solution.

5.1.1 Definition of the Monitoring Clustering Problem

We would like to minimize the monitoring communication cost for the clustering

problem. Since monitoring message size matters little in the transmitting time in this

case and there may be many frequency levels of monitoring, we use the hop count

multiplied by the message frequency as the communication cost.

We assume an IoT scenario with richly deployed devices forming a mesh network

where all nodes could reach any other device in the network through one or more hops.

A comprehensive routing table can be drawn from the routing information collected

from all devices and we know the number of hops between different nodes. The

requirement for monitoring frequencies are given by applications on different devices,

they may be the same for most of the times for a practical system. However, the actual

monitoring frequency calculation should take into consideration active application

communication among the devices. For example, if the required monitoring frequency

of a device is 5s per message (12 messages per minute), and a specific route from the

device is already preoccupied by a sensor detecting and sending data every 10s(6

messages per min). Considering the underlying communication protocol using the

piggyback mechanism to send both messages in one shot, the extra need for the

monitoring effort will be 6 messages per min for the route, so the level of frequency

is changed. Thus, we know the monitoring communication cost between every pair

of devices. Using these costs as edge weights and devices as nodes, a fully connected

graph can be drawn.

The Monitoring Clustering Problem (MCP) is defined using this constructed graph

G. Let V be all nodes in the network, n = |V |. G = (E, V ) be a fully connected
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directed graph. There is an e ∈ E for any possible pair of v1 ∈ V and v2 ∈ V , and

denoted as (v1, v2). There is a weight wvi,vj indicating the cost for each (vi, vj). MCP

is to divide V into K sets {s1, ..., sk, ..., sK} as monitoring clusters and select E ′, a

subset of E, as monitoring routes, so that:

• ∀vi ∈ V , there is one and only one sk, that vi ∈ sk.

• ∀sk ∈ S, the size of it, |sk|, is between the lower bound LB and the upper bound

UB, or LB ≤ |sk| ≤ UB.

• ∀vi ∈ V , there is only one incoming and one outcoming edge in E ′

• There doesn’t exist a (vi, vj) ∈ E ′ so that vi ∈ sk1 , vj ∈ sk2 and k1 6= k2

• The total weight of edges in E ′,
∑

(vi,vj)∈E′ wi,j, is minimized

5.1.2 Integer Programming Formulation

We find the MCP problem similar to the multiple travelling salesman problem (mTSP) [9].

However, mTSP requires fixed starting depots, and in our clustering problem, how

many CHs are there and which nodes are CHs are not pre-determined. Thus we have

to extend the mTSP problem to a problem of mTSP with no depot.

For the integer programming(IP) formulation, let’s first define a binary selection

variable X = {xi,j,k}. xi,j,k is 1 if (vi, vj) is selected in a cluster with vk as the CH

(denoted as sk) and 0 otherwise. i, j, k range from 0 to n− 1.

xi,j,k =


1, if (vi, vj) ∈ sk

0, otherwise

(5.1)
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To simplify the expression, we introduce two sets of auxiliary variables. yi is another

binary variable in the problem used to express whether a node is selected as a CH,

where a cluster starts to grow. It depends on xi,j,k and is optional.

yi =
∑
j

xi,j,i,∀i (5.2)

ui is a non-negative integer variable for expressing the monitoring order of node vi in

a cluster. If vi is the CH of a cluster, ui is assigned to 1, it is then increased by one

for every node after it in the monitoring loop. With these three sets of variables, the

IP problem formulation for MCP is:

min
∑
k

∑
i

∑
j

wi,j ∗ xi,j,k (5.3)

s.t.
∑
k

∑
j

xi,j,k = 1, ∀i ∈ E ′ (5.4)

∑
k

∑
i

xi,j,k = 1, ∀j ∈ E ′ (5.5)

∑
i

xi,j,k =
∑
i

xj,i,k, ∀j ∈ E ′,∀k ∈ E ′ (5.6)

(LB − 2)
∑
vj∈V

xi,j,j ≤ ui + yi − 1, ∀i ∈ E ′ (5.7)

ui + UB
∑

vj∈V,j 6=i

xj,i,i ≤ UB − 1, ∀i ∈ E ′ (5.8)

ui − uj + (UB + 1)
∑
k

(xi,j,k + xj,i,j − yj) + 1

+ (UB − 1)
∑
k

xj,i,k ≤ UB, ∀i, j ∈ E ′, (5.9)

In the IP formulation, constraints (5.4) and (5.5) ensure every node is monitoring

exactly one other node and is monitored by exactly one node. Constraint (5.6) ensures

the two edges of the same node belong to the same cluster. Constraints (5.7) and

(5.8) use ui to take care of lower bound and upper bound of the size of clusters.
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Constraint (5.9) takes care of the ordering of monitoring. It says if (vi, vj) ∈ E ′, the

difference between ui and uj is 1 except the case if vj is the CH.

This formulation is valid only when UB ≥ LB ≥ 2, and there is a combinatorial

solution of using clusters with varying size from LB to UB to cover all nodes that

require monitoring. A simple invalid setting example is for setting UB = 4, LB = 3,

with there are 5 nodes to be monitored. There is no possible solution for this setting.

This optimal IP formulation is very complex to solve. Since mTSP is an NP-hard

problem and our extension greatly increases the complexity of the computation, so

mTSP with no depot is an NP-hard problem as well. Given n nodes to be monitored,

we will have n3 selection variable x and n selection variable u, which means a total

of at most 2n3
UBn possible combinations to search. We will compare the optimal

solution with mTSP in Sec. 5.3.

5.2 Heuristic Solution for Clustering

Since finding the optimal MCP solution is very complex; a heuristic solution can help

greatly for reducing the complexity. We divide the problem into two steps:

1. Find initial nodes as CHs for clusters, then add other nodes into these clusters

one by one.

2. Decide the monitoring sequence in each cluster.

We design greedy algorithms for both steps and show simulation results in Sec. 5.3.

65



5.2.1 Greedy Solution for Identifying Cluster Heads

For cluster heads identification, the common idea is to use those nodes which have

lower costs to other nodes to be the heads of potential clusters. The rationale is that a

well-connected CH can find more close nodes to grow the cluster, which can possibly

reduce the communication cost during monitoring. However, in IoT, devices from

different locations may cooperate, it’s likely to have nodes far away from one another

for monitoring. Some of these nodes may have a high cost to all other nodes and are

relatively less connected. Such nodes are not tended well by this greedy solution and

may lead to a bad overall result.

We therefore decide to start finding CHs from those least connected nodes. We use

their most well-connected neighbors as the cluster heads. Such cluster heads will be

closer to both relatively isolated nodes and many easily connected nodes, reaching a

balance to grow clusters.

For any target node, we define its k-hop neighbors to be the set of nodes which can

reach the target node with k or less unit of communication cost. This concept is used

in Algorithm 5.1 to find the least connected nodes.

In Algorithm 5.1, for all nodes that are not in any cluster yet, Line 5 finds the least

connected node. Line 7 finds its most connected neighbor and tries to use it as the

CH of a cluster. Lines 14-15 add all its open neighbors to the cluster. If the result

cluster is still smaller than the lower bound, Lines 17-19 move nodes from existing

clusters to the newly created cluster. After this, if the newly created cluster has

enough members, Lines 20-25 accepts the new cluster. If a cluster with a proper

size cannot be formed within k hops, Line 3 increases k and tries again. The overall

complexity of the algorithm is at O(n4). With the help of a good data structure

maintaining the nodes and sorting result, it could be further reduced. This reduces
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Algorithm 5.1 Finding Least Connected Points(FLCP)

Input: Set of nodes S = {nodes}; lower bound LB and upper bound UB of cluster
size
Output: Set of clusters C, CHi is the head of cluster ci ∈ C

1: Hop count k ← 0, D ← S
2: while D 6= ∅ do
3: k ← k + 1
4: Find k-hop neighbors in D for all nodes n ∈ S
5: while D 6= ∅ do
6: lcn← node ∈ D with the least neighbor
7: Get sp from neighbor(lcn) with the most neighbor
8: if sp is already a CH and |cluster(sp)| < UB then
9: Add lcn to cluster(sp)

10: else if sp is already a CH and |cluster(sp)| ≥ UB then
11: Go to Line 7 to try again
12: else
13: Create new cluster cluster(sp) with sp as CH
14: end if
15: Fill incluster(sp) with nodes with least neighbors in neighbor(sp) ∩D
16: nSet← neighbor(sp) ∩ (S −D)
17: while |cluster(sp)| < LB and |anyothercluster| > LB do
18: move nd ∈ neighbor(sp) ∩ S −Dfrom original cluster to cluster(sp)
19: end while
20: if |cluster(sp)| < LB then
21: Return nodes in cluster(sp) to D or original clusters
22: Go to Line 7 to try again
23: else
24: Add cluster(sp) to C
25: end if
26: end while
27: end while
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the original optimal solution from NP-hard to polynomial complexity.

An example for finding the clustering solution using Algorithm 5.1 is shown in Fig. 5.2.

For simplicity of showing, we assume the same monitoring frequency for all nodes.

Each node is able to reach one node away horizontally or vertically, and one node

away diagonally. Yellow nodes are the least connected nodes, and red nodes are the

cluster headers selected for them. Black nodes are the other nodes added to clusters

using Algorithm 5.1. Our heuristic algorithm happens to find the optimal result in

this example.

Figure 5.2: Example Deployment using Algorithm 5.1

5.2.2 Finding the monitoring sequence in each cluster

After deciding the monitoring clusters, we still need to find the monitoring sequence

so that the total communication distance is minimized. This is the classical travelling

salesman problem (TSP), a well-known NP-hard combinatory problem.
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Optimal Solution

We now model TSP in its IP form following [64]. Just like in mTSP, we use binary

selection variables:

xi,j =


1, if(vi, vj)is selected

0, otherwise

(5.10)

and the auxiliary u, which is a non-negative integer variable expressing the order in

the monitoring sequence in a cluster with the CH’s u assigned to 1. Suppose there

are n nodes in a cluster, the formulation to decide the routing is as follows.

min
n∑

i=0

n∑
j=0,j 6=i

wi,j ∗ xi,j (5.11)

s.t.
∑
j,j 6=i

xi,j = 1, i = 0, 1, ..., n (5.12)

∑
i,i 6=j

xi,j = 1, j = 0, 1, ..., n (5.13)

ui − uj + nxi,j ≤ (n− 1), 1 ≤ i 6= j ≤ n (5.14)

Constraints (5.12) and (5.13) guarantee messages from only one other node arriving

or departing from the node for monitoring. Constraint (5.14) ensures all nodes in

a cluster is connected by only one route. There are at most bn/LBc clusters to be

considered. For each cluster of m nodes, the number of combinations in this problem

is 2m2
UBm. One special note is that if constraint (5.14) is removed, this can be used

as a shortcut to optimally solve the monitor clustering problem with LB = 2 and

UB = n.
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Heuristic Solution

Heuristic solutions for TSP have been well-studied [15]. Among them, the nearest-

neighbor (NN) algorithm is one of the least complex solutions. From a starting node,

NN will try to add a nearest neighbor as the next node to be visited. We adapt the

NN algorithm to our problem in order to achieve a balance between the computation

time and the result quality.

In our node clustering scenario, since many nodes may have the same monitoring

frequency and hop count, there may be many ties during comparison. In this case,

the nearest neighbors which are farther from other nodes may have less opportunities

and should be considered first. Based on this rationale, we give scores to nodes as

follows:

scorei =
∑
k

m−k ∗ (m− |kth order neighbor of i|) (5.15)

In Eq. (5.15), m is the total number of nodes in the cluster, |kth order neighbor of i|

is the count of nodes who can reach the target node in k hops but not in (k − 1)

hops. A higher score indicates a node has closer neighbors, but the number of such

neighbors is smaller than that of other such nodes.

As per D. Johnson et al.[38], the nearest neighbor algorithm on average yields a path

25% longer than the shortest one. This result should also bound our algorithm.

The example of showing the monitoring sequence using Algorithm 5.2(LCNN) is

shown in Fig. 5.3. For this very example, the result is the same as the optimal

TSP result.
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Algorithm 5.2 Least Connected Nearest Neighbor (LCNN)

Input: set of nodes S in a cluster; sp is the CH
Output: A list ML as the monitoring sequence

1: k ← 1
2: ML← [sp]
3: current← sp
4: remove sp from S
5: while |S| 6= 0 do
6: sort nodes in S by scores (Eq. (5.15)) from high to low
7: for all nd ∈ S do
8: if nd is k-hop neighbor of current then
9: current← nd

10: remove nd from S
11: append nd to ML
12: k ← 1
13: Go to Line 5
14: end if
15: end for
16: k ← k + 1
17: end while

5.3 Simulation

For simulation, we compare among different combinations of algorithms. To further

evaluate the performance of Algorithm 5.1 (FLCP), we take the idea from traditional

WSN clustering method like LEACH [30], which tries to find the most powerful node

as the cluster head directly, and based on it design another algorithm Finding Most

Connected Points (FMCP), which follows the same logic as Algorithm 5.1 except for

the part of finding the cluster heads. FMCP will find the most connected nodes at each

range as the cluster heads. We will compare among combinations of algorithms: the

mTSP without depot IP solver (optimal solution), FLCP cluster headers + mTSP [9],

FMCP cluster headers+ mTSP, FLCP + TSP, FMCP+ TSP, FLCP +LCNN, FMCP

+LCNN.
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Figure 5.3: Example monitoring sequence using Algorithm 5.2 based on Fig. 5.2

5.3.1 Simulation Setup

We use two scenarios Fig. 5.4. The first scenario is a 300m long, 5m wide hall

way with a total of 100 devices on both sides of the hallway. The distance between

neighboring sensors is 6m. In the second scenario, there is a 100mx100m office with

100 devices deployed uniformly. The distance between neighboring sensors is 10m. For

both scenarios, we assume all devices can communicate directly with their neighbors

within 30m. These two scenarios are selected because they achieve similar results

to the random device placement while having a lower randomness. An application

that require monitoring may be deployed across all nodes. For each run, we randomly

select several nodes out of the 100 nodes for monitoring. For simplicity, the monitoring

frequencies are the same and the hop count is the only factor for the communication

cost. Each measuring is the average of 20 runs. The main difference between the

two scenarios is that the hallway requires more message relaying (hopping) than the

office scenario. With the assumption of a unified system-wide monitoring frequency,

we use hop counts as a simplified communication cost.
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(a) Sensor Deployment in Hallway (b) in Office

Figure 5.4: Different Sensor Layout

For both scenarios, we set nodes to be deployed in different densities, give different

application sizes, and compare the average running times and hop counts from dif-

ferent algorithms. We set the cluster size to be from 3 to 7 which is a practical size.

This will make the jobs for ordering within a cluster easier.

5.3.2 Impact from application size

In Fig. 5.5(a), we show the total monitoring message communication cost given dif-

ferent application sizes. For the optimal solution, we only show results up to 16 nodes

because of the long computation time. In order to show the performance of heuris-

tic algorithms in the first step of selecting clusters, we compare among the results

of optimal, FLCP ones and FMCP ones. If heuristic algorithms are only used for

selecting cluster heads in the first step, with the help of mTSP in the second step,

both FLCP and FMCP achieve a near optimal result. If heuristic algorithms are also

used for deciding the members in each cluster, when TSP or LCNN is used for the

second step, we can see in both cases, FLCP is better than FMCP. Though their

distances to optimal case increases when application size increases, both FLCP and

FMCP achieve results close to optimal. In order to show the performance of heuristic

algorithm LCNN in the second step, we compare the results to the optimal TSP ones.

It shows LCNN can also achieve near optimal results in both FLCP and FMCP cases.
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This may be due to the size of every cluster is small.

Fig. 5.5(b) shows the computation time of different algorithms. The optimal IP

solution is using the branch and bound algorithm. The results of FMCP are nearly the

same as its FLCP counterparts and are not shown. The IP solvers are implemented

using GLPK and running using only one core of a Intel 2.3GHz i5 processor. The

running times of the optimal solutions vary a lot depending on the effectiveness of

branch and bound used by GLPK. But as a conclusion, it is impractical to rely on

optimal solution for problems sizes larger than about 14 due to complexity.
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Figure 5.5: Results of all algorithms.

5.3.3 Impact from Device Deployment Density

The device deployment density determines how many potential neighbors a device

may have in the network topology. Deploying devices close to each other generally

results in sensors having more potential neighbors for communication, thus more likely

having less hops in clustering.

The simulation result for devices deployed under different densities is shown in Fig. 5.6.

The communication range is fixed at 30 meters, so the number of reachable neighbors

decreases as the density is reduced. We can see that heuristic algorithms can achieve
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Figure 5.6: Different Sensor Layout

near optimal numbers of hops when devices are densely deployed. The numbers of

hops required for monitoring decrease when the distance among devices increases and

the numbers of neighbors for each device decrease. In the worst case when every

device is only able to reach its nearest neighbor device, heuristic algorithms show

on average respectively 15% and 13.5% more hops than the optimal solution. We

consider this to be quite acceptable.

Generally speaking, simulation results show that our heuristic algorithms can greatly

reduce the complexity of finding a solution while the result communication cost is

not far from the optimal solution. Device clustering for fault monitoring is just the

first step for building fault-tolerant IoT. After a fault is detected, we need to recover

from the fault by finding a replacement device to continue the IoT.
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Chapter 6

Fault-Tolerant IoT System

Implementation

6.1 System Architecture

With expanded mapper and the goal of fault-tolerance, the Wukong master from

Fig. 2.1 can be refined as shown in Fig. 6.1. The master discovers the availability

of IoT resources and their locations in a target environment through device discov-

ery. The result is saved in the Device Repository. In order to organize the devices

according to their geographical context, a location tree is set up based on discovered

devices and their locations. Based on what resources are available on the devices, a

service generator will create services in service repository and make them available

for mapper.

The mapper, with the input of services and an application flow, has four jobs to do.

Firstly, location policies and other policies, which define the concerns of FBP users

about how components should be mapped, are set from the web GUI. They need to
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be interpreted as parameters for the mapper. For the case of location policies, using

the BNF defined in Sec. 4.2.3, a syntax tree needs to be setup for every location

policy setting of a component. For convenience of the user, minor syntax errors, like

missed prefix or delimiter, are also fixed during this process. Location policies will

be checked during interpreting, if it is not consistent with the location tree, warnings

will be issued. After interpreting is done, all devices in the device repository need

to be filtered using policy settings. The smaller number of candidates can greatly

reduce the overhead of ranking and binding. For location policy, this step happens

twice The first time is when containment relationship is parsed, all services from

other places will be filtered. The second time is when individual location policy

functions are parsed, some functions will do a filter job. The third step of mapper

is ranking and reranking, based on policies, scores are calculated for each remaining

candidate of a component. For location policy, this happens when policy functions are

being evaluated. Depending on different policies, filtering and ranking may happen

alternately. The fourth step is binding. Usually the services with the highest scores

are bound to devices. After binding, link settings, parameter configurations and

generated Java byte codes are sent to devices.

The steps described above are shown in Steps 1 to 4(Discovery, Actual Service Identi-

fication, Mapping, Application Deployment) of Fig. 6.2. Because how virtual services

are generated depends on which service a component is mapped to, it happens after

application is already deployed and the whole system workflow can be described into

two phases. The first phase generates a mapping result for the components in the

application without backups, it consists of Steps 1∼4. Then in the second phase,

based on the initial mapping result, virtual services are generated. While more vir-

tual services are generated, the mapper will find enough backup services for executing

services and deploy them. While the first phase of process corresponds to a cold start

application deployment, the second phase happens after an application has already
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Figure 6.1: System Architecture

been deployed, and can be executed periodically in case better virtual services are

generated.

The second phase is triggered if any component in the deployed application requires

backups. Since data from sensors will be sent for further learning of environment con-

text, a deployed application will always send data to a component different than the

master called data store (Step 5). In order to handle the different clocks of devices,

data are labeled with receiving time when data store receives it. If a component re-

quires a backup in the application, the service generator will start to generate virtual

services for the mapped service of this component ( Step 6). It will start by subscrib-
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ing sensing data histories from all geographically close sensors from data store. It then

applies regressions upon different combinations of subscribed data. This process, de-

pending on the algorithms used, may work continuously or periodically as long as

new data comes. The service generator will then learn and generate/update models

of relationships among resources. In order to make use of a virtual service, the result

regression model will be deployed on a device as a computation service. Theoretically,

any device that has the reprogramming capability can hold this computation service.

However, in order to reduce the number of devices used by a virtual service and to

save communication cost, this computation service will be placed on the device which

is already used by the virtual service and has the shortest topological distance to all

other devices of the same virtual service. This device that holds the computation

service is also the device that ”holds” the virtual service, since it produces the output

flow to other services. The virtual service information will be saved alongside actual
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services in service repository (Step 7). The mapper will check the service repository

periodically for updated service status. Once it found there are more available and

better virtual services, it will start to trigger a mapping for backup services (Step

8). This mapping for component backups cares more about the fidelities of services

and cost of fault-tolerance. Thus, it can be different than the Step 3 mapping which

finds active services components. A virtual service will be really deployed on devices

only if the virtual service gets selected as a backup by the mapper. Communication

links will be reconfigured and computation service will be downloaded for the deploy-

ment. After deployment, there will be beacons passing around the devices which are

mapped to fault-tolerant components. If there is anything wrong with any active or

backup service, reconfiguration will be triggered to use backup services for the broken

components (Step 9).

In general, Step 1 and 2 will provide the resources for actual services, while Step 5

and 6 will provide the data for generating virtual services. The service generator is

in charge of generating both actual and virtual services. Then, the mapper, given the

services generated by the service generator, will be able to map the application, or

the application’s backup services.

6.2 Fault Recovery Mechanism

One big part of runtime Step 9 is fault monitoring and recovery mechanism. With

monitor loops introduced in Chapter 5, now we focus on introducing the fault recovery

mechanism. In order to support a fast recovery, all mapped backup services are

deployed into the network before fault happens. In order to keep track of them, one

simple way is to save all the backup information on CHs of monitoring loop since they

know about which active services are failing. However, this means the CH needs to
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know every backup plan for services in its monitoring loop. It also means whenever

backup plans are updated, the CH devices, even though they may hold no service

required by new backup plans, need to be updated as well. These two points cause

extra communication and computation overheads for CH, which already bears more

burdens due to maintaining monitoring loop.

Our solution is to distribute the recovery job and let services maintain the backup

plan information for themselves. As shown in Fig. 6.1, a special WuObject (service)

called FT Handler is deployed with every WuObject that requires the fault tolerance

support. This FT Handler is used to remember all backup services. It also has the

privilege to use system messages to change links and replace the current active service

with backups for the same component. In time of need, a FT Handler will be asked

to redirect links from and to a faulty service to the next mapped backup service. At

the same time, a CH of the monitoring loop is only responsible for contacting FT

Handlers for replacement. For every service under its monitoring, the CH will ask its

FT Handler for emergency contact information, only one of the fault handler should

be remembered. This FT Handler, also called emphprimary FT Handler for the CH,

is initially assigned to the next backup to take action if the one under CH is failing.

Different CHs may have different primary FT Handlers for the same component. If

all services of one component fall under one monitoring loop, the CH as well may

have different primary FT Handlers for each one of them.

The process of fault handling is described in 4 steps in Fig. 6.3. The left part of the

figure shows a linear application ABC, with B having 1 active (b1) and 2 backup

services (b2, b3). Each of these B services comes with a FT Handler for B. The lower

right of the graph shows the monitoring cluster responsible for monitoring b1, with

the red node in the loop as the CH of the cluster. In Step 1, the node holding b1

becomes faulty. This causes service b1 to become faulty as well (Step 1’). This faulty
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Figure 6.3: Fault Recovery Mechanism in 4 steps

device will be reported back to the CH (Step 2). By looking up b1’s primary FT

Handler, the CH decides to send the information to B FT Handler with b2 (Step 3).

B FT Handler with b2 looks up in itself for backup plans, finding its b2 is the next

one to take b1’s job, it then will redirect all the links to and from b1 (A to B, and

B to C in this case) to go through b2 (Step 4). Updating messages will be sent to

the master and other B FT Handlers (b3 FT Handler in this case) before and after

the change, and receivers will update their information accordingly. In the example,

if b3’s primary FT Handler was b1, the updated information will also trigger it to

update its primary FT Handler with its own CH.

6.3 Link Changing Mechanism Design

FT Handlers have the ability to change sender and receiver of existing links. In

order to maintain the robustness of the process, link changing mechanism should be

designed carefully.

When a FT Handler receives a notice of fault service from a CH, there are three

possible situations:

• The service is faulty. Backup service should be used to replace the faulty service.
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All incoming and outgoing links should be rerouted through the backup service.

This is the most common situation. The goal of fault recovery and link changing

mechanism is primarily designed for this situation.

• The CH itself has problem communicating with the service due to problems in

the medium. However, the FT Handler still can reach the supposed ”faulty”

service. This means the fault notice is a false alarm to the FT Handler. In

this situation, because CH is unable to monitor the desired faulty service, FT

Handler is still expected to handle the fault for CH.

• Both CH and FT Handler has problem reaching the ”faulty” service, but this

”faulty” service is acting normally in its application. This kind of error may

happen when a certain medium is interrupted, or if different wireless protocols

(e.g. Z-Wave, Zigbee, Wi-Fi) are mixed together for the ”faulty” device. In

the latter situation, the failure of a certain protocol may result in the failure

of communication among the ”faulty” service to only part of the other devices.

This situation means even though the ”faulty” service may still be alive and

consistently send messages to receiving services, FT Handler should have a

mechanism to block such messages from interrupting reconfigured application

flow on the receiving services.

In order to deal with all three situations, locks are used for expressing transitional

state during link change. In an application flow, locks are generated by FT Handlers

and are passed to downstream mapped services to indicate upstream data is not

reliable for now. The use of locks grants more global knowledge to local decision

making services and actuators. Once a lock is seen, services will see certain upstream

property data change as unreliable. In our current setting, actuators will not act

based on unreliable data.
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A lock is composed with 4 parts: lock ID, link ID, sending service ID, receiving service

ID. The generator FT Handler’s ID is used as the lock ID. This ID is used for deciding

who is responsible for setting and deleting the lock. The IDs of sender, receiver and

link are used for identifying which services and link the lock is about.

Locks are propagated through piggybacking with every property setting messages

and link changing messages. There is a lock table in ROM (e.g. EEPROM) of every

device. Every time a sending service wants to propagate properties or change links,

the locks related to this sending service in the lock table are piggybacked with the

sent messages. Whenever a service receives a message with locks, it will update the

lock table in the device filling it up with the received locks, and clearing from the

table existing locks which are not in the received message.

We show an example of lock propagation in Fig. 6.4 for the light control application

in Fig. 3.2. The Light Sensor FT Handler (LSFT) is going to replace Light Sensor 1

with Light Sensor 2 in this graph. Thus, it needs to change the links on both the Light

Sensor 1’s side and the Threshold2’s side (the red arrows in Fig. 6.4). The LSFT will

send a change link command with piggybacked locks to those two services, and Light

Sensor 1 and Threshold become the first services to have LSFT lock. The change

of LSFT lock will be further propagated from Threshold2 to And service, and then

from And service to Light Actuator. At this time, even though Presence Sensor and

Threshold1 still don’t have the LSFT lock and may send property update normally,

the update will not result in the Light Actuator change. This ensures the safety of

the Light Actuator during link changing process. Right after sending to Light Sensor

1 and Threshold 2, LSFT will send link change messages without LSFT lock to Light

Sensor 2(The blue dotted arrow in Fig. 6.4). This will clear the LSFT lock in them.

When the lock change gets propagated, the locks in And service and Light Actuator

get cleared as well.
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With the introduction of locks, we now show how FT Handlers change links in Al-

gorithm 6.1. In this algorithm, outgoing links are handled firstly in order to lock

actuators at an earlier time. If there are multiple links connecting to the faulty ser-

vice, every link will has its unique lock. For every link, there are 4 messages to be

sent. There are two attempts to change link tables in the faulty device, the first is to

stop the faulty services from sending messages, and the second is to clear the lock.

However, if the faulty service is already dead, both message sendings may fail.

In order to show a simple example on how Algorithm 6.1 works, we create the deploy-

ment of a simpler version of light control application in Fig. 6.5(a). We show global

service IDs, device local link tables and link IDs in this graph. Because FTLS1 and

FTLS2 are actually duplicates of the same FT Handler, they have the same service

ID.

When LS1 is found faulty, FTLS2, the primary FT Handler of LS1, will start sending

messages to use LS2 instead LS1. The sequence of message sending is shown in

Fig. 6.5(b). We also show in the graph how FTLS2 update its information with its

duplicates (FTLS1 in the graph). It propagates the newest status before it starts the

whole relinking process and after it is done with the relinking process.
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Algorithm 6.1 Link Change Algorithm in FT Handler

Input: Faulty service sf , backup service sb, incoming links Li, outgoing links Lo

1: for (sf , dest) ∈ Lo do
2: ask sf to change link to (sb, dest) and set lock for (sf , dest)
3: ask dest to change link to (sb, dest) and set lock for (sf , dest)
4: end for
5: for (src, sf ) ∈ Li do
6: ask sf to change link to (src, sb) and set lock for (src, sb)
7: ask sb to change link to (src, sb) and set lock for (src, sb)
8: end for
9: for (sf , dest) ∈ Lo do

10: ask sb to change link to (sb, dest) and clear lock for (sf , dest)
11: ask sf to change link to (sb, dest) and clear lock for (sf , dest)
12: end for
13: for (src, sf ) ∈ Li do
14: ask src to change link to (src, sb) and clear lock for (src, sb)
15: ask sf to change link to (src, sb) and clear lock for (src, sb)
16: end for

6.4 Fault Tolerance Policies

Policies can be specified by users for each component’s fault tolerance requirement.

Both service generator and mapper need fault tolerant related policies to define

whether they need to have fault tolerant mechanism and how services are generated.

For mapper, there is only one policy defined for each component: the number of back-

ups. As explained in the system workflow, this policy defines whether fault-tolerant

mechanism should be applied to the services which are mapped to the component.

If so, how many backups should be deployed at the same time. Most of the times,

the more backups needed for an application, the more devices should be put un-

der monitoring, and thus, the more system workload there is for supporting fault

tolerance.

For service generators, policies are used to define what a good virtual service looks

like. There are two dimensions for defining the quality of a virtual service: fidelity
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Figure 6.5: Mechanism of FT Handler

and cost. Because correlations between the regression result and the actual service

data can be used to reflect the similarity between the two data streams, we use the

correlations to express the fidelities of virtual services. For cost, because the service

generator runs in backend servers, its cost does not have a significant impact on the

runtime execution of fault-tolerance. Meanwhile, monitoring is run periodically and

is a constant runtime burden for both devices and the wireless network. So we’d
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like to use the monitor cost for FT related services. In order to avoid making the

monitor cost rely too much on some specific monitoring methods or protocols, we use

the number of devices in each service for monitor cost. Thus, we’ll have fidelity and

device count as the two properties of a service. A service with a higher fidelity and a

lower device count is preferred for fault tolerance purposes.

With the above definition, we can see that actual services, with the highest 100%

fidelity and lowest 1 device count, will always be the most preferred service available.

For virtual services, certain policies need to be given for define what is a good virtual

service. For service generator, we can set maximum device count and minimum

fidelity as policies for each actual service. The maximum device count could be set

to any integer above 1, and the minimum fidelity can be set to any number between

0 and 1. Any unqualified virtual services will be filtered out.

6.5 Deployment Example

In order to demonstrate how the fault-tolerant system works, we use virtual services

generated from data in Chapter 3. We show how to deploy the light control application

of Fig. 3.2 in our test environment (Fig. 3.3). Colors of different devices are used to

represent how components from Fig. 3.2 are mapped.

Before mapping in phase 1, policies for the master need to be set. We set the FT

policy to prepare 2 backups for the light sensor component and 1 backup for the

presence component. The service generator is set to use the minimum fidelity of 0.85

and the maximum device count of 4 for both Kinect backups and light sensor backups.

During the first phase mapping, LS6 and the Kinect are selected for light sensor and

presence sensor components, all other components (computation, light actuator) are
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deployed on LA4.

After 30 minutes of normal execution, virtual services are generated and updated

by the service generator. The light sensor component uses RLS and its models are

updated whenever a new sensing data arrives. The presence sensor component uses

MARS and its models are updated periodically. Due to the minimum fidelity and

the maximum device count constraints, 134 of the 256 possible RLS virtual light

sensors are generated. For presence sensors, results after binarization are used for

the fidelity calculation. Since there are a total of 22 PIR, MICRO and DIST sensors,

any sensor with a very weak relevance to the target (fidelity < 0.2) are not used for

virtual service considerations. This removes 11 sensors and greatly reduces the time

for virtual service generation. At the end, 391 virtual services, with help from DIST6

or MICRO6, meet the requirement.

Then phase 2 mapping starts. We implement NSGA-ii using Jenes[2], a library for

genetic algorithms in Java. The algorithm is executed for 100 generations with an

initial population size of 200. We set the crossover probability to 0.8 and the mutation

probability to 0.02. Fig. 6.6 shows the Pareto optimal mapping results from the

NSGA-ii algorithm. The result shows that we can achieve 0.857 application fidelity

from only 3 devices while the application fidelity threshold is 0.723. We can also see

the increase in fidelity by using more devices is marginal, and both Least Devices

First and Best Efficiency First from Sec.4.5 will choose this solution with 4 devices.

In this solution, DIST6 alone is selected for Kinect backup with a fidelity of 0.95,

(LS5, LS7) with 0.93 fidelity and (LS5, LS8) with 0.95 fidelity are selected for LS6

backup.

This solution results in the deployment shown in Fig. 6.7(a). In this figure, rect-

angles are devices and circles are resources. Devices are connected through Z-Wave

protocol[3] or Wi-Fi. In total, 6 devices are used for the entire application, with
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backups running on D5, D6, D7, D8, all of them close to area 2. A solid arrow line

means an active connection between the two resources, while a dotted one means a

potential connection between devices on both ends. This potential connection may be

activated when a fault happens. Three dotted arrow lines show the connection from

three backups: DIST6 for Kinect, LS5+7 and LS5+8 for LS6. LS5+7 and LS5+8

run the computing resources and produce outputs for virtual service (LS5, LS7) and

(LS5, LS8) respectively. The arrows within a virtual service are solid because we

try to use the results of virtual services for some data fault detection. These arrows

would be dotted if it is just for backup deployment.
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Figure 6.6: Pareto optimal results maximizing overall fidelity and minimizing device counts

After these virtual services are deployed, if a fault in D6 is detected, the fault recovery

then produces a configuration as shown in Fig. 6.7(b). For the LS6 failure, the link

from LS6 to Threshold22 is disabled, and the link from LS5 + 7 to Threshold22 is

activated. For the DIST6 failure, since it is just a backup service, no runtime action

is needed. However, this lack of backup service may trigger a remapping to find new
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backups. Overall, only two links need to be changed instead of adding 2 extra devices.

Failures of D12, D7 and D8 can be handled similarly.

To check the effectiveness of the application using backups, we examine those virtual

sensor readings for an additional 10 minutes after the 30 minutes execution and

training. We set the threshold for light value in the application to be 89, which is the

medium value of LS6 data, to make sure the threshold is not too high or low for the

data. The result shows a virtual light sensor can produce the same threshold result

as the actual one for 92.57% of the time; virtual presence sensor can get the same

result as Kinect for 98.82% of the time. Overall, the application is able to make a

correct judgment for 93.92% of the time. The false positive rate and false negative

rate are 5.64% and 6.56% respectively. All these results show that virtual services,

under the goal of fidelity, can indeed perform very well in backing up actual sensors

for fault tolerance.
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Chapter 7

Conclusions and Future Work

Fault tolerance is an important problem for IoT. According to IETF statement of

concepts in IoT, the purpose of fault-tolerance in IoT is to ”maintain robust and

trust worthy dynamic ubiquitous networking requires redundancy in several levels

and ability to automatically adapt to changed conditions depending on the required

quality of service”[44]. In this dissertation, in order to better adapt to changing envi-

ronments and build up trustworthy redundancy, we have designed the IoT middleware

to facilitate the cooperation of different devices to achieve this cross-modality fault

tolerance. When a fault happens to a device, the middleware can identify a system

reconfiguration using devices of other modalities to cover the fault.

We provide redundancy for fault tolerance purpose from a service-oriented point of

view, through three stages of services: service discovery, service mapping, service

execution.

• For service discovery, we propose an innovative approach that uses IoT devices

of different modalities as fault tolerant backups for each other. Although every

sensor is designed for collecting data in a certain modality (such as light, tem-
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perature or pressure), we find that some real world activities can be detected

by sensors at different locations and of different types effectively. We use both

linear and non-linear progression methods to integrate readings from different

sensing devices to form virtual services. We also find RLS to be more suitable

for virtual services composed of numerical sensors of the same modality, while

MARS, with a cost of complexity, is good for more general cases. These vir-

tual services provide backup services without deployment of duplicate backup

sensors.

• For service mapping, we separate it into two steps: phase 1 pre-runtime mapping

and phase 2 run-time fault-tolerant mapping. For pre-runtime mapping, we

model it into a quadratic integer programming problem. Location policies are

used to specify user preference during this mapping, and to limit the size of the

QLP problem. For phase 2 mapping, with abundant provision of virtual services,

we model it into a multiobjective optimization problem and use a multiobjective

genetic algorithm to solve it. With more sensor data from the network, virtual

services are updated, and phase 2 mapping is triggered periodically in order to

adapt to changed environment.

• For service execution, we set up hierarchical monitoring for monitoring service

status. In order to save system monitoring cost, a more decentralized loop struc-

ture is used as compared to the centralized star monitoring topology. We model

the new monitoring clustering problem as a multiple traveling salesman with-

out depot problem. This extends the traditional multiple travelling salesman

problem (mTSP), which has fixed depots, to a more general form. We create

the integer programming formulation of the mTSP with no depot problem. Be-

cause of the extremely high complexity of this problem, we present heuristic

algorithms which divide the problem into two steps: locating cluster heads, and
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creating fault-tolerant monitoring loop from each cluster head. Through sim-

ulation, we show the heuristic algorithms can greatly reduce the complexity of

finding solution while the result communication cost is not far from the optimal

solution.

We also show how services can be replaced through FT Handlers in the sys-

tem during run-time. In order to fast and automatically adapt to device faults,

backup services are deployed and virtually linked beforehand. When a fault

happens, only these virtual links need to be triggered to activate backup ser-

vices.

Our study shows the feasibility and efficiency of utilizing the heterogeneity of IoT

devices for fault tolerance purpose. Yet it is only a starting point for the effort, by

further mining and utilization of context information in IoT, the existing work can

be expanded from the following directions:

• Inclusion of more environmental context information and the concept of scenar-

ios to make virtual services more adaptive. IoT environments may be classified

into different scenarios expressed as different context parameters. Different sce-

narios may require different virtual services. Using the microphone presence

virtual service as an example, it only works when the room environment has

a small number of people and is relatively quiet. When rooms are noisy, new

virtual services need to be generated and the microphone virtual services may

not work. If the quiet and noisy situation alternates frequently, the cost of

retraining the model would be costly and time consuming. Inclusion of more

environmental context information, like the count of people in the room, or

information from body area network(BAN), and using the information as indi-

cators of different scenarios, may help avoid unnecessary re-training of models.
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• Detailed modeling for different modalities of sensors to make mapping smarter.

Currently, during mapping and remapping, all location and fault tolerance poli-

cies are set by human installers who know about the characteristics of different

sensors. More details about sensor capabilities like sensing range, sensing angle

and whether line of sight can also be set by installers. There are already works

like semantic sensing network ontology[17] providing descriptions of such sensor

capabilities. If we incorporate such descriptions into our model, an extra layer

of virtualization could be added. With the help of the extra layer, a human

installer only needs to describe about his goal for a component (e.g. which

location a sensor need to take care of), and location policies can be set auto-

matically according to the goal. Search of resources for virtual sensors can also

be bounded by this same goal.

• Inclusion of time dimension to the location model and location policies to make

the mapping smarter. Currently, we don’t handle the problem of moving ob-

jects. We assume moving devices can locate themselves through methods like

triangulation, and locations of moving objects are updated by repeatedly discov-

ery of devices. This method is not practical for fast moving ones. By generation

of possible traveling routes in our current location model and inclusion of time

dimension into it, location tracking and estimation can be achieved through

filters[59][24]. Location policies can be upgraded to include time dimensions as

well. Together with detailed modeling of different sensor modalities, the mapper

can be pushed to a higher virtualization level: Instead of current application

of ”Turn on the office light if office presence sensor detect something”, applica-

tion description like ”Turn on a corresponding light if someone will arrive at a

certain location” can be supported.

With the popularity of the Internet of Things, more sensors of different modalities will
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be deployed into our environment, and abundant sensing data can be acquired. We

believe the aggregating data from different modalities of sensors will not only benefit

fault tolerance in IoT, but also has potential to influence research on the sensor device

placement, scenario reasoning and other aspects.
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